JP2010270394A - Continuous heat-treatment method for steel pipe - Google Patents

Continuous heat-treatment method for steel pipe Download PDF

Info

Publication number
JP2010270394A
JP2010270394A JP2010097160A JP2010097160A JP2010270394A JP 2010270394 A JP2010270394 A JP 2010270394A JP 2010097160 A JP2010097160 A JP 2010097160A JP 2010097160 A JP2010097160 A JP 2010097160A JP 2010270394 A JP2010270394 A JP 2010270394A
Authority
JP
Japan
Prior art keywords
steel pipe
heat treatment
steel
continuous heat
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010097160A
Other languages
Japanese (ja)
Other versions
JP5573325B2 (en
Inventor
Takuya Asano
拓也 浅野
Keizo Kawamura
圭造 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010097160A priority Critical patent/JP5573325B2/en
Publication of JP2010270394A publication Critical patent/JP2010270394A/en
Application granted granted Critical
Publication of JP5573325B2 publication Critical patent/JP5573325B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous heat-treatment method for steel pipe, suitable to full body heat-treatment of an electroseamed steel pipe for expanding pipe, used especially as an oil-well pipe, related to the continuous heat-treatment method for steel pipe. <P>SOLUTION: Under state of connecting both end parts of the steel pipes, the steel pipes are continuously sent into a heat-treatment facility and heat-treatment accompanied with rapid cooling with cooling water to the whole body of steel pipes, is applied. The end part at one side of the steel pipe is expanded in diameter and a female-screw is cut on its inner peripheral surface and the other steel pipe is screw-combined to be connected. Further, both end parts of steel pipes can be connected through a connecting member. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は鋼管の連続熱処理方法に関するものであり、特に油井管として用いられる拡管用の電縫鋼管のフルボディ熱処理に好適な、鋼管の連続熱処理方法に関するものである。   The present invention relates to a method for continuous heat treatment of steel pipes, and more particularly to a method for continuous heat treatment of steel pipes suitable for full body heat treatment of ERW steel pipes for expansion used as oil well pipes.

ラインパイプや油井管は使用時に内径を拡大する拡管が行われることがあり、特に油井管については地中に埋設された状態で拡管を行い、掘削コストの削減を図る技術が開発されている。拡管性を高めるためには、鋼管が加工性に優れた材料特性を持つことが必要である。しかし地中深くにまで油井管を下していくためには、鋼管が高い強度を持つことが必要である。鋼管の加工性を高めるためには軟質の組織が有利であり、強度を高めるためには硬質の組織が有利である。このため加工性と強度とは両立させることが容易ではないが、柔らかいフェライト中に硬いマルテンサイトを分散させた複合組織鋼(デュアルフェーズ鋼)とすれば、これらの両特性を両立させることが可能となる。   Line pipes and oil well pipes are sometimes expanded to increase the inner diameter during use. In particular, techniques have been developed to reduce drilling costs by expanding the oil well pipes while they are buried underground. In order to improve the pipe expandability, it is necessary that the steel pipe has material characteristics excellent in workability. However, in order to lower the oil well pipe deeply into the ground, it is necessary for the steel pipe to have high strength. In order to improve the workability of the steel pipe, a soft structure is advantageous, and in order to increase the strength, a hard structure is advantageous. For this reason, it is not easy to achieve both workability and strength, but it is possible to achieve both of these characteristics by using a composite structure steel (dual phase steel) in which hard martensite is dispersed in soft ferrite. It becomes.

鋼管の組織をこのような複合組織とするためには、鋼管をAc点以上、Ac点以下の温度にまで加熱して保持してフェライトとオーステナイトとからなる組織としたうえ、急冷してフェライト中にマルテンサイトを析出させた組織とすることが必要である。このための熱処理は当然に鋼管全体(フルボディ)に対して行わねばならない。 In order to make the structure of a steel pipe into such a composite structure, the steel pipe is heated to a temperature of Ac 1 point or more and Ac 3 point or less to be held to form a structure composed of ferrite and austenite, and then rapidly cooled. It is necessary to have a structure in which martensite is precipitated in ferrite. Naturally, the heat treatment for this must be performed on the entire steel pipe (full body).

そこで鋼管を上記の温度にまで昇温したうえ、水冷装置において冷却水を吹き付けて急冷する方法が開発されている。この方法では、生産性を高めるために先行する鋼管の後端面と後続する鋼管の先端面とをほぼ接触させた状態とし、途切れることなく熱処理装置に送り込んでいる。しかし鋼管に吹き付けられた冷却水の一部が鋼管の端面から鋼管内部に流入して加熱領域方向に逆流することがあり、それによって鋼管の内面が不規則に冷却されるために設定どおりの熱処理が行えず、鋼管の端部付近については安定した製品特性が得られないことがあった。   In view of this, a method has been developed in which the steel pipe is heated to the above temperature and then cooled rapidly by spraying cooling water in a water cooling device. In this method, in order to increase productivity, the rear end surface of the preceding steel pipe and the front end surface of the subsequent steel pipe are brought into contact with each other, and are fed into the heat treatment apparatus without interruption. However, part of the cooling water sprayed on the steel pipe may flow into the steel pipe from the end face of the steel pipe and back flow in the direction of the heating area. Stable product characteristics may not be obtained near the end of the steel pipe.

なお、電縫鋼管の溶接シーム部を熱処理することは周知であるが、これは鋼管のフルボディに対する熱処理ではない。また特許文献1には、シームレス鋼管の端部間をつき合わせて拡散接合したうえ、接合部分を焼き戻し処理することによって、接合部分の拡管性を向上させる方法が開示されている。しかしこれは鋼管の接合端部のみの熱処理であり、鋼管のフルボディに対する熱処理ではないうえに、冷却水による急冷を行うものでもない。   It is well known to heat-treat the welded seam portion of the ERW steel pipe, but this is not a heat treatment for the full body of the steel pipe. Patent Document 1 discloses a method for improving the tube expandability of a joint portion by diffusing and joining the end portions of a seamless steel pipe and then tempering the joint portion. However, this is a heat treatment only for the joint end of the steel pipe, and is not a heat treatment for the full body of the steel pipe, nor is it a quenching with cooling water.

特開2001−300743号公報JP 2001-300743 A

上記したように、鋼管の全体を生産性よく、かつ内部に冷却水を浸入させることなく連続的に熱処理することができる技術は従来知られていない。従って本発明の目的は、拡管用の鋼管の全体に対して水冷を伴う熱処理を、鋼管内部への冷却水の浸入を防止しながら効率よく行うことができる鋼管の連続熱処理方法を提供することである。   As described above, a technique that can heat-treat the entire steel pipe continuously with high productivity and without allowing cooling water to enter inside has not been known. Accordingly, an object of the present invention is to provide a continuous heat treatment method for a steel pipe that can efficiently perform heat treatment with water cooling on the entire steel pipe for pipe expansion while preventing intrusion of cooling water into the inside of the steel pipe. is there.

上記の課題を解決するためになされた本発明の鋼管の連続熱処理方法は、鋼管の端部どうしを連結した状態で鋼管を熱処理設備に連続的に送り込み、鋼管の全体に対して冷却水による急冷を伴う熱処理を行うことを特徴とするものである。なお鋼管は、油井管として用いられる拡管用鋼管とすることができる。   The continuous heat treatment method of a steel pipe of the present invention made to solve the above problems is to continuously feed the steel pipe to a heat treatment facility in a state where the ends of the steel pipe are connected to each other, and quench the entire steel pipe with cooling water. It is characterized by performing a heat treatment involving The steel pipe can be a steel pipe for expansion used as an oil well pipe.

本発明においては、鋼管の一方の端部を拡径し、その内周面にメネジを切って他の鋼管とネジ結合することが好ましい。その他、鋼管の端部どうしを連結部材を介して連結することが好ましく、熱処理の後、鋼管相互間の連結を解除することが好ましい。熱処理設備は、加熱手段と、保温炉と、水冷手段とを備えたものであることが好ましく、熱処理により、フェライト中にマルテンサイトを分散させた複合組織を生じさせることが好ましい。また本発明の鋼管は油井管として用いられる拡管用鋼管に用いられることが好ましい。   In the present invention, it is preferable that one end portion of the steel pipe is expanded in diameter, and a female screw is cut on the inner peripheral surface thereof to be screwed to another steel pipe. In addition, it is preferable to connect the ends of the steel pipes via a connecting member, and it is preferable to release the connection between the steel pipes after the heat treatment. The heat treatment equipment is preferably provided with a heating means, a heat-retaining furnace, and a water cooling means, and it is preferable to generate a composite structure in which martensite is dispersed in ferrite by heat treatment. Moreover, it is preferable that the steel pipe of this invention is used for the steel pipe for expansion used as an oil well pipe.

本発明によれば、鋼管の端部どうしを連結した状態で、鋼管の全体に冷却水による急冷を伴う熱処理を行うので、従来のように急冷用の冷却水が鋼管端部から内部に浸入するおそれは皆無となる。このため鋼管の全体を均一に熱処理し、加工性と強度を両立させた拡管用鋼管を得ることができる。本発明では鋼管の端部どうしを連結するので熱処理後は容易に分離させることができ、その後の取り扱いも容易である。なお、ネジ結合した場合は管継手などの接続用部材は不要となる利点があり、また、鋼管の端部どうしを連結部材を介して連結する場合は、鋼管にネジ斬り加工が不要で簡単に連結できる利点がある。   According to the present invention, in the state where the ends of the steel pipes are connected to each other, the entire steel pipe is subjected to heat treatment accompanied by quenching with cooling water, so that the cooling water for quenching enters the inside from the end of the steel pipe as in the prior art. There is no fear. For this reason, the whole steel pipe can be heat-treated uniformly to obtain a steel pipe for expansion that has both workability and strength. In the present invention, since the ends of the steel pipes are connected to each other, they can be easily separated after the heat treatment, and the subsequent handling is also easy. In addition, there is an advantage that a connecting member such as a pipe joint is not necessary when screwed, and when connecting the ends of steel pipes via a connecting member, it is not necessary to cut the screw into the steel pipe. There is an advantage that can be linked.

なお、この熱処理によってフェライト中にマルテンサイトを分散させた複合組織とすれば、600MPa以上の強度を維持しながら、拡管率を従来の15%から25〜30%にまで大幅に高めることができるので、油井管として用いるに好適な鋼管を得ることができる。なお拡管率は、(拡管後の外径−拡管前の外径)/拡管前の外径を意味し、本明細書では割れることなく拡管可能な最大値で表わしている。   In addition, if a composite structure in which martensite is dispersed in ferrite by this heat treatment, the tube expansion rate can be significantly increased from 15% to 25-30% while maintaining a strength of 600 MPa or more. A steel pipe suitable for use as an oil well pipe can be obtained. The tube expansion rate means (outer diameter after tube expansion-outer diameter before tube expansion) / outer diameter before tube expansion, and is represented by the maximum value that allows tube expansion without cracking in this specification.

本発明の実施形態における熱処理装置の全体図である。1 is an overall view of a heat treatment apparatus in an embodiment of the present invention. 熱処理条件を示すグラフである。It is a graph which shows heat processing conditions. ネジ結合した時の連結部の拡大図である。It is an enlarged view of the connection part when screwed together. 本発明の実施形態を示すブロック図である。It is a block diagram which shows embodiment of this invention. その他の連結部材を示す拡大図である。It is an enlarged view which shows another connection member. その他の連結部材を示す拡大図である。It is an enlarged view which shows another connection member. その他の連結部材を示す斜視図である。It is a perspective view which shows another connection member. (a)その他の連結部材を示す使用前の正面図、(b)使用状態の正面図である。(A) The front view before use which shows another connection member, (b) The front view of a use condition.

以下に本発明の実施形態を説明する。
以下の実施形態では、油井管として用いられる拡管用鋼管に対して連続的に熱処理を行い、フェライト中にマルテンサイトを分散させた複合組織を生じさせる。鋼管のサイズは様々であるが、1本の長さは10〜15m、外径は114〜340mm、板厚は5.2〜13mm程度である。この鋼管としてシームレス鋼管に較べて厚さのばらつきが小さい電縫鋼管を用いれば、拡管時の破裂をより確実に防止することができ、拡管率を大きくすることができる。
Embodiments of the present invention will be described below.
In the following embodiment, the steel pipe for expansion used as an oil well pipe is continuously heat-treated to produce a composite structure in which martensite is dispersed in ferrite. Although the size of the steel pipe is various, the length of one is 10-15 m, the outer diameter is 114-340 mm, and the plate thickness is about 5.2-13 mm. If an electric resistance welded steel pipe having a small thickness variation compared to a seamless steel pipe is used as this steel pipe, it is possible to more reliably prevent rupture at the time of pipe expansion and increase the pipe expansion ratio.

本発明においては拡管用鋼管の鋼組成を特に限定するものではないが、C:0.03〜0.20%(質量%、以下同じ)、Si:0.01〜1.20%、Mn:0.30〜2.50%、P:0.03%以下、S:0.01%以下、AL:0.001〜0.01%、N:0.01%以下、Ti:0.005%〜0.05%、Ca:10〜40ppm、選択元素として、Nb:0.01〜0.1%、V:0.01〜0.1、を含み残部Feからなる組成であることが好ましく、特にCaの添加が拡管率の増大に寄与することが確認されている。   In the present invention, the steel composition of the steel pipe for pipe expansion is not particularly limited, but C: 0.03 to 0.20% (mass%, the same applies hereinafter), Si: 0.01 to 1.20%, Mn: 0.30 to 2.50%, P: 0.03% or less, S: 0.01% or less, AL: 0.001 to 0.01%, N: 0.01% or less, Ti: 0.005% ~ 0.05%, Ca: 10-40 ppm, Nb: 0.01-0.1% as a selection element, V: 0.01-0.1, preferably a composition comprising the balance Fe, In particular, it has been confirmed that the addition of Ca contributes to an increase in the tube expansion rate.

このような組成の電縫鋼管をAc点以上、Ac点以下の温度にまで加熱して保持してフェライトとオーステナイトとからなる組織としたうえ、急冷してフェライト中にマルテンサイトを析出させる。具体的な加熱温度は760〜845℃であり、この温度域において1分以上保持したうえで、700℃から300℃までの温度域を20℃/秒以上の冷却速度で急冷する。冷却速度がこれよりも遅いと鋼組織中のマルテンサイト分率が低くなり、強度が低下することとなる。 The ERW steel pipe having such a composition is heated to a temperature of Ac 1 point or more and Ac 3 point or less to be held to form a structure composed of ferrite and austenite, and then rapidly cooled to precipitate martensite in the ferrite. . A specific heating temperature is 760 to 845 ° C., and the temperature range from 700 ° C. to 300 ° C. is rapidly cooled at a cooling rate of 20 ° C./second or more after being held in this temperature range for 1 minute or more. When the cooling rate is slower than this, the martensite fraction in the steel structure is lowered, and the strength is lowered.

図1はこのような熱処理を行うための装置構成図であり、鋼管1は水平面に対して3〜6°程度の角度で傾斜配置された多数のローラ2によって図1の右方向に送られ、加熱手段3と保温炉4と水冷手段5とからなる熱処理装置を通過する間に連続的に熱処理される。しかし本発明においてはこのような傾斜を持たせることは必須ではなく、水平配置しても差し支えない。   FIG. 1 is an apparatus configuration diagram for performing such a heat treatment, and a steel pipe 1 is sent to the right in FIG. 1 by a number of rollers 2 arranged at an angle of about 3 to 6 ° with respect to a horizontal plane. Heat treatment is continuously performed while passing through a heat treatment apparatus including the heating means 3, the heat retaining furnace 4, and the water cooling means 5. However, in the present invention, it is not essential to have such an inclination, and it may be arranged horizontally.

加熱手段3として、この実施形態では高周波加熱装置が用いられている。この高周波加熱装置を通過する間に鋼管は760〜845℃まで加熱され、保温炉4において1分以上保持される。その後に水冷手段5において周囲から冷却水を噴射し、20℃/秒以上の冷却速度で300℃以下まで急冷することによって、フェライト中にマルテンサイトを分散させた複合組織とする。図2にこの熱処理条件を示した。   As the heating means 3, a high-frequency heating device is used in this embodiment. While passing through this high-frequency heating device, the steel pipe is heated to 760 to 845 ° C. and held in the heat retaining furnace 4 for 1 minute or more. Thereafter, cooling water is sprayed from the surroundings in the water cooling means 5 and rapidly cooled to 300 ° C. or less at a cooling rate of 20 ° C./second or more to obtain a composite structure in which martensite is dispersed in ferrite. FIG. 2 shows the heat treatment conditions.

図1に示すように熱処理される鋼管1は先端が低い位置にあり、冷却水が内部に浸入して逆流しにくいように工夫されているが、それでも完全に冷却水の浸入を防止することは不可能である。そこで本発明では図3、図4に示すように、鋼管1の一端を拡開したうえその内周面にメネジを切り、また鋼管1の他端はテーパ状に縮径してその外周面に対応するオネジを切って、鋼管1の端部どうしを直接ネジ結合する。このようにして前工程において鋼管1を直列につないだうえで上記の熱処理装置に通せば、鋼管1の端部から冷却水が浸入して逆流する可能性はゼロとなり、冷却水の浸入による熱処理不良が解消される。なお、接続部分は二重になるため肉厚が厚くなるが、20℃/秒以上の冷却速度を確保できれば支障はない。   As shown in FIG. 1, the steel pipe 1 to be heat-treated is at a position where the tip is low, and the cooling water is devised so that the cooling water enters the inside and is difficult to flow backward, but it is still possible to completely prevent the cooling water from entering. Impossible. Therefore, in the present invention, as shown in FIGS. 3 and 4, one end of the steel pipe 1 is expanded and a female thread is cut on the inner peripheral surface thereof, and the other end of the steel pipe 1 is tapered to reduce the outer peripheral surface thereof. The corresponding male screw is cut and the ends of the steel pipe 1 are directly screwed together. In this way, if the steel pipes 1 are connected in series in the previous process and passed through the heat treatment apparatus, the possibility of cooling water entering from the end of the steel pipe 1 and flowing backward becomes zero, and heat treatment by intrusion of cooling water is performed. Defects are eliminated. Although the connecting portion is doubled, the wall thickness is increased, but there is no problem if a cooling rate of 20 ° C./second or more can be secured.

このように、鋼管1どうしをネジ結合したうえでフルボディの熱処理を施すことは従来は全く知られていない。熱処理が終了したのち、ネジ結合を解除すれば再び1本ずつの鋼管として出荷することができる。このようにネジを利用すれば結合と分離とが容易に行えるため、溶接による接合に比較して作業性がよくなる。   Thus, it has not been known at all to perform a full body heat treatment after screwing the steel pipes 1 together. When the screw connection is released after the heat treatment is completed, the steel pipes can be shipped again one by one. If screws are used in this way, coupling and separation can be easily performed, so that workability is improved as compared with joining by welding.

鋼管1を連結する例として、上記のように鋼管1の端部どうしをネジ結合した場合について説明したが、その他、鋼管1の端部どうしを連結部材6を介して連結することもできる。連結部材6としては、以下のようなものがある。
図5のものは、円筒状の本体部7の両側部内周面に徐々に内径が小さくなるテーパ部7a、7aが形成されており、このテーパ部7aに鋼管1の端部を縮径させつつ圧入して連結する構造となっている。図6のものは、円柱状の本体部8の両側部外周面に徐々に外径が小さくなるテーパ部8a、8aが形成されており、このテーパ部8aに鋼管1の端部を拡径させつつ圧入して連結する構造となっている。図7のものは、円筒状の本体部9の両側部に複数個のスリット9a、9aが設けられているとともに、リング9b(図7では、片側のリングのみを表示してある)が装着されており、鋼管1の端部を本体部9内に挿入後、前記リング9bを端部側へスライド移動させることによりスリット部を縮径するように絞って鋼管1を固定し連結する構造となっている。
また図8のものは、2個リング10、10間にある角度でスプリングワイヤ11を張ったもので、鋼管1が差し込まれるとスプリングワイヤ11が引き延ばされて鋼管1を包み込むように接触し、鋼管1の端部どうしを連結する構造となっている。
As an example of connecting the steel pipes 1, the case where the ends of the steel pipes 1 are screwed together as described above has been described. However, the ends of the steel pipes 1 can also be connected via the connecting members 6. Examples of the connecting member 6 include the following.
In FIG. 5, tapered portions 7 a, 7 a having a gradually decreasing inner diameter are formed on the inner peripheral surfaces of both side portions of the cylindrical main body portion 7, and the diameter of the end portion of the steel pipe 1 is reduced in the tapered portion 7 a. It has a structure that is press-fitted and connected. In FIG. 6, taper portions 8a and 8a having gradually decreasing outer diameters are formed on the outer peripheral surfaces of both side portions of the cylindrical body portion 8, and the diameter of the end portion of the steel pipe 1 is increased in the taper portion 8a. It has a structure that is press-fit while being connected. 7 is provided with a plurality of slits 9a, 9a on both sides of a cylindrical main body 9, and a ring 9b (only one ring is shown in FIG. 7). After the end of the steel pipe 1 is inserted into the main body 9, the ring 9b is slid toward the end so that the slit is reduced so as to reduce the diameter, and the steel pipe 1 is fixed and connected. ing.
In FIG. 8, the spring wire 11 is stretched at an angle between the two rings 10 and 10. When the steel pipe 1 is inserted, the spring wire 11 is stretched and comes into contact with the steel pipe 1. The end portions of the steel pipe 1 are connected to each other.

これら図5〜8に示した連結部材6では、鋼管1の端部どうしを簡単に連結することができ、また後工程での分離も簡単に行うことができる。更に、図5〜6のものでは、鋼管1の端部が連結部材6と密着した状態となっており、また図7のものでは、鋼管1の端部が円筒状の本体部9で覆われた状態となっているので、鋼管1の端部から冷却水が浸入して逆流する可能性はゼロとなり、冷却水の浸入による熱処理不良が解消される。
また図8のものでは、連結部材6による防水効果はないが、鋼管1の端部どうしを密接した状態で連結しておけば冷却水の浸入を防止することができる。尚、連結部材6は以上の形状に限らず、着脱容易で高温に耐え、水の浸入を防ぐ能力があるものであれば、他の形状、構造でも構わない。
In these connection members 6 shown in FIGS. 5 to 8, the end portions of the steel pipe 1 can be easily connected to each other, and separation in a subsequent process can be easily performed. 5 to 6, the end of the steel pipe 1 is in close contact with the connecting member 6, and in FIG. 7, the end of the steel pipe 1 is covered with a cylindrical main body 9. Therefore, there is no possibility that the cooling water enters from the end of the steel pipe 1 and flows backward, and the heat treatment failure due to the penetration of the cooling water is eliminated.
In the case of FIG. 8, there is no waterproofing effect by the connecting member 6, but if the ends of the steel pipe 1 are connected in close contact with each other, intrusion of cooling water can be prevented. The connecting member 6 is not limited to the above-described shape, and may be any other shape and structure as long as it is easy to attach and detach, can withstand high temperatures, and has the ability to prevent water from entering.

得られた鋼管は、全体がデュアルフェーズ鋼の鋼組織であり、加工性と強度とを両立させた拡管用鋼管である。なお加工性については25〜30%の拡管率を達成することができ、強度については600MPa以上を達成することができた。しかもこの組織はフェライト中に固溶した炭素の効果で、再度加工すると強度が更に高くなるから、地中に埋設した状態で拡管を行えば、高い圧壊強度を持たせることが可能である。   The obtained steel pipe is a steel structure of dual phase steel as a whole, and is a steel pipe for expansion that has both workability and strength. In addition, about the workability, the pipe expansion rate of 25-30% was able to be achieved, and about 600 MPa or more was able to be achieved about the intensity | strength. In addition, the strength of this structure is further increased by re-processing due to the effect of carbon dissolved in ferrite, so that if the tube is expanded in the ground, it can have a high crushing strength.

C:0.06%、Si:0.2%、Mn:1.3%、P:0.005%未満、S:0.003%、Nb:0.03%、V:0.02%、AL:0.003%、N:0.003%、Ti:0.02%、Ca:20ppm、残部Fe及び不可避的不純物からなる組成を有し、長さが12m、外径300mm,板厚11mmの電縫鋼管を、図3に示したようにネジ結合した。接合部の長さは約300mmである。接合された鋼管を水平面に対して4°の傾斜を持たせたローラによって0.4m/分の速度で熱処理装置に通し、出力800kWの高周波加熱装置によって800℃に加熱し、保温炉で90秒間にわたり温度保持したうえ、冷却水を毎分2mの流量で周囲から吹き付けて300℃以下まで急冷した。冷却速度は約25℃/秒である。 C: 0.06%, Si: 0.2%, Mn: 1.3%, P: less than 0.005%, S: 0.003%, Nb: 0.03%, V: 0.02%, AL: 0.003%, N: 0.003%, Ti: 0.02%, Ca: 20 ppm, balance Fe and unavoidable impurities, length 12m, outer diameter 300mm, plate thickness 11mm The ERW steel pipe was screwed as shown in FIG. The length of the joint is about 300 mm. The joined steel pipe is passed through a heat treatment device at a speed of 0.4 m / min by a roller having an inclination of 4 ° with respect to a horizontal plane, heated to 800 ° C. by a high-frequency heating device with an output of 800 kW, and kept in a heat retaining furnace for 90 seconds. The temperature was maintained over a period of time, and cooling water was sprayed from the surrounding area at a flow rate of 2 m 3 per minute to rapidly cool to 300 ° C. or lower. The cooling rate is about 25 ° C./second.

熱処理された鋼管のネジ結合を解除し、引張強度及び最大拡管率を測定したところ、それぞれ700MPa、27%であり、管端部分についても中央部分と特性差は認められなかった。   When the screw connection of the heat-treated steel pipe was released and the tensile strength and the maximum pipe expansion ratio were measured, they were 700 MPa and 27%, respectively, and no characteristic difference was observed between the central portion and the tube end portion.

実施例1と同じ電縫鋼管を、図5に示したような連結部材を介して連結した。連結した鋼管を実施例1と同様に高周波加熱装置によって加熱処理し、次いで保温炉で温度保持したうえ、冷却水を周囲から吹き付けて急冷した。
上記の熱処理後において鋼管から連結部材を外し、得られた鋼管の引張強度及び最大拡管率を測定した結果は、実施例1と同様の数値が得られたことが確認され、また管端部分についても中央部分と特性差は認められなかった。
The same ERW steel pipe as in Example 1 was connected via a connecting member as shown in FIG. The connected steel pipes were heat-treated with a high-frequency heating apparatus in the same manner as in Example 1, and then kept at a temperature in a heat-retaining furnace, and then cooled rapidly by blowing cooling water from the surroundings.
After the above heat treatment, the connecting member was removed from the steel pipe, and the results of measuring the tensile strength and the maximum expansion ratio of the obtained steel pipe were confirmed to be the same values as in Example 1, and the pipe end portion However, there was no difference in characteristics from the central part.

1 鋼管
2 ローラ
3 加熱手段
4 保温炉
5 水冷手段
6 連結部材
7 円筒状の本体部
8 円柱状の本体部
9 円筒状の本体部
DESCRIPTION OF SYMBOLS 1 Steel pipe 2 Roller 3 Heating means 4 Heat retention furnace 5 Water cooling means 6 Connection member 7 Cylindrical main-body part 8 Column-shaped main-body part 9 Cylindrical main-body part

Claims (7)

鋼管の端部どうしを連結した状態で鋼管を熱処理設備に連続的に送り込み、鋼管の全体に対して冷却水による急冷を伴う熱処理を行うことを特徴とする鋼管の連続熱処理方法。   A continuous heat treatment method for steel pipes, characterized in that the steel pipes are continuously fed to a heat treatment facility in a state where the ends of the steel pipes are connected, and the whole steel pipe is subjected to heat treatment accompanied by quenching with cooling water. 鋼管の一方の端部を拡径し、その内周面にメネジを切って他の鋼管とネジ結合して連結することを特徴とする請求項1記載の鋼管の連続熱処理方法。   2. A continuous heat treatment method for a steel pipe according to claim 1, wherein one end of the steel pipe is expanded in diameter, and a female thread is cut on the inner peripheral surface thereof to be connected to another steel pipe by screw connection. 鋼管の端部どうしを連結部材を介して連結することを特徴とする請求項1記載の鋼管の連続熱処理方法。   The continuous heat treatment method for a steel pipe according to claim 1, wherein the ends of the steel pipe are connected to each other via a connecting member. 熱処理の後、鋼管相互間の連結を解除することを特徴とする請求項1乃至3のいずれか1項に記載の鋼管の連続熱処理方法。   The method for continuous heat treatment of steel pipes according to any one of claims 1 to 3, wherein the connection between the steel pipes is released after the heat treatment. 熱処理設備が、加熱手段と、保温炉と、水冷手段とを備えたものであることを特徴とする請求項1乃至4のいずれか1項に記載の鋼管の連続熱処理方法。   The continuous heat treatment method for a steel pipe according to any one of claims 1 to 4, wherein the heat treatment equipment includes a heating means, a heat retaining furnace, and a water cooling means. 熱処理により、フェライト中にマルテンサイトを分散させた複合組織を生じさせることを特徴とする請求項1乃至5のいずれか1項に記載の鋼管の連続熱処理方法。   The continuous heat treatment method for a steel pipe according to any one of claims 1 to 5, wherein a composite structure in which martensite is dispersed in ferrite is generated by heat treatment. 鋼管が、油井管として用いられる拡管用鋼管であることを特徴とする請求項1乃至6のいずれか1項に記載の鋼管の連続熱処理方法。   The method for continuous heat treatment of a steel pipe according to any one of claims 1 to 6, wherein the steel pipe is a steel pipe for expansion used as an oil well pipe.
JP2010097160A 2009-04-23 2010-04-20 Continuous heat treatment method for steel pipes Active JP5573325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010097160A JP5573325B2 (en) 2009-04-23 2010-04-20 Continuous heat treatment method for steel pipes

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009104746 2009-04-23
JP2009104746 2009-04-23
JP2010097160A JP5573325B2 (en) 2009-04-23 2010-04-20 Continuous heat treatment method for steel pipes

Publications (2)

Publication Number Publication Date
JP2010270394A true JP2010270394A (en) 2010-12-02
JP5573325B2 JP5573325B2 (en) 2014-08-20

Family

ID=43418649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010097160A Active JP5573325B2 (en) 2009-04-23 2010-04-20 Continuous heat treatment method for steel pipes

Country Status (1)

Country Link
JP (1) JP5573325B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015094029A (en) * 2013-11-14 2015-05-18 高周波熱錬株式会社 Heat treatment jig and method of heat-treating pipe material
US11377704B2 (en) 2013-03-14 2022-07-05 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5311109A (en) * 1976-07-19 1978-02-01 Kobe Steel Ltd Fitting part separating method in heat treating process of cylindrical parts
JPS6251164U (en) * 1985-09-20 1987-03-30
JP2003129128A (en) * 2001-10-25 2003-05-08 High Frequency Heattreat Co Ltd Continuous hardening method by induction heating for steel pipe and apparatus
WO2005080621A1 (en) * 2004-02-19 2005-09-01 Nippon Steel Corporation Steel sheet or steel pipe being reduced in expression of baushinger effect, and method for production thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5311109A (en) * 1976-07-19 1978-02-01 Kobe Steel Ltd Fitting part separating method in heat treating process of cylindrical parts
JPS6251164U (en) * 1985-09-20 1987-03-30
JP2003129128A (en) * 2001-10-25 2003-05-08 High Frequency Heattreat Co Ltd Continuous hardening method by induction heating for steel pipe and apparatus
WO2005080621A1 (en) * 2004-02-19 2005-09-01 Nippon Steel Corporation Steel sheet or steel pipe being reduced in expression of baushinger effect, and method for production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11377704B2 (en) 2013-03-14 2022-07-05 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
JP2015094029A (en) * 2013-11-14 2015-05-18 高周波熱錬株式会社 Heat treatment jig and method of heat-treating pipe material

Also Published As

Publication number Publication date
JP5573325B2 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
JP5252131B2 (en) Hardening method of steel pipe
JP4748283B2 (en) Manufacturing method of thick-walled seamless steel pipe
JP6210151B2 (en) Heat treatment apparatus and heat treatment method
WO2014015702A1 (en) Welding process for martensite heat resistant steel
US20150283643A1 (en) Method and Component
CN101270438A (en) Normalized steel for resistance welding petroleum case pipe with low yield ratio, resistance welding casing tube and its manufacturing method
CN103938098A (en) Steel pipe with ultrahigh strength and continuous production method of steel pipe
JP5573325B2 (en) Continuous heat treatment method for steel pipes
Yang et al. Fine-grain heat affected zone softening of G115/Sanicro25 dissimilar steel welded joints after post-weld heat treatment
CN105755239A (en) Method for improving low-temperature impact toughness of large-diameter large-wall-thickness high-strength hot-bent pipe
CN114540587A (en) Method for improving the structure of a steel component after heating and steel component obtained by this method
KR102020388B1 (en) Method for manufacturing the pipe fitting having excellent low-temperature toughness in heat affected zone
CN106041265B (en) A kind of welding method of control petroleum pipeline low-alloy steel weld affected zone hardness
CN104607821B (en) A387 Gr11 CL2 steel welding materials and its application method
JP5233388B2 (en) Heat treatment equipment for welded parts of ERW pipe
JP2012066277A (en) Heat treatment method for branch pipe welded portion, and branch pipe seat structure
WO2013095245A1 (en) Method for manufacturing a steel component by flash butt welding and a component made by using the method
JP6589896B2 (en) ERW steel pipe cooling method, ERW steel pipe cooling equipment, and ERW steel pipe manufacturing method
JP6119691B2 (en) Forged steel pipe excellent in widening workability, its manufacturing method and manufacturing equipment
RU2221057C2 (en) Method of production of welded tubes of large diameter
JP5907961B2 (en) Bearing ring manufacturing method, bearing ring, and bearing
JP2009079248A (en) Heat treatment method for electric resistance welded steel tube
CN105312325A (en) One-time forming technology of anchor rod for geological engineering
BR102019003246A2 (en) HOMOGENIZATION PROCESS FOR SPIRAL PIPING
KR100742916B1 (en) Method of manufacturing the electric resistance welded pipe with small diameter for excellent hic resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140616

R151 Written notification of patent or utility model registration

Ref document number: 5573325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350