JP2010270177A - Flame-retardant polyester resin composition for illumination apparatus reflector using led as light source - Google Patents

Flame-retardant polyester resin composition for illumination apparatus reflector using led as light source Download PDF

Info

Publication number
JP2010270177A
JP2010270177A JP2009120873A JP2009120873A JP2010270177A JP 2010270177 A JP2010270177 A JP 2010270177A JP 2009120873 A JP2009120873 A JP 2009120873A JP 2009120873 A JP2009120873 A JP 2009120873A JP 2010270177 A JP2010270177 A JP 2010270177A
Authority
JP
Japan
Prior art keywords
group
polyester resin
mass
resin composition
titanium dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009120873A
Other languages
Japanese (ja)
Other versions
JP5321239B2 (en
Inventor
Yasushi Yamanaka
康史 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Engineering Plastics Corp
Original Assignee
Mitsubishi Engineering Plastics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Engineering Plastics Corp filed Critical Mitsubishi Engineering Plastics Corp
Priority to JP2009120873A priority Critical patent/JP5321239B2/en
Publication of JP2010270177A publication Critical patent/JP2010270177A/en
Application granted granted Critical
Publication of JP5321239B2 publication Critical patent/JP5321239B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reflector or a flame-retardant resin composition for a reflector substrate with the change by aging such as reflection efficiency decline restrained. <P>SOLUTION: The flame-retardant polyester resin composition for a reflector for an apparatus for illumination, a display light, and the like using an LED as a light source, includes 100 pts.mass of (A) a polyester resin, 2-50 pts.mass of (B) a calcium salt or an aluminum salt of a phosphinic acid whose anion component represented by formula (1) or (2), 0.5 to 30 pts.mass of (C) a titanium dioxide, 0.01 to 3 pts.mass of (D) a polyolefin resin having a polar group. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光源としてLEDや半導体レーザー等の半導体発光素子を用いた照明装置に用いられる反射板用の難燃ポリエステル樹脂組成物に関するものである。 The present invention relates to a flame retardant polyester resin composition for a reflector used in an illumination device using a semiconductor light emitting element such as an LED or a semiconductor laser as a light source.

最近、光源としてLED素子等の半導体発光素子(以下、単にLEDと言うことがある。)を光源として用いた、照明・表示装置等の開発が盛んに行われている。LEDは白熱電灯や蛍光灯に比して小型であり、長寿命、高発光効率で省電力性に優れるという特徴がある。 Recently, an illumination / display device or the like has been actively developed using a semiconductor light emitting element such as an LED element (hereinafter sometimes simply referred to as an LED) as a light source. LEDs are smaller than incandescent lamps and fluorescent lamps, and are characterized by long life, high luminous efficiency, and excellent power saving.

照明・表示灯等の装置には、大きな照度を得るために、表面実装型LEDパッケージ、即ち例えばアルミニウム等の金属製のベース基板(LED実装用基板:反射板)上に複数のLED素子を配置し、各LEDの周りに光を所定方向に反射させるリフレクターを配設する方式が多用されている。 In devices such as lighting and indicator lamps, in order to obtain a large illuminance, a plurality of LED elements are arranged on a surface mount type LED package, that is, a base substrate made of metal such as aluminum (LED mounting substrate: reflector). And the system which arrange | positions the reflector which reflects light in a predetermined direction around each LED is used abundantly.

LED実装用基板である反射板は、種々の材料で製作し得るが、中でも製作が容易で且つ軽量な点で、樹脂製の反射板が好んで用いられる傾向がある。また樹脂製の基材にアルミニウムなどを蒸着させて反射効率を高めたものも、用いられている。 The reflecting plate which is an LED mounting substrate can be manufactured with various materials, but among them, the reflecting plate made of resin tends to be preferably used because it is easy to manufacture and lightweight. In addition, a material obtained by evaporating aluminum or the like on a resin base material to improve the reflection efficiency is also used.

そして近年のLEDは、光の三原色である赤(R;630nm)、緑(G;525nm)、青(B;470nm)の再現が可能となり、また白色LEDの開発によって、LEDを用いた液晶表示板や照明等の市場が急成長している。 In recent years, red (R; 630 nm), green (G; 525 nm), and blue (B: 470 nm), which are the three primary colors of light, can be reproduced, and the development of white LEDs has led to the liquid crystal display using LEDs. The market for plates and lighting is growing rapidly.

LEDを用いた光源(LED光源)照明・表示装置の反射板として、樹脂製又は樹脂製の基材にアルミニウムを蒸着したものを用いる際の課題として、LEDの発光時に生ずる熱による影響、具体的には例えば、輝度の低下やLEDの寿命縮小等が挙げられる。 LED light source (LED light source) As a reflector of an illumination / display device, as a problem when using a resin or a resin base material with aluminum deposited, the influence of heat generated during light emission of the LED, specifically For example, a decrease in luminance and a reduction in the lifetime of the LED can be mentioned.

そして、反射板の反射効率が低下することも課題として挙げられている。これはつまり、LED素子からの熱による反射板を構成する樹脂の劣化や、反射板に配合されている添加剤の表面へのブリードアウトによる表面性の低下である。そして、アルミニウム蒸着を施した樹脂成形体からなる反射板の場合には、アルミニウム蒸着膜が剥離する恐れもあり、これに応じた開発が成されてきた。 And it is also mentioned as a subject that the reflective efficiency of a reflecting plate falls. That is, deterioration of the resin constituting the reflection plate due to heat from the LED element, and deterioration of the surface property due to bleeding out of the additive compounded in the reflection plate to the surface. And in the case of the reflecting plate which consists of a resin molding which gave aluminum vapor deposition, there exists a possibility that an aluminum vapor deposition film may peel, and development according to this has been made.

具体的には例えば、LED光源用樹脂製反射板として、ポリカーボネートに酸化チタンを配合した材料等が提案されている(特許文献1参照)。しかしLED発光時に生ずる熱のために、ポリカーボネート製樹脂では耐熱性が不充分となる場合があり、より高耐熱性で、且つ寸法安定性に優れた結晶性樹脂、例えばポリエステル樹脂製の反射板が、近年検討され始めている。   Specifically, for example, a material in which titanium oxide is blended with polycarbonate has been proposed as a resin reflector for an LED light source (see Patent Document 1). However, due to the heat generated at the time of LED light emission, the heat resistance of polycarbonate resin may be insufficient, and a crystalline resin having higher heat resistance and excellent dimensional stability, for example, a reflecting plate made of polyester resin is used. Recently, it has begun to be considered.

また、LED光源用反射板は、高温度雰囲気下で長時間使用されることから、火災安全性を高めるために、使用材料には高い難燃性が要求される。しかし従来の難燃剤、例えば臭素系難燃剤を配合した材料では耐光変色が著しく、樹脂成形体そのものでの使用が難しいので、アルミニウム等の金属蒸着膜を施さざるを得ず、コストに加え重量が大幅に増加するという問題がった。 Moreover, since the reflector for LED light sources is used for a long time in a high temperature atmosphere, high flame retardance is required for the material used in order to improve fire safety. However, materials with conventional flame retardants such as brominated flame retardants are extremely light-resistant and difficult to use in resin moldings themselves. There was a problem of a significant increase.

さらに、長時間・高温下での使用ため、臭素系難燃剤から遊離する臭素により、アルミニウム蒸着膜の反射率が低下するという問題もあった。これに対しては、非臭素系難燃剤である燐酸エステル系の難燃樹脂組成物が提案されている(例えば特許文献2参照)。 Furthermore, since it is used for a long time and at a high temperature, bromine liberated from the brominated flame retardant also has a problem that the reflectivity of the aluminum deposited film is lowered. For this, a phosphoric ester-based flame retardant resin composition that is a non-brominated flame retardant has been proposed (see, for example, Patent Document 2).

しかしリン酸エステル系の難燃剤は反射板表面へのブリードアウトが著しいので、アルミニウム蒸着を施した反射板の場合には、アルミニウム蒸着膜が剥離したり、ブリードアウトした難燃剤による悪臭が著しく、使用者に不快をもたらすという問題があった。 However, since phosphoric acid ester flame retardants have a remarkable bleed-out to the reflector surface, in the case of reflectors with aluminum vapor deposition, the aluminum vapor deposition film peels off, and the bad odor due to the flame-out flame retardant is remarkable. There was a problem of causing discomfort to the user.

特開2007−284462号公報JP 2007-284462 A 特開2007−321144号公報JP 2007-32144 A

本発明は、上記従来の実状に鑑みてなされたものであって、アルミニウム蒸着膜を施さなくても、樹脂成形体そのものでもLED光源用反射体として充分な反射率を有し、そして反射率低下が抑制された反射板を与える難燃性樹脂組成物を提供するものである。 The present invention has been made in view of the above-described conventional situation, and even if an aluminum vapor deposition film is not provided, the resin molded body itself has sufficient reflectance as a reflector for an LED light source, and the reflectance decreases. The present invention provides a flame retardant resin composition that provides a reflector with suppressed slag.

本発明者は、上述した課題について鋭意検討を行った。そして、LED光源照明・表示装置の反射板、即ち樹脂製反射板または樹脂成形体基体上に反射層として金属層を設けた反射板に用いる難燃性樹脂組成物において、主たる樹脂としてポリエステル樹脂を用い、ポリエステル樹脂に対して特定のホスフィン酸塩を用い、そしてこれと二酸化チタン、及び極性基を有するポリオレフィンを特定量配合した樹脂組成物が、充分な難燃性を示し且つ反射率の低下が抑制された、半導体発光素子を光源とする照明装置反射板用に適した樹脂組成物となることを見出した。 The present inventor has intensively studied the above-described problems. And in the flame retardant resin composition used for the reflective plate of the LED light source illumination / display device, that is, the reflective plate made of resin or the reflective plate provided with the metal layer as the reflective layer on the resin molded body substrate, polyester resin is used as the main resin. Used, a specific phosphinic acid salt is used for the polyester resin, and a resin composition containing a specific amount of this, titanium dioxide, and a polyolefin having a polar group exhibits sufficient flame retardancy and a decrease in reflectance. It has been found that the resin composition is suitable for an illuminating device reflecting plate using a semiconductor light emitting element as a light source.

本発明はこの様な知見に基づいて成されたものであり、以下を要旨とするものである。 The present invention has been made on the basis of such knowledge and has the following gist.

(A)ポリエステル樹脂100質量部に対し、
(B)アニオン部分が下記一般式(1)又は(2)で表されるホスフィン酸のカルシウム塩又はアルミニウム塩であるホスフィン酸塩2〜50質量部、
(C)二酸化チタン0.5〜30質量部、及び
(D)極性基を有するポリオレフィン樹脂0.01〜3質量部
を配合したことを特徴とする、半導体発光素子を光源とする照明装置反射板用難燃性ポリエステル樹脂組成物。
(A) For 100 parts by mass of the polyester resin,
(B) 2-50 parts by mass of a phosphinic acid salt in which the anion moiety is a calcium salt or aluminum salt of phosphinic acid represented by the following general formula (1) or (2):
(C) 0.5 to 30 parts by mass of titanium dioxide, and (D) 0.01 to 3 parts by mass of a polyolefin resin having a polar group, and a lighting device reflector using a semiconductor light emitting element as a light source Flame retardant polyester resin composition.

Figure 2010270177
Figure 2010270177

Figure 2010270177
(式中、R及びRは、それぞれ独立して、水素又は炭素原子数1〜6のアルキル基又は置換されていてもよいアリール基を表し、Rは炭素原子数1〜10のアルキレン基若しくは置換されていてもよいアリーレン基又はこれらの混合基を表す。)
Figure 2010270177
(In the formula, R 1 and R 2 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, or an optionally substituted aryl group, and R 3 represents an alkylene having 1 to 10 carbon atoms. Represents a group or an arylene group which may be substituted, or a mixed group thereof.)

本発明の樹脂組成物を用いることによって得られる樹脂成形体、そしてこの樹脂成形体からなる反射体は、高温雰囲気下でのブリードアウトが抑制され、表面性、難燃性に優れたものである。更に、樹脂下地層等を設けなくとも、当該樹脂成形体表面に金属蒸着膜等の光反射層を直接設けることができる光反射体基体、および高温度雰囲気に曝されても高輝度感の保持が可能であり、アルミニウム蒸着膜を施しても剥離が抑制され、長期間に亘り優れた特性を維持できる難燃性光反射体が得られ、LEDを光源とする照明・表示灯等の装置の反射板として適している。 The resin molded body obtained by using the resin composition of the present invention, and the reflector made of this resin molded body are excellent in surface properties and flame retardancy because bleed out in a high temperature atmosphere is suppressed. . Furthermore, it is possible to directly provide a light reflecting layer such as a metal vapor deposition film on the surface of the resin molded body without providing a resin base layer, etc., and to maintain high brightness even when exposed to a high temperature atmosphere It is possible to obtain a flame-retardant light reflector that can suppress peeling even when an aluminum vapor deposition film is applied, and maintain excellent characteristics over a long period of time. Suitable as a reflector.

以下に本発明の実施の形態を詳細に説明する。なお、本明細書において「〜」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。 Hereinafter, embodiments of the present invention will be described in detail. In the present specification, “to” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.

ポリエステル樹脂
本発明の樹脂組成物の主成分であるポリエステル樹脂としては、市場で入手し得るものを用いればよい。通常はポリブチレンテレフタレート樹脂やポリエチレンテレフタレート樹脂を用いる。好ましくはポリブチレンテレフタレート樹脂、又はポリブチレンテレフタレート樹脂を主体とし、具体的にはポリエステル樹脂中50質量%以上、中でも好ましくは70重量%以上、特に好ましくは80質量%以上がポリブチレンテレフタレート樹脂であって、これに少割合の、具体的には20質量%以下でポリエチレンテレフタレート樹脂を配合したものを用いる。中でも、本発明に用いるポリエステル樹脂としては、ポリブチレンテレフタレート樹脂が80〜100質量%、ポリエチレンテレフタレート樹脂が0〜20質量%(合計100質量%)のポリエステル樹脂であることが好ましい。
Polyester resin As the polyester resin which is the main component of the resin composition of the present invention, a commercially available resin may be used. Usually, polybutylene terephthalate resin or polyethylene terephthalate resin is used. Preferably, polybutylene terephthalate resin or polybutylene terephthalate resin is mainly used, and specifically, 50% by mass or more, preferably 70% by mass or more, particularly preferably 80% by mass or more of the polyester resin is polybutylene terephthalate resin. In addition, a small proportion, specifically, 20% by mass or less of a blended polyethylene terephthalate resin is used. Among them, the polyester resin used in the present invention is preferably a polyester resin in which the polybutylene terephthalate resin is 80 to 100% by mass and the polyethylene terephthalate resin is 0 to 20% by mass (total 100% by mass).

ポリブチレンテレフタレート樹脂は、テレフタル酸又はその反応性誘導体と1,4−ブタンジオールとの重縮合反応により、ポリエチレンテレフタレート樹脂は同じくテレフタル酸成分とエチレングリコールとの共重縮合により製造されているが、周知のように他のカルボン酸やポリオールを共重合させることもできる。本発明ではこの様な共重合樹脂を用いることもできるが、通常は共重合成分が酸成分及びグリコール成分のそれぞれ5質量%以下のものを用いる。中でも共重合成分が樹脂の20質量%以下であることが好ましい。 Polybutylene terephthalate resin is produced by polycondensation reaction of terephthalic acid or its reactive derivative and 1,4-butanediol, and polyethylene terephthalate resin is also produced by copolycondensation of terephthalic acid component and ethylene glycol. As is well known, other carboxylic acids and polyols can be copolymerized. In the present invention, such a copolymer resin can be used, but usually, the copolymer components are those having an acid component and a glycol component of 5% by mass or less, respectively. Among them, the copolymer component is preferably 20% by mass or less of the resin.

ポリブチレンテレフタレート樹脂の固有粘度は、一般的に0.5〜1.5dl/gであり、好ましくは0.6〜1.3dl/gである。0.5dl/gより小さいと機械的強度に優れた樹脂組成物を得るのが困難である。また1.5dl/gより大きいと、樹脂組成物の流動性が低下して成形性が低下する場合がある。また末端カルボキシル基量は30meq/g以下であることが好ましい。更に、1,4−ブタンジオールに由来するテトラヒドロフランの含有量は300ppm以下であることが好ましい。 The intrinsic viscosity of the polybutylene terephthalate resin is generally 0.5 to 1.5 dl / g, preferably 0.6 to 1.3 dl / g. If it is less than 0.5 dl / g, it is difficult to obtain a resin composition having excellent mechanical strength. On the other hand, if it is larger than 1.5 dl / g, the fluidity of the resin composition may be lowered and the moldability may be lowered. Moreover, it is preferable that the amount of terminal carboxyl groups is 30 meq / g or less. Furthermore, the content of tetrahydrofuran derived from 1,4-butanediol is preferably 300 ppm or less.

またポリエチレンテレフタレート樹脂の固有粘度は、一般的に0.4〜1.0dl/gであり、好ましくは0.5〜1.0dl/gである。固有粘度が0.4未満であると機械的特性が低下し易く、1.0を超えると流動性が低下し易い。なお、いずれの固有粘度も、フェノール/テトラクロロエタン(質量比1/1)混合溶媒中、30℃での測定値である。 The intrinsic viscosity of the polyethylene terephthalate resin is generally 0.4 to 1.0 dl / g, preferably 0.5 to 1.0 dl / g. If the intrinsic viscosity is less than 0.4, the mechanical properties are liable to be lowered, and if it exceeds 1.0, the fluidity is liable to be lowered. In addition, any intrinsic viscosity is a measured value in 30 degreeC in a phenol / tetrachloroethane (mass ratio 1/1) mixed solvent.

本発明ではポリエステル樹脂成分として、ポリエステル樹脂と他の樹脂との混合物を用いることもできる。他の樹脂の含有量は、ポリエステル樹脂の特性を損なわないように、10質量%以下、特に8.5質量%以下とすることが好ましい。このような樹脂としてはポリエステル樹脂と相溶性のあるものであれば、いずれも用いることができる。好ましくは、スチレン系樹脂である。 In the present invention, a mixture of a polyester resin and another resin can also be used as the polyester resin component. The content of the other resin is preferably 10% by mass or less, particularly 8.5% by mass or less so as not to impair the properties of the polyester resin. Any resin can be used as long as it is compatible with the polyester resin. Styrene resin is preferable.

ここでスチレン系樹脂とは、スチレン又はこれと共重合し得るモノマーとの重合体であり、ポリスチレン、耐衝撃性ポリスチレン、アクリロニトリルースチレン樹脂、アクリロニトリルーブタジエンースチレン樹脂、メチルメタクリレートーブタジエンースチレン樹脂、スチレンーエチレンープロピレンースチレン樹脂など、市場で入手し得るものが挙げられる。またこれらの樹脂を無水マレイン酸やグリシジルメタクリレートなどで変性したスチレン系樹脂を用いることもできる。 The styrene resin is a polymer with styrene or a monomer copolymerizable therewith, and polystyrene, impact-resistant polystyrene, acrylonitrile-styrene resin, acrylonitrile-butadiene-styrene resin, methyl methacrylate-butadiene-styrene resin. , Styrene-ethylene-propylene-styrene resin, and the like that are commercially available. In addition, styrenic resins obtained by modifying these resins with maleic anhydride or glycidyl methacrylate can also be used.

ホスフィン酸塩
本発明では、難燃剤としてアニオン部分が下記式(1)又は(2)で表されるホスフィン酸のカルシウム塩又はアルミニウム塩を用いる。
Phosphinic acid salt In the present invention, a calcium salt or an aluminum salt of phosphinic acid whose anion moiety is represented by the following formula (1) or (2) is used as a flame retardant.

Figure 2010270177
Figure 2010270177

Figure 2010270177
Figure 2010270177

上記式において、R及びRは、それぞれ独立して、水素又は、メチル基、エチル基、イソプロピル基、ブチル基、ペンチル基など炭素数1〜6のアルキル基や、フェニル基、o−、m−又はp−メチルフェニル基、種々のジメチルフェニル基、α―又はβ―ナフチル基などで置換されていてもよいアリール基を表す。 In the above formula, R 1 and R 2 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, an isopropyl group, a butyl group, or a pentyl group, a phenyl group, o-, It represents an aryl group which may be substituted with m- or p-methylphenyl group, various dimethylphenyl groups, α- or β-naphthyl group and the like.

好ましくはR及びRはメチル基又はエチル基である。Rはメチレン基、エチレン基、プロピレン基、ブチレン基、2−エチルヘキシレン基などの炭素数1〜10のアルキレン基、o―、m−又はp−フェニレン基、1,8−又は2,6−ナフチレン基などのアリーレン基、又はメチレンフェニレン基、エチレンフェニレン基などの上記2種の混合基を表す。Rはこのましくは炭素数1〜4のアルキレン基又はフェニレン基である。 Preferably R 1 and R 2 are a methyl group or an ethyl group. R 3 is an alkylene group having 1 to 10 carbon atoms such as a methylene group, an ethylene group, a propylene group, a butylene group or a 2-ethylhexylene group, an o-, m- or p-phenylene group, 1,8- or 2, It represents an arylene group such as a 6-naphthylene group, or the above-mentioned two mixed groups such as a methylenephenylene group and an ethylenephenylene group. R 3 is preferably an alkylene group having 1 to 4 carbon atoms or a phenylene group.

ホスフィン酸塩の具体例としては、ジメチルホスフィン酸カルシウム、ジメチルホスフィン酸アルミニウム、エチルメチルホスフィン酸カルシウム、エチルメチルホスフィン酸アルミニウム、ジエチルホスフィン酸カルシウム、ジエチルホスフィン酸アルミニウム、メチル−n−プロピルホスフィン酸カルシウム、メチル−n―プロピルホスフィン酸アルミニウム、メチルフェニルホスフィン酸カルシウム、メチルフェニルホスフィン酸アルミニウム、ジフェニルホスフィン酸カルシウム、ジフェニルホスフィン酸アルミニウム、フェニルホスフィン酸アルミニウム、メタンビス(ジメチルホスフィン酸)カルシウム、メタンビス(ジメチルホスフィン酸)アルミニウム、ベンゼンー1,4−ビス(ジメチルホスフィン酸)カルシウム、ベンゼンー1,4−ビス(ジメチルホスフィン酸)アルミニウムなどが挙げられる。なかでも難燃性及び電気特性の点から、ジエチルホスフィン酸アルミニウムが好ましい。 Specific examples of phosphinates include calcium dimethylphosphinate, aluminum dimethylphosphinate, calcium ethylmethylphosphinate, aluminum ethylmethylphosphinate, calcium diethylphosphinate, aluminum diethylphosphinate, calcium methyl-n-propylphosphinate, Aluminum methyl-n-propylphosphinate, calcium methylphenylphosphinate, aluminum methylphenylphosphinate, calcium diphenylphosphinate, aluminum diphenylphosphinate, aluminum phenylphosphinate, calcium methanebis (dimethylphosphinate), methanebis (dimethylphosphinic acid) Aluminum, benzene-1,4-bis (dimethylphosphinate) calcium, Ben Such Hmm 1,4-bis (dimethyl phosphinic acid) aluminum. Of these, aluminum diethylphosphinate is preferable from the viewpoint of flame retardancy and electrical characteristics.

樹脂組成物から得られる成形品の外観や機械的強度の点で、ホスフィン酸塩はレーザー回折法で測定して粒径100μm以下、特に50μm以下に粉砕した粉末を用いるのが好ましい。なかでも平均粒径が0.5〜50μmのものは、高い難燃性を発現するばかりでなく、成形品の強度が著しく高くなるので、特に好ましい。 In view of the appearance and mechanical strength of a molded product obtained from the resin composition, it is preferable to use a phosphinate that is pulverized to a particle size of 100 μm or less, particularly 50 μm or less as measured by a laser diffraction method. Among these, those having an average particle size of 0.5 to 50 μm are particularly preferable because they not only exhibit high flame retardancy but also remarkably increase the strength of the molded product.

二酸化チタンとその表面処理剤
本発明における二酸化チタンとその表面処理剤は、樹脂組成物から得られる成形品の遮光性、白度、光線反射特性などを向上させる様に機能する。二酸化チタンは、製造方法、結晶形態および平均粒子径などは、特に限定されるものではない。二酸化チタンの製造方法には(1)硫酸法および(2)塩素法があるが、特に限定されるものではない。
Titanium dioxide and its surface treatment agent Titanium dioxide and its surface treatment agent in the present invention function to improve the light-shielding property, whiteness, light reflection property and the like of the molded product obtained from the resin composition. The production method, crystal form, average particle diameter, etc. of titanium dioxide are not particularly limited. There are (1) a sulfuric acid method and (2) a chlorine method as a method for producing titanium dioxide, but it is not particularly limited.

二酸化チタンの結晶形態には、ルチル型とアナターゼ型があるが、耐光性の観点からルチル型の結晶形態のものが好適である。二酸化チタン系添加剤の平均粒子径は、通常0.1〜0.7μm、好ましくは0.1〜0.4μmである。平均粒子径が0.1μm未満では成形品の光線遮蔽性に劣り、0.7μmを超える場合は、成形品表面に肌荒れを起こしたり、成形品の機械的強度が低下したりする。なお本発明においては平均粒径の異なる酸化チタンを2種類以上混合して使用してもよい。 The crystal form of titanium dioxide includes a rutile type and an anatase type. From the viewpoint of light resistance, a rutile type crystal form is preferred. The average particle size of the titanium dioxide-based additive is usually 0.1 to 0.7 μm, preferably 0.1 to 0.4 μm. When the average particle diameter is less than 0.1 μm, the light shielding property of the molded product is poor, and when it exceeds 0.7 μm, the surface of the molded product is roughened or the mechanical strength of the molded product is lowered. In the present invention, two or more types of titanium oxides having different average particle diameters may be mixed and used.

なお、市場で入手し得る二酸化チタンは無機化合物や有機化合物で表面処理されているものが多いが、本発明ではこのような表面処理されたものを用いるのが好ましい。二酸化チタンの表面処理剤は、例えば後記するオルガノシロキサン系化合物やポリオール系化合物等の有機化合物系の表面処理剤で表面処理する前に、アルミナ系表面処理剤で前処理するのが好ましい。アルミナ系表面処理剤としてはアルミナ水和物が好適に用いられる。さらにアルミナ水和物とともに珪酸水和物で前処理しても良い。前処理の方法は特に限定されるものではなく、任意の方法によることが出来る。アルミナ水和物、さらに必要に応じて珪酸水和物による前処理は、二酸化チタンに対して1〜15質量%の範囲で行なうのが好ましい。 In addition, although many titanium dioxides available on the market are surface-treated with inorganic compounds or organic compounds, it is preferable to use those surface-treated in the present invention. The surface treatment agent for titanium dioxide is preferably pretreated with an alumina surface treatment agent before the surface treatment with an organic compound surface treatment agent such as an organosiloxane compound or a polyol compound described later. Alumina hydrate is preferably used as the alumina-based surface treatment agent. Furthermore, it may be pretreated with silicic acid hydrate together with alumina hydrate. The pretreatment method is not particularly limited, and any method can be used. The pretreatment with alumina hydrate and, if necessary, silicic acid hydrate is preferably performed in the range of 1 to 15% by mass with respect to titanium dioxide.

アルミナ水和物、さらに必要に応じて珪酸水和物前処理された二酸化チタンは、更にその表面を、オルガノシロキサン系やポリオール系の表面処理剤で表面処理することにより、熱安定性を大幅に改善することが出来る他、樹脂組成物中での均一分散性および分散状態の安定性を向上させることができる。オルガノシロキサン系の表面処理剤としては、ジメチルシロキサンやポリオルガノハイドロジェンシロキサン化合物が好ましい。 Titanium dioxide pretreated with alumina hydrate and, if necessary, silicic acid hydrate, is further surface treated with organosiloxane or polyol surface treatment agents to greatly improve thermal stability. In addition to the improvement, the uniform dispersibility in the resin composition and the stability of the dispersed state can be improved. As the organosiloxane-based surface treatment agent, dimethylsiloxane and polyorganohydrogensiloxane compounds are preferable.

二酸化チタンの有機化合物系の表面処理剤による表面処理法には、(1)湿式法と(2)乾式法とが挙げられる。湿式法は、オルガノシロキサン系の表面処理剤と溶剤との混合物に、アルミナ水和物、さらに必要に応じて珪酸水和物で前処理された二酸化チタンを加え、撹拌した後に脱溶媒を行い、更にその後100〜300℃で熱処理する方法である。 Examples of the surface treatment method using an organic compound-based surface treatment agent of titanium dioxide include (1) a wet method and (2) a dry method. In the wet method, alumina hydrate is added to a mixture of an organosiloxane-based surface treatment agent and a solvent, and titanium dioxide pretreated with silicic acid hydrate is added if necessary. Furthermore, it is a method of heat-processing at 100-300 degreeC after that.

乾式法は、上記と同様に前処理された二酸化チタンと有機化合物系表面処理剤とを、ヘンシェルミキサー等で混合する方法、前処理された二酸化チタンに有機化合物系表面処理剤の有機溶液を噴霧して付着させ、100〜300℃で熱処理する方法などが挙げられる。 In the dry method, the pretreated titanium dioxide and the organic compound surface treatment agent are mixed with a Henschel mixer or the like in the same manner as described above. The organic solution of the organic compound surface treatment agent is sprayed on the pretreated titanium dioxide. And a method of heat treatment at 100 to 300 ° C.

有機化合物系表面処理剤の表面処理剤の量は、特に制限されるものではないが、二酸化チタンの反射性、樹脂組成物の成形性などを勘案すると、二酸化チタンに対し、通常1〜5質量%の範囲である。 The amount of the surface treatment agent of the organic compound surface treatment agent is not particularly limited, but usually 1 to 5 mass with respect to titanium dioxide in consideration of the reflectivity of titanium dioxide and the moldability of the resin composition. % Range.

なかでも本発明に使用される二酸化チタンの表面処理剤としては、上述した特定のホスフィン酸金属塩化合物存在下での組成物中において、良好な熱安定性を示すものが好ましく、具体的には以下の二つの式、(式1)及び(式2)を満たすことを特徴とする。 Among these, as the surface treatment agent for titanium dioxide used in the present invention, in the composition in the presence of the above-mentioned specific phosphinic acid metal salt compound, those showing good thermal stability are preferable, specifically The following two expressions, (Expression 1) and (Expression 2) are satisfied.

二酸化チタン表面処理剤を蛍光X線分析することによって得られた二酸化チタン表面処理剤中のアルミニウム含有量a(質量%)、二酸化チタン表面処理剤を高周波燃焼式炭素分析装置を用いて分析して得られた二酸化チタン表面処理剤中の炭素量c(質量%)、および二酸化チタンの平均粒径(μm)をdとした際に、以下の式1及び2を満足する場合、熱安定性、難燃性、光反射性に優れた効果を発揮する。
4≦(a/d)≦20 (式1)
0.3≦(c/d)≦15.5 (式2)
Aluminum content a (mass%) in the titanium dioxide surface treatment agent obtained by fluorescent X-ray analysis of the titanium dioxide surface treatment agent, and the titanium dioxide surface treatment agent were analyzed using a high-frequency combustion carbon analyzer. When the following formulas 1 and 2 are satisfied when the carbon amount c (mass%) in the obtained titanium dioxide surface treatment agent and the average particle diameter (μm) of titanium dioxide are d, thermal stability, Exhibits excellent flame retardancy and light reflectivity.
4 ≦ (a / d 2 ) ≦ 20 (Formula 1)
0.3 ≦ (c / d 2 ) ≦ 15.5 (Formula 2)

さらに良好な熱安定性を得るためには、(式1)の(a/d)の値が4以上であることが好ましい。また(式2)の(c/d)の値は14未満、中でも13未満であることが好ましい。 In order to obtain better thermal stability, the value of (a / d 2 ) in (Equation 1) is preferably 4 or more. The value of (c / d 2 ) in (Formula 2) is preferably less than 14, and more preferably less than 13.

二酸化チタンの平均粒径と表面積は相関があり、平均粒径が小さくなるほど単位質量あたりの表面積は大きくなる。本発明では比較的平均粒径の小さい、すなわち細かい粒径の二酸化チタンを用い、小さな粒径の二酸化チタンの表面に適量のアルミニウム等を分散させることにより優れた光反射性が得られるものである。 The average particle diameter and surface area of titanium dioxide are correlated, and the surface area per unit mass increases as the average particle diameter decreases. In the present invention, excellent light reflectivity can be obtained by using titanium dioxide having a relatively small average particle diameter, that is, fine particle diameter, and dispersing an appropriate amount of aluminum or the like on the surface of titanium dioxide having a small particle diameter. .

上述の(式1)における(a/d)は、二酸化チタンの単位表面積に対するアルミニウム添加量を表し、(式2)における(c/d)は、二酸化チタンの単位表面積に対する有機系表面処理剤に含まれていた有機炭素の量を表す。(式1)、(式2)の範囲を満たすことにより、二酸化チタンに対する表面処理が適切となり、熱安定性、難燃性、光反射性に優れた樹脂組成物を得ることが出来る。 (A / d 2 ) in (Formula 1) represents the amount of aluminum added to the unit surface area of titanium dioxide, and (c / d 2 ) in (Formula 2) represents an organic surface treatment for the unit surface area of titanium dioxide. Represents the amount of organic carbon contained in the agent. By satisfy | filling the range of (Formula 1) and (Formula 2), the surface treatment with respect to titanium dioxide becomes appropriate, and the resin composition excellent in thermal stability, a flame retardance, and light reflectivity can be obtained.

(a/d)の値が4未満だと、組成物中の二酸化チタンの分散が不充分となり、二次凝集を生じやすく、外観および反射率が低下する場合がある。また15.5を超えると、アルミナ処理により二酸化チタン粒子の塩基性がより高まるために、樹脂組成物の熱安定性が低下し、衝撃性・成形安定性が低下する場合がある。 When the value of (a / d 2 ) is less than 4, the dispersion of titanium dioxide in the composition becomes insufficient, secondary agglomeration tends to occur, and the appearance and reflectivity may be lowered. On the other hand, if it exceeds 15.5, the basicity of the titanium dioxide particles is further increased by the alumina treatment, so that the thermal stability of the resin composition is lowered, and the impact property and molding stability may be lowered.

(c/d)の値が0.3未満だと二酸化チタンによる表面活性およびアルミナにより塩基性を付与された二酸化チタン粒子の活性を充分に被覆できないため、樹脂組成物の熱安定性および密着性が低下し、衝撃性や成形安定性が低下する場合がある。また20を超えると、二酸化チタンと化学結合していないポリオール系やオルガノシロキサン系表面処理剤が成形時に揮発しやすくなり、金型汚染の原因となる場合がある。 When the value of (c / d 2 ) is less than 0.3, the surface activity of titanium dioxide and the activity of titanium dioxide particles imparted with basicity by alumina cannot be sufficiently covered. In some cases, impact properties and molding stability may decrease. On the other hand, if it exceeds 20, polyol-based or organosiloxane-based surface treatment agent that is not chemically bonded to titanium dioxide tends to volatilize during molding, which may cause mold contamination.

本発明の樹脂組成物における二酸化チタンの配合量は、ポリエステル樹脂100質量部に対し、0.5〜30質量部の範囲である。二酸化チタンの配合量が0.5質量部未満の場合は、樹脂組成物から得られる成形品の遮光性および反射特性が不十分となり、逆に30質量部を超えると耐衝撃性が不十分となる。 The compounding quantity of the titanium dioxide in the resin composition of this invention is the range of 0.5-30 mass parts with respect to 100 mass parts of polyester resins. When the blending amount of titanium dioxide is less than 0.5 parts by mass, the light shielding properties and reflection characteristics of the molded product obtained from the resin composition are insufficient, and conversely, when it exceeds 30 parts by mass, the impact resistance is insufficient. Become.

二酸化チタンの好ましい配合量は、ポリエステル樹脂100質量部に対し、2〜20質量部、更に好ましくは3〜20質量部である。なお、二酸化チタンの質量は、アルミナ水和物、珪酸水和物、ポリオール系、オルガノシロキサン系の表面処理剤によって表面処理されている場合は、これらの処理剤も含めた質量を意味する。 The preferable compounding quantity of titanium dioxide is 2-20 mass parts with respect to 100 mass parts of polyester resins, More preferably, it is 3-20 mass parts. In addition, the mass of titanium dioxide means the mass also including these processing agents, when the surface treatment is carried out with an alumina hydrate, silicic acid hydrate, a polyol type, and an organosiloxane type surface treating agent.

極性基を有するポリオレフィン樹脂
本発明においては、極性基を有するポリオレフィン樹脂を、ポリエステル樹脂100質量部に対して、0.01〜3質量部含有する。
Polyolefin resin having a polar group In the present invention, the polyolefin resin having a polar group is contained in an amount of 0.01 to 3 parts by mass with respect to 100 parts by mass of the polyester resin.

本発明に用いる極性基を有するポリオレフィン樹脂(以下、「変性ポリオレフィン樹脂」ということがある。)は、その原料であるポリオレフィン樹脂(以下、「未変性ポリオレフィン樹脂」ということがある。)に、カルボキシル基(カルボン酸(無水物)基、即ちカルボン酸基および/またはカルボン酸無水物基を表す。以下同様。)、ハロホルミル基、エステル基、カルボン酸金属塩基、水酸基、アルコシル基、エポキシ基、アミノ基、アミド基等の、ポリアルキレンテレフタレート樹脂と親和性のある官能基を付与したものや、未変性ポリオレフィン樹脂を酸化した、酸化ポリオレフィン樹脂を示す。以下、酸変性ポリオレフィン樹脂と酸化ポリオレフィン樹脂を合わせて、変性ポリオレフィン樹脂ということがある。 The polyolefin resin having a polar group (hereinafter sometimes referred to as “modified polyolefin resin”) used in the present invention is carboxylated to the raw material polyolefin resin (hereinafter also referred to as “unmodified polyolefin resin”). Group (a carboxylic acid (anhydride) group, that is, a carboxylic acid group and / or a carboxylic anhydride group; the same shall apply hereinafter), a haloformyl group, an ester group, a carboxylic acid metal base, a hydroxyl group, an alkoxyl group, an epoxy group, an amino group A functional group having an affinity for a polyalkylene terephthalate resin, such as a group or an amide group, or an oxidized polyolefin resin obtained by oxidizing an unmodified polyolefin resin. Hereinafter, the acid-modified polyolefin resin and the oxidized polyolefin resin may be collectively referred to as a modified polyolefin resin.

未変性ポリオレフィン樹脂としては、従来公知の任意のものを使用でき、例えば、好ましくは炭素数2〜30、より好ましくは2〜12、さらに好ましくは2〜10の、オレフィンの一種、または任意の割合の二種以上を含む(共)重合体(重合体または共重合体を意味する。以下同様。)が挙げられる。 As the unmodified polyolefin resin, any conventionally known one can be used, for example, preferably 1 to 30 carbon atoms, more preferably 2 to 12 carbon atoms, and further preferably 2 to 10 carbon atoms, or an arbitrary ratio. (Co) polymers (meaning a polymer or a copolymer. The same shall apply hereinafter).

炭素数2〜30のオレフィンとしては、具体的には例えばエチレン、プロピレン、炭素数4〜30の、好ましくは炭素数4〜12、さらに好ましくは炭素数4〜10のα−オレフィン、および炭素数4〜30の、好ましくは炭素数4〜18、さらに好ましくは炭素数4〜8のジエンが挙げられる。α−オレフィンとしては、例えば1−ブテン、4−メチル−1−ペンテン、1−ペンテン、1−オクテン、1−デセンおよび1−ドデセン等が挙げられる。ジエンとしては、例えばブタジエン、イソプレン、シクロペンタジエン、11−ドデカジエン等が挙げられる。 Specific examples of the olefin having 2 to 30 carbon atoms include ethylene, propylene, an α-olefin having 4 to 30 carbon atoms, preferably 4 to 12 carbon atoms, and more preferably 4 to 10 carbon atoms, and carbon number. A diene having 4 to 30 carbon atoms, preferably 4 to 18 carbon atoms, and more preferably 4 to 8 carbon atoms may be mentioned. Examples of the α-olefin include 1-butene, 4-methyl-1-pentene, 1-pentene, 1-octene, 1-decene and 1-dodecene. Examples of the diene include butadiene, isoprene, cyclopentadiene, 11-dodecadiene, and the like.

未変性ポリオレフィン樹脂としては、例えば低密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン、ポリプロピレン、エチレン−プロピレンブロックコポリマー、エチレン−プロピレンランダムコポリマー、ポリブテンや、これらの混合物が挙げられる。これらの中でも、耐熱性の点からプロピレンホモポリマー、エチレン−プロピレンブロックコポリマー、エチレン−プロピレンランダムコポリマー等の結晶性ポリプロピレン系樹脂およびこれらの混合物が好ましい。 Examples of the unmodified polyolefin resin include low density polyethylene, high density polyethylene, linear low density polyethylene, polypropylene, ethylene-propylene block copolymer, ethylene-propylene random copolymer, polybutene, and mixtures thereof. Of these, crystalline polypropylene resins such as propylene homopolymer, ethylene-propylene block copolymer, ethylene-propylene random copolymer, and mixtures thereof are preferable from the viewpoint of heat resistance.

未変性ポリオレフィン樹脂としては、中でも(共)重合体モノマーとしてエチレン、プロピレン、炭素数4〜12のα−オレフィン、ブタジエン、イソプレン等からなるものが好ましく、更にはエチレン、プロピレン、炭素数4〜8のα−オレフィン、ブタジエンからなるものが、特にエチレン、プロピレン、ブタジエンからなるものが好ましい。 As the unmodified polyolefin resin, among these, (co) polymer monomers preferably include ethylene, propylene, α-olefins having 4 to 12 carbon atoms, butadiene, isoprene, etc., and further ethylene, propylene, and 4 to 8 carbon atoms. Of these, those comprising α-olefin and butadiene are preferred, and those comprising ethylene, propylene and butadiene are particularly preferred.

未変性ポリオレフィン樹脂の製造方法は、従来公知の任意の方法を使用でき、特に制限はない。具体的な製造方法としては例えば、ラジカル触媒、金属酸化物触媒、Ziegler触媒、Ziegler−Natta触媒、各種メタロセン触媒等の存在下で(共)重合反応させる方法などが挙げられる。 As a method for producing the unmodified polyolefin resin, any conventionally known method can be used, and there is no particular limitation. Specific examples of the production method include a (co) polymerization reaction in the presence of a radical catalyst, a metal oxide catalyst, a Ziegler catalyst, a Ziegler-Natta catalyst, various metallocene catalysts, and the like.

ラジカル触媒としては例えば、ジターシャルブチルパーオキサイド、過酸化ベンゾイル、デカノイルパーオキサイド、ドデカノイルパーオキサイド、過酸化水素−Fe+塩およびアゾ化合物等が挙げられる。金属酸化物触媒としては、シリカ−アルミナ担体に酸化クロム等を付着させたものが挙げられる。Ziegler触媒およびZiegler−Natta触媒としては、(CAl−TiCl等が挙げられる。 The radical catalyst, such as, di-tert-butyl peroxide, benzoyl peroxide, decanoyl peroxide, dodecanoyl peroxide, hydrogen peroxide -Fe 2 + salts and azo compounds, and the like. Examples of the metal oxide catalyst include those obtained by attaching chromium oxide or the like to a silica-alumina support. Examples of the Ziegler catalyst and the Ziegler-Natta catalyst include (C 2 H 5 ) 3 Al—TiCl 4 .

本発明に用いる変性ポリオレフィン樹脂は、上述した未変性ポリオレフィン樹脂に、ポリアルキレンテレフタレート樹脂と親和性のある官能基を導入したものである。これら官能基の導入方法は任意であり、従来公知の任意の方法を用いればよい。 The modified polyolefin resin used in the present invention is obtained by introducing a functional group having an affinity for the polyalkylene terephthalate resin into the above-mentioned unmodified polyolefin resin. The method for introducing these functional groups is arbitrary, and any conventionally known method may be used.

ポリエステル樹脂と親和性のある官能基としては、具体的には例えば、カルボキシル基[カルボン酸(無水物)基すなわちカルボン酸基および/またはカルボン酸無水物基を示す。以下同様。]、ハロホルミル基、エステル基、カルボン酸金属塩基、水酸基、アルコシル基、エポキシ基、アミノ基、アミド基等が挙げられる。 Specific examples of the functional group having affinity with the polyester resin include a carboxyl group [carboxylic acid (anhydride) group, that is, a carboxylic acid group and / or a carboxylic anhydride group. The same applies hereinafter. ], A haloformyl group, an ester group, a carboxylic acid metal base, a hydroxyl group, an alkosyl group, an epoxy group, an amino group, an amide group, and the like.

カルボキシル基としては、マレイン酸、無水マレイン酸、アクリル酸、およびメタクリル酸などのカルボン酸基を含有する低分子量化合物、スルホン酸などのスルホ基を含有する低分子量化合物、ホスホン酸などのホスホ基を含有する低分子量化合物などを挙げることができる。これらの中でもカルボン酸基を含有する低分子量化合物が好ましく、特にマレイン酸、無水マレイン酸、アクリル酸、およびメタクリル酸などが好ましい。 Examples of the carboxyl group include a low molecular weight compound containing a carboxylic acid group such as maleic acid, maleic anhydride, acrylic acid, and methacrylic acid, a low molecular weight compound containing a sulfo group such as sulfonic acid, and a phospho group such as phosphonic acid. Examples thereof include low molecular weight compounds. Among these, low molecular weight compounds containing a carboxylic acid group are preferable, and maleic acid, maleic anhydride, acrylic acid, methacrylic acid, and the like are particularly preferable.

変性に用いるカルボン酸は、一種または任意の割合で二種以上を併用してもよい。また本発明に用いる変性ポリオレフィン樹脂(酸変性ポリオレフィン樹脂)における酸の付加量としては、酸変性ポリオレフィン樹脂に対して、通常、0.01〜10質量%、好ましくは0.05〜5質量%である。 The carboxylic acid used for modification may be used alone or in combination of two or more in any proportion. Moreover, as an addition amount of the acid in the modified polyolefin resin (acid-modified polyolefin resin) used for this invention, it is 0.01-10 mass% normally with respect to acid-modified polyolefin resin, Preferably it is 0.05-5 mass%. is there.

ハロホルミル基としては具体的には例えば、クロロホルミル基、ブロモホルミル基等が挙げられる。これらの官能基を、未変性ポリオレフィン樹脂に付与する手段は、従来公知の任意の方法によれば良く、具体的には例えば、官能基を有する化合物との共重合や、酸化などの後加工など、いずれの方法でもよい。 Specific examples of the haloformyl group include a chloroformyl group and a bromoformyl group. Means for imparting these functional groups to the unmodified polyolefin resin may be any conventionally known method. Specifically, for example, copolymerization with a compound having a functional group, post-processing such as oxidation, etc. Any method may be used.

また、官能基の種類としては、適度なポリエステル樹脂との親和性があることから、カルボキシル基が好ましい。本発明に用いる変性ポリオレフィン樹脂におけるカルボキシル基の濃度は適宜選択して決定すればよいが、低すぎるとポリエステル樹脂との親和性が小さく、揮発分の抑制効果が小さくなり、また離型効果が低下する場合がある。逆に濃度が高すぎると、例えば変性の際にポリオレフィン樹脂を構成する高分子主鎖が過度に切断さて、変性ポリオレフィン樹脂の重量平均分子量が著しく低下することで揮発分の発生が多くなり、ポリエステル樹脂成形体表面に曇りが発生する場合がある。 Moreover, as a kind of functional group, since it has an affinity with a suitable polyester resin, a carboxyl group is preferable. The concentration of the carboxyl group in the modified polyolefin resin used in the present invention may be appropriately selected and determined. However, if the concentration is too low, the affinity with the polyester resin is small, the volatile content suppression effect is small, and the mold release effect is reduced. There is a case. On the other hand, if the concentration is too high, for example, the polymer main chain constituting the polyolefin resin is excessively cleaved during modification, and the weight average molecular weight of the modified polyolefin resin is remarkably lowered, resulting in increased generation of volatile matter. Clouding may occur on the surface of the resin molded body.

よってこの濃度は、変性ポリオレフィン樹脂の酸価として、1mgKOH/gを超えて50mgKOH/g未満、中でも2〜50mgKOH/g未満、さらには3〜50mgKOH/g未満、特に5〜50mgKOH/g未満であることが好ましい。また光反射体基体用においては揮発分が少なく、同時に離型性の改良効果も著しい点で、本発明に用いる変性ポリオレフィン樹脂としては、酸化ポリオレフィン樹脂、具体的には酸化ポリエチレンワックスが好ましい。 Therefore, this concentration is more than 1 mg KOH / g and less than 50 mg KOH / g, especially less than 2 to 50 mg KOH / g, more preferably less than 3 to 50 mg KOH / g, and particularly less than 5 to 50 mg KOH / g as the acid value of the modified polyolefin resin. It is preferable. In addition, the modified polyolefin resin used in the present invention is preferably an oxidized polyolefin resin, specifically, an oxidized polyethylene wax, because it has a small amount of volatile components for a light reflector substrate and at the same time has a remarkable effect of improving releasability.

尚、本発明に用いる変性ポリオレフィン樹脂としては、その酸価が1mgKOH/g以下のもの(未変性ポリオレフィン樹脂を含む。)や、50mgKOH/g以上のものを併用してもよい。また、本発明において、複数種類の変性ポリオレフィン樹脂を用いる場合、該変性ポリオレフィン樹脂全体としての酸価が、1mgKOH/gを超えて50mgKOH/g未満となれば、本発明の範囲に含まれるものとする。 In addition, as modified polyolefin resin used for this invention, you may use together that whose acid value is 1 mgKOH / g or less (an unmodified polyolefin resin is included), or 50 mgKOH / g or more. In the present invention, when a plurality of types of modified polyolefin resins are used, if the acid value of the modified polyolefin resin as a whole is more than 1 mgKOH / g and less than 50 mgKOH / g, it is included in the scope of the present invention. To do.

本発明に用いる変性ポリオレフィン樹脂の重量平均分子量は、一般的に2000以上である。2000より小さいと揮発分が著しく多くなり、成形体表面に曇りが発生する場合がある。この重量平均分子量の上限は特に定めるものではないが、重量平均分子量が大きすぎると、分散性が低下し、成形体の表面性や離型性が低下する傾向にあるので、通常500000以下、中でも300000以下、その中で100000以下、さらにその中でも30000以下、特に10000以下であることが好ましい。 The modified polyolefin resin used in the present invention generally has a weight average molecular weight of 2000 or more. If it is less than 2000, the volatile content is remarkably increased, and fogging may occur on the surface of the molded product. The upper limit of the weight average molecular weight is not particularly defined, but if the weight average molecular weight is too large, the dispersibility tends to decrease, and the surface property and releasability of the molded product tend to decrease. 300,000 or less, preferably 100,000 or less, more preferably 30000 or less, and particularly preferably 10,000 or less.

尚、本発明に用いる変性ポリオレフィン樹脂においては、二種以上の変性ポリオレフィンを任意の割合で用いてもよい。この際、用いる全ての変性ポリオレフィン樹脂を含めた全体としての変性ポリオレフィン樹脂の重量平均分子量が2000以上となれば、重量平均分子量が2000未満のものを含んでいてもよい。 In addition, in the modified polyolefin resin used for this invention, you may use 2 or more types of modified polyolefin in arbitrary ratios. At this time, if the weight average molecular weight of the modified polyolefin resin as a whole including all the modified polyolefin resins used is 2000 or more, the weight average molecular weight may be less than 2000.

本発明に用いる変性ポリオレフィン樹脂が、重量平均分子量20000以上のものとしては、具体的には例えば、無水マレイン酸グラフト変性ポリオレフィン樹脂、エチレン−(メタ)アクリレート共重合樹脂、エチレン−メチルアクリレート共重合樹脂、エチレン−酢酸ビニル共重合樹脂、アイオノマー樹脂、エチレン−ビニルアルコール共重合樹脂、エチレン−グリシジルアクリレート共重合樹脂などが挙げられる。 Specific examples of the modified polyolefin resin used in the present invention having a weight average molecular weight of 20000 or more include, for example, maleic anhydride graft-modified polyolefin resin, ethylene- (meth) acrylate copolymer resin, and ethylene-methyl acrylate copolymer resin. , Ethylene-vinyl acetate copolymer resin, ionomer resin, ethylene-vinyl alcohol copolymer resin, ethylene-glycidyl acrylate copolymer resin, and the like.

また重量平均分子量が2000以上20000未満の、ワックスタイプの変性ポリオレフィン樹脂としては、具体的には例えば、酸化ポリエチレン(例えば、クラリアント社製 リコワックスPEDシリーズ、セリダスト3700シリーズなど)、無水マレイン酸グラフト重合ポリプロピレン(例えば、クラリアント社製 リコワックスARシリーズ)、酸化酢ビ−エチレン共重合体(例えば、クラリアント社製 リコワックス371FP)、アミド変性ポリエチレンワックス(クラリアント社製 セリダスト9615A)等の酸化ポリオレフィン樹脂等が挙げられる。 Specific examples of the wax-type modified polyolefin resin having a weight average molecular weight of 2000 or more and less than 20000 include, for example, polyethylene oxide (eg, Lycowax PED series, Celidust 3700 series, etc. manufactured by Clariant), maleic anhydride graft polymerization. Polyolefin oxide resins such as polypropylene (for example, Lycowax AR series manufactured by Clariant), oxidized vinegar-ethylene copolymer (for example, Lycowax 371FP manufactured by Clariant), amide-modified polyethylene wax (Seridust 9615A manufactured by Clariant), etc. Can be mentioned.

尚、本発明における重量平均分子量の測定方法は、GPC(Gel Permeation Chromatography)法であり、また酸価の測定方法は、0.5molKOHエタノール溶液による電位差滴定法(ASTM D 1386)による。 In the present invention, the weight average molecular weight is measured by GPC (Gel Permeation Chromatography), and the acid value is measured by potentiometric titration (ASTM D 1386) using a 0.5 mol KOH ethanol solution.

本発明の樹脂組成物における変性ポリオレフィン樹脂の含有量は、ポリエステル樹脂100質量部に対して0.01〜3質量部である。0.01質量部未満では、射出成形時の離型不良により表面性が低下し、逆に3質量部を超えると、樹脂成形体表面へ金属層、特に金属蒸着層を設けても、金属表面のくもりが見られる。よって変性ポリオレフィン樹脂の含有量は、ポリエステル樹脂100質量部に対して、中でも0.01〜2質量部、特に0.01〜1質量部であることが好ましい。 Content of the modified polyolefin resin in the resin composition of this invention is 0.01-3 mass parts with respect to 100 mass parts of polyester resins. If it is less than 0.01 parts by mass, the surface property is deteriorated due to defective mold release at the time of injection molding. Conversely, if it exceeds 3 parts by mass, even if a metal layer, particularly a metal vapor deposition layer is provided on the resin molded body surface, There is a cloudiness. Therefore, the content of the modified polyolefin resin is preferably 0.01 to 2 parts by mass, particularly 0.01 to 1 part by mass with respect to 100 parts by mass of the polyester resin.

本発明に係る樹脂組成物には、所望により更に常用の種々の助剤を配合することができる。例えば強化材としガラス繊維、ワラストナイト、タルクなど、また熱安定剤としてのリン化合物、酸化防止剤としてのヒンダードフェノール化合物、染顔料、帯電防止剤、滴下防止剤としてのフルオロポリマーなどが配合される。 The resin composition according to the present invention may further contain various commonly used auxiliary agents as desired. For example, glass fiber, wollastonite, talc, etc. as reinforcing materials, phosphorus compounds as heat stabilizers, hindered phenol compounds as antioxidants, dyes / pigments, antistatic agents, fluoropolymers as dripping inhibitors, etc. Is done.

また、さらに難燃助剤として、窒素含有化合物、ケイ素含有化合物、ホウ素含有化合物、炭化促進剤系ポリマー等をも配合することができる。本発明に係る樹脂組成物は、樹脂組成物を調製する定法により製造することができる。通常は上記の各成分をよく混合し、混合物を一軸又はニ軸押出機で溶融混練してストランド状に押出し、冷却・固化させたのち切断してペレットとする。 Further, nitrogen-containing compounds, silicon-containing compounds, boron-containing compounds, carbonization accelerator polymers, and the like can be blended as flame retardant aids. The resin composition according to the present invention can be produced by a conventional method for preparing a resin composition. Usually, the above components are mixed well, the mixture is melt-kneaded with a single screw or twin screw extruder, extruded into a strand, cooled and solidified, then cut into pellets.

本発明の難燃ポリエステル樹脂組成物を用いて得られる反射板は、従来公知の任意の樹脂成形技術により、得ることが出来る。また当該反射板に要求される特性に応じて、本発明の難燃ポリエステル樹脂を成形し反射板基体とし、当該基体上に反射用に適した金属、具体的には例えば、アルミニウム等の薄膜層を設けて、反射板としてもよい。 The reflector obtained using the flame-retardant polyester resin composition of the present invention can be obtained by any conventionally known resin molding technique. Further, according to the characteristics required for the reflector, the flame-retardant polyester resin of the present invention is molded to form a reflector substrate, and a metal suitable for reflection on the substrate, specifically, for example, a thin film layer such as aluminum It is good also as a reflecting plate.

以下に実施例、比較例を示し、本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の実施例では下記の原料を用いた。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to these examples. In the following examples, the following raw materials were used.

ポリエステル樹脂:ポリブチレンテレフタレート(PBT)樹脂 三菱エンジニアリングプラスチックス社製 ノバデュラン(登録商標)5020 固有粘度1.20dl/g(フェノールと1,1,2,2−テトラクロロエタンの1:1(質量比)の混合溶媒中、30℃で測定) Polyester resin: Polybutylene terephthalate (PBT) resin Novaduran (registered trademark) 5020 manufactured by Mitsubishi Engineering Plastics Co., Ltd. Intrinsic viscosity 1.20 dl / g (1: 1 (mass ratio) of phenol and 1,1,2,2-tetrachloroethane) In a mixed solvent of 30 ° C)

難燃剤(1):ジエチルホスフィン酸アルミニウム クラリアント社製 エキソリットOP1240 Flame retardant (1): Aluminum diethylphosphinate Clariant Exolit OP1240

難燃剤(2):縮合リン酸エステル 大八化学社製 PX200 Flame retardant (2): condensed phosphate ester PX200 manufactured by Daihachi Chemical Co., Ltd.

難燃剤(3):臭素系難燃剤(ブロム化ポリスチレン) アルベマール社製 サイテックスHP−3010 Flame retardant (3): Brominated flame retardant (brominated polystyrene) Cytex HP-3010 manufactured by Albemarle

難燃剤(4):窒素系難燃剤(シアヌル酸メラミン) サンケミカル社製 MCA Flame retardant (4): Nitrogen-based flame retardant (melamine cyanurate) MCA manufactured by Sun Chemical Co., Ltd.

難燃助剤:三酸化アンチモン 鈴裕化学社製 ファイヤーカットAT−3CN Flame retardant aid: Fire cut AT-3CN manufactured by Suzuhiro Chemical Co., Ltd.

滴下防止剤:フッ素系ポリマー 住友スリーエム社製 ダイニオンTF−1750 Anti-drip agent: Fluoropolymer Sumitomo 3M Dyion TF-1750

酸化チタンとしては以下の(1)から(11)のものを用いた。これら酸化チタンの成分分析結果を表1に示す。 As titanium oxide, the following (1) to (11) were used. Table 1 shows the component analysis results of these titanium oxides.

二酸化チタン(1):石原産業社製 タイペークCR60(アルミナ水和物で表面処理) Titanium dioxide (1): Ishihara Sangyo Typaque CR60 (surface treatment with alumina hydrate)

二酸化チタン(2):石原産業社製 タイペークCR60−2(アルミナ水和物とトリメチロールプロパノールで表面処理) Titanium dioxide (2): Ishihara Sangyo Typek CR60-2 (surface treatment with alumina hydrate and trimethylol propanol)

二酸化チタン(3):石原産業社製 タイペークCR63(アルミナ水和物、シリカ水和物、トリメチロールプロパノール及びジメチルシロキサンで表面処理) Titanium dioxide (3): Ishihara Sangyo Typaque CR63 (surface treatment with alumina hydrate, silica hydrate, trimethylolpropanol and dimethylsiloxane)

二酸化チタン(4):石原産業社製 タイペークPC−3(アルミナ水和物、シリカ水和物、トリメチロールプロパノール及びオルガノ水素シロキサンで表面処理) Titanium dioxide (4): Ishihara Sangyo Typeke PC-3 (surface treatment with alumina hydrate, silica hydrate, trimethylol propanol and organohydrogensiloxane)

二酸化チタン(5):Kronos社製 Kronos 2233(無機化合物及び有機化合物で表面処理) Titanium dioxide (5): Kronos 2233 manufactured by Kronos (surface treatment with inorganic and organic compounds)

二酸化チタン(6):DuPont社製 Tipure PCX−01(無機化合物及び有機化合物で表面処理) Titanium dioxide (6): Tipure PCX-01 manufactured by DuPont (surface treatment with inorganic and organic compounds)

二酸化チタン(7):レジノカラ−社製 PC−5(無機化合物及び有機化合物にて表面処理) Titanium dioxide (7): Resinokara PC-5 (surface treatment with inorganic and organic compounds)

二酸化チタン(8):Kronos社製 Kronos 2230(無機化合物系、有機化合物系にて表面処理) Titanium dioxide (8): Kronos 2230 manufactured by Kronos (surface treatment with inorganic and organic compounds)

二酸化チタン(9):石原産業社製 タイペークPF−740(アルミナ水和物、ジルコニア化合物、トリメチロールプロパノールで表面処理) Titanium dioxide (9): Ishihara Sangyo Taipaque PF-740 (surface treatment with alumina hydrate, zirconia compound, trimethylolpropanol)

二酸化チタン(10):Millenium Chemical社製 TiONA188(無機化合物及び有機化合物で表面処理) Titanium dioxide (10): TiONA188 manufactured by Millennium Chemical (surface treatment with inorganic and organic compounds)

二酸化チタン(11):Millenium Chemical社製 RCL−69(無機化合物及び有機化合物で表面処理) Titanium dioxide (11): RCL-69 (Surface treatment with inorganic and organic compounds) manufactured by Millennium Chemical

Figure 2010270177
Figure 2010270177

変性PO(1):酸化ポリエチレンワックス クラリアント社製リコワックスPED521(分子量3100、酸価22〜28mgKOH/g) Modified PO (1): Polyethylene oxide wax Lycowax PED521 manufactured by Clariant (molecular weight 3100, acid value 22 to 28 mgKOH / g)

変性PO(2):酸化ポリエチレンワックス クラリアント社製リコワックスPED521(分子量4200、酸価15〜19mgKOH/g) Modified PO (2): Polyethylene oxide wax Lycowax PED521 manufactured by Clariant (molecular weight 4200, acid value 15 to 19 mgKOH / g)

変性PO(3):ポリエチレンワックス クラリアント社製リコワックスPE130(分子量4800、酸価0mgKOH/g) Modified PO (3): polyethylene wax Rico wax PE130 manufactured by Clariant (molecular weight 4800, acid value 0 mgKOH / g)

脂肪酸エステル:グリセリンモノステアレート 理研ビタミン社製 リケマールS100A Fatty acid ester: glycerin monostearate Rikenmar S100A manufactured by Riken Vitamin

酸化防止剤(1):亜リン酸エステル(ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト) 旭電化社製 アデカスタブPEP−36 Antioxidant (1): Phosphite ester (bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite) ADK STAB PEP-36 manufactured by Asahi Denka Co., Ltd.

酸化防止剤(2):ヒンダードフェノール系化合物(ペンタエリスリトールテトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオナート]) イルガノックス1010 Antioxidant (2): Hindered phenol compound (pentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate]) Irganox 1010

実施例1〜7及び比較例1〜4:
表2に示す通り、全成分を一括してスーパーミキサー(新栄機械社製SK−350型)で混合し、L/D=42の2軸押出機(日本製鋼所社製、TEX30XCT)のホッパーに投入し、吐出量20kg/hr、スクリュー回転数200rpm、バレル温度260℃の条件下押出してポリエステル樹脂ペレットを得た。
Examples 1-7 and Comparative Examples 1-4:
As shown in Table 2, all components were mixed together with a super mixer (SK-350 type, manufactured by Shinei Machinery Co., Ltd.), and the hopper of L / D = 42 twin screw extruder (manufactured by Nippon Steel Works, TEX30XCT) was used. The resulting mixture was extruded under the conditions of a discharge rate of 20 kg / hr, a screw rotation speed of 200 rpm, and a barrel temperature of 260 ° C. to obtain polyester resin pellets.

得られたペレットについて、このペレットを120℃で5時間乾燥した後、射出成型機(住友重機械社製、型式SH−100)を使用して、シリンダ温度260℃、金型温度80℃の条件で試験片を製造した。試験片は、縦横各々10cm、厚さ3mmの平板試験片(鏡面金型を使用して得た反射率評価用試験片)、及び、厚さ0.8mmのUL−94規格の燃焼試験片の2種を製造した。 About the obtained pellet, after drying this pellet at 120 degreeC for 5 hours, using an injection molding machine (Sumitomo Heavy Industries Co., Ltd. model SH-100), conditions of cylinder temperature 260 degreeC and mold temperature 80 degreeC A test piece was manufactured. The test pieces are 10 cm in length and width, 3 mm thick flat plate test pieces (reflectance evaluation test pieces obtained using a mirror mold), and 0.8 mm thick UL-94 standard combustion test pieces. Two types were produced.

反射率評価は、平板試験片、及びこれを150℃で24時間加熱処理(熱風乾燥機:ヤマト科学社製送風定温恒温器DN−43)したものについて、分光測色計(コニカミノルタ社製CM−3600d)用いて480nmでの反射率を測定した。結果を表2に示す。 The reflectance evaluation was performed using a spectrocolorimeter (CM manufactured by Konica Minolta Co., Ltd.) for a flat test piece and a sample subjected to heat treatment at 150 ° C. for 24 hours (hot air dryer: blast constant temperature thermostat DN-43 manufactured by Yamato Scientific Co., Ltd.). -3600d) and the reflectance at 480 nm was measured. The results are shown in Table 2.

上述した様に成形した鏡面平板試験片の表面に、プライマー処理を施さずにアルミニウム膜厚140nmになるよう、アルミニウム蒸着を行い、アルミニウム蒸着試験片を得た。この試験片のアルミニウム面の外観を、下記の基準にて目視で評価した。 Aluminum vapor deposition was performed on the surface of the specular flat plate test piece formed as described above so that the aluminum film thickness was 140 nm without performing primer treatment, to obtain an aluminum vapor deposition test piece. The appearance of the aluminum surface of the test piece was visually evaluated according to the following criteria.

A:輝度感が高く曇りも無く、反射像が鮮明に映る。熱処理後も曇りはみられない。
B:高い輝度感を有するが反射像は多少ぼやける。熱処理後は曇りが多少みられた。
C:高い輝度感を有するものの反射像はぼやける。熱処理後は曇りがみられた。
D:表面が均一でなく反射像は歪んで見える。熱処理後は曇りがみられた。
E:表面が均一でなく反射像を認識できない。熱処理後は曇りが酷く、表面が白化した。
A: The brightness is high, there is no cloudiness, and the reflected image is clearly displayed. There is no cloudiness after heat treatment.
B: Although the brightness is high, the reflected image is slightly blurred. Some fogging was observed after the heat treatment.
C: Although the image has a high brightness, the reflected image is blurred. Cloudiness was observed after the heat treatment.
D: The surface is not uniform and the reflected image looks distorted. Cloudiness was observed after the heat treatment.
E: The surface is not uniform and the reflected image cannot be recognized. The haze was severe after the heat treatment, and the surface was whitened.

またこの試験片を180℃で24時間加熱処理したものについて、上記と同様の条件で反射率を測定した。更にこの180℃x24時間の加熱処理を経た試験片について、基材の成形品とアルミニウム蒸着層との接着力を下記のテープ剥離試験で評価した。これらの結果を表2に示す。 Moreover, the reflectance was measured under the same conditions as described above for the test piece that had been heat-treated at 180 ° C. for 24 hours. Furthermore, about the test piece which passed through this heat processing for 180 degreeC x 24 hours, the adhesive force of the molded article of a base material and an aluminum vapor deposition layer was evaluated by the following tape peeling test. These results are shown in Table 2.

テープ剥離性
後述する方法により作製したアルミ蒸着した試料を熱風乾燥機で150℃、24時間加熱処理した後、アルミ蒸着面にナイフで傷を入れ、その上からセロハンテープを貼り付け、そのセロハンテープをはがした時の接着性を以下に示す基準により評価した。
○:アルミ蒸着膜の剥がれが殆どみられない。
△:アルミ蒸着膜の剥がれが多少みられる。
×:アルミ蒸着膜剥がれが著しい。
Tape peelability After the aluminum vapor-deposited sample prepared by the method described below was heat-treated in a hot air dryer at 150 ° C for 24 hours, the aluminum vapor-deposited surface was scratched with a knife, and cellophane tape was applied from above. The adhesiveness when the cellophane tape was peeled was evaluated according to the following criteria.
○: Peeling of the aluminum deposited film is hardly observed.
Δ: Some peeling of the aluminum deposited film is observed.
X: Aluminum vapor deposition film peeling is remarkable.

燃焼性テスト(UL94)
アンダーライターズ・ラボラトリーズのサブジェクト94(UL94)の方法に準じ、5本の試験片(厚み0.8mm)を用いて難燃性について試験した。難燃性は、UL94記載の評価方法に従って、V−0、V−1、V−2、HBに分類した。V−0表記が、難燃性レベルが最も高く、HBが難燃性レベルが最も低いことを示す。
Flammability test (UL94)
In accordance with the method of Subject 94 (UL94) of Underwriters Laboratories, flame retardancy was tested using five test pieces (thickness 0.8 mm). Flame retardancy was classified into V-0, V-1, V-2, and HB according to the evaluation method described in UL94. The V-0 notation indicates that the flame retardant level is the highest and HB is the lowest flame retardant level.

二酸化チタンの表面処理成分の測定
二酸化チタンのAlの表面処理量については、リガク社製波長分散型蛍光X線分析装置ZSXminiIIを用い、X線管にパラジウム管、電圧40kV/管電流1.2mA、測定面積径30mm、真空雰囲気条件でTi、Alのスペクトルの強度比を用いて算出した。またC量については、堀場製作所社製の高周波誘導加熱炉方式EMIA−921V炭素分析装置を用い、陽極出力:2.3kW、周波数:18MHz、175mAの高周波電流を負荷することにより算出した。結果を表−1に示す。
Measurement of surface treatment component of titanium dioxide As for the surface treatment amount of Al of titanium dioxide, a wavelength dispersive X-ray fluorescence analyzer ZSXminiII manufactured by Rigaku Corporation was used, a palladium tube as an X-ray tube, a voltage of 40 kV / tube current. Calculation was performed using the intensity ratio of the spectrum of Ti and Al under 1.2 mA, a measurement area diameter of 30 mm, and vacuum atmosphere conditions. The amount of C was calculated by applying a high frequency current of anode power: 2.3 kW, frequency: 18 MHz, 175 mA using a high frequency induction heating furnace type EMIA-921V carbon analyzer manufactured by Horiba, Ltd. The results are shown in Table-1.

二酸化チタンの平均粒径測定方法
実施例および比較例に使用した二酸化チタンの1次粒子径の測定は、以下の方法にて試料を調製し、測定を行った。
Method for measuring average particle diameter of titanium dioxide The primary particle diameter of titanium dioxide used in Examples and Comparative Examples was measured by preparing a sample by the following method.

ポリエステル樹脂中に、実施例および比較例に使用した二酸化チタン5質量部を添加し、実施例・比較例同様の混練方法にてペレットを製造した。このペレットからSTEM観察用の約200nmの厚さの超薄肉切片をウルトラミクロトームで切り出し、日立ハイテクノロジーズ社製走査型電子顕微鏡S−4800を用い、TEM観察(倍率:50,000倍)で二酸化チタンの1次粒子像を得た。1次粒子の長径と短径の平均値を1次粒径とし、1次粒径の測定は1次粒子30個の平均値(0.05μm刻みの値)を用いた。結果を表−1に示す。 In the polyester resin, 5 parts by mass of titanium dioxide used in Examples and Comparative Examples was added, and pellets were produced by the same kneading method as in the Examples and Comparative Examples. From this pellet, an ultra-thin section having a thickness of about 200 nm for STEM observation was cut out with an ultramicrotome, and was scanned with TEM observation (magnification: 50,000 times) using a scanning electron microscope S-4800 manufactured by Hitachi High-Technologies. A primary particle image of titanium was obtained. The average value of the major axis and minor axis of the primary particles was taken as the primary particle size, and the average value of 30 primary particles (value in increments of 0.05 μm) was used for the measurement of the primary particle size. The results are shown in Table-1.

Figure 2010270177
Figure 2010270177

表2より、本発明の様に特定のホスフィン酸塩(難燃剤)、特定の二酸化チタン、特定の変性基を有するポリオレフィン樹脂(離型剤)を用いた実施例は、その他難燃剤、その他二酸化チタン、その他離型剤を用いた比較例と比較すると、高温雰囲気暴露後の表面外観性、光反射率、およびテープ剥離性がいずれも良好である。反射率については数%の差であっても光反射体としての性能を左右する重要な特性であるので、本発明の樹脂組成物、およびこれを用いた光反射体としてが、良好な特性を有していることが判る。 From Table 2, the examples using specific phosphinates (flame retardants), specific titanium dioxides, and polyolefin resins having specific modifying groups (release agents) as in the present invention are the other flame retardants and other carbon dioxides. Compared with comparative examples using titanium and other release agents, the surface appearance, light reflectance, and tape peelability after exposure to a high temperature atmosphere are all good. Since the reflectance is an important characteristic that affects the performance as a light reflector even if it is a difference of several percent, the resin composition of the present invention and the light reflector using the resin composition have good characteristics. It turns out that it has.

Claims (13)

(A)ポリエステル樹脂100質量部に対し、
(B)アニオン部分が下記一般式(1)又は(2)で表されるホスフィン酸のカルシウム塩又はアルミニウム塩であるホスフィン酸塩2〜50質量部、
(C)二酸化チタン0.5〜30質量部、及び
(D)極性基を有するポリオレフィン樹脂0.01〜3質量部
を配合したことを特徴とする、半導体発光素子を光源とする照明装置反射板用難燃性ポリエステル樹脂組成物。
Figure 2010270177
Figure 2010270177
(式中、R及びRは、それぞれ独立して、水素又は炭素原子数1〜6のアルキル基又は置換されていてもよいアリール基を表し、Rは炭素原子数1〜10のアルキレン基若しくは置換されていてもよいアリーレン基又はこれらの混合基を表す。)
(A) For 100 parts by mass of the polyester resin,
(B) 2-50 parts by mass of a phosphinic acid salt in which the anion moiety is a calcium salt or aluminum salt of phosphinic acid represented by the following general formula (1) or (2):
(C) 0.5 to 30 parts by mass of titanium dioxide, and (D) 0.01 to 3 parts by mass of a polyolefin resin having a polar group, and a lighting device reflector using a semiconductor light emitting element as a light source Flame retardant polyester resin composition.
Figure 2010270177
Figure 2010270177
(In the formula, R 1 and R 2 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, or an optionally substituted aryl group, and R 3 represents an alkylene having 1 to 10 carbon atoms. Represents a group or an arylene group which may be substituted, or a mixed group thereof.)
(A)ポリエステル樹脂が、ポリブチレンテレフタレート樹脂又はポリブチレンテレフタレート樹脂を主体とし、少割合のポリエチレンテレフタレート樹脂を含む混合物であることを特徴とする請求項1記載の難燃ポリエステル樹脂組成物。 2. The flame retardant polyester resin composition according to claim 1, wherein the polyester resin (A) is a polybutylene terephthalate resin or a mixture containing a polybutylene terephthalate resin as a main component and a small proportion of a polyethylene terephthalate resin. (C)二酸化チタンが、表面処理剤で表面処理されていることを特徴とする請求項1又は2に記載の難燃ポリエステル樹脂組成物。 (C) The flame retardant polyester resin composition according to claim 1 or 2, wherein the titanium dioxide is surface-treated with a surface treatment agent. (C)二酸化チタンが、無機化合物及び有機化合物で表面処理したものであることを特徴とする請求項1ないし3のいずれかに記載の難燃ポリエステル樹脂組成物。 The flame retardant polyester resin composition according to any one of claims 1 to 3, wherein (C) titanium dioxide is surface-treated with an inorganic compound and an organic compound. (C)二酸化チタンが、アルミナ水和物及びシリカ水和物及び/又はジルコニア化合物よりなる群から選ばれた無機化合物で表面処理した後、有機化合物で表面処理したものであることを特徴とする請求項1ないし4のいずれかに記載の難燃ポリエステル樹脂組成物。 (C) Titanium dioxide is surface-treated with an organic compound after being surface-treated with an inorganic compound selected from the group consisting of alumina hydrate and silica hydrate and / or zirconia compound. The flame-retardant polyester resin composition according to any one of claims 1 to 4. (D)極性基を有するポリオレフィン樹脂が酸変性ポリオレフィン樹脂又は酸化ポリオレフィン樹脂であることを特徴とする請求項1ないし5のいずれかに記載の難燃ポリエステル樹脂組成物。 (D) The flame retardant polyester resin composition according to any one of claims 1 to 5, wherein the polyolefin resin having a polar group is an acid-modified polyolefin resin or an oxidized polyolefin resin. (D)極性基を有するポリオレフィン樹脂の酸価が1〜50mgKOH/gであることを特徴とする請求項1ないし6のいずれかに記載の難燃ポリエステル樹脂組成物。 (D) The flame resistance polyester resin composition according to any one of claims 1 to 6, wherein the polyolefin resin having a polar group has an acid value of 1 to 50 mgKOH / g. (A)ポリブチレンテレフタレート樹脂が80〜100質量%を占め、残部がポレエチレンテレフタレート樹脂であるポリエステル樹脂100質量部に対し、
(B)アニオン部分が下記一般式(1)又は(2)で表されるホスフィン酸のカルシウム又はアルミニウム塩であるホスフィン酸塩10〜30質量部、
Figure 2010270177
Figure 2010270177
(式中、R及びRは、それぞれ独立して、水素又は炭素原子数1〜4のアルキル基又は炭素原子数6〜8のアルキル置換基を有していてもよいフェニル基を表し、Rは炭素原子数1〜4のアルキレン基又は、炭素原子数6〜8の、置換されていてもよいフェニレン基を表す。)
(C)二酸化チタン5〜20質量部、及び
(D)酸変性又は酸化ポリオレフィン樹脂0.05〜3質量部
を配合したことを特徴とする半導体発光素子を光源とする照明装置反射板用難燃ポリエステル樹脂組成物。
(A) Polybutylene terephthalate resin accounts for 80 to 100% by mass, and the rest is 100 parts by mass of a polyester resin that is a polyethylene terephthalate resin.
(B) 10-30 parts by mass of a phosphinic acid salt, wherein the anion moiety is a calcium or aluminum salt of phosphinic acid represented by the following general formula (1) or (2):
Figure 2010270177
Figure 2010270177
(In the formula, R 1 and R 2 each independently represent hydrogen, a phenyl group which may have an alkyl group having 1 to 4 carbon atoms or an alkyl substituent having 6 to 8 carbon atoms, R 3 represents an alkylene group having 1 to 4 carbon atoms or an optionally substituted phenylene group having 6 to 8 carbon atoms.
(C) 5 to 20 parts by mass of titanium dioxide and (D) 0.05 to 3 parts by mass of acid-modified or oxidized polyolefin resin are blended. Polyester resin composition.
(C)二酸化チタンが、アルミナ水和物及びシリカ水和物及び/またはジルコニア化合物よりなる群から選ばれた無機化合物と、有機化合物とで表面処理されていることを特徴とする請求項8記載の難燃ポリエステル樹脂組成物。 9. The surface treatment of (C) titanium dioxide with an inorganic compound selected from the group consisting of alumina hydrate and silica hydrate and / or zirconia compound, and an organic compound. Flame retardant polyester resin composition. (C)二酸化チタンが、アルミナ水和物及びシリカ水和物及びまたはジルコニア化合物よりなる群から選ばれた無機化合物と、有機化合物とで表面処理されており、二酸化チタンを蛍光X線分析することによって得られた酸化チタン表面処理剤中のアルミニウム含有量a(質量%)、酸化チタン表面処理剤を高周波燃焼式炭素分析装置にて分析して得られた酸化チタン表面処理剤の炭素量c(質量%)、及び酸化チタンの平均粒径(μm)をdとし、
4≦(a/d)≦20 (式1)
0.3≦(c/d)≦15.5 (式2)
を満足することを特徴とする請求項1〜9記載の難燃ポリエステル樹脂組成物。
(C) Titanium dioxide is surface-treated with an inorganic compound selected from the group consisting of alumina hydrate and silica hydrate and / or zirconia compound and an organic compound, and the titanium dioxide is subjected to fluorescent X-ray analysis. The aluminum content a (mass%) in the titanium oxide surface treatment agent obtained by the above, the carbon content c of the titanium oxide surface treatment agent obtained by analyzing the titanium oxide surface treatment agent with a high-frequency combustion carbon analyzer ( Mass%), and the average particle diameter (μm) of titanium oxide is d,
4 ≦ (a / d 2 ) ≦ 20 (Formula 1)
0.3 ≦ (c / d 2 ) ≦ 15.5 (Formula 2)
The flame retardant polyester resin composition according to claim 1, wherein:
(D)酸変性又は酸化ポリオレフィン樹脂が、酸価が5〜50mgKOH/gであり、重量平均分子量が2000以上であることを特徴とする請求項8〜10に記載の難燃ポリエステル樹脂組成物。 The flame-retardant polyester resin composition according to claim 8, wherein the acid-modified or oxidized polyolefin resin has an acid value of 5 to 50 mg KOH / g and a weight average molecular weight of 2000 or more. 請求項1〜11の記載の難燃ポリエステル樹脂組成物で製作したことを特徴とするLEDを光源とする照明・表示灯等の装置に使用される反射板。 A reflector used in an apparatus such as an illumination / indicator having an LED as a light source, which is manufactured from the flame-retardant polyester resin composition according to claim 1. 請求項1〜12に記載の難燃ポリエステル樹脂組成物で製作された基材表面に、アルミニウムが蒸着されていることを特徴とするLEDを光源とする照明・表示灯等の装置に使用される反射板。 It is used for an apparatus such as an illumination / indicator having an LED as a light source, wherein aluminum is vapor-deposited on the surface of a base material manufactured with the flame-retardant polyester resin composition according to claim 1. a reflector.
JP2009120873A 2009-05-19 2009-05-19 Flame Retardant Polyester Resin Composition for Lighting Device Reflector with LED as Light Source Active JP5321239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009120873A JP5321239B2 (en) 2009-05-19 2009-05-19 Flame Retardant Polyester Resin Composition for Lighting Device Reflector with LED as Light Source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009120873A JP5321239B2 (en) 2009-05-19 2009-05-19 Flame Retardant Polyester Resin Composition for Lighting Device Reflector with LED as Light Source

Publications (2)

Publication Number Publication Date
JP2010270177A true JP2010270177A (en) 2010-12-02
JP5321239B2 JP5321239B2 (en) 2013-10-23

Family

ID=43418468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009120873A Active JP5321239B2 (en) 2009-05-19 2009-05-19 Flame Retardant Polyester Resin Composition for Lighting Device Reflector with LED as Light Source

Country Status (1)

Country Link
JP (1) JP5321239B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011213828A (en) * 2010-03-31 2011-10-27 Taiyo Holdings Co Ltd Curable resin composition and dry film and printed wiring board using the same
WO2012147385A1 (en) 2011-04-28 2012-11-01 電気化学工業株式会社 Vinylidene fluoride-based resin film, solar cell back sheet, and solar cell module
JP2013057956A (en) * 2012-10-26 2013-03-28 Taiyo Holdings Co Ltd Curable resin composition, and dry film and printed wiring board using the same
CN103811632A (en) * 2012-11-09 2014-05-21 丰田合成株式会社 Light-emitting device
JP2014512697A (en) * 2011-04-28 2014-05-22 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Carrier, optoelectronic unit equipped with carrier, and method of manufacturing carrier and optoelectronic unit
JP2014139993A (en) * 2013-01-21 2014-07-31 Toyo Ink Sc Holdings Co Ltd Resin composition for solar cell sealing material
WO2014181548A1 (en) * 2013-05-10 2014-11-13 三井化学株式会社 Polyester resin composition for reflective material and reflector including same
KR20160016858A (en) 2013-06-03 2016-02-15 도요보 가부시키가이샤 Polyester resin, and polyester resin composition for surface-mount-type LED reflective plate which comprises same
JP5957746B1 (en) * 2015-03-26 2016-07-27 東洋インキScホールディングス株式会社 Light reflecting resin composition and molded body
WO2018070425A1 (en) * 2016-10-14 2018-04-19 三井化学株式会社 Resin composition and molded article
JPWO2021192947A1 (en) * 2020-03-25 2021-09-30

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384060A (en) * 1989-08-26 1991-04-09 Unitika Ltd Resin composition
JP2006030405A (en) * 2004-07-13 2006-02-02 Mitsubishi Engineering Plastics Corp Light reflection material and shaped article
JP2006037103A (en) * 2004-07-23 2006-02-09 Clariant Gmbh Use of polyolefin wax for polycondensation material
JP2007321144A (en) * 2006-05-01 2007-12-13 Toray Ind Inc Thermoplastic resin composition, molded article comprising the same, and lighting equipment
JP2009057561A (en) * 2007-09-01 2009-03-19 Clariant Internatl Ltd Flame retardant-blended polyester material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384060A (en) * 1989-08-26 1991-04-09 Unitika Ltd Resin composition
JP2006030405A (en) * 2004-07-13 2006-02-02 Mitsubishi Engineering Plastics Corp Light reflection material and shaped article
JP2006037103A (en) * 2004-07-23 2006-02-09 Clariant Gmbh Use of polyolefin wax for polycondensation material
JP2007321144A (en) * 2006-05-01 2007-12-13 Toray Ind Inc Thermoplastic resin composition, molded article comprising the same, and lighting equipment
JP2009057561A (en) * 2007-09-01 2009-03-19 Clariant Internatl Ltd Flame retardant-blended polyester material

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011213828A (en) * 2010-03-31 2011-10-27 Taiyo Holdings Co Ltd Curable resin composition and dry film and printed wiring board using the same
WO2012147385A1 (en) 2011-04-28 2012-11-01 電気化学工業株式会社 Vinylidene fluoride-based resin film, solar cell back sheet, and solar cell module
JP2014512697A (en) * 2011-04-28 2014-05-22 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Carrier, optoelectronic unit equipped with carrier, and method of manufacturing carrier and optoelectronic unit
US9455379B2 (en) 2011-04-28 2016-09-27 Osram Opto Semiconductors Gmbh Carrier, optoelectronic unit comprising a carrier and methods for the production of both
JP2013057956A (en) * 2012-10-26 2013-03-28 Taiyo Holdings Co Ltd Curable resin composition, and dry film and printed wiring board using the same
CN103811632A (en) * 2012-11-09 2014-05-21 丰田合成株式会社 Light-emitting device
US9240537B2 (en) 2012-11-09 2016-01-19 Toyoda Gosei Co., Ltd. Light-emitting device including case and sealant
JP2014139993A (en) * 2013-01-21 2014-07-31 Toyo Ink Sc Holdings Co Ltd Resin composition for solar cell sealing material
JPWO2014181548A1 (en) * 2013-05-10 2017-02-23 三井化学株式会社 Polyester resin composition for reflector and reflector including the same
WO2014181548A1 (en) * 2013-05-10 2014-11-13 三井化学株式会社 Polyester resin composition for reflective material and reflector including same
CN105209542A (en) * 2013-05-10 2015-12-30 三井化学株式会社 Polyester resin composition for reflective material and reflector including same
KR20160016858A (en) 2013-06-03 2016-02-15 도요보 가부시키가이샤 Polyester resin, and polyester resin composition for surface-mount-type LED reflective plate which comprises same
JP5957746B1 (en) * 2015-03-26 2016-07-27 東洋インキScホールディングス株式会社 Light reflecting resin composition and molded body
KR20160115749A (en) * 2015-03-26 2016-10-06 토요잉크Sc홀딩스주식회사 Resin composition and Formed structure for light reflection
KR101722618B1 (en) 2015-03-26 2017-04-04 토요잉크Sc홀딩스주식회사 Resin composition and Formed structure for light reflection
WO2018070425A1 (en) * 2016-10-14 2018-04-19 三井化学株式会社 Resin composition and molded article
JPWO2018070425A1 (en) * 2016-10-14 2019-06-24 三井化学株式会社 Resin composition and molded body
JPWO2021192947A1 (en) * 2020-03-25 2021-09-30
WO2021192947A1 (en) * 2020-03-25 2021-09-30 東洋紡株式会社 Flame-retardant biaxially-oriented polyester film
JP7306569B2 (en) 2020-03-25 2023-07-11 東洋紡株式会社 Flame-retardant biaxially oriented polyester film

Also Published As

Publication number Publication date
JP5321239B2 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
JP5321239B2 (en) Flame Retardant Polyester Resin Composition for Lighting Device Reflector with LED as Light Source
KR101457236B1 (en) Flame retardant thermoplastic elastomer compositions
JP5284606B2 (en) Polyester resin composition and light reflector
JP5377869B2 (en) Flame retardant resin composition and coated wire
JP5909534B2 (en) Polyester resin composition and camera module including the same
US8415415B2 (en) Heat stable halogen-free flame retardant copolyester thermoplastic elastomer compositions
JP5848556B2 (en) Polyester resin composition and molded body
US8080599B2 (en) Thermoplastic polyester compositions, methods of manufacture, and articles thereof
JP6518479B2 (en) Insulating polybutylene terephthalate resin composition and molded article
JP6045909B2 (en) Polyester resin composition for circuit breakers
JPWO2009005084A1 (en) Polyester resin composition for injection molding, light reflector substrate and light reflector
JP2006225492A (en) Flame-retardant resin composition for electric wire coating
JP2011137059A (en) Thermoplastic polyester resin composition, molded article using the same and method for producing the same
JPWO2011024806A1 (en) Flame retardant, method for producing the same, and flame retardant thermoplastic resin composition containing the same
JP5200426B2 (en) Polyester resin composition for coating and vapor-deposited molded products
JP2020019914A (en) Polyester resin composition for reflector and reflector
JP2007297495A (en) Flame retardant electroconductive thermoplastic resin composition
JP2006225440A (en) Polyester resin composition for light-reflecting molded article
JP2012082385A (en) Polyester resin composition and its molded product
JP2000273294A (en) Flame-retardant polyester resin composition
TW202346480A (en) Polycarbonate-based resin composition
JP2018168288A (en) Polyester resin composition for reflector, and reflector
JP2006225439A (en) Polyester resin composition for light-reflecting molded article
JP2006176613A (en) Flame retardant thermoplastic polyester resin composition and illumination part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111226

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

R150 Certificate of patent or registration of utility model

Ref document number: 5321239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350