JP2010270263A - Aqueous dispersion liquid and method for promoting paper durability - Google Patents

Aqueous dispersion liquid and method for promoting paper durability Download PDF

Info

Publication number
JP2010270263A
JP2010270263A JP2009124797A JP2009124797A JP2010270263A JP 2010270263 A JP2010270263 A JP 2010270263A JP 2009124797 A JP2009124797 A JP 2009124797A JP 2009124797 A JP2009124797 A JP 2009124797A JP 2010270263 A JP2010270263 A JP 2010270263A
Authority
JP
Japan
Prior art keywords
water
soluble polymer
general formula
soluble
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009124797A
Other languages
Japanese (ja)
Other versions
JP5283226B2 (en
Inventor
Toshiaki Sugiyama
俊明 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hymo Corp
Original Assignee
Hymo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hymo Corp filed Critical Hymo Corp
Priority to JP2009124797A priority Critical patent/JP5283226B2/en
Publication of JP2010270263A publication Critical patent/JP2010270263A/en
Application granted granted Critical
Publication of JP5283226B2 publication Critical patent/JP5283226B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Paper (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treatment method of granular starch slurry efficiently enhancing a paper durability effect by enhancing a yield effect and keeping granular starch uniformly on the entire paper surface, when ungelatinized granular starch slurry is subjected to treatment before flocculation and the resultant slurry is retained on a wire and used as a paper durability promotor. <P>SOLUTION: In an aqueous dispersion liquid formed by subjecting ungelatinized starch particle slurry to flocculation treatment by a water-soluble polymer having 50 to 90% charge inclusion ratio represented by a definition, the water-soluble polymer can be attained by an aqueous dispersion liquid to which one or more water-soluble polymers selected from (A) a (meth)acrylic water-soluble polymer, (B) a vinylamine-based water-soluble polymer and (C) a polyamidine-based water-soluble polymer are added. A sheet of paper having high paper durability can be efficiently produced by adding the aqueous dispersion liquid to a papermaking raw material before papermaking to perform papermaking and passing the wet paper through a dryer. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、水性分散液およびその使用方法に関するものであり、詳しくは未糊化澱粉粒子スラリーを定義で表示される電荷内包率50%以上90%以下の水溶性高分子であって、前記水溶性高分子が、特定の単量体を必須として含有する単量体混合物を重合した水溶性高分子によって凝集処理した水性分散液に関し、またその水性分散液を抄紙前の製紙原料中に添加し抄紙する紙力増強方法に関する。 The present invention relates to an aqueous dispersion and a method for using the aqueous dispersion, and more specifically, a water-soluble polymer having a charge inclusion ratio of 50% to 90%, which is represented by a definition of an ungelatinized starch particle slurry, An aqueous dispersion obtained by agglomerating a water-soluble polymer obtained by polymerizing a monomer mixture containing a specific monomer as an essential component, and adding the aqueous dispersion to a papermaking raw material before papermaking. The present invention relates to a method for enhancing paper strength.

紙力増強剤は、デンプンなど天然物を原料としたものとポリアクリルアミドなど化学合成により生成したものとに大別されるが、デンプンはリサイクルが可能であるバイオマスの一種であり、地球環境の保全の見地からも今後、見直される原料の一種と考えられる。現在、デンプン系紙力増強剤は、化学変性の施されたカチオン化デンプンがほぼ全て使用され、加熱糊化され水溶液として製紙原料スラリーに添加されるが、添加量が対製紙原料0.5から1質量%と高いことも原因し、この時一部は、未吸着のまま白水中に流出し、COD(化学的酸素要求量)あるいはBOD(生物学的酸素要求量)成分として排水の負荷のもとになる。またカチオン性であるため地合崩れの原因になり、他の製紙薬剤への影響もあり、特に蛍光染料はカチオン性物質からの影響に敏感である。さらに同時に添加される歩留向上剤へ影響を与え、歩留向上剤効果の低下に繋がる。 Paper strength enhancers are broadly divided into those made from natural products such as starch and those produced by chemical synthesis, such as polyacrylamide. Starch is a kind of biomass that can be recycled, and protects the global environment. From this point of view, it is considered a kind of raw material to be reviewed in the future. At present, almost all cationized starches that have been chemically modified are used as starch-based paper strength enhancers, and heat-gelatinized and added as an aqueous solution to the papermaking raw material slurry. This is also due to the fact that it is as high as 1% by mass. At this time, a part of the wastewater flows into the white water without being adsorbed, and the load of the wastewater is discharged as a COD (chemical oxygen demand) or BOD (biological oxygen demand) component. Be based. Moreover, since it is cationic, it causes a collapse of the formation and has an influence on other papermaking chemicals. In particular, the fluorescent dye is sensitive to the influence from the cationic substance. Furthermore, it affects the yield improver added at the same time, leading to a decrease in the yield improver effect.

そのためカチオン化反応をせず非イオン性のまま、しかも糊化せず粒状で製紙原料スラリーに加え、抄紙し、ドライヤー乾燥時に湿紙中の水分を利用し、糊化させ紙力増強効果を発現させる処方が検討されている。しかし非イオン性であるためワイヤー上で歩留にくく、歩留向上ための種々の工夫がなされている。例えば特許文献1では、澱粉粒子及び一種以上の澱粉歩留り向上剤を混合した紙力剤を1重量%のパルプスラリーに添加する場合、澱粉歩留り向上剤はアクリル系のカチオン性高分子が使用され、またこれにアニオン性微粒子あるいはアニオン性高分子を併用する処方が開示されているが、架橋性高分子などの記載は見当たらない。また特許文献2では、溶解していないデンプン粒子及びカチオン性ポリマー系凝析剤そしてアニオン性微細粒子凝集助剤を組合せ、デンプン粒子をある程度の凝集粒子に変形し、このスラリーを別に調製し、製紙原料スラリーに加えワイヤー上に留め易い処理としている。ここで使用されているカチオン性ポリマー系凝析剤は、やはりアクリル系のカチオン性高分子が使用されているが、架橋性高分子などの記載は見当たらない。この場合、同時にワイヤー上での歩留向上を目的として、アニオン性架橋化凝析剤の水性液を添加することにより、剪断した懸濁液を再凝集し、その後抄紙しているが、このアニオン性架橋化凝析剤は、デンプンの前処理剤としては使用していない。
特開2004−131851号公報 特表2001−504174号公報
Therefore, it does not cationize, remains non-ionic, and does not gelatinize. In addition to the papermaking material slurry, it is made into paper, and paper is made. Prescribing to make is considered. However, since it is nonionic, it is difficult to obtain a yield on the wire, and various devices for improving the yield have been made. For example, in Patent Document 1, when a paper strength agent in which starch particles and one or more starch retention improvers are mixed is added to 1% by weight of a pulp slurry, an acrylic cationic polymer is used as the starch retention enhancer, Moreover, although the formulation which uses anionic fine particles or anionic polymer together is disclosed, there is no description of a crosslinkable polymer. In Patent Document 2, undissolved starch particles, a cationic polymer-based coagulant and an anionic fine particle agglomeration aid are combined, the starch particles are transformed into a certain amount of agglomerated particles, this slurry is separately prepared, and papermaking In addition to the raw material slurry, it is easy to keep on the wire. As the cationic polymer coagulant used here, an acrylic cationic polymer is still used, but no description of a crosslinkable polymer or the like is found. In this case, for the purpose of improving the yield on the wire at the same time, the aqueous suspension of the anionic cross-linking coagulant is added to reaggregate the sheared suspension, and then papermaking. The crosslinkable coagulant is not used as a pretreatment agent for starch.
JP 2004-131851 A JP-T-2001-504174

本発明の課題は、未糊化粒状澱粉スラリーを凝集前処理し、ワイヤーに留め紙力増強剤として使用する場合、歩留効果を高めしかも紙面全体均一に粒状デンプンを止めることにより、効率よく紙力効果を高める粒状デンプンスラリーの処理方法を提供することを目的とする。 The object of the present invention is to pre-flocculate ungelatinized granular starch slurry and use it as a paper-strengthening agent for a wire. It is an object of the present invention to provide a method for treating granular starch slurry that enhances the force effect.

上記課題を解決するため鋭意検討をした結果、以下に述べる発明に到達した。すなわち請求項1の発明は、未糊化澱粉粒子スラリーを下記定義で表示される電荷内包率50%以上90%以下の水溶性高分子によって凝集処理した水性分散液であって、前記水溶性高分子が(A)〜(C)に記載される化学組成から選択される一種以上であることを特徴とする水性分散液である。
(A)下記一般式(1)で表わされる単量体および/又は下記一般式(2)で表わされる単量体を必須とし、適宜下記一般式(3)を含有する単量体混合物を重合した水溶性高分子。
(B)下記一般式(4)で表わされる構造単位を含有する水溶性高分子。
(C)下記一般式(5)で表わされる構造単位を含有する水溶性高分子。
定義)水溶性カチオン性高分子および両性でかつカチオン性単量体とアニオン性単量体共重合率の差が正である水溶性両性高分子の場合
電荷内包率[%]=(1−α/β)×100
αは酢酸にてpH4.0に調整した水溶性カチオン性高分子あるいは両性水溶性高分子水溶液をポリビニルスルホン酸カリウム水溶液にて滴定した滴定量。βは酢酸にてpH4.0に調整した水溶性カチオン性高分子あるいは両性水溶性高分子水溶液にポリビニルスルホン酸カリウム水溶液を前記水溶性カチオン性高分子あるいは両性水溶性高分子の電荷の中和を行うに十分な量加え、その後ポリジアリルジメチルアンモニウムクロライド水溶液にて滴定した滴定量をブランク値から差し引いた滴定量。ここでブランク値とは、水溶性カチオン性高分子あるいは両性水溶性高分子水溶液無添加時にポリビニルスルホン酸カリウム水溶液をポリジアリルジメチルアンモニウムクロライド水溶液にて滴定した滴定量である。
一般式(1)
は水素又はメチル基、R、Rは炭素数1〜3のアルキル基、アルコキシル基あるいはベンジル基、Rは水素、炭素数1〜3のアルキル基、アルコキシル基あるいはベンジル基であり、同種でも異種でも良い。AはOまたはNH、Bは炭素数2〜4のアルキレン基またはアルコキシレン基、X は陰イオンをそれぞれ表す。
一般式(2)
、Rは水素又はメチル基、R、Rは炭素数1〜3のアルキル基、アルコキシ基あるいはベンジル基、X は陰イオンをそれぞれ表す。
一般式(3)
は水素またはCHCOOY、R10は水素、メチル基またはCOOY、QはSO 、CSO 、CONHC(CHCHSO 、CCOOあるいはCOOであり、Y、Yは水素または陽イオンをそれぞれ表す。
一般式(4)
11、R12、13は水素またはメチル基、Hは無機酸および/または有機酸を表し、未中和時H=0である。
一般式(5)
12、13は水素またはメチル基、Hは無機酸および/または有機酸を表し、未中和時H=0である。
As a result of intensive studies to solve the above problems, the inventors have reached the invention described below. That is, the invention of claim 1 is an aqueous dispersion obtained by agglomerating an ungelatinized starch particle slurry with a water-soluble polymer having a charge inclusion ratio of 50% or more and 90% or less represented by the following definition: The aqueous dispersion is characterized in that the molecule is at least one selected from the chemical compositions described in (A) to (C).
(A) A monomer represented by the following general formula (1) and / or a monomer represented by the following general formula (2) is essential, and a monomer mixture containing the following general formula (3) is appropriately polymerized. Water-soluble polymer.
(B) A water-soluble polymer containing a structural unit represented by the following general formula (4).
(C) A water-soluble polymer containing a structural unit represented by the following general formula (5).
Definition) Charge inclusion ratio [%] = (1-α) in the case of a water-soluble cationic polymer and an amphoteric and water-soluble amphoteric polymer having a positive difference in the copolymerization rate between a cationic monomer and an anionic monomer / Β) × 100
α is a titration amount obtained by titrating a water-soluble cationic polymer or an amphoteric water-soluble polymer aqueous solution adjusted to pH 4.0 with acetic acid with a potassium polyvinyl sulfonate aqueous solution. β is a water-soluble cationic polymer or an amphoteric water-soluble polymer aqueous solution adjusted to pH 4.0 with acetic acid, and an aqueous polyvinyl sulfonate potassium solution is used to neutralize the charge of the water-soluble cationic polymer or amphoteric water-soluble polymer. A titration amount obtained by adding a sufficient amount to perform, and then subtracting the titration amount titrated with an aqueous polydiallyldimethylammonium chloride solution from the blank value. Here, the blank value is a titration amount obtained by titrating a potassium polyvinylsulfonate aqueous solution with a polydiallyldimethylammonium chloride aqueous solution when no water-soluble cationic polymer or amphoteric water-soluble polymer aqueous solution was added.
General formula (1)
R 1 is hydrogen or a methyl group, R 2 and R 3 are an alkyl group having 1 to 3 carbon atoms, an alkoxyl group or a benzyl group, and R 4 is hydrogen, an alkyl group having 1 to 3 carbon atoms, an alkoxyl group or a benzyl group. , Same or different. A is O or NH, B is an alkylene group or an alkoxylene group having 2 to 4 carbon atoms, X 1 - represents respectively an anion.
General formula (2)
R 5 and R 6 each represent hydrogen or a methyl group, R 7 and R 8 each represent an alkyl group having 1 to 3 carbon atoms, an alkoxy group or a benzyl group, and X 2 represents an anion.
General formula (3)
R 9 is hydrogen or CH 2 COOY 2 , R 10 is hydrogen, methyl group or COOY 2 , Q is SO 3 , C 6 H 4 SO 3 , CONHC (CH 3 ) 2 CH 2 SO 3 , C 6 H 4 COO or COO , and Y 1 and Y 2 each represent hydrogen or a cation.
General formula (4)
R 11 , R 12 and R 13 represent hydrogen or a methyl group, H + Z represents an inorganic acid and / or an organic acid, and H + Z = 0 when not neutralized.
General formula (5)
R 12 and R 13 represent hydrogen or a methyl group, H + Z represents an inorganic acid and / or an organic acid, and H + Z = 0 when not neutralized.

請求項2の発明は、前記架橋性高分子の分子量が、重量平均分子量として1万〜500万であることを特徴とする請求項1に記載の水性分散液である。 The invention according to claim 2 is the aqueous dispersion according to claim 1, wherein the crosslinkable polymer has a molecular weight of 10,000 to 5,000,000 as a weight average molecular weight.

請求項3の発明は、前記未糊化澱粉粒子が、カチオン変性澱粉であることを特徴とする請求項1あるいは2に記載の水性分散液である。 The invention according to claim 3 is the aqueous dispersion according to claim 1 or 2, wherein the non-gelatinized starch particles are cation-modified starch.

請求項4の発明は、下記(A)〜(C)に記載される化学組成から選択される一種以上であり、下記定義で表示される電荷内包率50%以上90%以下の水溶性高分子により未糊化澱粉粒子スラリーを凝集処理した水性分散液を、抄紙前の製紙原料中に添加し抄紙することを特徴とする紙力増強方法である。
(A)下記一般式(1)で表わされる単量体および/又は下記一般式(2)で表わされる単量体を必須とし、適宜下記一般式(3)を含有する単量体混合物を重合した水溶性高分子。
(B)下記一般式(4)で表わされる構造単位を含有する水溶性高分子。
(C)下記一般式(5)で表わされる構造単位を含有する水溶性高分子。
定義)水溶性カチオン性高分子および両性でかつカチオン性単量体とアニオン性単量体共重合率の差が正である水溶性両性高分子の場合
電荷内包率[%]=(1−α/β)×100
αは酢酸にてpH4.0に調整した水溶性カチオン性高分子あるいは両性水溶性高分子水溶液をポリビニルスルホン酸カリウム水溶液にて滴定した滴定量。βは酢酸にてpH4.0に調整した水溶性カチオン性高分子あるいは両性水溶性高分子水溶液にポリビニルスルホン酸カリウム水溶液を前記水溶性カチオン性高分子あるいは両性水溶性高分子の電荷の中和を行うに十分な量加え、その後ポリジアリルジメチルアンモニウムクロライド水溶液にて滴定した滴定量をブランク値から差し引いた滴定量。ここでブランク値とは、水溶性カチオン性高分子あるいは両性水溶性高分子水溶液無添加時にポリビニルスルホン酸カリウム水溶液をポリジアリルジメチルアンモニウムクロライド水溶液にて滴定した滴定量である。
一般式(1)
は水素又はメチル基、R、Rは炭素数1〜3のアルキル基、アルコキシル基あるいはベンジル基、Rは水素、炭素数1〜3のアルキル基、アルコキシル基あるいはベンジル基であり、同種でも異種でも良い。AはOまたはNH、Bは炭素数2〜4のアルキレン基またはアルコキシレン基、X は陰イオンをそれぞれ表す。
一般式(2)
、Rは水素又はメチル基、R、Rは炭素数1〜3のアルキル基、アルコキシ基あるいはベンジル基、X は陰イオンをそれぞれ表す。
一般式(3)
は水素またはCHCOOY、R10は水素、メチル基またはCOOY、QはSO 、CSO 、CONHC(CHCHSO 、CCOOあるいはCOOであり、Y、Yは水素または陽イオンをそれぞれ表す。
一般式(4)
11、R12、13は水素またはメチル基、Hは無機酸および/または有機酸を表し、未中和時H=0である。
一般式(5)
12、13は水素またはメチル基、Hは無機酸および/または有機酸を表し、未中和時H=0である。
Invention of Claim 4 is 1 or more types selected from the chemical composition as described in the following (A)-(C), and the water-soluble polymer of 50% or more and 90% or less of charge inclusion rate displayed by the following definition The paper strength enhancing method is characterized in that an aqueous dispersion obtained by agglomerating the non-gelatinized starch particle slurry is added to a papermaking raw material before papermaking to make paper.
(A) A monomer represented by the following general formula (1) and / or a monomer represented by the following general formula (2) is essential, and a monomer mixture containing the following general formula (3) is appropriately polymerized. Water-soluble polymer.
(B) A water-soluble polymer containing a structural unit represented by the following general formula (4).
(C) A water-soluble polymer containing a structural unit represented by the following general formula (5).
Definition) Charge inclusion ratio [%] = (1-α) in the case of a water-soluble cationic polymer and an amphoteric and water-soluble amphoteric polymer having a positive difference in the copolymerization rate between a cationic monomer and an anionic monomer / Β) × 100
α is a titration amount obtained by titrating a water-soluble cationic polymer or an amphoteric water-soluble polymer aqueous solution adjusted to pH 4.0 with acetic acid with a potassium polyvinyl sulfonate aqueous solution. β is a water-soluble cationic polymer or an amphoteric water-soluble polymer aqueous solution adjusted to pH 4.0 with acetic acid, and an aqueous polyvinyl sulfonate potassium solution is used to neutralize the charge of the water-soluble cationic polymer or amphoteric water-soluble polymer. A titration amount obtained by adding a sufficient amount to perform, and then subtracting the titration amount titrated with an aqueous polydiallyldimethylammonium chloride solution from the blank value. Here, the blank value is a titration amount obtained by titrating a potassium polyvinylsulfonate aqueous solution with a polydiallyldimethylammonium chloride aqueous solution when no water-soluble cationic polymer or amphoteric water-soluble polymer aqueous solution was added.
General formula (1)
R 1 is hydrogen or a methyl group, R 2 and R 3 are an alkyl group having 1 to 3 carbon atoms, an alkoxyl group or a benzyl group, and R 4 is hydrogen, an alkyl group having 1 to 3 carbon atoms, an alkoxyl group or a benzyl group. , Same or different. A is O or NH, B is an alkylene group or an alkoxylene group having 2 to 4 carbon atoms, X 1 - represents respectively an anion.
General formula (2)
R 5 and R 6 each represent hydrogen or a methyl group, R 7 and R 8 each represent an alkyl group having 1 to 3 carbon atoms, an alkoxy group or a benzyl group, and X 2 represents an anion.
General formula (3)
R 9 is hydrogen or CH 2 COOY 2 , R 10 is hydrogen, methyl group or COOY 2 , Q is SO 3 , C 6 H 4 SO 3 , CONHC (CH 3 ) 2 CH 2 SO 3 , C 6 H 4 COO or COO , and Y 1 and Y 2 each represent hydrogen or a cation.
General formula (4)
R 11 , R 12 and R 13 represent hydrogen or a methyl group, H + Z represents an inorganic acid and / or an organic acid, and H + Z = 0 when not neutralized.
General formula (5)
R 12 and R 13 represent hydrogen or a methyl group, H + Z represents an inorganic acid and / or an organic acid, and H + Z = 0 when not neutralized.

本発明の微細な凝集フロックを生成させた水性分散液の対象物は、未糊化澱粉粒子である。澱粉粒子は、1ミクロン〜数十ミクロンと思いのほか微細なものであり、抄紙時、低分子量の水溶性高分子により弱く凝集させ、ワイヤー上に歩留らせようとすると留まる前に凝集粒子が崩壊してしまい、意図したように留まらない。高分子量の水溶性高分子により強力な凝集を発生したのでは、凝集粒子が大きくなるが、シェアに対して抵抗力は大きくない。従って特別な物性の水溶性高分子を使用する必要がある。 The object of the aqueous dispersion in which the fine agglomerated floc of the present invention is generated is ungelatinized starch particles. Starch particles are finer than expected, from 1 micron to several tens of microns. When making paper, they are weakly aggregated with a low-molecular-weight water-soluble polymer, and the aggregated particles collapse before they are retained on the wire. It does n’t stay as intended. When strong agglomeration is generated by a high-molecular-weight water-soluble polymer, the agglomerated particles increase, but the resistance to shear is not large. Therefore, it is necessary to use a water-soluble polymer having special physical properties.

すなわち直鎖状水溶性高分子では、上記のような単なる弱い凝集あるいは強い凝集が発生してしまう。これは直鎖状水溶性高分子が、水中に分子が広がった状態で存在することによる。重合系のような高分子量のカチオン性水溶性高分子の凝集作用は、いわゆる「架橋吸着作用」による多数懸濁粒子を水溶性高分子の分子鎖による結合作用で起きると考えられている。しかし直鎖状水溶性高分子は伸びた状態にあり、そこに懸濁粒子を吸着させ生成した凝集フロックは、大きいがふわふわして強固になりにくい。 That is, in a linear water-soluble polymer, the above simple aggregation or strong aggregation occurs as described above. This is because the linear water-soluble polymer is present in a state where the molecules are spread in water. It is considered that the aggregating action of a high-molecular weight cationic water-soluble polymer such as a polymerization system is caused by a binding action of a large number of suspended particles by a so-called “cross-linking adsorption action” by a molecular chain of the water-soluble polymer. However, the linear water-soluble polymer is in an extended state, and the aggregated floc formed by adsorbing the suspended particles therein is large but fluffy and difficult to become strong.

これに対し架橋性水溶性高分子は、架橋することによって水中における分子の広がりが抑制される。そのためにより「密度の詰まった」分子形態として存在し、さらに架橋が進めば水膨潤性の微粒子となる。通常高分子凝集剤として使用されるのは、前記の「密度の詰まった」分子形態である場合が効率的とされる。架橋性水溶性高分子が汚泥中に添加されると懸濁粒子に吸着し、粒子同士の接着剤として作用し結果として粒子の凝集が起こる。この時「密度の詰まった」分子形態であるため粒子表面と多点で結合し、より締った強度の高いフロックを形成すると推定される。ここでこの架橋性水溶性高分子の分子量を調節することにより小さく強度の高い凝集フロックを形成させることができる。特に本発明では、架橋度の比較的高い水溶性高分子を使用する。この架橋度の比較的高い水溶性高分子は、水中において「密度の詰まった」分子形態の傾向が強くなり「粒子的」性質が高くなる。これが澱粉粒子に好適な微細フロックを生成させるためと考えられる。 On the other hand, the crosslinkable water-soluble polymer suppresses the spread of molecules in water by crosslinking. For this reason, it exists as a “density packed” molecular form, and when the crosslinking proceeds further, it becomes a water-swellable fine particle. It is considered efficient that the above-mentioned “density-packed” molecular form is usually used as a polymer flocculant. When the crosslinkable water-soluble polymer is added to the sludge, it adsorbs to the suspended particles and acts as an adhesive between the particles, resulting in aggregation of the particles. At this time, it is presumed that since it is in a “dense packed” molecular form, it binds to the particle surface at multiple points to form a tighter and stronger floc. Here, by adjusting the molecular weight of the crosslinkable water-soluble polymer, a small and high strength floc can be formed. In particular, in the present invention, a water-soluble polymer having a relatively high degree of crosslinking is used. This water-soluble polymer having a relatively high degree of cross-linking has a strong tendency for a “density-packed” molecular form in water and a high “particulate” property. This is considered to produce fine floc suitable for starch particles.

本発明の水性分散液は、生澱粉などの水性スラリーを初めに調製する。分散液は、水中に粉末状の澱粉を投入し、ホモジナイザーなどのような強攪拌が可能な攪拌機によって均一に分散させることにより調製する。その後、本発明で使用する水溶性高分子を、生澱粉などの水性スラリーに添加し、微細凝集粒子を形成させ製造する。この時、澱粉は弱い凝集を起こし、澱粉粒子が凝集した微細なフロックを形成する。凝集粒子の大きさは、本発明で使用する水溶性高分子の添加量や水溶性高分子の分子量によって変化するため、紙の種類によって適宜選択する。 In the aqueous dispersion of the present invention, an aqueous slurry such as raw starch is first prepared. The dispersion is prepared by putting powdered starch into water and uniformly dispersing it with a stirrer capable of strong stirring such as a homogenizer. Thereafter, the water-soluble polymer used in the present invention is added to an aqueous slurry such as raw starch to produce fine agglomerated particles. At this time, the starch is weakly aggregated to form fine flocs in which the starch particles are aggregated. The size of the agglomerated particles varies depending on the amount of the water-soluble polymer used in the present invention and the molecular weight of the water-soluble polymer.

本発明で使用する澱粉粒子は、未変性澱粉と化工澱粉とのいずれか一方、又は両方を用いることができる。上記未変性澱粉としては、トウモロコシ、タピオカ、馬鈴薯、小麦等から得られる未変性の澱粉があげられる。また、上記化工澱粉とは、上記の未変性澱粉を化学修飾や物理的処理、生物学的処理によって変性された澱粉である。上記未変性澱粉の具体例としてはトウモロコシ澱粉、タピオカ澱粉、馬鈴薯澱粉、小麦澱粉、サゴ澱粉等が挙げられる。また、化工澱粉の具体例としては、ジエチルアミノエチル化澱粉や三級アンモニウム澱粉等のカチオン化澱粉、カルボキシメチル澱粉等のアニオン化澱粉、両性澱粉、ヒドロキシエチル澱粉等のエーテル化澱粉、リン酸化澱粉や酢酸澱粉等のエステル化澱粉、酸化澱粉、酸処理澱粉が挙げられる。上記澱粉粒子としては、未変性澱粉と化工澱粉とのいずれか一方、又は両方を用いることができる。 As the starch particles used in the present invention, either one or both of unmodified starch and modified starch can be used. Examples of the unmodified starch include unmodified starch obtained from corn, tapioca, potato, wheat and the like. The modified starch is a starch obtained by modifying the unmodified starch by chemical modification, physical treatment, or biological treatment. Specific examples of the unmodified starch include corn starch, tapioca starch, potato starch, wheat starch, sago starch and the like. Specific examples of the modified starch include cationized starch such as diethylaminoethylated starch and tertiary ammonium starch, anionized starch such as carboxymethyl starch, etherified starch such as amphoteric starch and hydroxyethyl starch, phosphorylated starch, Examples include esterified starch such as acetic acid starch, oxidized starch, and acid-treated starch. As the starch particles, either one or both of unmodified starch and modified starch can be used.

使用する水溶性高分子は、請求項に記載される(A)〜(C)の化学組成から選択される一種以上であり、下記定義で表示される電荷内包率50%以上90%以下の水溶性高分子である。
定義)水溶性カチオン性高分子および両性でかつカチオン性単量体とアニオン性単量体共重合率の差が正である水溶性両性高分子の場合
電荷内包率[%]=(1−α/β)×100
αは酢酸にてpH4.0に調整した水溶性カチオン性高分子あるいは両性水溶性高分子水溶液をポリビニルスルホン酸カリウム水溶液にて滴定した滴定量。βは酢酸にてpH4.0に調整した水溶性カチオン性高分子あるいは両性水溶性高分子水溶液にポリビニルスルホン酸カリウム水溶液を前記水溶性カチオン性高分子あるいは両性水溶性高分子の電荷の中和を行うに十分な量加え、その後ポリジアリルジメチルアンモニウムクロライド水溶液にて滴定した滴定量をブランク値から差し引いた滴定量。ここでブランク値とは、水溶性カチオン性高分子あるいは両性水溶性高分子水溶液無添加時にポリビニルスルホン酸カリウム水溶液をポリジアリルジメチルアンモニウムクロライド水溶液にて滴定した滴定量である。
The water-soluble polymer to be used is one or more selected from the chemical compositions of (A) to (C) described in the claims, and is a water-soluble polymer having a charge inclusion rate of 50% or more and 90% or less represented by the following definition. Functional polymer.
Definition) Charge inclusion ratio [%] = (1-α) in the case of a water-soluble cationic polymer and an amphoteric and water-soluble amphoteric polymer having a positive difference in the copolymerization rate between a cationic monomer and an anionic monomer / Β) × 100
α is a titration amount obtained by titrating a water-soluble cationic polymer or an amphoteric water-soluble polymer aqueous solution adjusted to pH 4.0 with acetic acid with a potassium polyvinyl sulfonate aqueous solution. β is a water-soluble cationic polymer or an amphoteric water-soluble polymer aqueous solution adjusted to pH 4.0 with acetic acid, and an aqueous polyvinyl sulfonate potassium solution is used to neutralize the charge of the water-soluble cationic polymer or amphoteric water-soluble polymer. A titration amount obtained by adding a sufficient amount to perform, and then subtracting the titration amount titrated with an aqueous polydiallyldimethylammonium chloride solution from the blank value. Here, the blank value is a titration amount obtained by titrating a potassium polyvinylsulfonate aqueous solution with a polydiallyldimethylammonium chloride aqueous solution when no water-soluble cationic polymer or amphoteric water-soluble polymer aqueous solution was added.

ここで電荷内包率に関して説明する。すなわち電荷内包率の高い水溶性高分子は、架橋が高まった水溶性高分子であり、電荷内包率の低い水溶性高分子は、架橋が少ない水溶性高分子であると言える。この理由は、以下の通りに説明される。直鎖状水溶性高分子は、希薄溶液中では、分子はほぼ「伸びきった」形状をしている。一方、架橋性水溶性高分子は、溶液中において粒子状の丸まった形状をしていて、粒子状の内部に存在するイオン性基は、外側には現われにくく、反対電荷との反応も緩慢に起こると考えられる。 Here, the charge inclusion rate will be described. That is, it can be said that a water-soluble polymer having a high charge encapsulation rate is a water-soluble polymer with increased crosslinking, and a water-soluble polymer having a low charge encapsulation rate is a water-soluble polymer having little crosslinking. The reason for this is explained as follows. A linear water-soluble polymer has a substantially “stretched” shape in a dilute solution. On the other hand, the crosslinkable water-soluble polymer has a rounded particle shape in the solution, and the ionic group present inside the particle is unlikely to appear on the outside and reacts slowly with the opposite charge. It is thought to happen.

前記滴定量αは、試料である架橋性水溶性カチオン性高分子に反対電荷を有するポリビニルスルホン酸カリウム水溶液を滴下して行き、水溶性カチオン性高分子の「表面」(粒子状の表面部)に存在するイオン性基にイオン的静電反応を行わせる操作を意味する。 The titration amount α is obtained by dropping a potassium polyvinyl sulfonate aqueous solution having an opposite charge onto a crosslinkable water-soluble cationic polymer as a sample, and then “surface” (particulate surface portion) of the water-soluble cationic polymer. Means that an ionic electrostatic reaction is performed on the ionic group present in

次に架橋性水溶性カチオン性高分子の理論的な電荷量を中和するに十分な量以上の反対電荷を有するポリビニルスルホン酸カリウムを添加し、反応時間を十分取ったその後、余剰のポリビニルスルホン酸カリウムをジアリルジメチルアンモニウムクロライド水溶液により滴定する。また別に架橋性水溶性カチオン性高分子を添加しないでポリビニルスルホン酸カリウム溶液をジアリルジメチルアンモニウムクロライド水溶液により滴定し、ブランク値を出しておき、ブランク値より架橋性水溶性カチオン性高分子を添加した場合の滴定量を差し引き、この値がβとなる。β値は、架橋性水溶性カチオン性高分子の化学組成から計算される理論的な電荷量に相当すると考えられる。すなわち架橋性カチオン性水溶性高分子に対し、反対電荷が多量に存在するので、表面のカチオン性電荷だけでなく、内部の電荷まで静電的な中和反応が行われると考えられる。架橋度が高ければ、αはβに対し小さくなり、(1−α/β)値は、1に比べ大きくなり電荷内包率は大きい(すなわち架橋の度合いは高くなる)。 Next, potassium polyvinyl sulfonate having an opposite charge more than the amount sufficient to neutralize the theoretical charge amount of the crosslinkable water-soluble cationic polymer was added, and after sufficient reaction time, excess polyvinyl sulfone was added. Potassium acid is titrated with an aqueous diallyldimethylammonium chloride solution. Separately, the potassium polyvinyl sulfonate solution was titrated with a diallyldimethylammonium chloride aqueous solution without adding a crosslinkable water-soluble cationic polymer, a blank value was obtained, and a crosslinkable water-soluble cationic polymer was added from the blank value. If this is the case, this value is β. The β value is considered to correspond to the theoretical charge amount calculated from the chemical composition of the crosslinkable water-soluble cationic polymer. That is, since a large amount of opposite charges exist with respect to the crosslinkable cationic water-soluble polymer, it is considered that the electrostatic neutralization reaction is performed not only on the surface cationic charges but also on the internal charges. If the degree of crosslinking is high, α is smaller than β, and the (1-α / β) value is larger than 1 and the charge inclusion rate is large (that is, the degree of crosslinking is high).

本発明では上記のような電荷内包率を有する架橋性水溶性カチオン性高分子(A)を製造するため重合時あるいは重合後、構造変性剤として架橋性単量体を単量体総量に対し0.0005〜0.0050モル%、また好ましくは0.0008〜0.002モル%存在させる。架橋性単量体の例としては、N,N−メチレンビス(メタ)アクリルアミド、トリアリルアミン、ジメタクリル酸エチレングリコール、ジメタクリル酸ジエチレングリコール、ジメタクリル酸トリエチレングリコール、ジメタクリル酸テトラエチレングリコール、ジメタクリル酸―1,3−ブチレングリコール、ジ(メタ)アクリル酸ポリエチレングリコール、N−ビニル(メタ)アクリルアミド、N−メチルアリルアクリルアミド、アクリル酸グリシジル、ポリエチレングリコールジグリシジルエーテル、アクロレイン、グリオキザール、ビニルトリメトキシシランなどがあるが、この場合の架橋剤としては、水溶性ポリビニル化合物がより好ましく、最も好ましいのはN,N−メチレンビス(メタ)アクリルアミドである。またギ酸ナトリウム、イソプロピルアルコール等の連鎖移動剤を併用して使用することも架橋性を調節する手法として効果的である。 In the present invention, in order to produce the crosslinkable water-soluble cationic polymer (A) having the charge inclusion rate as described above, a crosslinkable monomer is used as a structural modifier at 0% during polymerization or after polymerization. 0.0005 to 0.0050 mol%, preferably 0.0008 to 0.002 mol%. Examples of the crosslinkable monomer include N, N-methylenebis (meth) acrylamide, triallylamine, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, and dimethacrylic acid. Acid-1,3-butylene glycol, polyethylene glycol di (meth) acrylate, N-vinyl (meth) acrylamide, N-methylallylacrylamide, glycidyl acrylate, polyethylene glycol diglycidyl ether, acrolein, glyoxal, vinyltrimethoxysilane In this case, the crosslinking agent is more preferably a water-soluble polyvinyl compound, and most preferably N, N-methylenebis (meth) acrylamide. Use of a chain transfer agent such as sodium formate or isopropyl alcohol in combination is also effective as a method for adjusting the crosslinkability.

本発明の微細な凝集フロックを生成させた水性分散液の対象物は、未糊化澱粉粒子である。澱粉粒子は、数ミクロン〜数十ミクロンと思いのほか微細なものであり、抄紙時、低分子量の水溶性高分子により弱く凝集させ、ワイヤー上に歩留らせようとすると留まる前に凝集粒子が崩壊してしまい、意図したように留まらない。高分子量の水溶性高分子により強力な凝集を発生したのでは、凝集粒子が大きくなるが、シェアに対して抵抗力は大きくない。従って特別な物性の水溶性高分子を使用する必要がある。 The object of the aqueous dispersion in which the fine agglomerated floc of the present invention is generated is ungelatinized starch particles. Starch particles are finer than expected, a few microns to a few tens of microns. When making paper, the starch particles are weakly agglomerated by a low-molecular-weight water-soluble polymer, and the aggregated particles collapse before they stay on the wire. It does n’t stay as intended. When strong agglomeration is generated by a high-molecular-weight water-soluble polymer, the agglomerated particles increase, but the resistance to shear is not large. Therefore, it is necessary to use a water-soluble polymer having special physical properties.

すなわち直鎖状水溶性高分子では、上記のような単なる弱い凝集、強い凝集が発生しまう。これは直鎖状水溶性高分子は、水中に分子が広がった状態で存在する。重合系のような高分子量のカチオン性水溶性高分子の凝集作用は、いわゆる「架橋吸着作用」による多数懸濁粒子を水溶性高分子の分子鎖による結合作用で起きると考えられている。しかし直鎖状水溶性高分子は伸びた状態にあり、そこに懸濁粒子を吸着させ生成した凝集フロックは、大きいがふわふわして強固になりにくい。強度を増すため添加量を増加していってもフロックの改善はない。その原因は、伸びた状態にあるため生成した凝集フロックとの接触サイトが多く、その凝集フロックにさらに直鎖状水溶性高分子が吸着して、その結果見かけ上の電荷的飽和になりやすい。攪拌強度を増加させ生成フロックを破壊し新しい吸着面を作ればよいが、破壊し小さくしたフロック表面にはまた直鎖状水溶性高分子が吸着して、小さいが強度の弱いことには変わりはない。この時繊維分の多い汚泥では繊維がフロックの補強剤となるが、繊維分の少ない汚泥では、結局強固なフロックは生成しない。 That is, in a linear water-soluble polymer, the above simple aggregation and strong aggregation occur as described above. This is because the linear water-soluble polymer exists in a state where the molecules spread in water. It is considered that the aggregating action of a high-molecular weight cationic water-soluble polymer such as a polymerization system is caused by a binding action of a large number of suspended particles by a so-called “cross-linking adsorption action” by a molecular chain of the water-soluble polymer. However, the linear water-soluble polymer is in an extended state, and the aggregated floc formed by adsorbing the suspended particles therein is large but fluffy and difficult to become strong. Even if the amount added is increased to increase the strength, there is no improvement in floc. The cause is that there are many contact sites with the generated aggregated floc because it is in an extended state, and the linear water-soluble polymer is further adsorbed on the aggregated floc, and as a result, apparent charge saturation is likely to occur. It is sufficient to increase the agitation strength and destroy the generated floc to create a new adsorption surface, but the linear water-soluble polymer is adsorbed again on the fractured and smaller floc surface, but it is small but weak. Absent. At this time, in the sludge having a high fiber content, the fiber becomes a floc reinforcing agent. However, in the sludge having a low fiber content, a strong floc is not generated.

これに対し架橋性水溶性高分子は、架橋することによって水中における分子の広がりが抑制される。そのためにより「密度の詰まった」分子形態として存在し、さらに架橋が進めば水膨潤性の微粒子となる。通常高分子凝集剤として使用されるのは、前記の「密度の詰まった」分子形態である場合が効率的とされる。架橋性水溶性高分子が汚泥中に添加されると懸濁粒子に吸着し、粒子同士の接着剤として作用し結果として粒子の凝集が起こる。この時「密度の詰まった」分子形態であるため粒子表面と多点で結合し、より締った強度の高いフロックを形成すると推定される。ここでこの架橋性水溶性高分子の分子量を調節することにより小さく強度の高い凝集フロックを形成させることができる。特に本発明では、架橋度の比較的高い水溶性高分子を使用する。この架橋度の比較的高い水溶性高分子は、水中において「密度の詰まった」分子形態の傾向が強くなり「粒子的」性質が高くなる。これが澱粉粒子に好適な微細フロックを生成させるためと考えられる。 On the other hand, the crosslinkable water-soluble polymer suppresses the spread of molecules in water by crosslinking. For this reason, it exists as a “density packed” molecular form, and when the crosslinking proceeds further, it becomes a water-swellable fine particle. It is considered efficient that the above-mentioned “density-packed” molecular form is usually used as a polymer flocculant. When the crosslinkable water-soluble polymer is added to the sludge, it adsorbs to the suspended particles and acts as an adhesive between the particles, resulting in aggregation of the particles. At this time, it is presumed that since it is in a “dense packed” molecular form, it binds to the particle surface at multiple points to form a tighter and stronger floc. Here, by adjusting the molecular weight of the crosslinkable water-soluble polymer, a small and high strength floc can be formed. In particular, in the present invention, a water-soluble polymer having a relatively high degree of crosslinking is used. This water-soluble polymer having a relatively high degree of cross-linking has a strong tendency for a “density-packed” molecular form in water and a high “particulate” property. This is considered to produce fine floc suitable for starch particles.

次に水溶性高分子(A)〜(C)に関して説明する。水溶性高分子(A)は、
下記一般式(1)および/または下記一般式(2)で表される単量体を5〜80モル%、好ましくは10〜80モル%共重合して得られる水溶性カチオン性高分子、あるいは下記一般式(3)で表される単量体を適宜共重合して水溶性両性高分子である。下記一般式(3)で表される単量体は、0〜30モル%、好ましくは5〜20モル%共重合する。また重合時、単量体総量に対して架橋性単量体を単量体総量に対し0.0005〜0.0050モル%、また好ましくは0.0008〜0.002モル%存在させる。
一般式(1)
は水素又はメチル基、R、Rは炭素数1〜3のアルキル基、アルコキシ基あるいはベンジル基、Rは水素、炭素数1〜3のアルキル基、アルコキシル基あるいはベンジル基であり、同種でも異種でも良い。Aは酸素またはNH、Bは炭素数2〜4のアルキレン基またはアルコキシレン基、Xは陰イオンをそれぞれ表わす。
一般式(2)
は水素又はメチル基、R、Rは炭素数1〜3のアルキル基、アルコキシル基あるいはベンジル基、Xは陰イオンをそれぞれ表わす。
一般式(3)
は水素またはCHCOOY、QはSO、CSO
CONHC(CHCHSO、CCOOあるいはCOO、Rは水素、メチル基またはCOOYであり、Y、Yは水素または陽イオンをそれぞれ表わす。
Next, the water-soluble polymers (A) to (C) will be described. The water-soluble polymer (A) is
A water-soluble cationic polymer obtained by copolymerizing the monomer represented by the following general formula (1) and / or the following general formula (2) in an amount of 5 to 80 mol%, preferably 10 to 80 mol%, or A monomer represented by the following general formula (3) is appropriately copolymerized to form a water-soluble amphoteric polymer. The monomer represented by the following general formula (3) is copolymerized in an amount of 0 to 30 mol%, preferably 5 to 20 mol%. Further, at the time of polymerization, the crosslinkable monomer is present in an amount of 0.0005 to 0.0050 mol%, preferably 0.0008 to 0.002 mol%, based on the total amount of monomers.
General formula (1)
R 1 is hydrogen or a methyl group, R 2 and R 3 are an alkyl group having 1 to 3 carbon atoms, an alkoxy group or a benzyl group, and R 4 is hydrogen, an alkyl group having 1 to 3 carbon atoms, an alkoxyl group or a benzyl group. , Same or different. A represents oxygen or NH, B represents an alkylene group or alkoxylene group having 2 to 4 carbon atoms, and X 1 represents an anion.
General formula (2)
R 5 represents hydrogen or a methyl group, R 6 and R 7 each represent an alkyl group having 1 to 3 carbon atoms, an alkoxyl group or a benzyl group, and X 2 represents an anion.
General formula (3)
R 8 is hydrogen or CH 3 COOY 1 , Q is SO 3 , C 6 H 4 SO 3 ,
CONHC (CH 3 ) 2 CH 2 SO 3 , C 6 H 4 COO or COO, R 9 is hydrogen, a methyl group or COOY 2 , and Y 1 and Y 2 each represent hydrogen or a cation.

これら水溶性カチオン性高分子あるいは水溶性両性高分子は、以下の単量体を共重合することにより製造できる。一般式(1)単量体の例は、第4級アンモニウム塩あるいは第3級アミンの塩を含有するカチオン性単量体である。具体例としては、(メタ)アクリロイルオキシエチルトリメチルアンモニウム塩化物、(メタ)アクリロイルアミノプロピルトリメチルアンモニウム塩化物、(メタ)アクリロイルオキシエチルジメチルベンジルアンモニウム塩化物、ジメチルアミノプロピル(メタ)アクリルアミドの塩、ジメチルアミノエチル(メタ)アクリレートの塩、ジメチルアミノプロピル(メタ)アクリレートの塩などが挙げられる。一般式(2)で表される単量体は、ジアリルアンモニウム塩であり、具体的にはジアリルジメチルアンモニウム塩化物、ジアリルメチルベンジルアンモニウム塩化物などである。 These water-soluble cationic polymers or water-soluble amphoteric polymers can be produced by copolymerizing the following monomers. Examples of the monomer of the general formula (1) are cationic monomers containing a quaternary ammonium salt or a tertiary amine salt. Specific examples include (meth) acryloyloxyethyltrimethylammonium chloride, (meth) acryloylaminopropyltrimethylammonium chloride, (meth) acryloyloxyethyldimethylbenzylammonium chloride, dimethylaminopropyl (meth) acrylamide salt, dimethyl Examples thereof include aminoethyl (meth) acrylate salts and dimethylaminopropyl (meth) acrylate salts. The monomer represented by the general formula (2) is diallylammonium salt, specifically diallyldimethylammonium chloride, diallylmethylbenzylammonium chloride and the like.

これら水溶性高分子は、非イオン性単量体との共重合体でも使用可能であり、非イオン性単量体は、(メタ)アクリルアミド、N−メチル(メタ)アクリルアミド、N−メチロール(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド、ヒドロキシメチル(メタ)アクリルアミド、ヒドロキシエチル(メタ)アクリルアミド、ヒドロキシエチル(メタ)アクリレートなどが挙げられる。 These water-soluble polymers can also be used as a copolymer with a nonionic monomer. Nonionic monomers include (meth) acrylamide, N-methyl (meth) acrylamide, N-methylol (meta ) Acrylamide, N-ethyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, hydroxymethyl (meth) acrylamide, hydroxyethyl (meth) ) Acrylamide, hydroxyethyl (meth) acrylate and the like.

水溶性両性高分子は、上記カチオン性単量体とアニオン性単量体を必須として含有する単量体混合物を重合して得ることができる。アニオン性単量体の例は、アクリル酸、メタアクリル酸、ビニルスルホン酸、スチレンスルホン酸、マレイン酸、イタコン酸、2−アクリルアミド−2−メチルプロパンスルホン酸、エチレングリコールメタクリレートホスフェートなどが挙げられる。 The water-soluble amphoteric polymer can be obtained by polymerizing a monomer mixture containing the cationic monomer and the anionic monomer as essential components. Examples of the anionic monomer include acrylic acid, methacrylic acid, vinyl sulfonic acid, styrene sulfonic acid, maleic acid, itaconic acid, 2-acrylamido-2-methylpropane sulfonic acid, ethylene glycol methacrylate phosphate and the like.

また下記一般式(4)で表わされる水溶性高分子は、ビニルアミン系高分子である。これらはN−ビニルホルムアミド重合物あるいは共重合体を重合体中のホルミル基を変性することにより容易に得ることができる。すなわちN−ビニルホルムアミドと他の共重合可能な単量体とのモル比が、通常50:50〜100:0の混合物、好ましくは、70:30〜100:0の混合物の混合物をラジカル重合開始剤の存在下、重合することにより製造される。 The water-soluble polymer represented by the following general formula (4) is a vinylamine polymer. These can be easily obtained by modifying N-vinylformamide polymer or copolymer with a formyl group in the polymer. That is, radical polymerization is initiated with a mixture of N-vinylformamide and another copolymerizable monomer, usually a mixture of 50:50 to 100: 0, preferably a mixture of 70:30 to 100: 0. It is produced by polymerizing in the presence of an agent.

酸あるいはアルカリによりホルミル基を加水分解するため、共重合する単量体の一部も加水分解され、カルボキシル基が生成する場合が多い。そのためアクリロニトリルなどが共重合する場合便利である。その他アクリルアミド、アクリル酸メチル、アクリル酸エチル、アクリル酸nプロピル、クリル酸−2−ヒドロキシエチル、メタクリル酸エチル、メタクリル酸nプロピル、メタクリル酸イソプロピル、メタクリル酸nブチル、メタクリル酸イソブチル、メタクリル酸−secブチル、メタクリル酸−2−ヒドロキシエチルなどが挙げられる。これら単量体は、アニオン性基が生成するので、共重合体中のモル比は、20モル%未満であることが好ましい。 Since the formyl group is hydrolyzed with an acid or alkali, a part of the copolymerized monomer is also hydrolyzed to generate a carboxyl group in many cases. Therefore, it is convenient when acrylonitrile or the like is copolymerized. Other acrylamide, methyl acrylate, ethyl acrylate, npropyl acrylate, 2-hydroxyethyl acrylate, ethyl methacrylate, npropyl methacrylate, isopropyl methacrylate, nbutyl methacrylate, isobutyl methacrylate, methacrylic acid-sec Examples include butyl and 2-hydroxyethyl methacrylate. Since these monomers generate anionic groups, the molar ratio in the copolymer is preferably less than 20 mol%.

重合あるいは共重合したN−ビニルホルムアミド共重合体は、そのままの溶液状もしくは分散状で、あるいは希釈、もしくは、公知の方法で脱水または乾燥して粉末状としたのち変性することにより、新規なるビニルアミン共重合体とすることが出来る。また、酸性変性に使用される変性剤としては、強酸性に作用する化合物ならばいずれも使用することが可能であり、例えば、塩酸、臭素酸、フッ化水素酸、硫酸、硝酸、燐酸、スルファミン酸、アルカンスルホン酸等が挙げられる。変性剤の使用量は、重合体中のホルミル基に対して、通常0.1〜2倍モルの範囲から目的の変性率に応じて適宜選択される。 A polymerized or copolymerized N-vinylformamide copolymer can be used as a new vinylamine by modification in the form of a solution or dispersion as it is, or after dilution or dehydration or drying by a known method to form a powder. It can be a copolymer. As the modifier used for acid modification, any compound that acts on strong acid can be used, for example, hydrochloric acid, bromic acid, hydrofluoric acid, sulfuric acid, nitric acid, phosphoric acid, sulfamine. Examples include acids and alkane sulfonic acids. The usage-amount of modifier | denaturant is suitably selected according to the target modification | denaturation rate from the range of 0.1-2 times mole normally with respect to the formyl group in a polymer.

また下記一般式(5)で表わされる水溶性高分子は、ポリアミジン系高分子である。これらはN−ビニルホルムアミドとアクリロニトリルとの共重合物を重合体中のホルミル基を変性し、その後酸性雰囲気中で変性することにより容易に得ることができる。すなわちN−ビニルホルムアミドとアクリロニトリルの共重合のモル比は、通常70:30〜30:70の混合物、好ましくは、40:60〜60:40の混合物をラジカル重合開始剤の存在下、重合せしめることにより製造される。重合後の変性は、ビニルアミン系水溶性高分子とほぼ同様である。
式中R11、R12、13は水素原子またはメチル基を、X- は陰イオンを表わす。
The water-soluble polymer represented by the following general formula (5) is a polyamidine polymer. These can be easily obtained by modifying a formyl group in a polymer of a copolymer of N-vinylformamide and acrylonitrile and then modifying it in an acidic atmosphere. That is, the molar ratio of copolymerization of N-vinylformamide and acrylonitrile is usually a mixture of 70:30 to 30:70, preferably 40:60 to 60:40, in the presence of a radical polymerization initiator. It is manufactured by. The modification after polymerization is almost the same as that of the vinylamine water-soluble polymer.
In the formula, R 11 , R 12 and R 13 represent a hydrogen atom or a methyl group, and X represents an anion.

本発明で使用する水溶性高分子(A)〜(C)は、重量平均分子量が10,000〜5,000,000であり、好ましくは100,000〜3,000,000である。本発明の水性分散液は、未糊化澱粉粒子が凝集していることが必要である。そのためこれに使用する水溶性高分子は、一定以上の分子量が必要になり、10,000未満では凝集が不十分であり、また5,000,000以上では凝集が強くなりすぎ、好ましくない。 The water-soluble polymers (A) to (C) used in the present invention have a weight average molecular weight of 10,000 to 5,000,000, preferably 100,000 to 3,000,000. The aqueous dispersion of the present invention requires that the non-gelatinized starch particles are aggregated. For this reason, the water-soluble polymer used for this purpose is required to have a molecular weight of a certain level or more, and if it is less than 10,000, the aggregation is insufficient, and if it exceeds 5,000,000, the aggregation becomes too strong.

本発明の水性分散液は、生澱粉などを水に分散させた水性スラリーとして調製する。これに水溶性高分子を添加する。その後、攪拌下、凝集粒子を形成させ製造する。または予め必用な量の水を用意し、その中に水溶性高分子を溶解しておき、そこに生澱粉などを投入していっても良い。 The aqueous dispersion of the present invention is prepared as an aqueous slurry in which raw starch or the like is dispersed in water. A water-soluble polymer is added to this. Thereafter, agglomerated particles are formed and produced under stirring. Alternatively, a necessary amount of water may be prepared in advance, a water-soluble polymer may be dissolved therein, and raw starch or the like may be added thereto.

分散液中の生澱粉などの濃度は、15〜60質量%であるが、20〜50質量%であるほうがより好ましい。またホモジナイザーなどによる攪拌回転数は、凡そ100〜1000回転/分であるが、200〜1000回転/分であるほうがより好ましい。攪拌時間としては、水溶性高分子を添加して5〜20分であることが好ましい。あまり長時間攪拌を持続すると凝集粒子が細かくなりすぎ、製紙原料に添加した場合、澱粉粒子の歩留率の低下や製紙薬剤としての性能に影響を与えるからである。 The density | concentration of raw starch etc. in a dispersion liquid is 15-60 mass%, but it is more preferable that it is 20-50 mass%. The stirring rotation speed by a homogenizer or the like is about 100 to 1000 rotations / minute, more preferably 200 to 1000 rotations / minute. The stirring time is preferably 5 to 20 minutes after adding the water-soluble polymer. This is because if the stirring is continued for a long time, the aggregated particles become too fine, and when added to the papermaking raw material, the yield rate of starch particles is reduced and the performance as a papermaking agent is affected.

本発明の電荷内包率50%以上90%以下の水溶性高分子により凝集処理した粒子の粒度分布は、5質量%の無機物微粒子水性分散液を前記処理剤によって処理し、10倍希釈後、分散液を粒度分布計などによって解析し、体積累積メジアン径を管理することによって適切な凝集粒子部を得ることが出来る。すなわち処理剤無添加時の体積累積メジアン径をDmo、処理剤を添加し、微細凝集処理後の体積累積メジアン径をDmとした場合、Dm/Dmoが2以上、6以下の範囲であると本発明の目的とする条件に適合する。この場合の電荷内包率50%以上90%以下の水溶性高分子添加量としては、2〜15質量%である。ここでメジアン径というのは、ある粒度分布中の全粒子の体積に対して、小さいほうの粒子から体積を累積していき、全体積に対して50%となる粒子の粒径を表わす。例えばメジアン径が5μmであれば5μmに近い範囲の粒子がそこに集中していることを示す。ただしその分布が広い分布か狭い分布かまでは表わしていない。 The particle size distribution of the particles agglomerated with the water-soluble polymer having a charge inclusion ratio of 50% or more and 90% or less according to the present invention is obtained by treating 5% by mass of the inorganic fine particle aqueous dispersion with the treatment agent, diluting 10 times, and dispersing. An appropriate aggregated particle portion can be obtained by analyzing the liquid with a particle size distribution meter and managing the volume median diameter. In other words, when the volume cumulative median diameter without addition of the treatment agent is Dmo, the treatment agent is added, and the volume cumulative median diameter after the fine aggregation treatment is Dm, Dm / Dmo is in the range of 2 or more and 6 or less. It meets the intended conditions of the invention. In this case, the addition amount of the water-soluble polymer having a charge encapsulation rate of 50% to 90% is 2 to 15% by mass. Here, the median diameter represents the particle diameter of particles that are 50% of the total volume by accumulating the volume from the smaller particles with respect to the volume of all particles in a certain particle size distribution. For example, a median diameter of 5 μm indicates that particles in a range close to 5 μm are concentrated there. However, it does not represent whether the distribution is wide or narrow.

例えばジメチルジアリルアンモニウムクロリドとアクリルアミドからなるカチオン性高分子では、無機物に1〜5質量%添加し、分散液を処理してもDm/Dmoは、0.7〜0.8程度にしかならない。また界面活性剤系の嵩高剤により処理した場合でも、前記比は0.2〜1.1程度である。従って、原料として使用する無機粒子や攪拌条件、使用する水溶性高分子によって変化するが、本発明で使用する電荷内包率50%以上90%以下の水溶性高分子によって処理すると、適度な大きさの粒子径、すなわち大よそには体積累積メジアン径において10〜16μmのものが、比較的狭い範囲で分布した分散粒子が生成する。この時、処理剤無添加では、3〜4μmであり、界面活性剤系の嵩高剤により処理した場合は2〜5μm、親水性単量体のみからなるジメチルジアリルアンモニウムクロリドとアクリルアミドからなるカチオン性高分子では2〜4μmである。 For example, in the case of a cationic polymer composed of dimethyldiallylammonium chloride and acrylamide, Dm / Dmo is only about 0.7 to 0.8 even when 1 to 5% by mass is added to the inorganic substance and the dispersion is treated. Even when treated with a surfactant-based bulking agent, the ratio is about 0.2 to 1.1. Therefore, it varies depending on the inorganic particles used as a raw material, the stirring conditions, and the water-soluble polymer used. Particles having a particle diameter of approximately 10 to 16 μm in terms of the volume cumulative median diameter are distributed in a relatively narrow range. At this time, it is 3 to 4 μm when no treatment agent is added, and 2 to 5 μm when treated with a bulking agent of a surfactant type, and cationic high molecular weight consisting of dimethyldiallylammonium chloride and acrylamide consisting only of hydrophilic monomers. For molecules, it is 2-4 μm.

本発明の未糊化澱粉からなる水性分散液は、抄紙前の製紙原料に添加して紙力向上効果を発現させることができる。すなわち製紙機のワイヤー上で澱粉粒子を他の製紙原料とともに湿紙中に歩留させ、その後ドライヤーによる乾燥時、水分がある状態に置かれ、未糊化澱粉が糊化し、湿紙中に浸透していく。この現象によって紙力向上効果が発現すると考えられる。製紙機のワイヤーに乗る手前ならば、製紙工程中のいずれの場所に添加してもかまわないが、希釈前の
製紙原料が白水によって希釈されるファンポンプの手前などに添加すると、水性分散液を調製する過程で生成した微細なフロックが破壊されず、効率的に湿紙の紙層中に歩留る。その他添加場所は、ミキシングチェスト、種箱、マシンチェストやヘッドボックスや白水タンク等のタンク、またはこれらの設備と接続された配管中などである。
The aqueous dispersion composed of the non-gelatinized starch of the present invention can be added to the papermaking raw material before paper making to express the paper strength improvement effect. In other words, starch particles are retained in the wet paper along with other papermaking raw materials on the wire of the paper machine, and then, when dried with a dryer, they are placed in a wet state, and the non-gelatinized starch is gelatinized and penetrates into the wet paper I will do it. It is thought that the paper strength improvement effect is manifested by this phenomenon. It may be added to any part of the papermaking process just before getting on the wire of the papermaking machine, but if it is added before the fan pump where the papermaking raw material before dilution is diluted with white water, the aqueous dispersion will be added. The fine flocs generated in the preparation process are not destroyed, and the yield is efficiently retained in the paper layer of the wet paper. Other addition sites include mixing chests, seed boxes, machine chests, tanks such as head boxes and white water tanks, or pipes connected to these facilities.

本発明の未糊化澱粉からなる水性分散液を湿紙の紙層中に歩留せるため、溶解した状態の澱粉が白水などに流出しにくく、排水中のBOD(生物化学的酸素要求量)が上昇せず処理の軽減に繋がる。添加量としては、対製紙原料乾燥分当たり0.1〜5質量%であり、好ましくは0.5〜2質量%である。 Since the aqueous dispersion comprising the non-gelatinized starch of the present invention can be retained in the paper layer of the wet paper, the dissolved starch is less likely to flow out into white water and the like, and BOD (biochemical oxygen demand) in the wastewater Does not increase, leading to reduction of processing. The addition amount is 0.1 to 5% by mass, preferably 0.5 to 2% by mass, based on the dry weight of the papermaking raw material.

本発明では、必要に応じて、サイズ剤、歩留り向上剤、濾水性向上剤、紙力向上剤、ピッチコントロール剤、硫酸アルミニウム、アクリルアミド基を有する化合物、ポリエチレンイミン等の凝結剤等を併用することができる。 In the present invention, if necessary, a sizing agent, a yield improver, a freeness improver, a paper strength improver, a pitch control agent, aluminum sulfate, a compound having an acrylamide group, a coagulant such as polyethyleneimine, etc. may be used in combination. Can do.

また、本発明の紙の製造方法によって得られる紙は、新聞用紙、書籍用紙、印刷・情報用紙、包装用紙等の紙、また特には板紙である。すなわち強度が要求されるダンボール用のライナーがある。 Further, the paper obtained by the paper manufacturing method of the present invention is paper such as newsprint paper, book paper, printing / information paper, packaging paper, and particularly paperboard. That is, there is a cardboard liner that requires strength.

以下に、実施例によって本発明を具体的に説明する。ただし、本発明は以下の実施例に制約はされない。 Hereinafter, the present invention will be described specifically by way of examples. However, the present invention is not limited to the following examples.

(未糊化澱粉からなる水性分散液の調製)未糊化コーン生澱粉の水性スラリーに表1に記載する水溶性高分子を添加し、凝集処理を行い、紙用添加剤を調製した。すなわち未糊化コーン生澱粉を水に分散させ20質量%の水性分散液とし、これに各水溶性高分子を対澱粉2.0質量%添加し、マグネチックスターラーにより400回転/分で10分攪拌することにより微細凝集粒子部を形成させ製造した。また比較の水溶性高分子(アクリロイルオキシエチルトリメチルアンモニウム塩化物とアクリルアミド共重合物)(比較試料−1)、ポリアミンジンからなる水溶性高分子(比較試料−2)、アニオン性多糖類(カルボキシメチルセルロース、分子量30万、アニオン化度、35.5対グルコース単位、比較試料−3)、によって処理した水性分散液を調製した。使用した水溶性高分子の物性を表1に示す。 (Preparation of Aqueous Dispersion Consisting of Ungelatinized Starch) A water-soluble polymer described in Table 1 was added to an aqueous slurry of ungelatinized corn raw starch, and agglomeration treatment was performed to prepare a paper additive. That is, raw gelatinized corn starch is dispersed in water to form an aqueous dispersion of 20% by mass. To this, 2.0% by mass of each water-soluble polymer is added, and a magnetic stirrer is used at 400 rpm for 10 minutes. By stirring, a fine aggregated particle part was formed and produced. Comparative water-soluble polymer (acryloyloxyethyltrimethylammonium chloride and acrylamide copolymer) (Comparative Sample-1), water-soluble polymer composed of polyamine (Comparative Sample-2), anionic polysaccharide (carboxymethylcellulose) , Molecular weight 300,000, degree of anionization, 35.5 vs. glucose units, comparative sample-3). Table 1 shows the physical properties of the water-soluble polymer used.

(表1)
AAC;アクリル酸、AAM;アクリルアミド、DMQ;アクリロイルオキシエチルトリメチルアンモニウム塩化物、DADMAC;ジアリルジリメチルアンモニウム塩化物、MBA;メチレンビスアクリルアミド、AN;アクリロニトリル、NVF;N−ビニルホルムアミド、DMC;メタクリロイルオキシエチルトリメチルアンモニウム塩化物、
(Table 1)
AAC; acrylic acid, AAM; acrylamide, DMQ; acryloyloxyethyltrimethylammonium chloride, DADMAC; diallyldimethylammonium chloride, MBA; methylenebisacrylamide, AN; acrylonitrile, NVF; N-vinylformamide, DMC; methacryloyloxyethyl Trimethylammonium chloride,

(粒度分布の測定)コンーン生澱粉からなる水性分散液の粒度分布は以下のようにして測定した。その後、炭酸カルシウムスラリーを40倍(0.5質量%)に希釈し、HORIBA、レーザ回折/散乱式粒度分布計、LA−920にて粒度分布を解析し、処理剤無添加時の体積累積メジアン径をDmo(μm)、処理剤添加時の体積累積メジアン径をDm(μm)とし、その比Dm/Dmoを算出した。結果を表2に示す。 (Measurement of particle size distribution) The particle size distribution of an aqueous dispersion composed of raw starch was measured as follows. Thereafter, the calcium carbonate slurry was diluted 40 times (0.5% by mass), and the particle size distribution was analyzed with HORIBA, a laser diffraction / scattering particle size distribution analyzer, LA-920, and the volume cumulative median when no treatment agent was added. The diameter was Dmo (μm), the volume cumulative median diameter when the treatment agent was added was Dm (μm), and the ratio Dm / Dmo was calculated. The results are shown in Table 2.

処理剤無添加時の体積累積メジアン径をDmo、処理剤を添加し、微細凝集処理後の体積累積メジアン径をDmとした場合、Dm/Dmoが2以上、6以下の範囲であると、水溶性高分子により処理した結果、巨大な凝集フロックではなく、適度な大きさのフロックを生成し、本発明の目的に沿ったものになる。ここでメジアン径というのは、ある粒度分布中の全粒子の体積に対して、小さいほうの粒子から体積を累積していき、全体積に対して50%となる粒子の粒径を表わす。例えばメジアン径が5μmであれば5μmに近い範囲の粒子がそこに集中していることを示す。ただしその分布が広い分布か狭い分布かまでは表わしていない。

When the volume cumulative median diameter when no treatment agent is added is Dmo, the treatment agent is added, and the volume cumulative median diameter after fine aggregation treatment is Dm, Dm / Dmo is 2 or more and 6 or less. As a result of the treatment with the conductive polymer, a floc having an appropriate size is generated instead of a huge aggregated floc, which is in accordance with the object of the present invention. Here, the median diameter represents the particle diameter of particles that are 50% of the total volume by accumulating the volume from the smaller particles with respect to the volume of all particles in a certain particle size distribution. For example, a median diameter of 5 μm indicates that particles in a range close to 5 μm are concentrated there. However, it does not represent whether the distribution is wide or narrow.

(表2)
(Table 2)

0.5質量%のLBKPパルプスラリー(CSF400ml)を、抄紙後のシートの坪量が80g/mになるように量りとり、攪拌下、試料S−1〜試料−6によって処理した澱粉水性スラリーをパルプに対し澱粉量として1.0質量%添加し、軽質炭酸カルシウムスラリーを仕込みで対LBKP
30質量%添加し、最後に歩留向上剤として高分子量アクリル系水溶性高分子(ポリアクリルアミド系、重量平均分子量1800万、カチオン当量値2.09meq/g)をパルプに対し0.03%添加した。
0.5 wt% LBKP pulp slurry (CSF 400 ml) was weighed so that the basis weight of the sheet after papermaking was 80 g / m 2 , and the starch aqueous slurry treated with samples S-1 to Sample-6 under stirring Is added to the pulp as 1.0% by weight of starch, and a light calcium carbonate slurry is added to LBKP.
Add 30% by mass, and finally add 0.03% of high molecular weight acrylic water-soluble polymer (polyacrylamide, weight average molecular weight 18 million, cation equivalent value 2.09 meq / g) as a yield improver to the pulp. did.

これを1/16mタッピースタンダードシートマシンにて抄紙し、湿紙を得た。得られた湿紙を3.5Kg/mで5分間プレスし、100℃で2分間乾燥し、その後20℃、65RHの条件で調湿した。調湿した紙のその坪量(g/m)と厚み(mm)を測定し、坪量/厚みにより、紙の密度を求めた。また引っ張り強度を測定後、裂断長を算出した(JIS−P8113)。紙中灰分は、525℃で灰化することにより測定した。さらに同じ紙の別の部分を使用し、白色度計(テクニダイン社製、分光光度計型測色計、カラータッチPC)によりISO白色度(JIS、8148;2001)、引っ張り強度(JAPAN−TAPPI−No.18−1:2000)は、オリエンテック社製テンシロン−RTC−1210A、移送速度20mm/min.により測定した。結果を表3に示す。 The paper was made with a 1/16 m 2 tappy standard sheet machine to obtain wet paper. The obtained wet paper was pressed at 3.5 kg / m 2 for 5 minutes, dried at 100 ° C. for 2 minutes, and then conditioned at 20 ° C. and 65 RH. The basis weight (g / m 2 ) and thickness (mm) of the conditioned paper were measured, and the density of the paper was determined from the basis weight / thickness. Further, after measuring the tensile strength, the breaking length was calculated (JIS-P8113). The ash content in the paper was measured by ashing at 525 ° C. Furthermore, using another part of the same paper, ISO whiteness (JIS, 8148; 2001) and tensile strength (JAPAN-TAPPI-) were measured with a whiteness meter (Technidyne, spectrophotometer-type colorimeter, color touch PC). No. 18-1: 2000) is Tensilon-RTC-1210A manufactured by Orientec Co., Ltd., a transfer speed of 20 mm / min. It was measured by. The results are shown in Table 3.

紙中の澱粉量は、以下の方法で測定した。実施例1あるいは比較例1で抄紙した成紙を、約1g切りだし、5mmの紙片に断裁後、混合攪拌して0.2gを精秤し、測定に用いた。紙片に含まれる澱粉をグルコシダーゼでグルコースにまで分解抽出し、全糖量を測定した。そしてこの値から、紙中澱粉量を算出した。 The amount of starch in the paper was measured by the following method. About 1 g of the paper produced in Example 1 or Comparative Example 1 was cut out, cut into 5 mm paper pieces, mixed and stirred, and 0.2 g was precisely weighed and used for measurement. The starch contained in the piece of paper was decomposed and extracted to glucose with glucosidase, and the total amount of sugar was measured. From this value, the amount of starch in the paper was calculated.

(比較例1)実施例2と同様な操作により、比較試料C−1〜比較試料C−3によって処理した製紙用添加剤を添加し、紙を抄き、紙質の試験を実施した。結果を表3に示す。 (Comparative Example 1) By the same operation as in Example 2, the papermaking additive treated with Comparative Sample C-1 to Comparative Sample C-3 was added, paper was made, and a paper quality test was conducted. The results are shown in Table 3.

(表3)
厚み;mm、密度;g/m、白色度は無次元、裂断長;Km、紙中灰分;紙に対する質量%、澱粉歩留率仕込み量に対する紙中に存在する量の割合%
(Table 3)
Thickness: mm, density: g / m 3 , whiteness is dimensionless, tearing length: Km, ash content in paper; mass% with respect to paper, percentage of the amount present in paper with respect to the feed rate of starch yield

(未糊化澱粉からなる水性分散液の調製)市販されているカチオン変性コーン(カチオン化度;グルコース単位に対し2.1モル%)の未糊化澱粉水性スラリーに実施例1と同種の表1に記載する水溶性高分子を添加し、凝集処理を行い、実施例1と同様に紙用添加剤を調製した。 (Preparation of Aqueous Dispersion Consisting of Ungelatinized Starch) Commercially available cation-modified corn (degree of cationization; 2.1 mol% with respect to glucose units) ungelatinized starch aqueous slurry as in Example 1 A water-soluble polymer described in No. 1 was added, aggregation treatment was performed, and a paper additive was prepared in the same manner as in Example 1.

(粒度分布の測定)実施例2と同様な操作によって行った。結果を表4に示す。











(Measurement of particle size distribution) The same operation as in Example 2 was performed. The results are shown in Table 4.











(表4)
(Table 4)

実施例4と同様な操作によって、澱粉水性スラリーを添加し抄紙を行い、その後測定を行った。結果を表5に示す。 By the same operation as in Example 4, the starch aqueous slurry was added to make paper, and then the measurement was performed. The results are shown in Table 5.

(比較例2)実施例3と同様な操作により、比較試料C−1〜比較試料C−3によって処理した製紙用添加剤を添加し、紙を抄き、紙質の試験を実施した。結果を表5に示す。 (Comparative Example 2) By the same operation as in Example 3, the additive for papermaking treated with Comparative Sample C-1 to Comparative Sample C-3 was added, paper was made, and a paper quality test was conducted. The results are shown in Table 5.

(表5)
厚み;mm、密度;g/m、白色度は無次元、裂断長;Km、紙中灰分;紙に対する質量%、澱粉歩留率仕込み量に対する紙中に存在する量の割合%
(Table 5)
Thickness: mm, density: g / m 3 , whiteness is dimensionless, tearing length: Km, ash content in paper; mass% with respect to paper, percentage of the amount present in paper with respect to the feed rate of starch yield

Claims (4)

未糊化澱粉粒子スラリーを下記定義で表示される電荷内包率50%以上90%以下の水溶性高分子によって凝集処理した水性分散液であって、前記水溶性高分子が下記(A)〜(C)に記載される化学組成から選択される一種以上であることを特徴とする水性分散液。
(A)下記一般式(1)で表わされる単量体および/又は下記一般式(2)で表わされる単量体を必須とし、適宜下記一般式(3)を含有する単量体混合物を重合した水溶性高分子。
(B)下記一般式(4)で表わされる構造単位を含有する水溶性高分子。
(C)下記一般式(5)で表わされる構造単位を含有する水溶性高分子。
定義)水溶性カチオン性高分子および両性でかつカチオン性単量体とアニオン性単量体共重合率の差が正である水溶性両性高分子の場合
電荷内包率[%]=(1−α/β)×100
αは酢酸にてpH4.0に調整した水溶性カチオン性高分子あるいは両性水溶性高分子水溶液をポリビニルスルホン酸カリウム水溶液にて滴定した滴定量。βは酢酸にてpH4.0に調整した水溶性カチオン性高分子あるいは両性水溶性高分子水溶液にポリビニルスルホン酸カリウム水溶液を前記水溶性カチオン性高分子あるいは両性水溶性高分子の電荷の中和を行うに十分な量加え、その後ポリジアリルジメチルアンモニウムクロライド水溶液にて滴定した滴定量をブランク値から差し引いた滴定量。ここでブランク値とは、水溶性カチオン性高分子あるいは両性水溶性高分子水溶液無添加時にポリビニルスルホン酸カリウム水溶液をポリジアリルジメチルアンモニウムクロライド水溶液にて滴定した滴定量である。
一般式(1)
は水素又はメチル基、R、Rは炭素数1〜3のアルキル基、アルコキシル基あるいはベンジル基、Rは水素、炭素数1〜3のアルキル基、アルコキシル基あるいはベンジル基であり、同種でも異種でも良い。AはOまたはNH、Bは炭素数2〜4のアルキレン基またはアルコキシレン基、X は陰イオンをそれぞれ表す。
一般式(2)
、Rは水素又はメチル基、R、Rは炭素数1〜3のアルキル基、アルコキシ基あるいはベンジル基、X は陰イオンをそれぞれ表す。
一般式(3)
は水素またはCHCOOY、R10は水素、メチル基またはCOOY、QはSO 、CSO 、CONHC(CHCHSO 、CCOOあるいはCOOであり、Y、Yは水素または陽イオンをそれぞれ表す。
一般式(4)
12、13は水素またはメチル基、Hは無機酸および/または有機酸を表し、未中和時H=0である。
一般式(5)
12、13は水素またはメチル基、Hは無機酸および/または有機酸を表し、未中和時H=0である。
An aqueous dispersion obtained by agglomerating an ungelatinized starch particle slurry with a water-soluble polymer having a charge inclusion rate of 50% or more and 90% or less represented by the following definition, wherein the water-soluble polymer is the following (A) to ( An aqueous dispersion, which is one or more selected from the chemical compositions described in C).
(A) A monomer represented by the following general formula (1) and / or a monomer represented by the following general formula (2) is essential, and a monomer mixture containing the following general formula (3) is appropriately polymerized. Water-soluble polymer.
(B) A water-soluble polymer containing a structural unit represented by the following general formula (4).
(C) A water-soluble polymer containing a structural unit represented by the following general formula (5).
Definition) Charge inclusion ratio [%] = (1-α) in the case of a water-soluble cationic polymer and an amphoteric and water-soluble amphoteric polymer having a positive difference in the copolymerization rate between a cationic monomer and an anionic monomer / Β) × 100
α is a titration amount obtained by titrating a water-soluble cationic polymer or an amphoteric water-soluble polymer aqueous solution adjusted to pH 4.0 with acetic acid with a potassium polyvinyl sulfonate aqueous solution. β is a water-soluble cationic polymer or an amphoteric water-soluble polymer aqueous solution adjusted to pH 4.0 with acetic acid, and an aqueous polyvinyl sulfonate potassium solution is used to neutralize the charge of the water-soluble cationic polymer or amphoteric water-soluble polymer. A titration amount obtained by adding a sufficient amount to perform, and then subtracting the titration amount titrated with an aqueous polydiallyldimethylammonium chloride solution from the blank value. Here, the blank value is a titration amount obtained by titrating a potassium polyvinylsulfonate aqueous solution with a polydiallyldimethylammonium chloride aqueous solution when no water-soluble cationic polymer or amphoteric water-soluble polymer aqueous solution was added.
General formula (1)
R 1 is hydrogen or a methyl group, R 2 and R 3 are an alkyl group having 1 to 3 carbon atoms, an alkoxyl group or a benzyl group, and R 4 is hydrogen, an alkyl group having 1 to 3 carbon atoms, an alkoxyl group or a benzyl group. , Same or different. A is O or NH, B is an alkylene group or an alkoxylene group having 2 to 4 carbon atoms, X 1 - represents respectively an anion.
General formula (2)
R 5 and R 6 each represent hydrogen or a methyl group, R 7 and R 8 each represent an alkyl group having 1 to 3 carbon atoms, an alkoxy group or a benzyl group, and X 2 represents an anion.
General formula (3)
R 9 is hydrogen or CH 2 COOY 2 , R 10 is hydrogen, methyl group or COOY 2 , Q is SO 3 , C 6 H 4 SO 3 , CONHC (CH 3 ) 2 CH 2 SO 3 , C 6 H 4 COO or COO , and Y 1 and Y 2 each represent hydrogen or a cation.
General formula (4)
R 12 and R 13 represent hydrogen or a methyl group, H + Z represents an inorganic acid and / or an organic acid, and H + Z = 0 when not neutralized.
General formula (5)
R 12 and R 13 represent hydrogen or a methyl group, H + Z represents an inorganic acid and / or an organic acid, and H + Z = 0 when not neutralized.
前記架橋性高分子の分子量が、重量平均分子量として1万〜500万であることを特徴とする請求項1に記載の水性分散液。 The aqueous dispersion according to claim 1, wherein the crosslinkable polymer has a molecular weight of 10,000 to 5,000,000 as a weight average molecular weight. 前記未糊化澱粉粒子が、カチオン変性澱粉であることを特徴とする請求項1あるいは2に記載の水性分散液。 The aqueous dispersion according to claim 1 or 2, wherein the non-gelatinized starch particles are cation-modified starch. 下記(A)〜(C)に記載される化学組成から選択される一種以上であり、下記定義で表示される電荷内包率50%以上90%以下の水溶性高分子により未糊化澱粉粒子スラリーを凝集処理した水性分散液を、抄紙前の製紙原料中に添加し抄紙することを特徴とする紙力増強方法。
(A)下記一般式(1)で表わされる単量体および/又は下記一般式(2)で表わされる単量体を必須とし、適宜下記一般式(3)を含有する単量体混合物を重合した水溶性高分子。
(B)下記一般式(4)で表わされる構造単位を含有する水溶性高分子。
(C)下記一般式(5)で表わされる構造単位を含有する水溶性高分子。
定義)水溶性カチオン性高分子および両性でかつカチオン性単量体とアニオン性単量体共重合率の差が正である水溶性両性高分子の場合
電荷内包率[%]=(1−α/β)×100
αは酢酸にてpH4.0に調整した水溶性カチオン性高分子あるいは両性水溶性高分子水溶液をポリビニルスルホン酸カリウム水溶液にて滴定した滴定量。βは酢酸にてpH4.0に調整した水溶性カチオン性高分子あるいは両性水溶性高分子水溶液にポリビニルスルホン酸カリウム水溶液を前記水溶性カチオン性高分子あるいは両性水溶性高分子の電荷の中和を行うに十分な量加え、その後ポリジアリルジメチルアンモニウムクロライド水溶液にて滴定した滴定量をブランク値から差し引いた滴定量。ここでブランク値とは、水溶性カチオン性高分子あるいは両性水溶性高分子水溶液無添加時にポリビニルスルホン酸カリウム水溶液をポリジアリルジメチルアンモニウムクロライド水溶液にて滴定した滴定量である。
一般式(1)
は水素又はメチル基、R、Rは炭素数1〜3のアルキル基、アルコキシル基あるいはベンジル基、Rは水素、炭素数1〜3のアルキル基、アルコキシル基あるいはベンジル基であり、同種でも異種でも良い。AはOまたはNH、Bは炭素数2〜4のアルキレン基またはアルコキシレン基、X は陰イオンをそれぞれ表す。
一般式(2)
、Rは水素又はメチル基、R、Rは炭素数1〜3のアルキル基、アルコキシ基あるいはベンジル基、X は陰イオンをそれぞれ表す。
一般式(3)
は水素またはCHCOOY、R10は水素、メチル基またはCOOY、QはSO 、CSO 、CONHC(CHCHSO 、CCOOあるいはCOOであり、Y、Yは水素または陽イオンをそれぞれ表す。
一般式(4)
11、R12、13は水素またはメチル基、Hは無機酸および/または有機酸を表し、未中和時H=0である。
一般式(5)
12、13は水素またはメチル基、Hは無機酸および/または有機酸を表し、未中和時H=0である。
Non-gelatinized starch particle slurry by a water-soluble polymer having a charge inclusion ratio of 50% or more and 90% or less represented by the following definition, which is one or more selected from the chemical compositions described in the following (A) to (C) A paper strength-enhancing method characterized in that an aqueous dispersion obtained by agglomeration treatment is added to a papermaking raw material before papermaking to make paper.
(A) A monomer represented by the following general formula (1) and / or a monomer represented by the following general formula (2) is essential, and a monomer mixture containing the following general formula (3) is appropriately polymerized. Water-soluble polymer.
(B) A water-soluble polymer containing a structural unit represented by the following general formula (4).
(C) A water-soluble polymer containing a structural unit represented by the following general formula (5).
Definition) Charge inclusion ratio [%] = (1-α) in the case of a water-soluble cationic polymer and an amphoteric and water-soluble amphoteric polymer having a positive difference in the copolymerization rate between a cationic monomer and an anionic monomer / Β) × 100
α is a titration amount obtained by titrating a water-soluble cationic polymer or an amphoteric water-soluble polymer aqueous solution adjusted to pH 4.0 with acetic acid with a potassium polyvinyl sulfonate aqueous solution. β is a water-soluble cationic polymer or an amphoteric water-soluble polymer aqueous solution adjusted to pH 4.0 with acetic acid, and an aqueous polyvinyl sulfonate potassium solution is used to neutralize the charge of the water-soluble cationic polymer or amphoteric water-soluble polymer. A titration amount obtained by adding a sufficient amount to perform, and then subtracting the titration amount titrated with an aqueous polydiallyldimethylammonium chloride solution from the blank value. Here, the blank value is a titration amount obtained by titrating a potassium polyvinylsulfonate aqueous solution with a polydiallyldimethylammonium chloride aqueous solution when no water-soluble cationic polymer or amphoteric water-soluble polymer aqueous solution was added.
General formula (1)
R 1 is hydrogen or a methyl group, R 2 and R 3 are an alkyl group having 1 to 3 carbon atoms, an alkoxyl group or a benzyl group, and R 4 is hydrogen, an alkyl group having 1 to 3 carbon atoms, an alkoxyl group or a benzyl group. , Same or different. A is O or NH, B is an alkylene group or an alkoxylene group having 2 to 4 carbon atoms, X 1 - represents respectively an anion.
General formula (2)
R 5 and R 6 each represent hydrogen or a methyl group, R 7 and R 8 each represent an alkyl group having 1 to 3 carbon atoms, an alkoxy group or a benzyl group, and X 2 represents an anion.
General formula (3)
R 9 is hydrogen or CH 2 COOY 2 , R 10 is hydrogen, methyl group or COOY 2 , Q is SO 3 , C 6 H 4 SO 3 , CONHC (CH 3 ) 2 CH 2 SO 3 , C 6 H 4 COO or COO , and Y 1 and Y 2 each represent hydrogen or a cation.
General formula (4)
R 11 , R 12 and R 13 represent hydrogen or a methyl group, H + Z represents an inorganic acid and / or an organic acid, and H + Z = 0 when not neutralized.
General formula (5)
R 12 and R 13 represent hydrogen or a methyl group, H + Z represents an inorganic acid and / or an organic acid, and H + Z = 0 when not neutralized.
JP2009124797A 2009-05-25 2009-05-25 Aqueous dispersion and paper strength enhancing method Expired - Fee Related JP5283226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009124797A JP5283226B2 (en) 2009-05-25 2009-05-25 Aqueous dispersion and paper strength enhancing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009124797A JP5283226B2 (en) 2009-05-25 2009-05-25 Aqueous dispersion and paper strength enhancing method

Publications (2)

Publication Number Publication Date
JP2010270263A true JP2010270263A (en) 2010-12-02
JP5283226B2 JP5283226B2 (en) 2013-09-04

Family

ID=43418548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009124797A Expired - Fee Related JP5283226B2 (en) 2009-05-25 2009-05-25 Aqueous dispersion and paper strength enhancing method

Country Status (1)

Country Link
JP (1) JP5283226B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013538299A (en) * 2010-08-25 2013-10-10 アシュランド・ライセンシング・アンド・インテレクチュアル・プロパティー・エルエルシー A method to increase the benefits of starch in pulped cellulosic materials in the production of paper and paperboard
JP2017066363A (en) * 2015-10-02 2017-04-06 三菱レイヨン株式会社 Aggregate for dispersing resin and resin composition, and manufacturing method therefor
JP2019042974A (en) * 2017-08-31 2019-03-22 セイコーエプソン株式会社 Method for manufacturing sheet, and sheet
CN115322294A (en) * 2022-10-10 2022-11-11 江苏富淼科技股份有限公司 Starch synergist and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62192432A (en) * 1986-02-20 1987-08-24 Kyoritsu Yuki Kogyo Kenkyusho:Kk Stabilization of starch slurry
JP2001504174A (en) * 1996-11-19 2001-03-27 チバ スペシャルティ ケミカルズ ウォーター トリートメント リミテッド Paper manufacturing method
JP2008063706A (en) * 2006-09-04 2008-03-21 Rasa Japan:Kk Method for producing paper and paperboard
JP2009039650A (en) * 2007-08-09 2009-02-26 Hymo Corp Sludge dewatering agent and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62192432A (en) * 1986-02-20 1987-08-24 Kyoritsu Yuki Kogyo Kenkyusho:Kk Stabilization of starch slurry
JP2001504174A (en) * 1996-11-19 2001-03-27 チバ スペシャルティ ケミカルズ ウォーター トリートメント リミテッド Paper manufacturing method
JP2008063706A (en) * 2006-09-04 2008-03-21 Rasa Japan:Kk Method for producing paper and paperboard
JP2009039650A (en) * 2007-08-09 2009-02-26 Hymo Corp Sludge dewatering agent and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013538299A (en) * 2010-08-25 2013-10-10 アシュランド・ライセンシング・アンド・インテレクチュアル・プロパティー・エルエルシー A method to increase the benefits of starch in pulped cellulosic materials in the production of paper and paperboard
JP2017066363A (en) * 2015-10-02 2017-04-06 三菱レイヨン株式会社 Aggregate for dispersing resin and resin composition, and manufacturing method therefor
JP2019042974A (en) * 2017-08-31 2019-03-22 セイコーエプソン株式会社 Method for manufacturing sheet, and sheet
CN115322294A (en) * 2022-10-10 2022-11-11 江苏富淼科技股份有限公司 Starch synergist and preparation method and application thereof

Also Published As

Publication number Publication date
JP5283226B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
JP4406882B2 (en) Filler-attached paper and method for producing the same
Petzold et al. Polyelectrolyte complexes in flocculation applications
CN1083509C (en) Production of filled paper and compositions for use in this
EP2519692B1 (en) Process to enhancing dry strength of paper by treatment with vinylamine-containing polymers and acrylamide containing polymers
RU2700998C2 (en) Polymer product in form of particles and use thereof
TWI246550B (en) Aqueous composition, a method for preparation of the aqueous composition, uses of the aqueous composition and a process for production of paper
UA67750C2 (en) Colloidal borosilicates and use thereof in paper manufacture
US20150197892A1 (en) Filler suspension and its use in the manufacture of paper
JP2009508017A (en) Paper, paperboard and cardboard manufacturing method
KR20120115491A (en) Surface application of polymers and polymer mixtures to improve paper strength
KR20170065031A (en) Method of increasing paper strength
JP5283226B2 (en) Aqueous dispersion and paper strength enhancing method
JP6985255B2 (en) Compositions and Methods for Treating Fillers in Papermaking
US20060254464A1 (en) Process for the production of paper
JP2008202173A (en) Starch-based paper strengthening agent and papermaking method using the same
JP2016102265A (en) Method for producing composite filler for paper making, and method for producing filler-internally added paper
EP1882062B1 (en) A process for the production of paper
JPS63275795A (en) Papermaking method
NO324301B1 (en) Hydrophilic dispersion polymers for paper applications
EP2904145A1 (en) Filler suspension and its use in the manufacture of paper
RU2264492C2 (en) Aqueous silica-containing composition and papermaking process
JPS6215391A (en) Papermaking method
CN110318292B (en) Surface paper strength enhancer, coating liquid, and method for producing paper
EP0355816A2 (en) Colloidal alumina as a paper retention aid
JP2005336646A (en) Additive for papermaking and paper obtained therefrom

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130524

R150 Certificate of patent or registration of utility model

Ref document number: 5283226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees