JP2010270359A - Extractant and extraction-separating method for rare earth metal - Google Patents
Extractant and extraction-separating method for rare earth metal Download PDFInfo
- Publication number
- JP2010270359A JP2010270359A JP2009122263A JP2009122263A JP2010270359A JP 2010270359 A JP2010270359 A JP 2010270359A JP 2009122263 A JP2009122263 A JP 2009122263A JP 2009122263 A JP2009122263 A JP 2009122263A JP 2010270359 A JP2010270359 A JP 2010270359A
- Authority
- JP
- Japan
- Prior art keywords
- extraction
- iii
- phen
- hipt
- rare earth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Agricultural Chemicals And Associated Chemicals (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Extraction Or Liquid Replacement (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
Description
本発明は希土類金属の相互分離に使用することができる抽出剤及び当該抽出剤を用いた希土類金属の抽出分離法を提供する。 The present invention provides an extractant that can be used for the separation of rare earth metals and a method for extracting and separating rare earth metals using the extractant.
元素周期表において原子番号57のLaから原子番号71のLuまでの15元素をランタノイド(Ln)といい、永久磁石やレーザー、蛍光体、水素吸蔵合金、紫外線吸収レンズ、光ファイバー、磁気記録用ディスクなどに利用されている有用な元素である。原子番号の小さなLaからEuまでは軽ランタノイド、原子番号の大きなGdからLuまでは重ランタノイドとよばれる。ランタノイド元素は化学的性質が相互に類似するため、Ln間の分離は困難である[非特許文献1]。
In the periodic table of elements, 15 elements from La with
溶媒抽出はお互いにほとんど混和しない二種類の溶媒間に溶質が分配することを利用した分離法であり、簡単な操作で微量から大量の物質の分離・精製が出来るため、湿式冶金や資源回収、核燃料再処理などに広く応用されている[非特許文献2]。 Solvent extraction is a separation method that utilizes the distribution of solutes between two types of solvents that are almost immiscible with each other, and can be separated and purified from trace amounts to large amounts of substances with simple operations. Widely applied to nuclear fuel reprocessing etc. [Non-Patent Document 2].
テノイルトリフルオロアセトンのようなβ-ジケトンや4-イソプロピルトロポロン(Hipt)によるLnの抽出は古くから行われている [非特許文献3-5]。近年、Hipt系ではβ-ジケトン系では見られないLn2(ipt)6Hiptなどの試薬自身の付加(自己付加)を含む多核錯体の抽出が報告されている[非特許文献6, 7]。更に、複数の希土類が存在する条件ではLaLu(ipt)6やLaLu(ipt)6Hiptのような異種Lnの多核錯体が抽出される共抽出が起こり、分離の妨げとなることが明らかになってきた[非特許文献8]。ある抽出系によるLn(III)の相互分離能は各元素単独での実験結果から予測される。しかしながら、複数の希土類金属が存在する系から実際に相互分離を行うと共抽出の影響により予測とは異なる結果が得られることがある。
Extraction of Ln with β-diketones such as thenoyltrifluoroacetone and 4-isopropyltropolone (Hipt) has been performed for a long time [Non-patent Documents 3-5]. In recent years, extraction of polynuclear complexes including addition (self-addition) of reagents such as Ln 2 (ipt) 6 Hipt, which is not found in the β-diketone system in the Hipt system has been reported [Non-patent
一方、協同効果とは2種類の異なる抽出試薬を併用した際に、それぞれを単独で用いた時と比べて抽出が飛躍的に向上する現象である。この現象は、1954年にテノイルトリフルオロアセトンとリン酸トリブチルによる硝酸溶液からのLn(III)の抽出で初めて見出された[非特許文献9]。一般に、酸性二座配位子(HA)を用いてLn(III)を抽出する場合、配位数8 から9のLn(III)に3分子のHAが結合した錯体は電荷は中和されているが2〜3分子の配位水を有しているため疎水性が低く、抽出性が低い。これに対して酸性二座配位子(HA)と中性配位子(B)を抽出試薬として用いた際のLn(III)の協同効果抽出では、水分子が中性配位子(B)によって置換される混合配位子錯体は疎水性が高く、抽出性に優れる。 On the other hand, the cooperative effect is a phenomenon in which when two different types of extraction reagents are used in combination, extraction is dramatically improved compared to when each is used alone. This phenomenon was first discovered in 1954 by extraction of Ln (III) from a nitric acid solution with tenoyltrifluoroacetone and tributyl phosphate [Non-Patent Document 9]. In general, when Ln (III) is extracted using an acidic bidentate ligand (HA), the charge of a complex in which three molecules of HA are bound to Ln (III) having a coordination number of 8 to 9 is neutralized. However, since it has 2 to 3 molecules of coordinated water, its hydrophobicity is low and its extractability is low. On the other hand, in the cooperative extraction of Ln (III) when acidic bidentate ligand (HA) and neutral ligand (B) are used as extraction reagents, water molecules are neutral ligands (B ) Substituted ligand complexes are highly hydrophobic and have excellent extractability.
Hiptを用いたLn(III)の抽出系に中性配位子を加えた協同効果抽出系の例は少ないが、Hiptとトリオクチルホスフィンオキシド(TOPO)を用いた二価遷移金属のクロロホルムへの抽出が知られており、TOPOの存在下で単核錯体の抽出[非特許文献10]が知られている。しかし、TOPOを用いたLn(III)の協同効果抽出[非特許文献11]において分離の悪化が報告されている。一方、1,10-フェナントロリン(phen)を用いたLn(III)の協同効果抽出[非特許文献12, 13]においては分離の向上が報告されている。 There are few examples of cooperative effect extraction systems in which neutral ligands are added to Ln (III) extraction systems using Hipt, but divalent transition metals to chloroform using Hipt and trioctylphosphine oxide (TOPO). Extraction is known, and extraction of a mononuclear complex in the presence of TOPO [Non-Patent Document 10] is known. However, the deterioration of separation has been reported in Ln (III) cooperative effect extraction [Non-Patent Document 11] using TOPO. On the other hand, in the cooperative effect extraction of Ln (III) using 1,10-phenanthroline (phen) [Non-patent Documents 12 and 13], an improvement in separation has been reported.
溶媒抽出により水相中から希土類金属を分離するための抽出剤に関しては種々の特許出願がされている(例えば特許文献1及び2)。しかしながら、従来の抽出剤は希土類金属の相互分離性能に関して満足できるものではなかった。 Various patent applications have been filed for extractants for separating rare earth metals from an aqueous phase by solvent extraction (for example, Patent Documents 1 and 2). However, conventional extractants have not been satisfactory with respect to the mutual separation performance of rare earth metals.
本発明は、複数種の希土類金属が混在する系から目的とする希土類金属を選択的に分離する能力が高い溶媒抽出用抽出剤、及び該当該抽出剤を用いた希土類金属の抽出分離法を提供することを目的とする。 The present invention provides an extraction agent for solvent extraction having a high ability to selectively separate a target rare earth metal from a system in which plural kinds of rare earth metals are mixed, and a method for extracting and separating rare earth metals using the extraction agent The purpose is to do.
本発明者らは、4-イソプロピルトロポロン(以下「Hipt」と称することがある。また、4-イソプロピルトロポロンからプロトンが解離して生じる陰イオンを「ipt」と称することがある)を抽出剤として用いるランタノイドイオンLn(III)の溶媒抽出系において、中性配位子である1,10-フェナントロリン(以下、「phen」と称することがある)を併用した抽出系では、単核錯体Ln(ipt)3phenが抽出種として生じること、協同効果により抽出効率が高いこと、並びに希土類金属間相互の選択的分離能が高いことを見出し、本発明を完成させるに至った。 The present inventors used 4-isopropyl tropolone (hereinafter sometimes referred to as “Hipt”. An anion generated by proton dissociation from 4-isopropyl tropolone may also be referred to as “ipt”) as an extractant. In the solvent extraction system of the lanthanoid ion Ln (III) to be used, in the extraction system combined with the neutral ligand 1,10-phenanthroline (hereinafter sometimes referred to as “phen”), the mononuclear complex Ln (ipt ) It has been found that 3 phen is generated as an extraction species, the extraction efficiency is high due to the cooperative effect, and the selective separation ability between rare earth metals is high, and the present invention has been completed.
本発明は以下の発明の形態を包含する。
(1) 4-イソプロピルトロポロンと、1,10-フェナントロリンとの組み合わせであることを特徴とする希土類金属の抽出剤。
(2) 水中に希土類金属を含有する水相と、有機溶媒中に(1)の抽出剤を含有する有機相とを、目的の希土類金属が抽出されるpH条件下で接触させ、有機相中に目的の希土類金属を抽出する抽出工程と、
抽出工程後の有機相から希土類金属を回収する回収工程とを含む、希土類金属の抽出分離法。
(3) 有機溶媒がトルエンである、(2)の抽出分離法。
The present invention includes the following embodiments.
(1) A rare earth metal extractant characterized by being a combination of 4-isopropyltropolone and 1,10-phenanthroline.
(2) An aqueous phase containing a rare earth metal in water and an organic phase containing the extractant of (1) in an organic solvent are contacted under pH conditions at which the target rare earth metal is extracted, An extraction process for extracting the target rare earth metal;
A method for extracting and separating rare earth metals, comprising a recovery step for recovering rare earth metals from the organic phase after the extraction step.
(3) The extraction and separation method according to (2), wherein the organic solvent is toluene.
本発明によれば、希土類金属を水相中から効率的に抽出することが可能である。また、水相中のpH条件を適宜設定することにより、複数種の希土類金属が混在する水相から目的とする希土類金属を選択的に分離することが可能である。 According to the present invention, a rare earth metal can be efficiently extracted from an aqueous phase. Further, by appropriately setting the pH conditions in the aqueous phase, it is possible to selectively separate the target rare earth metal from the aqueous phase in which a plurality of types of rare earth metals are mixed.
1. 抽出分離対象元素
本発明の抽出剤により抽出される金属は、スカンジウム(Sc)、イットリウム(Y)及び15種のランタノイド(Ln)からなる希土類金属であり、好ましくはランタノイドである。
本発明の抽出剤は、ランタノイドの抽出性が高いうえに、ランタノイド間での抽出分離能が高い。このため、ランタノイドを含む希土類金属を他の金属元素から分離することが可能であるのに加えて、水相のpHを調節することにより特定の希土類金属を選択的に分離することも可能である。
1. Elements to be extracted and separated The metal extracted by the extractant of the present invention is a rare earth metal composed of scandium (Sc), yttrium (Y) and 15 lanthanoids (Ln), preferably a lanthanoid.
The extractant of the present invention has a high extractability of lanthanoids and a high extraction / separation ability between lanthanoids. For this reason, in addition to being able to separate lanthanoid-containing rare earth metals from other metal elements, it is also possible to selectively separate specific rare earth metals by adjusting the pH of the aqueous phase. .
2. 抽出剤
本発明では、抽出剤として酸性二座配位子である4-イソプロピルトロポロン(Hipt)と、中性配位子である1,10−フェナントロリン(phen)とを組み合わせて用いる。Hiptはヒノキチオールとも呼ばれる。
2. Extractant In the present invention, an acidic bidentate ligand 4-isopropyltropolone (Hipt) and a neutral ligand 1,10-phenanthroline (phen) are used in combination as an extractant. Hipt is also called hinokitiol.
Hipt及びphenの有機相中での濃度は特に限定されないが、典型的にはHiptは1x10-3〜1x10-2 M、phenは1x10-3〜1x10-2 Mである。
Hiptとphenとの比は特に限定されないが、モル濃度比が10:1〜1:10の範囲であることが好ましい。
The concentration of Hipt and phen in the organic phase is not particularly limited. Typically, Hipt is 1 × 10 −3 to 1 × 10 −2 M, and phen is 1 × 10 −3 to 1 × 10 −2 M.
The ratio between Hipt and phen is not particularly limited, but the molar concentration ratio is preferably in the range of 10: 1 to 1:10.
抽出剤の希土類金属に対する使用量は特に限定されないが、抽出しようとする希土類金属イオンの水相中でのモル濃度に対して、有機相中でのHiptとphenとのモル濃度の和は好ましくは10倍以上、より好ましくは100倍以上である。 The amount of extractant used for the rare earth metal is not particularly limited, but the molar concentration of Hipt and phen in the organic phase is preferably the molar concentration of the rare earth metal ion to be extracted in the aqueous phase. 10 times or more, more preferably 100 times or more.
3. 抽出分離法
本発明の抽出分離法は、
水中に希土類金属を含有する水相と、有機溶媒中に上記抽出剤を含有する有機相とを、目的の希土類金属が抽出されるpH条件下で接触させ、有機相中に目的の希土類金属を抽出する抽出工程と、
抽出工程後の有機相から希土類金属を回収する回収工程と
を含む。
3. Extraction separation method The extraction separation method of the present invention is:
An aqueous phase containing a rare earth metal in water and an organic phase containing the extractant in an organic solvent are brought into contact with each other under a pH condition where the target rare earth metal is extracted, and the target rare earth metal is placed in the organic phase. An extraction process to extract;
And a recovery step of recovering the rare earth metal from the organic phase after the extraction step.
水相中には、希土類金属が3価の陽イオンの形態で含まれることが好ましい。
水相と有機相との比は特に限定されない。例えば水相と有機相とを10:1〜1:10の容積比で用いることができる。
The aqueous phase preferably contains a rare earth metal in the form of a trivalent cation.
The ratio between the aqueous phase and the organic phase is not particularly limited. For example, an aqueous phase and an organic phase can be used in a volume ratio of 10: 1 to 1:10.
pH条件は、抽出しようとする希土類金属に応じて適宜設定することができる。例えば図14から示唆されるように、pH値6.50〜7.00程度の中性付近の条件で抽出をした場合、全ての希土類金属を効率よく抽出することが可能であるが、複数の希土類金属の混合系から特定の金属を選択的に抽出するには適さない。一方、pH値を4.0〜6.00の範囲で抽出を行うと希土類金属間での選択的な抽出が可能となる(図14〜16、図18〜20参照)。 The pH condition can be appropriately set according to the rare earth metal to be extracted. For example, as suggested from FIG. 14, when extraction is performed near neutral conditions with a pH value of about 6.50 to 7.00, it is possible to efficiently extract all rare earth metals, but mixing of a plurality of rare earth metals It is not suitable for selectively extracting specific metals from the system. On the other hand, when extraction is performed within a pH value range of 4.0 to 6.00, selective extraction between rare earth metals becomes possible (see FIGS. 14 to 16 and FIGS. 18 to 20).
有機溶媒は本発明の抽出剤を溶解することができるものであれば特に限定されないが、無極性溶媒であることが好ましく、特にトルエン、ベンゼン,キシレン,クロロベンゼン,ジクロロベンゼンが好ましい。 The organic solvent is not particularly limited as long as it can dissolve the extractant of the present invention, but is preferably a nonpolar solvent, and particularly preferably toluene, benzene, xylene, chlorobenzene, or dichlorobenzene.
水相と有機相との接触は、両者の混合物を十分に攪拌又は振とうすることにより行う。接触時間は30〜60分間であることが好ましい。接触温度は20〜30℃であることが好ましい。 The contact between the aqueous phase and the organic phase is performed by sufficiently stirring or shaking the mixture of both. The contact time is preferably 30 to 60 minutes. The contact temperature is preferably 20-30 ° C.
希土類金属を有機相に抽出した後、通常の手段により有機相と水相とを分離する。
有機相からの希土類金属を回収する方法としては、上記抽出工程におけるpH条件よりもより酸性側のpH条件において有機相と別の水相とを接触させ、当該別の水相中に希土類金属を逆抽出する方法が挙げられる。逆抽出のための水相としては硫酸、塩酸、硝酸,過塩素酸等の希釈液が使用できる。
After the rare earth metal is extracted into the organic phase, the organic phase and the aqueous phase are separated by ordinary means.
As a method for recovering the rare earth metal from the organic phase, the organic phase and another aqueous phase are brought into contact with each other under a pH condition that is more acidic than the pH condition in the extraction step, and the rare earth metal is added to the other aqueous phase. There is a method of back extraction. A dilute solution such as sulfuric acid, hydrochloric acid, nitric acid, perchloric acid can be used as the aqueous phase for back extraction.
1. 実施例1:単一種のランタノイド(III)を含有する系からの中性配位子(phen) による協同抽出
1.1. 目的
本実施例では、Ln(III)の多核錯体が抽出されるHipt - トルエン系において中性配位子である1,10-フェナントロリン(phen)の効果を明らかにした。
1. Example 1: Cooperative extraction with a neutral ligand (phen) from a system containing a single species of lanthanoid (III)
1.1. Purpose In this example, the effect of 1,10-phenanthroline (phen), a neutral ligand, was clarified in the Hipt-toluene system from which a polynuclear complex of Ln (III) was extracted.
1.2. 実験
1.2.1. 試薬
Hipt(半井化学, 98%)、アルセナゾIII(同仁化学, 試験研究用)、トルエン(ナカライテスク, 試薬特級)、phen(ALDRICH, 99%)は特に精製を行わず使用した。水は超純水精製装置(MILLIPORE Elix3/milli-Q gradient A10)により精製したものを用いた。pH緩衝剤として酢酸(関東化学, 特級)と2-モルホリノエタンスルホン酸(MES)(同仁化学, 試験研究用)を、pH調整には水酸化ナトリウム(シグマアルドリッチ, 特級)を用いた。
1.2. Experiment
1.2.1. Reagents
Hipt (Hanai Chemical, 98%), Arsenazo III (Dojin Chemical, for research), Toluene (Nacalai Tesque, reagent grade), and phen (ALDRICH, 99%) were used without any particular purification. Water purified by an ultrapure water purifier (MILLIPORE Elix3 / milli-Q gradient A10) was used. Acetic acid (Kanto Chemical Co., Ltd.) and 2-morpholinoethanesulfonic acid (MES) (Dojindo Chemical Co., Ltd.) were used as pH buffering agents, and sodium hydroxide (Sigma Aldrich Co., Ltd.) was used for pH adjustment.
Ln(III)標準液は高純度の酸化物(La2O3 ; 日本イットリウム株式会社, 99.9%、Eu2O3 ; 日本イットリウム株式会社, 99.9%、Lu2O3 ; 日本イットリウム株式会社, 99.9%)を電気炉を用いて800℃で3時間加熱した後、秤量した。濃硝酸に加熱溶解後、蒸発乾固した。残渣に過塩素酸を加え、蒸発乾固を3回繰り返した後、過塩素酸と水でメスアップして1.0 x 10-2M Ln(III)の1.0 x 10-1 M過塩素酸溶液を調製した。 Ln (III) standard solution is a high-purity oxide (La 2 O 3 ; Yttrium Japan, 99.9%, Eu 2 O 3 ; Yttrium Japan, 99.9%, Lu 2 O 3 ; Yttrium Japan, 99.9 %) Was heated at 800 ° C. for 3 hours using an electric furnace and then weighed. After heating and dissolving in concentrated nitric acid, it was evaporated to dryness. Add perchloric acid to the residue, repeat evaporation and drying three times, then make up with perchloric acid and water, and add 1.0 x 10 -2 M Ln (III) in 1.0 x 10 -1 M perchloric acid solution. Prepared.
1.2.2. 装置
溶液の振盪には、振盪機(TAITEC RECIPRO SHAKER SR1)を用い、水相と有機相の相分離には遠心機(TOMY LC 100)を用いた。pHはガラス電極(HORIBA 9678-10D)を備えたpHメーター(HORIBA F52)を用いて測定した。pHメーターの校正にはシュウ酸塩標準液(シグマアルドリッチ, pH 1.68)、フタル酸塩標準液(シグマアルドリッチ, pH 4.01)、中性リン酸塩標準液(シグマアルドリッチ, pH 6.86)、ホウ酸塩標準液(シグマアルドリッチ, pH 9.18)を用いた。Ln(III)の定量には紫外可視吸光光度計(Shimadzu UV-160)と誘導結合プラズマ質量分析装置(ICP-MS)(Seiko Instruments SPQ 8000)を用いた。
1.2.2. A shaker (TAITEC RECIPRO SHAKER SR1) was used to shake the apparatus solution, and a centrifuge (TOMY LC 100) was used to separate the aqueous and organic phases. The pH was measured using a pH meter (HORIBA F52) equipped with a glass electrode (HORIBA 9678-10D). For calibration of pH meter, oxalate standard solution (Sigma Aldrich, pH 1.68), phthalate standard solution (Sigma Aldrich, pH 4.01), neutral phosphate standard solution (Sigma Aldrich, pH 6.86), borate A standard solution (Sigma Aldrich, pH 9.18) was used. For the determination of Ln (III), an ultraviolet-visible spectrophotometer (Shimadzu UV-160) and an inductively coupled plasma mass spectrometer (ICP-MS) (Seiko Instruments SPQ 8000) were used.
1.2.3. 抽出操作
抽出操作の概要を図1に示す。以下に各操作について詳述する。
2.0 x 10-5MのLn(III)、pH緩衝剤(1.0 x 10-2 M MES あるいは1.0 x 10-3M 酢酸)を含み、NaClもしくはNaClO4でイオン強度を1.0 x 10-1Mに調整した水相と、Hipt、phenを含む等体積の有機相を1時間振盪した後、2000 rpmで5分間遠心分離した。水相のpHは遠心分離後ただちに測定した。イオン強度1.0 x 10-1Mにおける活量係数は0.83であり、pHと水素イオン濃度[H+]の関係は以下の式で表される。
1.2.3. Extraction operation Figure 1 shows an overview of the extraction operation. Each operation will be described in detail below.
Contains 2.0 x 10 -5 M Ln (III), pH buffer (1.0 x 10 -2 M MES or 1.0 x 10 -3 M acetic acid), ionic strength to 1.0 x 10 -1 M with NaCl or NaClO 4 The adjusted aqueous phase and an equal volume organic phase containing Hipt and phen were shaken for 1 hour and then centrifuged at 2000 rpm for 5 minutes. The pH of the aqueous phase was measured immediately after centrifugation. The activity coefficient at an ionic strength of 1.0 × 10 −1 M is 0.83, and the relationship between pH and hydrogen ion concentration [H + ] is expressed by the following equation.
抽出後の有機相(4 mL)を分取して1.0 x 10-1 M HClO4 (4 mL)と1時間振盪し、Lnを逆抽出した。アルセナゾIIIを用いた吸光光度法、またはICP-MSによって正抽出および逆抽出後の水相のLnを定量して水相-有機相間のLn(III)の分配比(D)、抽出率(%E)、回収率(%R)、を求めた。D, %E, %Rの定義は以下の通りである。添え字のorgは有機相、添え字無しは水相を示し、iniは初濃度を表す。 The organic phase after extraction (4 mL) was separated and shaken with 1.0 × 10 −1 M HClO 4 (4 mL) for 1 hour, and Ln was back extracted. Ln (III) partition ratio (D), extraction rate (%) between water phase and organic phase was determined by spectrophotometry using arsenazo III or ICP-MS E) and recovery rate (% R) were determined. The definitions of D,% E and% R are as follows. The subscript org indicates the organic phase, the non-subscript indicates the aqueous phase, and ini indicates the initial concentration.
1.2.4. アルセナゾIIIを用いたLn(III)の定量
正抽出および逆抽出後の水相を分取してアルセナゾIII濃度0.01 % (w/w)、過塩素酸濃度5.0 x 10-2 Mとなるようにメスアップして、試薬ブランクを対照として655 nmの吸光度を測定した。
1.2.4. Quantitative determination of Ln (III) using Arsenazo III The aqueous phase after forward extraction and back extraction was separated, and Arsenazo III concentration 0.01% (w / w), perchloric acid concentration 5.0 x 10 -2 M Then, the absorbance at 655 nm was measured using the reagent blank as a control.
1.2.5. ICP-MSを用いたLn(III)の定量
ICP-MSの装置設定を表1に示す。正抽出および逆抽出後の水相を分取して硝酸濃度を1.0 x 10-1 Mになるように20倍から200倍に希釈して試料溶液とした。検量線用のLn溶液に、Lnを加えていないブランク溶液に対して試料と同様の抽出操作を行った、水相を加えることで測定試料とマトリクスを一致させた。
1.2.5. Determination of Ln (III) using ICP-MS
Table 1 shows the ICP-MS device settings. The aqueous phase after normal extraction and reverse extraction was fractionated and diluted 20-fold to 200-fold so that the nitric acid concentration became 1.0 × 10 −1 M to obtain a sample solution. The same measurement procedure as the sample was performed on the blank solution to which the Ln was not added to the Ln solution for the calibration curve. By adding the aqueous phase, the measurement sample and the matrix were matched.
1.2.6. phenの分配実験
1.0 x 10-3Mのphenを含むトルエン(5 mL)と水相(5 mL)を1時間振盪した後、2000 rpmで5分間遠心分離した。水相(2.5 mL)を分取して1.0 M H2SO4 0.5 mLと水2mLを加えた後、ヘプタン1 mLと1時間振盪してトルエンを除去し、水相のphen濃度についての測定試料とした。トルエン相(4 mL)を分取して、1.0 x 10-1 M H2SO4 (4 mL)と1時間振盪した後2000 rpmで5分間遠心分離した(逆抽出)。逆抽出後の水相(3 mL)を分取した後、同様の手順でトルエン除去を行い、有機相のphen濃度についての測定試料とした。測定試料として得られた水相を1.0 x 10-1M H2SO4で希釈した後、272 nmの吸光度を測定して両相中のphenを定量した。
1.2.6. Distribution experiment of phen
Toluene (5 mL) containing 1.0 × 10 −3 M phen and aqueous phase (5 mL) were shaken for 1 hour and then centrifuged at 2000 rpm for 5 minutes. After separating the aqueous phase (2.5 mL) and adding 0.5 mL of 1.0 MH 2 SO 4 and 2 mL of water, the toluene was removed by shaking with 1 mL of heptane for 1 hour, and the measurement sample for the phen concentration of the aqueous phase did. The toluene phase (4 mL) was separated, shaken with 1.0 × 10 −1 MH 2 SO 4 (4 mL) for 1 hour, and then centrifuged at 2000 rpm for 5 minutes (back extraction). After separating the aqueous phase (3 mL) after back extraction, toluene was removed in the same procedure to obtain a measurement sample for the phen concentration of the organic phase. The aqueous phase obtained as a measurement sample was diluted with 1.0 × 10 −1 MH 2 SO 4 and then the absorbance at 272 nm was measured to quantify phen in both phases.
1.3. 結果と考察
1.3.1. HiptとphenによるLn(III)の協同効果抽出
Hiptとphenを同時に用いたLn(III)の協同効果抽出を行った。結果を図2〜4に示す。Hipt のみを抽出試薬として用いた場合と比較してphenを共存させることによってLa(III)でDが102倍前後、Eu(III)で103倍前後、Lu(III)で104倍前後の抽出の増大が見られ、協同効果が現れた。
1.3. Results and discussion
1.3.1. Extraction of Ln (III) cooperative effects by Hipt and phen
The cooperative effect extraction of Ln (III) using Hipt and phen was performed. The results are shown in FIGS. Hipt only extract D with La (III) by the coexistence of phen as compared with the case of using as a
以下、HiptをHA、ipt をA、phenをBと表記する。ランタノイド(III)は、元素を特定のものに限定しない場合にはLnあるいは水和イオンをLn3+と表記する。
n核の混合配位子錯体LnnA3nHAmBpの抽出は (1-1)式で表され、抽出定数Kex,s,nmpは(1-2)式で表される。
In the following, Hipt is expressed as HA, ipt as A, and phen as B. In the case of lanthanoid (III), when the element is not limited to a specific element, Ln or hydrated ion is expressed as Ln 3+ .
The extraction of the n-nuclear mixed ligand complex Ln n A 3n HA m B p is represented by the formula (1-1), and the extraction constants K ex, s, nmp are represented by the formula (1-2).
主要な抽出種がLnnA3nHAmBpであるとき、分配比Dは(1-3)式で表される。 When the main extracted species is Ln n A 3n HA m B p , the distribution ratio D is expressed by equation (1-3).
ここで,βkは水相での錯生成定数であり以下のように定義される。 Here, β k is a complex formation constant in the aqueous phase and is defined as follows.
水相中のLnの全濃度は次のように書ける。 The total concentration of Ln in the aqueous phase can be written as
(1-3)式は(1-2)式と(1−5)式を用いて次のように変形できる。 Equation (1-3) can be transformed as follows using equations (1-2) and (1-5).
(1-6)式の対数をとると(1-7)式が得られる。 Taking the logarithm of equation (1-6) yields equation (1-7).
図2〜4に示した協同効果系のlogD vs pHプロットの傾きは2.6から3.8であった。このことから、(1-7)式における-log[H+]の係数3nが3、すなわちnが1である。Lu(III)で見られた傾き3.8は、後述するように、phenのプロトネーションによる、[phen]orgの変化のためである。従って、いずれのLnも単核錯体(n=1)として抽出されていると推測される。抽出種について以下の節で更に詳細に議論する。 The slope of the logD vs pH plot for the cooperative effect system shown in FIGS. 2-4 was 2.6 to 3.8. From this, the coefficient 3n of −log [H + ] in the expression (1-7) is 3, that is, n is 1. The slope 3.8 seen in Lu (III) is due to the change in [phen] org due to phen protonation, as described below. Therefore, it is estimated that any Ln is extracted as a mononuclear complex (n = 1). The extracted species are discussed in more detail in the following sections.
1.3.2. Hiptの結合数
(1-7)式からpH, [phen]org一定でのlogD vs log[Hipt]orgプロットの傾きがHiptの結合数と抽出種中の金属の数を示すことが分かる。有機相中のHipt濃度は次式を用いて求めた。
1.3.2. Number of Hipt bonds
From equation (1-7), it can be seen that the slope of logD vs log [Hipt] org plot at constant pH and [phen] org indicates the number of bonds in Hipt and the number of metals in the extracted species. The Hipt concentration in the organic phase was determined using the following equation.
ここでKd,HAは分配定数であり、次式で定義され、Kd,Hipt = 102.41 [1]である。 Here, K d, HA is a distribution constant, defined by the following equation, and K d, Hipt = 10 2.41 [1].
Ka,HAは酸解離定数であり、次式で定義され、Ka,Hipt = 10-7.04 [2]である。 K a, HA is an acid dissociation constant, and is defined by the following formula: Ka , Hipt = 10 −7.04 [2].
図5、6、7にLa(III),Eu(III), Lu(III)の一定pHにおけるlogD vs log[Hipt]orgプロットを示す。傾きが2.9から3.0であることから、n = 1, m = 0, すなわち抽出種は中心金属数1、Hipt配位数3であると考えられる。 5, 6 and 7 show logD vs log [Hipt] org plots of La (III), Eu (III) and Lu (III) at a constant pH. Since the slope is 2.9 to 3.0, it is considered that n = 1, m = 0, that is, the extracted species has a central metal number of 1 and a Hipt coordination number of 3.
1.3.3. phenの結合数
(1-7)式からpH, [Hipt]org一定でのlogD vs log[phen]orgプロットの傾きがLn - ipt錯体へのphenの結合数を示すことが分かる。(1-7)式中の[B]orgは(1-8)式で表され、式中のKd,BとKa,Bは以下のように定義される。なお,Ka,phen = 10-4.98[6]である。
1.3.3. Number of phen bonds
From the equation (1-7), it can be seen that the slope of the logD vs log [phen] org plot at constant pH and [Hipt] org indicates the number of phen bonds to the Ln-ipt complex. (1-7) [B] in Formula org is represented by (1-8) equation, K d, B and K a in the formula, B is defined as follows. K a, phen = 10 -4.98 [6].
Kd,phenを求めるために水-トルエン系におけるphenの分配比Dphenを求め、解析した。Dphenは(1-9)式で表され、(1-18)式、(1-19)式から(1-10)式のように変形でき、対数を取ると(1-11)式が得られる。 In order to obtain K d, phen , the distribution ratio D phen of phen in the water-toluene system was obtained and analyzed. D phen is expressed by equation (1-9) and can be transformed from equation (1-18) and equation (1-19) to equation (1-10). can get.
logDphen vs pHプロットを図8に示す。Ka,phen = 10-4.98[6]を用いてKd,phenについて(1-11)式に基づく最小二乗フィッティングを行い、Kd,phen = 100.60±0.003を得た。 A logD phen vs pH plot is shown in FIG. K a, K d, performs least square fitting based on (1-11) below for phen using phen = 10 -4.98 [6], to obtain K d, the phen = 10 0.60 ± 0.003.
図9、10、11にLa(III), Eu(III), Lu(III)のlogD - log[phen]orgプロットを示す。傾きが0.91から0.95であることから、抽出種には1分子のphenが結合していると考えられる。 9, 10, and 11 show logD-log [phen] org plots of La (III), Eu (III), and Lu (III). Since the slope is from 0.91 to 0.95, it is considered that one molecule of phen is bound to the extracted species.
以上からHipt-phen協同効果系におけるLn(III)の抽出種はLn(ipt)3phenであることが分かった。よって抽出反応は(1-12)式で表され抽出定数は(1-13)式で定義される。 These results indicate that the extracted species of Ln (III) in the Hipt-phen cooperative effect system is Ln (ipt) 3 phen. Therefore, the extraction reaction is expressed by equation (1-12), and the extraction constant is defined by equation (1-13).
LaについてKex,s,101(La) = 10-5.43±0.07、EuについてKex,s,101(Eu)= 10-0.84±0.06、LuについてKex,s,101(Lu) = 101.57±0.03が得られる。 K ex, s, 101 (La) = 10 -5.43 ± 0.07 for La , K ex, s, 101 (Eu) = 10 -0.84 ± 0.06 for Eu , K ex, s, 101 (Lu) = 10 1.57 for Lu ± 0.03 is obtained.
抽出定数Kex,s,101の比から求められる分離係数αはLa - Eu間で104.59、Eu - Lu間で102.41、La - Lu間で107.00であった。得られた抽出定数と分離係数を表2に示す。 The separation coefficient α obtained from the ratio of the extraction constants K ex, s, 101 was 10 4.59 between La and Eu, 10 2.41 between Eu and Lu, and 10 7.00 between La and Lu. Table 2 shows the extraction constants and separation factors obtained.
得られた結果をテノイルトリフルオロアセトン(Htta)、ピバロイルトリフルオロアセチルアセトン(Hpta)やアセチルアセトン(Hacac)などのβ-ジケトンとphenを用いた協同効果抽出系と比較した。Hipt - phen系はLa - Luの分離に関して極めて高い性能を示した。 The obtained results were compared with a cooperative effect extraction system using β-diketones such as thenoyltrifluoroacetone (Htta), pivaloyltrifluoroacetylacetone (Hpta) and acetylacetone (Hacac) and phen. The Hipt-phen system showed very high performance for the separation of La-Lu.
続いて、先に示したlogD vs pHプロットについて考察した。分配比Dは 水相中でのipt錯体の生成を考慮すると(1-14)式で表され、対数をとると(1-15)式が得られる。 Subsequently, the logD vs pH plot shown above was considered. The distribution ratio D is expressed by the equation (1-14) considering the formation of the ipt complex in the aqueous phase, and the equation (1-15) is obtained when the logarithm is taken.
更に水相中でのphenのプロトネーションを考慮すると(1-8)式を用いて(1-16)式のように変形できる。 Furthermore, considering the phen protonation in the aqueous phase, it can be transformed into (1-16) using (1-8).
[H+]が十分に大きい、すなわち抽出条件が十分に酸性であるとき、(1-16)式は(1-17)式に近似できる。 When [H + ] is sufficiently large, that is, the extraction conditions are sufficiently acidic, equation (1-16) can be approximated to equation (1-17).
従って、Hipt - phen系のlogD vs pHプロットは酸性領域において傾き4となる。図4に示されたLu(III)の傾き3.8はこの効果によるものである。得られた定数を評価するため、Hipt濃度を5.0 x 10-3 Mから1.0 x 10-2 M、phen濃度を2.0 x 10-5 Mから1.0 x 10-4Mまで変化させてEu(III)を抽出した。結果を図12に示す。実験値と(1-15)式に基づく計算値が良い一致を示している。計算には測定したpHから求めた水素イオン濃度を用いた。以上からこの抽出条件の範囲で抽出種はEu(ipt)3phenであることが確かめられた。 Therefore, the HipD-phen system logD vs pH plot has a slope of 4 in the acidic region. Lu (III) slope 3.8 shown in FIG. 4 is due to this effect. To evaluate the obtained constants, Eu (III) was changed by changing the Hipt concentration from 5.0 x 10 -3 M to 1.0 x 10 -2 M and the phen concentration from 2.0 x 10 -5 M to 1.0 x 10 -4 M. Extracted. The results are shown in FIG. The experimental value and the calculated value based on equation (1-15) are in good agreement. The hydrogen ion concentration obtained from the measured pH was used for the calculation. From the above, it was confirmed that the extracted species was Eu (ipt) 3 phen within the range of this extraction condition.
1.4. 結論
中性配位子であるphenを共存させることにより、Hipt - トルエン系におけるLn(III)の抽出種を多核錯体から単核錯体に変化させることができた。Hipt - phen系はLn(III)の分離に優れた性能を示し、La - Lu間の分離係数は107.00にも達した。
1.4. Conclusion By the coexistence of the neutral ligand phen, the extracted species of Ln (III) in the Hipt-toluene system could be changed from a polynuclear complex to a mononuclear complex. The Hipt-phen system showed excellent performance in the separation of Ln (III), and the separation factor between La and Lu reached 10 7.00 .
2. 実施例2: 複数種のランタノイド(III)の混合系からの抽出分離
2.1. 目的
実施例1ではHiptを用いたLn(III)の抽出にphenを加えた系において単核錯体Ln(ipt)3phenが抽出種として得られることが確認された。
本実施例では更に、Pmを除く14種類のLn(III)を混在させた溶液から抽出分離を行い、実際に得られる分離度について実施例1の結果と比較し検討する。
2. Example 2: Extraction separation from mixed system of multiple lanthanoids (III)
2.1. In Example 1, it was confirmed that a mononuclear complex Ln (ipt) 3 phen was obtained as an extraction species in a system in which phen was added to the extraction of Ln (III) using Hipt.
In this example, extraction and separation are further performed from a solution in which 14 types of Ln (III) except Pm are mixed, and the actual resolution obtained is compared with the result of Example 1.
2.2. 実験
実施例1で用いた試薬に加えて、Pm以外の14種のLn(III)の標準溶液を用いた。標準溶液の調製は上記と同様の方法で行った。抽出操作、定量操作も実施例1と同様に行った。
ICP-MSによるLn(III)の定量に用いた、142Nd, 152Sm, 158Gd, 164Dyについて、それぞれ142Ce, 152Gd, 158Dy, 164Erの同重体が存在するため、以下のように補正した。測定値として得られる係数率(cps)をcn,d, 測定する同位体の係数率をcn,x妨害する同位体の同位体存在度をan,iとして次の補正を行った。
2.2. In addition to the reagents used in Experimental Example 1, 14 standard solutions of Ln (III) other than Pm were used. The standard solution was prepared in the same manner as described above. Extraction operation and quantitative operation were performed in the same manner as in Example 1.
For 142 Nd, 152 Sm, 158 Gd, and 164 Dy used for the determination of Ln (III) by ICP-MS, there are isotopes of 142 Ce, 152 Gd, 158 Dy, and 164 Er, respectively. Was corrected. The following corrections were made with the coefficient rate (cps) obtained as the measured value being c n, d , the coefficient rate of the isotope being measured being c n, x and the isotopic abundance of the isotope being interfering being an n, i .
特定の元素について同位体間で感度はほぼ等しいとみなすことができ、測定した溶液についてcm,iが得られているので、この補正によって測定値からcn,xが得られ、この値を用いて測定元素を定量した。 It can be assumed that the sensitivities between isotopes for a particular element are almost equal, and c m, i is obtained for the measured solution, so this correction gives c n, x from the measured value, and this value is The measured elements were quantified.
2.3. 結果と考察
2.3.1. 14種のLn(III)の同時抽出
Pmを除く14種類のLn(III)をそれぞれ1.0 x 10-6 M含む溶液からHipt単独系およびHipt - phen系を用いてLn(III)の抽出を行った。結果を図13,14に示す。図14の結果については、図15にLaからEuまでの軽ランタノイドのプロットを、図16にGdからLuまでの重ランタノイドのプロットを分けて示す。軽ランタノイド(La - Eu)間、重ランタノイド(Gd - Lu)間でそれぞれ分配曲線の形が相互に類似していることが分かる。
2.3. Results and discussion
2.3.1. Simultaneous extraction of 14 Ln (III) species
Ln (III) was extracted from the solution containing 1.0 x 10 -6 M of each of 14 types of Ln (III) excluding Pm using the Hipt single system and the Hipt-phen system. The results are shown in FIGS. Regarding the results of FIG. 14, FIG. 15 shows a plot of light lanthanoids from La to Eu, and FIG. 16 shows a plot of heavy lanthanoids from Gd to Lu. It can be seen that the shape of the distribution curve is similar between light lanthanoids (La-Eu) and heavy lanthanoids (Gd-Lu).
図14に示したLa(III), Eu(III), Lu(III)の抽出の結果と、実施例1で求めた抽出定数Kex,s,101と文献値のβ1を用いた計算値との比較を図17に示す。
La(III)とEu(III)について計算値と実験結果が良い一致を示したことから、複数のLn(III)が共存する系においても抽出種はLn(ipt)3phenであり、多核錯体の生成による共抽出は抑えられたと考えられる。また、分配曲線が類似の形状を示す軽Lnの抽出においても同様の抽出が考えられる。
一方、Lu(III)は計算値と実験結果が大きく異なっており、phen付加錯体に比べて抽出性が劣る異種Ln多核錯体生成の影響が推察される。
Results of extraction of La (III), Eu (III), and Lu (III) shown in FIG. 14 and calculated values using the extraction constants K ex, s, 101 obtained in Example 1 and the literature value β 1 A comparison with FIG.
Since the calculated values and experimental results for La (III) and Eu (III) showed good agreement, the extracted species is Ln (ipt) 3 phen even in the system where multiple Ln (III) coexists, and the polynuclear complex The co-extraction due to the generation of The same extraction can be considered for extraction of light Ln whose distribution curve shows a similar shape.
On the other hand, the calculated values and experimental results of Lu (III) are greatly different, and the influence of the formation of a heterogeneous Ln polynuclear complex, which is inferior in extractability compared with the phen addition complex, is presumed.
2.3.2. Hipt系とHipt - phen系における分離係数
図13及び14の結果を用いて、分配比Dの比から実際の分離係数αを算出した。Eu(III)に対する他のLn(III)の分離係数を図18に示す。軽Ln (La - Eu)ではHipt - phen系は実際のLn(III)混合物の分離においてもpHに関係なくHipt単独系より大きな分離係数を示した。一方、重LnについてはpHの変化によってHipt - phen系の分離性能が大きく変化した。重Ln (Gd - Lu)の分離の挙動がHipt - phen系とHipt単独系で類似していることと、前節で述べたLu(III)についての計算値と実験値の不一致から重Lnの抽出は、重Ln間の多核錯体生成による共抽出が大きく影響していると考えられる。
2.3.2. Separation coefficient in Hipt system and Hipt-phen system The actual separation coefficient α was calculated from the ratio of the distribution ratio D using the results shown in FIGS. FIG. 18 shows other Ln (III) separation coefficients for Eu (III). In light Ln (La-Eu), the Hipt-phen system showed a larger separation factor than the Hipt-only system in the separation of the actual Ln (III) mixture, regardless of the pH. On the other hand, for the heavy Ln, the separation performance of the Hipt-phen system greatly changed with the change of pH. Heavy Ln (Gd-Lu) separation behavior is similar between the Hipt-phen system and the Hipt single system, and the extraction of heavy Ln from the mismatch between the calculated and experimental values for Lu (III) described in the previous section It is considered that the co-extraction due to the formation of polynuclear complex between heavy Ln greatly affects.
図19にHipt - phen系でのLa(III)に対する他のLn(III)の分離係数αを示す。pH 4.97でEu(III), Ho(III), Tm(III), Yb(III), Lu(III)の分離係数αは104.00を超えており、この抽出条件においてこれらのLn(III)は1回のバッチ抽出でLa(III)から定量的に分離することが出来る。また、La(III)とEu(III)について得られた分離係数αは104.65であり、実施例1で抽出定数の比から求めた分離係数104.59 (表2) と良い一致を示した。 FIG. 19 shows the separation coefficient α of other Ln (III) with respect to La (III) in the Hipt-phen system. At pH 4.97, the separation factor α of Eu (III), Ho (III), Tm (III), Yb (III), and Lu (III) exceeds 10 4.00 . Under these extraction conditions, these Ln (III) It can be quantitatively separated from La (III) by one batch extraction. The separation factor α obtained for La (III) and Eu (III) was 10.4.65 , which was in good agreement with the separation factor 10 4.59 (Table 2) obtained from the ratio of the extraction constants in Example 1.
一方La(III)とLu(III)について得られた分離係数は104.95であり、抽出定数の比から求めた分離係数107.00 (表2) と大きく異なっている。これは既に述べたように重Ln間の多核錯体生成による抽出種の変化によるものである。 On the other hand, the separation factor obtained for La (III) and Lu (III) was 10.49 , which is very different from the separation factor 10 7.00 (Table 2) obtained from the ratio of extraction constants. As described above, this is due to the change of the extracted species due to the formation of a polynuclear complex between heavy Ln.
2.3.3. 原子番号が隣接するLn(III)間の分離
図13及び14の結果から、原子番号が隣接するLn(III)間の分離係数αを求めた。結果を図20に示す。Hipt - phen協同効果系はLa - Ce (57 - 58), Eu - Gd (63 - 64), Er - Tm (68 - 69)についてα = 102.00に迫る、極めて高い分離性能を示すことが分かった。
2.3.3. Separation between Ln (III) s with adjacent atomic numbers From the results in FIGS. 13 and 14, the separation coefficient α between Ln (III) with adjacent atomic numbers was obtained. The results are shown in FIG. The Hipt-phen cooperative effect system shows extremely high separation performance approaching α = 10 2.00 for La-Ce (57-58), Eu-Gd (63-64), Er-Tm (68-69) It was.
通常、Ln(III)のキレート抽出においてその抽出性はLn(III)の電荷密度に比例して増大するため、原子番号順に高くなる。ところが、Hipt - phen系においてはEu - Gd (63 - 64)とHo - Er (68 - 69) で抽出性の順序が原子番号の順序と大きく逆転する特異な挙動を示した。Eu - Gd間での逆転は特に大きい。Hipt - phen系においてEu(III)の抽出種はEu(ipt)3phen であるのに対し、Gdの抽出種は多核錯体を含むと考えられる。このために、類似の化学種同士の分離では通常は得られない特異な挙動を示したと考えられる。 Usually, the extractability in chelate extraction of Ln (III) increases in proportion to the charge density of Ln (III), and therefore increases in order of atomic number. However, in the Hipt-phen system, Eu-Gd (63-64) and Ho-Er (68-69) showed a peculiar behavior in which the order of extractability was significantly reversed from that of atomic numbers. The reversal between Eu and Gd is particularly large. In the Hipt-phen system, the extracted species of Eu (III) is Eu (ipt) 3 phen, whereas the extracted species of Gd is considered to contain a polynuclear complex. For this reason, it is considered that the separation of similar chemical species exhibited a unique behavior that is not normally obtained.
2.4. 結論
Hipt - phen系はLnの相互分離においても優れた性能を示し、La(III)とEu(III), Ho(III), Tm(III), Yb(III), Lu(III)の組み合わせについてα > 104.00の定量的な分離を達成した。また、La(III)とEu(III)の挙動が金属単独での実験結果からの予測と良く一致したことから、複数のLn(III)が混在する条件でも抽出種はLa(ipt)3phenおよびEu(ipt)3phenであると考えられる。更にLa - Ce, Eu - Gd, Er - Tmなどの一般に分離が困難な、原子番号が隣接するLn(III)の組み合わせについても分離係数は102.00程度の良好な値を示す。
2.4. Conclusion
The Hipt-phen system shows excellent performance in mutual separation of Ln, and the combination of La (III) and Eu (III), Ho (III), Tm (III), Yb (III), Lu (III) A quantitative separation of> 10 4.00 was achieved. In addition, since the behavior of La (III) and Eu (III) was in good agreement with the prediction from the experimental results of the metal alone, the extracted species was La (ipt) 3 phen even under the condition where multiple Ln (III) were mixed. And Eu (ipt) 3 phen. Further, a combination of Ln (III) having adjacent atomic numbers, such as La-Ce, Eu-Gd, Er-Tm, etc., which is generally difficult to separate, shows a good value of about 102.00 .
3. 参考文献一覧
[1] J. Noro, Anal. Sci., (1998) 14, 1099 - 1105
[2] J. Noro, Anal. Sci., (1999) 15, 1265 - 1268
[3] S. Nakamura, N. Suzuki, Polyhedron, (1986) 5, 1805 - 1813
[4] S. Nakamura, N. Suzuki, Bull. Chem. Soc. Jpn., (1993) 66, 98 - 102
[5] 海老沢 三千恵, 修士学位論文, 茨城大学理工学研究科 (2006)
[6] H. Irving, D.H. Mellor, J. Chem. Soc., (1962) 5222
3. List of references
[1] J. Noro, Anal. Sci., (1998) 14, 1099-1105
[2] J. Noro, Anal. Sci., (1999) 15, 1265-1268
[3] S. Nakamura, N. Suzuki, Polyhedron, (1986) 5, 1805-1813
[4] S. Nakamura, N. Suzuki, Bull. Chem. Soc. Jpn., (1993) 66, 98-102
[5] Michie Ebisawa, Master's thesis, Graduate School of Science and Engineering, Ibaraki University (2006)
[6] H. Irving, DH Mellor, J. Chem. Soc., (1962) 5222
Claims (3)
抽出工程後の有機相から希土類金属を回収する回収工程とを含む、希土類金属の抽出分離法。 An aqueous phase containing a rare earth metal in water and an organic phase containing the extractant of claim 1 in an organic solvent are brought into contact under pH conditions at which the target rare earth metal is extracted. An extraction process for extracting the rare earth metal;
A method for extracting and separating rare earth metals, comprising a recovery step for recovering rare earth metals from the organic phase after the extraction step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009122263A JP2010270359A (en) | 2009-05-20 | 2009-05-20 | Extractant and extraction-separating method for rare earth metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009122263A JP2010270359A (en) | 2009-05-20 | 2009-05-20 | Extractant and extraction-separating method for rare earth metal |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010270359A true JP2010270359A (en) | 2010-12-02 |
Family
ID=43418617
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009122263A Pending JP2010270359A (en) | 2009-05-20 | 2009-05-20 | Extractant and extraction-separating method for rare earth metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010270359A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102031363A (en) * | 2011-01-06 | 2011-04-27 | 中冶东方工程技术有限公司 | Multi-stage roasting method for rare earth ore concentrate and equipment thereof |
WO2013190879A1 (en) * | 2012-06-19 | 2013-12-27 | 住友金属鉱山株式会社 | Method for separating and refining scandium |
JP2018168424A (en) * | 2017-03-30 | 2018-11-01 | 国立研究開発法人産業技術総合研究所 | High precision mutual separation method of rare earth ions |
KR20190038853A (en) * | 2016-07-22 | 2019-04-09 | 하이드로-퀘벡 | Method for recycling graphene from electrode material |
-
2009
- 2009-05-20 JP JP2009122263A patent/JP2010270359A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102031363A (en) * | 2011-01-06 | 2011-04-27 | 中冶东方工程技术有限公司 | Multi-stage roasting method for rare earth ore concentrate and equipment thereof |
WO2013190879A1 (en) * | 2012-06-19 | 2013-12-27 | 住友金属鉱山株式会社 | Method for separating and refining scandium |
JP2014001430A (en) * | 2012-06-19 | 2014-01-09 | Sumitomo Metal Mining Co Ltd | Separation and purification method of scandium |
CN104395486A (en) * | 2012-06-19 | 2015-03-04 | 住友金属矿山株式会社 | Method for separating and refining scandium |
US9187805B2 (en) | 2012-06-19 | 2015-11-17 | Sumitomo Metal Mining Co., Ltd. | Method for separating and refining scandium |
CN104395486B (en) * | 2012-06-19 | 2018-07-31 | 住友金属矿山株式会社 | The isolation and purification method of scandium |
KR20190038853A (en) * | 2016-07-22 | 2019-04-09 | 하이드로-퀘벡 | Method for recycling graphene from electrode material |
KR102464316B1 (en) * | 2016-07-22 | 2022-11-07 | 하이드로-퀘벡 | Method for recycling graphene from electrode material |
JP2018168424A (en) * | 2017-03-30 | 2018-11-01 | 国立研究開発法人産業技術総合研究所 | High precision mutual separation method of rare earth ions |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gwenzi et al. | Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants | |
Chen et al. | Sorption of Th (IV) to silica as a function of pH, humic/fulvic acid, ionic strength, electrolyte type | |
Ogata et al. | Adsorption mechanism of rare earth elements by adsorbents with diglycolamic acid ligands | |
Vajda et al. | Determination of 241 Am isotope: a review of analytical methodology | |
Zhang et al. | Highly-efficient separation and recovery of ruthenium from electroplating wastewater by a mesoporous silica-polymer based adsorbent | |
Kołodyńska et al. | Investigation of sorption and separation of lanthanides on the ion exchangers of various types | |
Sasaki et al. | Novel soft–hard donor ligand, NTAamide, for mutual separation of trivalent actinoids and lanthanoids | |
Ni et al. | Recovery of rare earths from industrial wastewater using extraction-precipitation strategy for resource and environmental concerns | |
Ma et al. | A synergistic extraction strategy by Cyanex572 and Cyanex923 for Th (IV) separation | |
Kiegiel et al. | Application of calixarenes as macrocyclic ligands for Uranium (VI): A review | |
JP2010270359A (en) | Extractant and extraction-separating method for rare earth metal | |
JP5924085B2 (en) | How to collect rare earth | |
Candela et al. | Pre-concentration of Uranium (VI) using bulk liquid and supported liquid membrane systems optimized containing bis (2-ethylhexyl) phosphoric acid as carrier in low concentrations | |
Mironyuk et al. | Investigation of the chemical and radiation stability of titanium dioxide with surface arsenate groups during 90Sr adsorption | |
Do-Thanh et al. | A task-specific ionic liquid based on hydroxypyridinone for lanthanide separation | |
Cui et al. | Liquid membrane coupled electrodialysis system for highly-efficient lithium recovery from fly ash acid leaching solution | |
Nomizu et al. | Complex formation of light and heavy lanthanides with DGA and DOODA, and its application to mutual separation in DGA–DOODA extraction system | |
Raut et al. | Role of diluent on the extraction and transport of strontium using 4, 4′(5′) di-tert-butyl-dicyclohexano-18-crown-6 (DTBCH18C6) as the extractant | |
Nayak et al. | Synergistic extraction of neodymium and carrier-free promethium by the mixture of HDEHP and PC88A | |
Atanassova et al. | A comparative study of the solvent extraction of the trivalent elements of the lanthanoid series with thenoyltrifluoroacetone and 4-benzoyl-3-methyl-1-phenyl-2-pyrazolin-5-one using diphenylsulphoxide as synergistic agent | |
Kazi et al. | Comparison of the measurement of Pu and Am isotopes by AMS using fluoride and oxide anion beams | |
Turanov et al. | Extraction of U (VI), Th (IV), and REE (III) from nitrate solutions with diaryl (dialkylcarbamoylalkyl) phosphine oxides containing a dialkylcarbamoylmethyl substituent in the alkylene bridge | |
Tsuchiya et al. | Change in hydrogen absorption characteristic of SrCe0. 95Yb0. 05O3− δ by electron beam modification | |
WO2015087845A1 (en) | Method for fractional precipitation of rare metal in aqueous system utilizing coordination polymerization | |
Asrafi et al. | Solvent extraction of cadmium (ii) from sulfate medium by Bis (2-ethylhexyl) Phosphoric Acid in Toluene |