JP2010269363A - Friction-welding machine, and friction-welding and machining method - Google Patents

Friction-welding machine, and friction-welding and machining method Download PDF

Info

Publication number
JP2010269363A
JP2010269363A JP2009125325A JP2009125325A JP2010269363A JP 2010269363 A JP2010269363 A JP 2010269363A JP 2009125325 A JP2009125325 A JP 2009125325A JP 2009125325 A JP2009125325 A JP 2009125325A JP 2010269363 A JP2010269363 A JP 2010269363A
Authority
JP
Japan
Prior art keywords
chuck
workpiece
rotating
friction
chucks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009125325A
Other languages
Japanese (ja)
Inventor
Jun Suemura
潤 末村
Hiroyuki Kuratani
宏行 蔵谷
Hideki Honma
秀樹 本間
Akihiko Takagi
昭彦 鷹来
Kiyohiko Kigoshi
清彦 木越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakamura Tome Precision Industry Co Ltd
Original Assignee
Nakamura Tome Precision Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakamura Tome Precision Industry Co Ltd filed Critical Nakamura Tome Precision Industry Co Ltd
Priority to JP2009125325A priority Critical patent/JP2010269363A/en
Publication of JP2010269363A publication Critical patent/JP2010269363A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a friction-welding machine capable of continuously friction-welding not only a couple of workpieces but also three or more thereof and further capable of combining with machining, and to provide a friction welding/machining method. <P>SOLUTION: The rotary chucks 11 and 21 for holding the workpieces are disposed side by side facing each other, and have the spindle motors for controlling the rotary driving thereof. Further, at least one rotary chuck has a feed motor controlled so as to generate the upsetting force necessary for melt welding, and a workpiece holding means 50 is disposed between the rotary chucks facing each other. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、複数のワーク同士を摩擦圧接接合するための摩擦圧接機及び、これを用いた摩擦圧接及び機械加工方法に関する。   The present invention relates to a friction welding machine for friction welding of a plurality of workpieces, and a friction welding and machining method using the same.

ワーク同士の接合面に回転摩擦力を生じさせ、この回転摩擦で生じた熱エネルギーを利用し、押圧固相接合する摩擦圧接法は公知である(特許文献1)。
しかし、従来の摩擦圧接機では、2つのワークを接合することができても3つ以上のワークを同時に又は連続的に摩擦圧接したり、機械加工できるものではなかった。
A friction welding method in which a rotational friction force is generated on the joining surfaces of the workpieces and the heat energy generated by the rotational friction is used to perform press solid phase bonding is known (Patent Document 1).
However, in the conventional friction welding machine, even if two workpieces can be joined, three or more workpieces cannot be friction welded or machined simultaneously or continuously.

特開2008−272834号公報JP 2008-272834 A

本発明は、2個のワークのみならず3個以上のワークを同時に又は連続的に摩擦圧接したり、機械加工を組み合せることも可能な摩擦圧接機及び摩擦圧接並びに機械加工方法の提供を目的とする。   An object of the present invention is to provide a friction welding machine, a friction welding machine, and a machining method capable of simultaneously or continuously friction welding two or more workpieces as well as two workpieces or combining machining. And

本発明に係る摩擦圧接機は、ワークをチャック保持する回転チャックを左右に対向配置し、当該左右の回転チャックは、当該回転チャックを回転駆動制御する主軸モーターと、少なくとも一方の回転チャックには、溶融圧接時に必要な据え込み力とアプセット力とが生じるように制御された送りモーターとを有し、対向する回転チャックの間にワーク保持手段を有していることを特徴とする。
ここで対向配置した回転チャックに回転駆動制御手段と、その少なくとも一方に据え込み力及びアプセット力の摩擦圧接に必要な押圧力が生じる送りモーターとを備えたことにより、いずれか一方の回転チャックにてワークW1をチャック固定し、前記ワーク保持手段にてワークW2を保持し、当該一方の回転チャックを回転駆動制御し、且つ当該回転チャック又はワーク保持手段をZ軸方向に送り押圧制御することでワークW1をワークW2の一方の面に摩擦圧接し、次に又は同時に、他方の回転チャックにてワークW3をチャック固定し、当該他方の回転チャックを回転駆動及び送り押圧制御することでワークW2の他方の面にワークW3を摩擦圧接することもできる。
なお、据え込み力とは、回転摩擦時に必要な発熱量が生じるように押圧する力をいい、アプセット力とは、接合面が溶融し、その後に固相接合が生じるように押圧する力をいう。
In the friction welding machine according to the present invention, rotating chucks that hold a workpiece chuck are arranged opposite to each other, the left and right rotating chucks include a spindle motor that rotationally controls the rotating chuck, and at least one rotating chuck. It has a feed motor controlled so as to generate an upsetting force and an upsetting force required at the time of melt pressure welding, and has a workpiece holding means between the opposed rotary chucks.
Here, the rotary chuck arranged opposite to the rotary chuck is provided with a rotation drive control means, and at least one of the rotary chucks has a feed motor that generates a pressing force necessary for friction welding of upsetting force and upset force. The workpiece W1 is chucked, the workpiece holding means holds the workpiece W2, the one rotary chuck is rotationally driven, and the rotary chuck or the workpiece holding means is fed and controlled in the Z-axis direction. The workpiece W1 is friction-welded to one surface of the workpiece W2, and then or simultaneously, the workpiece W3 is chucked by the other rotating chuck, and the other rotating chuck is rotationally driven and feed-pressed to control the workpiece W2. The workpiece W3 can be friction-welded to the other surface.
The upsetting force refers to a force that presses so as to generate a necessary amount of heat at the time of rotational friction, and the upset force refers to a force that presses so that the joining surface melts and then solid phase bonding occurs. .

また、請求項3記載に係るワークの摩擦圧接及び機械加工方法は、ワークをチャック保持する回転チャックを左右に対向配置し、当該左右の回転チャックは、当該回転チャックを回転駆動制御する主軸モーターと、溶融圧接時に必要な据え込み力とアプセット力とが生じるように制御された送りモーターとを有し、対向する回転チャックの間にワーク保持手段を有し、且つ少なくとも一台の刃物台を有し、いずれか一方の回転チャックにてワークW1をチャック固定し、他方の回転チャックにてワークW2をチャック固定し、一方の回転チャックを回転駆動し、他方の回転チャックを静止し、送り押圧制御することでワークW1とW2とを摩擦圧接し、当該摩擦圧接接合したワークW1・W2を一方の回転チャックに引き渡し、前記ワーク保持手段にてワークW1・W2の端面をセンター保持しつつ、刃物台に設けたツールにて機械加工することを特徴とする。   According to a third aspect of the present invention, there is provided a friction welding and machining method for a workpiece, wherein rotating chucks for holding the workpiece are opposed to each other on the left and right sides, and the left and right rotating chucks are connected to a spindle motor for rotationally controlling the rotating chuck; A feed motor that is controlled so as to generate an upsetting force and an upsetting force that are required at the time of melt welding, a work holding means between the opposed rotating chucks, and at least one tool post. Then, the workpiece W1 is fixed to the chuck with one of the rotating chucks, the workpiece W2 is fixed to the chuck with the other rotating chuck, the one rotating chuck is rotationally driven, the other rotating chuck is stationary, and the feed pressing control is performed. As a result, the workpieces W1 and W2 are friction-welded, and the workpieces W1 and W2 thus friction-welded are delivered to one rotary chuck, and the workpiece holding While centers holding the end face of the workpiece W1 · W2 in means, characterized in that machining at tool provided on the tool rest.

本発明は、主軸モーターと少なくとも一方に送りモーターとを備えた回転チャックを対向配置し、その間にワーク保持手段、さらには刃物台を備えたので3個のワークを同時に又は連続的に摩擦圧接でき、また刃物台で摩擦圧接前の端面加工や摩擦圧接後の機械加工ができる。
さらには、ワーク保持手段にてワークの端面をセンター保持すると、長尺材の機械加工が可能になる。
また、対向する回転チャック間でワークの引き渡しが可能であることから、ミーリング加工等において複数のワークの位相決めも容易になる。
In the present invention, a rotary chuck provided with a spindle motor and at least one feed motor is disposed opposite to each other, and a workpiece holding means and a tool post are provided therebetween, so that three workpieces can be friction-welded simultaneously or continuously. Also, end face processing before friction welding and machining after friction welding can be performed with the tool post.
Furthermore, if the end surface of the workpiece is held in the center by the workpiece holding means, it is possible to machine a long material.
In addition, since the workpieces can be transferred between the opposed rotating chucks, the phases of a plurality of workpieces can be easily determined in milling processing or the like.

3個のワークを摩擦圧接する手順例を示す。An example of the procedure for friction welding the three workpieces is shown. 長尺材を摩擦圧接及び機械加工する手順例を示す。An example of a procedure for friction welding and machining a long material will be shown. 摩擦圧接後に引張り強度試験を行う例を示す。An example of performing a tensile strength test after friction welding is shown. 摩擦圧接後に接合部を切削評価する例を示す。An example of cutting evaluation of the joint after friction welding will be shown. 3個以上のワークを機械加工及び摩擦圧接する手順例を示す。An example of a procedure for machining and friction welding three or more workpieces will be shown. 本発明に係る摩擦圧接機の構成例を示す。The structural example of the friction welding machine which concerns on this invention is shown.

本発明に係る摩擦圧接機の構成例を図6に基づいて説明する。
ベース1の上の左側にL側主軸20とこの主軸モーターにより回転駆動制御されたL側チャック21を有する。
L側主軸と軸線が一致するように右側にR側主軸10を対向配置し、この主軸モーターにはR側チャック11が回転駆動制御されている。
本実施例では、R側主軸10がR側送りモーター12とボールネジ13とにてZ軸方向に移動制御された例になっている。
左右対向配置した2つの主軸は少なくとも一方がZ軸方向に位置制御された送りモーターを有すればよい。
なお、本明細書においては、主軸の軸線方向をZ軸、ベース面に平行でZ軸と直角方向をX軸、ベース面に垂直方向をY軸と表現する。
R側送りモーター12はサーボモーターになっていて、摩擦圧接接合工程において据え込み圧力とアプセット力(押圧力)が得られるようにサーボ制御されている。
A configuration example of the friction welding machine according to the present invention will be described with reference to FIG.
On the left side of the base 1, an L-side spindle 20 and an L-side chuck 21 that is rotationally driven and controlled by the spindle motor are provided.
An R-side main shaft 10 is disposed on the right side so that the L-side main shaft and the axis coincide with each other, and an R-side chuck 11 is rotationally controlled by this main shaft motor.
In this embodiment, the R-side main shaft 10 is controlled to move in the Z-axis direction by the R-side feed motor 12 and the ball screw 13.
It is only necessary that at least one of the two main shafts arranged opposite to each other has a feed motor whose position is controlled in the Z-axis direction.
In this specification, the axial direction of the main axis is expressed as the Z axis, the direction perpendicular to the Z axis parallel to the base surface is expressed as the X axis, and the direction perpendicular to the base surface is expressed as the Y axis.
The R-side feed motor 12 is a servo motor and is servo-controlled so as to obtain an upsetting pressure and an upset force (pressing force) in the friction welding process.

L側主軸20とR側主軸10との軸線上より図6の紙面上側には第1タレット31を有する第1刃物台30を備える。
第1刃物台30は、ボールネジ32aを介してZ軸方向移動制御する送りモーター32と、主軸線と直交する方向から主軸線に向けてX軸方向送り位置制御する送りモーター33及びY軸方向位置制御する送りモーター34を有している。
第1タレット31は旋回割り出し装置35により割り出し可能になっている。
A first tool post 30 having a first turret 31 is provided on the upper side of the drawing in FIG. 6 from the axis of the L-side spindle 20 and the R-side spindle 10.
The first tool post 30 includes a feed motor 32 that controls movement in the Z-axis direction via a ball screw 32a, a feed motor 33 that controls the feed position in the X-axis direction from the direction orthogonal to the main axis to the main axis, and the position in the Y-axis direction. It has a feed motor 34 to be controlled.
The first turret 31 can be indexed by the turning indexing device 35.

同様に主軸線の下側には第2タレット41を有する第2刃物台40が備えられている。
第2刃物台40もボールネジ42aを有する送りモーター42、送りモーター43,44にてそれぞれZ軸方向、X軸方向、Y軸方向の位置が制御されている。
また、第2タレット41は、旋回割り出し装置45により割り出し可能になっている。
なお、本実施例では2組のタレットからなる2タレットタイプを示したが、1タレットタイプ、3タレットタイプや4タレットタイプでもよい。
また、刃物台はB軸廻り制御された刃物台が備えられていてもよい。
Similarly, a second tool post 40 having a second turret 41 is provided below the main axis.
The position of the second tool post 40 in the Z-axis direction, the X-axis direction, and the Y-axis direction is controlled by a feed motor 42 having a ball screw 42a and feed motors 43 and 44, respectively.
Further, the second turret 41 can be indexed by the turning index device 45.
In this embodiment, a two turret type including two sets of turrets is shown, but a one turret type, a three turret type, and a four turret type may be used.
The tool post may be provided with a tool post controlled around the B axis.

次に図1に基づいて3個のワークを同時又は連続的に摩擦圧接する例を説明する。
第1のワークW1をL側チャック21にチャック固定し、刃物台40に取り付けたワーク保持手段としてのワーク保持具50に第2のワークW2をチャック保持する。
L側主軸20を主軸モーターで回転させ、刃物台40をL側主軸20に向けたZ軸方向に送りモーターで送り込み、据え込み力を加える。
これにより、W1とW2との接触面は摩擦により発熱し、金属が軟化溶融する。
所定の状態まで局部溶融した時点でL側主軸20の回転を停止し、刃物台40にてZ軸方向のアプセット力を加えることでW1とW2との接触面が固相接合する。
この際にR側主軸10のR側チャック11に第3のワークW3をチャック固定し、ワークW3をワークW2の背面に押付け、R側主軸10の回転制御によりワークW2とW3との接触面に摩擦熱を発熱させ、R側主軸10にR側送りモーター12にて、所定の据え込み力とアプセット力を加圧することでワークW1,W2,W3を同時に摩擦圧接接合することができる。
なお、ワークW1,W2,W3を同時に摩擦圧接してもよいが、図1(b)に示すようにワークW2の一方向の面にワークW1を摩擦圧接した後に連続的にR側主軸10を用いてワークW2の他の面にワークW3を摩擦圧接してもよい。
また、本実施例はR側主軸10にZ軸方向の送りモーター12を設けた例で説明したが、L側主軸20にもZ軸方向の送りモーターを備えると、刃物台40に取り付けたワーク保持具50にワークW2を保持固定し、両側から対向する主軸20,10にてワークW2を挟み込むように摩擦圧接することも可能になる。
Next, an example in which three workpieces are friction-welded simultaneously or continuously will be described with reference to FIG.
The first workpiece W1 is chuck-fixed to the L-side chuck 21, and the second workpiece W2 is chucked and held by a workpiece holder 50 as workpiece holding means attached to the tool post 40.
The L-side spindle 20 is rotated by the spindle motor, and the tool post 40 is fed by the feed motor in the Z-axis direction toward the L-side spindle 20 to apply upsetting force.
Thereby, the contact surface between W1 and W2 generates heat due to friction, and the metal is softened and melted.
When the local melting to a predetermined state is performed, the rotation of the L-side spindle 20 is stopped, and the contact surface between W1 and W2 is solid-phase bonded by applying an upset force in the Z-axis direction with the tool post 40.
At this time, the third work W3 is fixed to the R-side chuck 11 of the R-side spindle 10, the work W3 is pressed against the back surface of the work W2, and the contact surface between the works W2 and W3 is controlled by the rotation control of the R-side spindle 10. The workpieces W1, W2, and W3 can be simultaneously friction-welded by generating frictional heat and pressurizing predetermined upset force and upset force to the R-side spindle 10 by the R-side feed motor 12.
Although the workpieces W1, W2, and W3 may be friction-welded simultaneously, as shown in FIG. 1B, the R-side spindle 10 is continuously applied after the workpiece W1 is friction-welded to one surface of the workpiece W2. The workpiece W3 may be friction-welded to the other surface of the workpiece W2.
In this embodiment, the Z-axis direction feed motor 12 is provided on the R-side spindle 10. However, if the L-side spindle 20 is also provided with a Z-axis feed motor, the workpiece attached to the tool post 40 is provided. It is also possible to hold and fix the workpiece W2 to the holder 50 and to frictionally press the workpiece W2 between the main shafts 20 and 10 facing from both sides.

次に図2に基づいて、ワークの摩擦圧接と旋削や切削等の機械加工を組み合せた例を説明する。
L側チャック21にワークW1をチャックし、R側チャック11にワークW2をチャックし、L側主軸20を回転駆動制御し、R側主軸10の回転を停止した状態でR側送りモーターのサーボ制御により、据え込み力を加えて摩擦熱を生じさせ、次いでL側主軸20の回転を停止し、アプセット力を加えることでワークW1とW2とを摩擦圧接する。
本発明に係る摩擦圧接機においては第1タレット31を有した第1刃物台30を備えているので、接合したワークW1・W2を例えばL側チャック21に引き渡し、バイトツール36にて旋削したり、ドリルツール、ミーリングツール37等にて切削加工を行うことができる。
また、ワークW1・W2が長尺である場合には、図2(d)に示すようにワーク保持手段にワークセンターピン51を取り付けて、長尺ワークW1・W2の端面をセンター押し保持しつつ、ツール36,37にて機械加工することができる。
これにより、ワークの全長管理や、ミーリング加工する際のワークW1とW2との位相決めも容易になる。
Next, based on FIG. 2, an example in which the friction welding of the workpiece is combined with machining such as turning or cutting will be described.
The workpiece W1 is chucked to the L-side chuck 21, the workpiece W2 is chucked to the R-side chuck 11, the rotation control of the L-side spindle 20 is controlled, and the servo control of the R-side feed motor is performed with the rotation of the R-side spindle 10 stopped. Thus, an upsetting force is applied to generate frictional heat, then the rotation of the L-side spindle 20 is stopped, and an upset force is applied to frictionally weld the workpieces W1 and W2.
Since the friction welding machine according to the present invention includes the first tool post 30 having the first turret 31, the joined workpieces W1 and W2 are transferred to, for example, the L-side chuck 21 and turned by the bite tool 36. Cutting can be performed with a drill tool, milling tool 37, or the like.
When the workpieces W1 and W2 are long, the work center pin 51 is attached to the workpiece holding means as shown in FIG. 2D, and the end surfaces of the long workpieces W1 and W2 are pressed and held in the center. And can be machined with tools 36 and 37.
This facilitates the management of the overall length of the workpiece and the phase determination of the workpieces W1 and W2 during milling.

図3に摩擦圧接したワークの評価例を示す。
L側チャック21にワークW1をチャックし、R側チャック11にワークW2をチャックし、2タレットタイプであればバイトツール36,46にて左右のワークW1,W2の接合面を調整し、図3(b)に示すようにワークW1とW2とをこれまで説明した方法と同様にして摩擦圧接する。
本発明に係る摩擦圧接機においては、R側主軸10がZ軸方向に送り制御されているので、図3(c)に示すように引張り力Fを加えることで接合面の接合力を評価することができる。
また、図4(c)に示すように、接合部にミーリングツール38にて切削面を形成し、図4(e)に示すように接合部の金属組織を観察評価することもできる。
FIG. 3 shows an evaluation example of a workpiece subjected to friction welding.
The workpiece W1 is chucked on the L-side chuck 21, the workpiece W2 is chucked on the R-side chuck 11, and in the case of the 2-turret type, the joining surfaces of the left and right workpieces W1, W2 are adjusted with the tool tools 36, 46. FIG. As shown in (b), the workpieces W1 and W2 are friction-welded in the same manner as described above.
In the friction welding machine according to the present invention, since the R-side main shaft 10 is feed-controlled in the Z-axis direction, the joining force of the joining surface is evaluated by applying a tensile force F as shown in FIG. be able to.
Moreover, as shown in FIG.4 (c), a cutting surface can be formed in a junction part with the milling tool 38, and the metal structure of a junction part can also be observed and evaluated as shown in FIG.4 (e).

図5には、機械加工と摩擦圧接とを相互に連続的に行う例を示す。
L側チャック21にワークW1をチャックし、R側チャック11にワークW2をチャックし、刃物台30,40に取り付けたツール36等にて必要に応じて接合面の機械加工を行い、ワークW1とW2とを図5(b)に示すように摩擦圧接する。
摩擦圧接したワークW1・W2は、R側チャック11に引き渡し、L側チャック21に次のワークW3をチャックし、必要に応じてバイトツール36等にて接合面を加工調整し、図5(d)に示すようにワークW3を連続的にW1に摩擦圧接できる。
このようにして3個以上のワークを機械加工と摩擦圧接をしながら連続的に接合することもできる。
FIG. 5 shows an example in which machining and friction welding are continuously performed.
The workpiece W1 is chucked to the L-side chuck 21, the workpiece W2 is chucked to the R-side chuck 11, and the joint surface is machined as necessary with the tool 36 attached to the tool post 30, 40, etc. W2 is friction-welded as shown in FIG.
The workpieces W1 and W2 that have been friction-welded are transferred to the R-side chuck 11, the next workpiece W3 is chucked to the L-side chuck 21, and the bonding surface is processed and adjusted with a bite tool 36 or the like as required. ), The workpiece W3 can be continuously friction-welded to W1.
In this manner, three or more workpieces can be continuously joined while machining and friction welding.

10 R軸主軸
11 R側チャック
12 R側送りモーター
20 L側主軸
21 L側チャック
30 第1刃物台
31 第1タレット
40 第2刃物台
41 第2タレット
10 R-axis spindle 11 R-side chuck 12 R-side feed motor 20 L-side spindle 21 L-side chuck 30 First tool post 31 First turret 40 Second tool post 41 Second turret

Claims (3)

ワークをチャック保持する回転チャックを左右に対向配置し、当該左右の回転チャックは、当該回転チャックを回転駆動制御する主軸モーターと、少なくとも一方の回転チャックには、溶融圧接時に必要な据え込み力とアプセット力とが生じるように制御された送りモーターとを有し、対向する回転チャックの間にワーク保持手段を有していることを特徴とする摩擦圧接機。   Rotating chucks that hold the work chuck are arranged opposite to the left and right, the left and right rotating chucks have a spindle motor that controls the rotation of the rotating chuck, and at least one rotating chuck has an upsetting force required for melt pressure welding. A friction welding machine comprising: a feed motor controlled so as to generate an upset force; and workpiece holding means between opposed rotary chucks. ワークをチャック保持する回転チャックを左右に対向配置し、当該左右の回転チャックは、当該回転チャックを回転駆動制御する主軸モーターと、少なくとも一方の回転チャックには、溶融圧接時に必要な据え込み力とアプセット力とが生じるように制御された送りモーターとを有し、対向する回転チャックの間にワーク保持手段を有し、
いずれか一方の回転チャックにてワークW1をチャック固定し、前記ワーク保持手段にてワークW2を保持し、当該一方の回転チャックを回転駆動制御し、且つ当該回転チャック又はワーク保持手段をZ軸方向に送り押圧制御することでワークW1をワークW2の一方の面に摩擦圧接し、
次に又は同時に、他方の回転チャックにてワークW3をチャック固定し、当該他方の回転チャックを回転駆動及び送り押圧制御することでワークW2の他方の面にワークW3を摩擦圧接することを特徴とする摩擦圧接方法。
Rotating chucks that hold the work chuck are arranged opposite to the left and right, the left and right rotating chucks have a spindle motor that controls the rotation of the rotating chuck, and at least one rotating chuck has an upsetting force required for melt pressure welding. A feed motor controlled to generate an upset force, and a work holding means between the opposed rotating chucks,
The workpiece W1 is chuck-fixed by any one of the rotating chucks, the workpiece W2 is held by the workpiece holding means, the one rotating chuck is controlled to rotate, and the rotating chuck or the workpiece holding means is moved in the Z-axis direction. The workpiece W1 is friction-welded to one surface of the workpiece W2 by feeding and controlling
Next, or simultaneously, the workpiece W3 is fixed to the chuck by the other rotary chuck, and the workpiece W3 is friction-welded to the other surface of the workpiece W2 by rotationally driving and feeding and pressing the other rotary chuck. The friction welding method.
ワークをチャック保持する回転チャックを左右に対向配置し、当該左右の回転チャックは、当該回転チャックを回転駆動制御する主軸モーターと、少なくとも一方の回転チャックには、溶融圧接時に必要な据え込み力とアプセット力とが生じるように制御された送りモーターとを有し、対向する回転チャックの間にワーク保持手段を有し、
且つ少なくとも一台の刃物台を有し、
いずれか一方の回転チャックにてワークW1をチャック固定し、他方の回転チャックにてワークW2をチャック固定し、一方の回転チャックを回転駆動し、他方の回転チャックを静止し、送り押圧制御することでワークW1とW2とを摩擦圧接し、
当該摩擦圧接接合したワークW1・W2を一方の回転チャックに引き渡し、前記ワーク保持手段にてワークW1・W2の端面をセンター保持しつつ、刃物台に設けたツールにて機械加工することを特徴とするワークの摩擦圧接及び機械加工方法。
Rotating chucks that hold the work chuck are arranged opposite to the left and right, the left and right rotating chucks have a spindle motor that controls the rotation of the rotating chuck, and at least one rotating chuck has an upsetting force required for melt pressure welding. A feed motor controlled to generate an upset force, and a work holding means between the opposed rotating chucks,
And at least one tool post,
The workpiece W1 is fixed to the chuck with one of the rotating chucks, the workpiece W2 is fixed to the chuck with the other rotating chuck, the one rotating chuck is rotationally driven, the other rotating chuck is stationary, and feed pressure control is performed. Then, the workpieces W1 and W2 are friction welded,
The workpieces W1 and W2 that are friction-welded are delivered to one rotary chuck, and the end surfaces of the workpieces W1 and W2 are center-held by the workpiece holding means and machined by a tool provided on the tool post. Friction welding and machining method for workpiece
JP2009125325A 2009-05-25 2009-05-25 Friction-welding machine, and friction-welding and machining method Pending JP2010269363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009125325A JP2010269363A (en) 2009-05-25 2009-05-25 Friction-welding machine, and friction-welding and machining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009125325A JP2010269363A (en) 2009-05-25 2009-05-25 Friction-welding machine, and friction-welding and machining method

Publications (1)

Publication Number Publication Date
JP2010269363A true JP2010269363A (en) 2010-12-02

Family

ID=43417826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009125325A Pending JP2010269363A (en) 2009-05-25 2009-05-25 Friction-welding machine, and friction-welding and machining method

Country Status (1)

Country Link
JP (1) JP2010269363A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000071082A (en) * 1998-08-28 2000-03-07 Toyota Autom Loom Works Ltd Device and method for friction pressure welding
JP2000176656A (en) * 1998-12-14 2000-06-27 Toyota Autom Loom Works Ltd Friction welding method and its equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000071082A (en) * 1998-08-28 2000-03-07 Toyota Autom Loom Works Ltd Device and method for friction pressure welding
JP2000176656A (en) * 1998-12-14 2000-06-27 Toyota Autom Loom Works Ltd Friction welding method and its equipment

Similar Documents

Publication Publication Date Title
JP3763734B2 (en) Panel member processing method
JP7261799B2 (en) Machine Tools
KR20110010561A (en) Friction welding method
CN111315528B (en) Friction pressure welding method and machine tool
TWI809242B (en) working machinery
JP4647179B2 (en) Processing method
JP2010269362A (en) Friction welding machine and friction welding method
JP2016107383A (en) Manufacturing method of rack shaft, rack shaft and milling machine
JP5441499B2 (en) Friction welding method
JP2010269363A (en) Friction-welding machine, and friction-welding and machining method
JP5441500B2 (en) Friction welding method to slant cut surface and friction welding machine
JP2002096182A (en) Bonding method, revolving tool and joining body by friction heating
KR20120005708A (en) Friction welding apparatus and friction welding method
TW201200276A (en) Friction welding machine and friction welding method
TW202026080A (en) Machine tool
JP2022178147A (en) Friction joining device and friction joining method
JP2018187738A (en) Machine tool
JPH0796402A (en) Cutting-off method in opposed two-spindle lathe
JP2022159717A (en) Friction pressure-welding machine, friction pressure-welding method and component manufacturing method
JP2000202648A (en) Friction welding method
Babu et al. Experimental and Analysis of Process Parameters of Aluminium Alloys using CNC and VMC
CN102310263A (en) Friction compression joint machine and friction compression joint method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130607

A131 Notification of reasons for refusal

Effective date: 20130618

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20130730

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20131216

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140507