JP2010267636A - Induction heating cooker - Google Patents

Induction heating cooker Download PDF

Info

Publication number
JP2010267636A
JP2010267636A JP2010197893A JP2010197893A JP2010267636A JP 2010267636 A JP2010267636 A JP 2010267636A JP 2010197893 A JP2010197893 A JP 2010197893A JP 2010197893 A JP2010197893 A JP 2010197893A JP 2010267636 A JP2010267636 A JP 2010267636A
Authority
JP
Japan
Prior art keywords
resonance frequency
resonance
load
induction heating
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010197893A
Other languages
Japanese (ja)
Other versions
JP5020360B2 (en
Inventor
Jun Fumiya
潤 文屋
Katsuten Sekine
加津典 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010197893A priority Critical patent/JP5020360B2/en
Publication of JP2010267636A publication Critical patent/JP2010267636A/en
Application granted granted Critical
Publication of JP5020360B2 publication Critical patent/JP5020360B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To input rated electric power to all load pans to be heated and achieve low-loss operation of an inverter circuit. <P>SOLUTION: Adjustment of a resonance frequency is made by a resonance frequency adjustment means 10, and the resonance frequency is detected by the resonance frequency detecting means 14 according to an output of a load distinction means 9, and a drive frequency of an inverter circuit 3 is varied according to the detected resonance frequency. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、誘導加熱調理器に関し、特に全ての負荷鍋(磁性鍋と非磁性鍋)を誘導加熱できる誘導加熱調理器に関するものである。   The present invention relates to an induction heating cooker, and more particularly to an induction heating cooker capable of induction heating all load pans (a magnetic pan and a non-magnetic pan).

従来の誘導加熱調理器は、インバータ回路の駆動周波数を負荷鍋の種類に関係なく常に一定にしておき、負荷鍋の種類に応じて共振コンデンサの容量や加熱コイルと負荷鍋とのギャップ(間隔)等を可変させ、すなわち、共振回路の共振周波数を調整し、入力電力を可変している(例えば、特許文献1参照)。   In conventional induction heating cookers, the drive frequency of the inverter circuit is always kept constant regardless of the type of load pan, and the capacity of the resonant capacitor and the gap (interval) between the heating coil and the load pan according to the type of load pan Etc., that is, the resonant frequency of the resonant circuit is adjusted to vary the input power (see, for example, Patent Document 1).

特開平10−154575号公報(第2頁、図1)Japanese Patent Laid-Open No. 10-154575 (2nd page, FIG. 1)

従来の誘導加熱調理器では、負荷鍋の種類に応じて共振周波数を調整しているが、インバータ回路の駆動周波数を常に一定にしているため、負荷鍋の種類によって共振周波数が駆動周波数よりも大きくなり進相動作になった場合には、インバータ回路のスイッチング素子に進相電流が流れることにより、定格電力を投入できず、火力不足になってしまうという問題点や、インバータ回路の損失が増大してしまうという問題点があった。   In the conventional induction heating cooker, the resonance frequency is adjusted according to the type of the load pan, but since the drive frequency of the inverter circuit is always constant, the resonance frequency is larger than the drive frequency depending on the type of the load pan. In the case of phase advance operation, the phase advance current flows through the switching element of the inverter circuit, so that the rated power cannot be input and the thermal power becomes insufficient, and the inverter circuit loss increases. There was a problem that it was.

この発明は、上述のような課題を解決するためになされたもので、加熱対象となる全ての負荷鍋(磁性鍋と非磁性鍋)に対し定格電力を投入でき、また、インバータ回路の低損失動作を実現できる誘導加熱調理器を得るものである。   The present invention has been made to solve the above-described problems, and is capable of supplying rated power to all load pans (magnetic pans and non-magnetic pans) to be heated. Further, the inverter circuit has low loss. An induction heating cooker capable of realizing the operation is obtained.

この発明に係る誘導加熱調理器は、加熱コイルと共振コンデンサから成る共振回路と、高周波電流を共振回路に供給するインバータ回路とを備えた誘導加熱調理器において、加熱コイルの上面側に配された天板上に載置され、加熱コイルに高周波電流が供給されることで加熱される負荷鍋と、負荷鍋の材質を判別する負荷判別手段と、共振回路で形成される共振周波数の調整を行う共振周波数調整手段と、共振周波数を検出する共振周波数検出手段とを有し、負荷判別手段の出力に応じて共振周波数調整手段により共振周波数の調整を行うと共に共振周波数検出手段により共振周波数を検出し、検出された共振周波数に応じてインバータ回路の駆動周波数を変化させてなるものである。   An induction heating cooker according to the present invention is an induction heating cooker including a resonance circuit composed of a heating coil and a resonance capacitor, and an inverter circuit that supplies a high-frequency current to the resonance circuit, and is arranged on the upper surface side of the heating coil. A load pan placed on the top plate and heated by supplying a high frequency current to the heating coil, load discriminating means for discriminating the material of the load pan, and adjusting the resonance frequency formed by the resonance circuit It has a resonance frequency adjusting means and a resonance frequency detecting means for detecting the resonance frequency. The resonance frequency adjusting means adjusts the resonance frequency according to the output of the load discriminating means and detects the resonance frequency by the resonance frequency detecting means. The drive frequency of the inverter circuit is changed according to the detected resonance frequency.

この発明の誘導加熱調理器は、負荷判別手段の出力に応じて共振周波数調整手段により共振周波数の調整を行うと共に共振周波数検出手段により共振周波数を検出し、検出された共振周波数に応じてインバータ回路の駆動周波数を変化させるので、負荷鍋種類によらず定格電力を投入することが可能となり、また進相動作に起因するインバータ回路の損失増大を抑制することが可能となる。   The induction heating cooker according to the present invention adjusts the resonance frequency by the resonance frequency adjustment means according to the output of the load determination means, detects the resonance frequency by the resonance frequency detection means, and inverts the inverter circuit according to the detected resonance frequency. Therefore, the rated power can be input regardless of the type of the load pan, and the increase in the inverter circuit loss due to the phase advance operation can be suppressed.

この発明の実施の形態1を示す誘導加熱調理器の回路構成図である。It is a circuit block diagram of the induction heating cooking appliance which shows Embodiment 1 of this invention. この発明の実施の形態1を示す誘導加熱調理器の共振周波数と駆動周波数の関係図である。It is a related figure of the resonant frequency and drive frequency of the induction heating cooking appliance which shows Embodiment 1 of this invention. この発明の実施の形態1を示す誘導加熱調理器に磁性鍋を載置した場合のインバータ電流波形の一例を示す図である。It is a figure which shows an example of the inverter electric current waveform at the time of mounting a magnetic pan in the induction heating cooking appliance which shows Embodiment 1 of this invention. この発明の実施の形態1を示す誘導加熱調理器に非磁性鍋を載置した場合のインバータ電流波形の一例を示す図である。It is a figure which shows an example of the inverter electric current waveform at the time of mounting a nonmagnetic pan in the induction heating cooking appliance which shows Embodiment 1 of this invention. この発明の実施の形態1を示す誘導加熱調理器に磁性鍋を載置した場合のインバータトータル損失と火力の特性の一例を示す図である。It is a figure which shows an example of the characteristic of an inverter total loss and a thermal power at the time of mounting a magnetic pan in the induction heating cooking appliance which shows Embodiment 1 of this invention. この発明の実施の形態1を示す誘導加熱調理器に非磁性鍋を載置した場合のインバータトータル損失と火力の特性の一例を示す図である。It is a figure which shows an example of the characteristic of an inverter total loss and a thermal power at the time of mounting a nonmagnetic pan in the induction heating cooking appliance which shows Embodiment 1 of this invention. この発明の実施の形態2を示す誘導加熱調理器の回路構成図である。It is a circuit block diagram of the induction heating cooking appliance which shows Embodiment 2 of this invention. この発明の実施の形態3を示す誘導加熱調理器の筐体内断面図である。It is sectional drawing in a housing | casing of the induction heating cooking appliance which shows Embodiment 3 of this invention. この発明の実施の形態3を示す誘導加熱調理器の回路構成図である。It is a circuit block diagram of the induction heating cooking appliance which shows Embodiment 3 of this invention. この発明の実施の形態4を示す誘導加熱調理器の回路構成図である。It is a circuit block diagram of the induction heating cooking appliance which shows Embodiment 4 of this invention. この発明の実施の形態5を示す誘導加熱調理器の回路構成図である。It is a circuit block diagram of the induction heating cooking appliance which shows Embodiment 5 of this invention. この発明の実施の形態5を示す誘導加熱調理器に磁性鍋の一種を載置した時にスナバコンデンサ容量を変えた場合のインバータトータル損失と火力の特性の一例を示す図である。It is a figure which shows an example of the characteristic of an inverter total loss at the time of changing a snubber capacitor capacity | capacitance when a kind of magnetic pan is mounted in the induction heating cooking appliance which shows Embodiment 5 of this invention, and a thermal power. この発明の実施の形態5を示す誘導加熱調理器に非磁性鍋の一種を載置した時にスナバコンデンサ容量を変えた場合のインバータトータル損失と火力の特性の一例を示す図である。It is a figure which shows an example of the characteristic of an inverter total loss and a thermal power at the time of changing a snubber capacitor capacity | capacitance when a kind of nonmagnetic pan is mounted in the induction heating cooking appliance which shows Embodiment 5 of this invention.

実施の形態1.
図1はこの発明の実施の形態1を示す誘導加熱調理器の回路構成図、図2はこの誘導加熱調理器の共振周波数と駆動周波数の関係を示す図、図3はこの誘導加熱調理器に磁性鍋を載置した場合のインバータ電流波形の一例を示す図、図4はこの誘導加熱調理器に非磁性鍋を載置した場合のインバータ電流波形の一例を示す図、図5はこの誘導加熱調理器に磁性鍋を載置した場合のインバータトータル損失と火力の特性の一例を示す図、図6はこの誘導加熱調理器に非磁性鍋を載置した場合のインバータトータル損失と火力の特性の一例を示す図である。
Embodiment 1 FIG.
FIG. 1 is a circuit configuration diagram of an induction heating cooker showing Embodiment 1 of the present invention, FIG. 2 is a diagram showing a relationship between a resonance frequency and a drive frequency of the induction heating cooker, and FIG. FIG. 4 is a diagram showing an example of an inverter current waveform when a magnetic pan is placed, FIG. 4 is a diagram showing an example of an inverter current waveform when a non-magnetic pan is placed on this induction heating cooker, and FIG. 5 is this induction heating Fig. 6 shows an example of inverter total loss and thermal power characteristics when a magnetic pan is placed in a cooker. Fig. 6 shows the inverter total loss and thermal power characteristics when a non-magnetic pan is placed in this induction heating cooker. It is a figure which shows an example.

図1において、交流電源1を整流する整流回路2の出力側には、平滑コンデンサ4およびインバータ回路3が接続される。インバータ回路3は、複数のスイッチング素子3a、3b、3c、3dから構成され、その出力側には加熱コイル5と共振コンデンサ7で形成される共振回路が接続される。また、スナバコンデンサ8a及び8bがスイッチング素子3b及び3dとそれぞれ並列に接続される。   In FIG. 1, a smoothing capacitor 4 and an inverter circuit 3 are connected to the output side of a rectifier circuit 2 that rectifies an AC power supply 1. The inverter circuit 3 includes a plurality of switching elements 3a, 3b, 3c, and 3d, and a resonance circuit formed by the heating coil 5 and the resonance capacitor 7 is connected to the output side thereof. Snubber capacitors 8a and 8b are connected in parallel with switching elements 3b and 3d, respectively.

インバータ回路3のスイッチング素子3a、3b、3c、3dは、制御手段11内に設けられたインバータ回路用ドライバ11bの出力信号を受けてスイッチングを行い、加熱コイル5の上面側に配された天板15(後述の図9参照)上に載置される負荷鍋6を誘導加熱する。ここで、制御手段11内の駆動信号制御回路11aは、設定電力生成手段12及び負荷鍋6の材質を判別する負荷判別手段9からの出力に基づいてスイッチング信号(駆動周波数やデューティ等)を決定し、インバータ回路用ドライバ11bへ出力する。また、共振周波数調整手段10は負荷判別手段9からの出力に基づいて、共振回路の共振周波数を調整する(共振周波数の調整についての詳細は後述する)。   The switching elements 3 a, 3 b, 3 c, 3 d of the inverter circuit 3 perform switching in response to the output signal of the inverter circuit driver 11 b provided in the control means 11 and are arranged on the top surface side of the heating coil 5. 15 (see FIG. 9 to be described later) induction heating the load pan 6 placed. Here, the drive signal control circuit 11a in the control means 11 determines a switching signal (drive frequency, duty, etc.) based on outputs from the set power generation means 12 and the load determination means 9 for determining the material of the load pan 6. And output to the inverter circuit driver 11b. The resonance frequency adjusting means 10 adjusts the resonance frequency of the resonance circuit based on the output from the load determining means 9 (details regarding the adjustment of the resonance frequency will be described later).

次に動作について図1〜図6を用いて説明する。
共振回路の共振周波数f0は、負荷鍋6が天板15上に載置されることで生成される加熱コイル5のインダクタンス値(以下、L値という)と共振コンデンサの7容量値(以下、C値という)により次式で決定される。
f0=1/2π√LC ・・・・・・・・・式(1)
ここで、C値、加熱コイル仕様(線材の種類や撚り数、巻数)、及びギャップ(加熱コイル5と負荷鍋6との距離、図8参照)を不変とすると、共振回路の共振周波数f0は、負荷鍋6の材質の違いにより値が異なる。例えば鉄鍋等の磁性鍋を天板15上に載置した場合はL値が大きくなり(例えば、直径200mmの鉄鍋ではL値が約100μHになる)、SUS304鍋等の非磁性鍋を載置した場合はL値が小さくなる(例えば、直径200mmのSUS304鍋ではL値が約60μHになる)。これより、共振回路の共振周波数f0は、磁性鍋では低い値(図2のf0(A))となり、非磁性鍋では高い値(図2のf0(B))となることがわかる。
Next, the operation will be described with reference to FIGS.
The resonance frequency f 0 of the resonance circuit is determined based on the inductance value (hereinafter referred to as L value) of the heating coil 5 generated by placing the load pan 6 on the top plate 15 and the 7 capacitance value (hereinafter referred to as L value) of the resonance capacitor. (Referred to as C value).
f0 = 1 / 2π√LC Equation (1)
Here, if the C value, the heating coil specification (the type of wire, the number of twists, the number of turns), and the gap (distance between the heating coil 5 and the load pan 6, see FIG. 8) are unchanged, the resonance frequency f 0 of the resonance circuit. Is different depending on the material of the load pan 6. For example, when a magnetic pan such as an iron pan is placed on the top plate 15, the L value increases (for example, the L value is about 100 μH for an iron pan having a diameter of 200 mm), and a non-magnetic pan such as a SUS304 pan is mounted. When placed, the L value becomes small (for example, the L value becomes about 60 μH in a SUS304 pan having a diameter of 200 mm). From this, it can be seen that the resonance frequency f 0 of the resonance circuit has a low value (f 0 (A) in FIG. 2) in the magnetic pan and a high value (f 0 (B) in FIG. 2) in the non-magnetic pan. .

このように負荷鍋6の材質の違いによって共振周波数f0の値が異なることに基づいて、負荷判別手段9が磁性鍋、非磁性鍋等の負荷鍋の種類の違いを判別し、制御手段11がその判別結果に応じてインバータ回路の駆動周波数f1を設定する。ここで、駆動信号制御回路11aは駆動周波数f1を必ず共振周波数f0よりも高くなるように設定する。即ち、図2に示すように、磁性鍋が載置された際の駆動周波数f1(A)は共振周波数f0(A)に対してf0(A)<f1(A)と設定され、非磁性鍋が載置された際の駆動周波数f1(B)は共振周波数f0(B)に対してf0(B)<f1(B)と設定される。また、駆動周波数f1(A)とf1(B)の関係は上記の通リf0(A)<f0(B)であるため、必然的にf1(A)<f1(B)となる。 Thus, based on the difference in the value of the resonance frequency f 0 depending on the material of the load pan 6, the load discriminating means 9 discriminates the type of load pan such as a magnetic pan or a non-magnetic pan, and the control means 11. Sets the drive frequency f 1 of the inverter circuit according to the determination result. Here, the drive signal control circuit 11a is set to be higher than necessarily the resonance frequency f 0 of the driving frequency f 1. That is, as shown in FIG. 2, the drive frequency f 1 (A) when the magnetic pan is placed is set to f 0 (A) <f 1 (A) with respect to the resonance frequency f 0 (A) . The drive frequency f 1 (B) when the nonmagnetic pan is placed is set to f 0 (B) <f 1 (B) with respect to the resonance frequency f 0 (B) . Further, since the relationship between the drive frequencies f 1 (A) and f 1 (B) is the above-mentioned general f 0 (A) <f 0 (B) , inevitably f 1 (A) <f 1 (B ) .

ところで、共振周波数f0値は以下のように設計される。L値が大きい磁性鍋を基準に共振周波数f0を設計(即ち、加熱コイル仕様やC値定数等を決定)する場合には、負荷判別手段9の出力に応じて決定される駆動周波数f1(A)(電波法規定の下限値である20kHz近辺)で定格電力を投入できるような共振周波数f0(A)とする。また、L値が小さい非磁性鍋を基準に共振周波数f0を設計する場合には、負荷判別手段9の出力に応じて決定されるスイッチング素子3a、3b、3c、3dのスイッチング損失が大きくならない駆動周波数f1(B)(27kHz〜30kHz程)に対して進相動作とならない共振周波数f0(B)とする。 By the way, the resonance frequency f 0 value is designed as follows. When the resonance frequency f 0 is designed on the basis of a magnetic pot having a large L value (that is, the heating coil specification, C value constant, etc. are determined), the driving frequency f 1 determined according to the output of the load determination means 9 (A) The resonance frequency f 0 (A) is set so that the rated power can be input at ( around 20 kHz, which is the lower limit of the Radio Law ) . Further, when the resonance frequency f 0 is designed with reference to a nonmagnetic pan having a small L value, the switching loss of the switching elements 3a, 3b, 3c, and 3d determined according to the output of the load determination means 9 does not increase. The resonance frequency is f 0 (B) that does not lead to a phase advance operation with respect to the drive frequency f 1 (B) (about 27 kHz to 30 kHz ) .

上記に従い、磁性鍋を基準にして共振周波数をf0(A)に設計(即ち加熱コイル仕様やC値定数等を決定)した場合に、非磁性鍋が天板15上に載置されると、負荷判別手段9の出力を受けて駆動周波数がf1(B)に設定され、図1の電流観測点には図4に示す負荷電流が流れる。次に、負荷判別手段9の出力(或いは設定された駆動周波数)を受けて共振周波数調整手段10により共振周波数を低く(f0(B)小)する任意の調整を行うと、図4(b)に示すように進相動作を回避できる。図4の電流波形に相当するインバータトータル損失を図6に示すが、共振周波数f0(B)を低く(f0(B)小)する調整を行うことで、低損失動作が可能となることがわかる。 According to the above, when the resonance frequency is designed to be f 0 (A) based on the magnetic pan (that is, the heating coil specification, C value constant, etc. are determined), the non-magnetic pan is placed on the top plate 15. In response to the output of the load discriminating means 9, the drive frequency is set to f 1 (B) , and the load current shown in FIG. 4 flows through the current observation point in FIG. Next, upon receiving the output (or set drive frequency) of the load discriminating means 9 and performing an arbitrary adjustment by the resonance frequency adjusting means 10 to lower the resonance frequency (f 0 (B) small ), FIG. ) Phase advance operation can be avoided as shown in FIG. The total inverter loss corresponding to the current waveform of FIG. 4 is shown in FIG. 6. By adjusting the resonance frequency f 0 (B) to be low (f 0 (B) small ), low loss operation can be performed. I understand.

一方、非磁性鍋を基準にして共振周波数をf0(B)に設計(即ち加熱コイル仕様やC値定数等を決定)した場合に、磁性鍋が天板15上に載置されると、負荷判別手段9の出力を受けて駆動周波数がf1(A)に設定され、図1の電流観測点には図3に示す負荷電流が流れる。次に、負荷判別手段9の出力(或いは設定された駆動周波数)を受けて共振周波数調整手段10により共振周波数を高く(f0(A)大)する任意な調整を行うと、図3(a)に示すような動作となる。図3の電流波形に相当するインバータトータル損失を図5に示すが、共振周波数を高く(f0(A)大)する調整を行うことで、定格電力動作(図5では2.5kW入力)が可能となる。 On the other hand, when the resonance frequency is designed to be f 0 (B) based on the nonmagnetic pan (that is, the heating coil specification, C value constant, etc. are determined), when the magnetic pan is placed on the top plate 15, In response to the output of the load discriminating means 9, the drive frequency is set to f 1 (A) , and the load current shown in FIG. 3 flows through the current observation point in FIG. Next, upon receiving an output (or a set drive frequency) of the load discriminating means 9 and performing an arbitrary adjustment to increase the resonance frequency (f 0 (A) large ) by the resonance frequency adjusting means 10, FIG. The operation is as shown in FIG. The total inverter loss corresponding to the current waveform of FIG. 3 is shown in FIG. 5, but the rated power operation (2.5 kW input in FIG. 5) can be achieved by adjusting the resonance frequency to be high (f 0 (A) large ). It becomes possible.

以上のように、動作開始時の負荷判別手段9出力に応じてインバータ回路の駆動周波数を変化させると共に、共振周波数調整手段10により共振回路で形成される共振周波数の調整を任意の値で行うようにしているので、負荷鍋の種類に関係なく定格電力を投入することができ、また、進相動作に起因するインバータ回路の損失増大を抑制することができる。   As described above, the drive frequency of the inverter circuit is changed according to the output of the load determination means 9 at the start of operation, and the resonance frequency formed by the resonance circuit is adjusted by the resonance frequency adjustment means 10 with an arbitrary value. Therefore, the rated power can be input regardless of the type of the load pan, and the increase in the inverter circuit loss due to the phase advance operation can be suppressed.

実施の形態2.
上記実施の形態1では、動作開始時の負荷判別手段9の出力に応じてインバータ回路の駆動周波数を変化させると共に、駆動周波数に応じて(負荷判別手段9の出力に応じて)共振周波数調整手段10により共振周波数の調整を行うものを示したが、この実施の形態2では、共振周波数検出手段を設け、共振周波数調整手段により共振周波数を調整した後、共振周波数検出手段により検出された共振周波数に応じてインバータ回路の駆動周波数を変化させるものを示す。
Embodiment 2. FIG.
In the first embodiment, the drive frequency of the inverter circuit is changed according to the output of the load determination means 9 at the start of operation, and the resonance frequency adjustment means is determined according to the drive frequency (according to the output of the load determination means 9). In the second embodiment, the resonance frequency is detected by the resonance frequency detecting means after the resonance frequency adjusting means is provided, and the resonance frequency is adjusted by the resonance frequency adjusting means. The thing which changes the drive frequency of an inverter circuit according to is shown.

図7はこの発明の実施の形態2を示す誘導加熱調理器の回路構成図である。図において、上記実施の形態1と同一または相当部分には同一符号を付け、説明を省略する。加熱コイル5と共振コンデンサ7で形成される共振回路上に、共振周波数を検出する共振周波数検出手段14を設け、共振周波数検出手段14の出力は駆動信号制御回路11aへ接続(入力)される。なお、本実施の形態2において、上記実施の形態1とは相違点は負荷判別手段9の出力を駆動信号制御回路11aへ接続(入力)しないことである。   FIG. 7 is a circuit configuration diagram of an induction heating cooker showing Embodiment 2 of the present invention. In the figure, the same reference numerals are given to the same or corresponding parts as those in the first embodiment, and the description will be omitted. Resonance frequency detection means 14 for detecting the resonance frequency is provided on the resonance circuit formed by the heating coil 5 and the resonance capacitor 7, and the output of the resonance frequency detection means 14 is connected (input) to the drive signal control circuit 11a. In the second embodiment, the difference from the first embodiment is that the output of the load determination means 9 is not connected (inputted) to the drive signal control circuit 11a.

次に動作について説明する。
負荷鍋6が天板15上に載置され、負荷判別手段9により磁性鍋や非磁性鍋等の負荷鍋6の種類(材質)が判別されると、その種類に応じて共振周波数調整手段10により共振回路の共振周波数の調整が一意的に行われる。
ここで、負荷鍋6が磁性鍋のような材質の場合には、上記実施の形態1のように共振周波数f0(A)が高くなるように調整することで、定格電力動作が可能となる。このため、共振周波数調整手段10は、磁性鍋のような材質と判別された時は共振周波数を高くする(例えば、f0(A)をf0(A)大にする)調整を一意的に行う。
また、負荷鍋6が非磁性鍋のような材質の場合には、上記実施の形態1のように共振周波数f0(B)が低くなるように調整を行うことで、低損失動作が可能となる。このため、共振周波数調整手段10は、非磁性鍋のような材質と判別された際は共振周波数を低くする(例えば、f0(B)をf0(B)小にする)調整を一意的に行う。
Next, the operation will be described.
When the load pan 6 is placed on the top plate 15 and the type (material) of the load pan 6 such as a magnetic pan or a non-magnetic pan is discriminated by the load discriminating means 9, the resonance frequency adjusting means 10 is selected according to the type. Thus, the resonance frequency of the resonance circuit is uniquely adjusted.
Here, when the load pan 6 is made of a material such as a magnetic pan, the rated power operation can be performed by adjusting the resonance frequency f 0 (A) to be high as in the first embodiment. . For this reason, the resonance frequency adjusting means 10 uniquely adjusts the resonance frequency to be higher (for example, to increase f 0 (A) to f 0 (A)) when the material is determined to be a material such as a magnetic pot. Do.
Further, when the load pan 6 is made of a material such as a non-magnetic pan, it is possible to perform a low loss operation by adjusting the resonance frequency f 0 (B) to be low as in the first embodiment. Become. For this reason, the resonance frequency adjusting means 10 uniquely adjusts the resonance frequency to be lower (for example, to reduce f 0 (B) to f 0 (B)) when it is determined that the material is a non-magnetic pan or the like. To do.

以上のように共振周波数調整手段10により共振周波数の調整が一意的に行われた後、共振周波数検出手段14により共振回路で形成される共振周波数の検出を行う。ここで、共振周波数検出手段14は共振回路に流れる負荷電流(共振電流)を検出することにより共振周波数を検出する構成を有する。具体的な検出方法としては、例えば、誘導加熱調理器の動作開始時に制御手段11の指令で検出用負荷電流をインバータ回路3に供給し、すなわち、スイッチング素子3a〜3dで構成されるインバータ回路に於いては、まずスイッチング素子3aと3d、若しくはスイッチング素子3cと3bを制御手段11の指令でオンさせることにより供給し、次にスイッチング素子3aと3cをオフ、スイッチング素子3bと3dをオンさせることにより共振回路に共振電流が流れ続けるため、その共振電流のゼロクロス点を検出する等により共振周波数を検出する。
別の共振周波数を検出する方法として、誘導加熱調理器の動作開始時に制御手段11の指令で検出用負荷電流をインバータ回路3に供給し、次にスイッチング素子3aと3d、スイッチング素子3cと3bの組み合わせでオンオフを行う周波数を掃引した時に、共振回路に流れる負荷電流値(ピーク値や実効値等)が最大となる周波数を検出することも可能である。
After the resonance frequency is uniquely adjusted by the resonance frequency adjusting means 10 as described above, the resonance frequency formed by the resonance circuit is detected by the resonance frequency detecting means 14. Here, the resonance frequency detecting means 14 has a configuration for detecting the resonance frequency by detecting a load current (resonance current) flowing in the resonance circuit. As a specific detection method, for example, a detection load current is supplied to the inverter circuit 3 by a command of the control means 11 at the start of operation of the induction heating cooker, that is, an inverter circuit configured by the switching elements 3a to 3d. In this case, first, the switching elements 3a and 3d or the switching elements 3c and 3b are supplied by being turned on by a command of the control means 11, and then the switching elements 3a and 3c are turned off and the switching elements 3b and 3d are turned on. Since the resonance current continues to flow through the resonance circuit, the resonance frequency is detected by detecting the zero cross point of the resonance current.
As another method of detecting the resonance frequency, a load current for detection is supplied to the inverter circuit 3 by the command of the control means 11 at the start of the operation of the induction heating cooker, and then the switching elements 3a and 3d and the switching elements 3c and 3b It is also possible to detect the frequency at which the load current value (peak value, effective value, etc.) flowing through the resonance circuit becomes maximum when the frequency for turning on and off is swept in combination.

上記他の方法により共振周波数f0を検出すると、検出された共振周波数に応じて駆動信号制御回路11aがインバータ回路3への駆動周波数を決定し、インバータ回路用ドライバ11bを介してインバータ回路3にスイッチング信号を供給する。ここで駆動周波数f1は、図2に示す通り負荷鍋種類によらず、f1>f0の関係で決定される。 When the resonance frequency f 0 is detected by the other method described above, the drive signal control circuit 11a determines the drive frequency to the inverter circuit 3 according to the detected resonance frequency, and the inverter circuit 3 is connected to the inverter circuit 3 via the inverter circuit driver 11b. Supply a switching signal. Here, the drive frequency f 1 is determined by the relationship of f 1 > f 0 regardless of the type of load pan as shown in FIG.

以上のように、動作開始時の負荷判別手段出力に応じて共振周波数調整手段により共振周波数の調整を一意的に先ず行い、調整後の共振周波数に応じて制御手段11によりインバータ回路3の駆動周波数を決定するようにしているので、共振周波数側ではなく駆動周波数側で動作ポイントを決定することになり、実施の形態1と比較して共振周波数の調整値を一意的に決めることができ、制御方法が容易となる。   As described above, the resonance frequency adjustment unit first uniquely adjusts the resonance frequency in accordance with the load determination unit output at the start of operation, and the control unit 11 drives the inverter circuit 3 in accordance with the adjusted resonance frequency. Therefore, the operation point is determined not on the resonance frequency side but on the drive frequency side, and the adjustment value of the resonance frequency can be uniquely determined as compared with the first embodiment, and the control is performed. The method becomes easy.

実施の形態3.
以上の実施の形態1、2に対し、次に共振周波数調整手段の具体的方法を提示した場合の実施の形態を示す。図8はこのような場合の誘導加熱調理器の筐体内断面図を示すものである。図9はこのような場合の誘導加熱調理器の回路構成図を示すものである。
図8において、負荷鍋6は加熱コイル5の上面側に配された天板15上に載置されることで加熱されるが、加熱コイル5と天板15の間には間隙(ギャップと称す)が存在しており、加熱コイル5の冷却等に使用される。加熱コイル5の下段にはギャップ長を可変するためのギャップ可変手段16が備えられており、筐体板金17で固定される。
Embodiment 3 FIG.
In contrast to the first and second embodiments described above, an embodiment in which a specific method of the resonance frequency adjusting means is presented will be described next. FIG. 8 shows a cross-sectional view inside the casing of the induction heating cooker in such a case. FIG. 9 shows a circuit configuration diagram of the induction heating cooker in such a case.
In FIG. 8, the load pan 6 is heated by being placed on a top plate 15 disposed on the upper surface side of the heating coil 5, and a gap (referred to as a gap) is provided between the heating coil 5 and the top plate 15. ) And is used for cooling the heating coil 5 or the like. Gap varying means 16 for varying the gap length is provided at the lower stage of the heating coil 5 and is fixed by a housing sheet metal 17.

次に動作について説明する。
負荷鍋種類、加熱コイル仕様(線材や撚り数、巻数)を不変とした場合、L値はギャップの違いで異なった値を取る。ギャップが大きくなるとL値は大きくなり、ギャップが小さくなるとL値は小さくなることから、負荷判別手段9により負荷鍋6が磁性鍋のような材質と判別された場合にはギャップ可変手段16によりギャップを小さくしてL値を小さくし、共振周波数を高く調整するように動作させる。また負荷鍋6が非磁性鍋のような材質と判別された場合にはギャップ可変手段16によりギャップを大きくしてL値を大きくし、共振周波数を低く調整するように動作させる。
このギャップ可変手段16は具体的にはアクチュエータ(モータ、エアシリンダ、油圧シリンダ、ピエゾ素子等)を用いて構成することが可能である。
尚、このギャップ可変手段16は、実施の形態1と実施の形態2のどちらの制御シーケンス(負荷判別手段9により負荷判別がなされてから、負荷鍋種類に合わせたインバータ回路の駆動周波数設定、及び共振周波数の調整が行われるまでのシーケンスを指す)にも適用可能であることを記しておく。
Next, the operation will be described.
If the load pan type and heating coil specifications (wire, number of twists, number of turns) are unchanged, the L value takes different values depending on the gap. When the gap is increased, the L value is increased, and when the gap is decreased, the L value is decreased. Therefore, when the load determining means 9 determines that the load pan 6 is made of a material such as a magnetic pot, the gap variable means 16 performs the gap. To reduce the L value and adjust the resonance frequency higher. When it is determined that the load pan 6 is made of a material such as a non-magnetic pan, the gap variable means 16 increases the gap to increase the L value, and the resonance frequency is adjusted to be low.
Specifically, the gap varying means 16 can be configured using an actuator (motor, air cylinder, hydraulic cylinder, piezo element, etc.).
Note that the gap variable means 16 has either the control sequence of the first embodiment or the second embodiment (the drive frequency setting of the inverter circuit according to the load pan type after the load determination by the load determination means 9, and Note that the present invention is also applicable to a sequence until the resonance frequency is adjusted.

また、図8に示す構造のギャップ可変手段16によるギャップ可変の他に、天板15全体を筐体板金17に対して上下駆動させてギャップ可変(図示せず)、又は天板15の負荷鍋載置部のみを上下駆動させてギャップ可変(図示せず)といった方法で駆動周波数設定と共に共振周波数調整を行う、更には共振コンデンサの容量を変化させることで(図示せず)、駆動周波数設定と共に共振周波数調整を行うという方法もあることを挙げておく。   In addition to changing the gap by the gap changing means 16 having the structure shown in FIG. 8, the entire top plate 15 is driven up and down with respect to the housing sheet metal 17 to change the gap (not shown) or the load pan of the top plate 15. Only the mounting portion is driven up and down to adjust the resonance frequency by changing the drive frequency by a method such as variable gap (not shown), and further by changing the capacitance of the resonance capacitor (not shown), along with the drive frequency setting. It should be mentioned that there is a method of adjusting the resonance frequency.

以上のように、共振周波数調整としてアクチュエータ等を用いたギャップ可変手段を用いるようにしているので、構造設計が容易で小規模な共振周波数調整手段を有する誘導加熱調理器を得ることが可能となる。   As described above, since the gap variable means using an actuator or the like is used for the resonance frequency adjustment, it is possible to obtain an induction heating cooker having a simple structure design and a small-scale resonance frequency adjustment means. .

実施の形態4.
以上の実施の形態に対し、次にインバータ回路へ流れる負荷電流の位相状態を検知する位相検知手段を誘導加熱調理器に設けた場合の実施の形態を示す。
図10は、このような場合の誘導加熱調理器の回路構成図を示すものである。
図において、位相検知手段14が整流回路2の出力に設けられ、インバータ回路3のスイッチング素子(3a〜3d)に流れる負荷電流の位相状態を検知する。位相検知手段19の出力は共振周波数調整手段10、及び(或いは)駆動信号制御回路11aに接続されることで、位相検知結果に応じて共振周波数の調整を行う、及び(或いは)駆動周波数を変化させるようにする。
その他の構成は実施の形態1と同様であり、説明を省略する。
Embodiment 4 FIG.
In contrast to the above-described embodiment, an embodiment in which phase detection means for detecting the phase state of the load current that next flows to the inverter circuit is provided in the induction heating cooker will be described.
FIG. 10 shows a circuit configuration diagram of the induction heating cooker in such a case.
In the figure, a phase detector 14 is provided at the output of the rectifier circuit 2 and detects the phase state of the load current flowing through the switching elements (3a to 3d) of the inverter circuit 3. The output of the phase detection means 19 is connected to the resonance frequency adjustment means 10 and / or the drive signal control circuit 11a to adjust the resonance frequency according to the phase detection result and / or change the drive frequency. I will let you.
Other configurations are the same as those of the first embodiment, and the description thereof is omitted.

次に動作について説明する。
先ず、動作開始時の負荷判別手段9出力に応じてインバータ回路3の駆動周波数を変化させ、また共振周波数調整手段10により共振回路で形成される共振周波数の調整を行う。ここでの制御シーケンスは実施の形態1と実施の形態2のどちらでも構わない、つまり共振周波数調整と駆動周波数設定を行う順序は問わないものとする。ここで負荷鍋が非磁性鍋のような材質の場合、共振周波数調整手段10と負荷判別手段9により共振周波数調整とインバータ回路3の駆動周波数設定が行われたにも拘わらず、図4(a)に示すような進相電流がスイッチング素子に流れてしまうことがある。これは共振周波数調整手段10による共振周波数の調整後の共振周波数f0が高すぎる、或いは負荷判別手段9による駆動周波数f1設定が低すぎることに起因する。
位相検知手段19が図4(a)のような進相電流を検知すると、位相検知手段14は進相電流が流れなくなる共振周波数f0となるように共振周波数調整手段10に指令を送リf0を低くする、及び(或いは)進相電流が流れなくなる駆動周波数f1となるように駆動信号制御回路11aに直接指令を送りf1を高くすることでインバータ回路3に進相電流が流れることを回避する。
Next, the operation will be described.
First, the drive frequency of the inverter circuit 3 is changed according to the output of the load discriminating means 9 at the start of operation, and the resonance frequency formed by the resonance circuit is adjusted by the resonance frequency adjusting means 10. The control sequence here may be either the first embodiment or the second embodiment, that is, the order in which the resonance frequency adjustment and the drive frequency setting are performed does not matter. Here, when the load pan is made of a material such as a non-magnetic pan, the resonance frequency adjustment means 10 and the load discrimination means 9 adjust the resonance frequency and set the drive frequency of the inverter circuit 3, although FIG. ) May lead to the switching element. This is because the resonance frequency f 0 after adjustment of the resonance frequency by the resonance frequency adjusting means 10 is too high, or the drive frequency f 1 setting by the load determining means 9 is too low.
When the phase detection means 19 detects a phase advance current as shown in FIG. 4A, the phase detection means 14 sends a command to the resonance frequency adjustment means 10 so that the resonance frequency f 0 at which the phase advance current does not flow. 0 lower, and (or) leading current does not flow the driving frequency f 1 and so as to drive signal control circuit may flow inverter circuit 3 binary phase current by increasing the feed f 1 directly command to 11a To avoid.

ここで、進相電流は図4(a)に示すようなピークの大きいサージ状となる為、位相検知手段19としては例えば電流閾値(上限値)設定をし、電流検知をする方法が考えられる。   Here, since the phase advance current has a surge shape with a large peak as shown in FIG. 4A, a method of detecting the current by setting, for example, a current threshold (upper limit value) as the phase detection means 19 is conceivable. .

尚、図10に示すインバータ回路構成とした場合、位相検知手段19は図10に示す整流回路2出力に設ける以外に、スイッチング素子3aの出力線(図10に示すスイッチング素子ならコレクタ線)、又はスイッチング素子3cの出力線(図10に示すスイッチング素子ならコレクタ線)に設けても同様の効果を得られることを記しておく。   In the case of the inverter circuit configuration shown in FIG. 10, the phase detection means 19 is provided at the output of the rectifier circuit 2 shown in FIG. 10, or the output line of the switching element 3a (collector line in the case of the switching element shown in FIG. 10), or It should be noted that the same effect can be obtained even if provided on the output line of the switching element 3c (or the collector line in the case of the switching element shown in FIG. 10).

以上のように、インバータ回路へ流れる負荷電流の位相状態を検知する位相検知手段を設けるようにしたので、負荷鍋が非磁性鍋のような材質の場合に、進相電流が流れないような動作ポイントを確実に設定することができ、顕著に損失増大する動作を確実に回避することが可能となる。   As described above, since the phase detection means for detecting the phase state of the load current flowing to the inverter circuit is provided, when the load pan is made of a material such as a non-magnetic pan, the operation in which the phase advance current does not flow The point can be set reliably, and it is possible to reliably avoid an operation that significantly increases the loss.

実施の形態5.
インバータ回路の損失を更に低減させる手段として、実施の形態1〜5に加えてスナバコンデンサ容量を変化させる場合の実施の形態を示す。
図11は、このような場合の誘導加熱調理器の回路構成図を示すものである。また図12は磁性鍋の一種(鍋Aと称す)が載置された時にスナバコンデンサ容量を変えた時のインバータトータル損失−火力特性例、図13は非磁性鍋の一種(鍋Bと称す)が載置された時にスナバコンデンサ容量を変えた時のインバータトータル損失ー火力特性例を示すものである。
Embodiment 5 FIG.
As means for further reducing the loss of the inverter circuit, an embodiment in the case of changing the snubber capacitor capacity in addition to the first to fifth embodiments will be described.
FIG. 11 shows a circuit configuration diagram of the induction heating cooker in such a case. FIG. 12 shows an example of the inverter total loss-heating power characteristic when the snubber capacitor capacity is changed when a kind of magnetic pot (called pot A) is placed, and FIG. 13 shows a kind of non-magnetic pot (called pot B). 7 shows an example of inverter total loss-thermal power characteristics when the snubber capacitor capacity is changed when is mounted.

図11において、負荷判別手段9と設定電力生成手段12の出力が駆動信号制御回路11aに接続され(先述の実施の形態と同様)、スナバコンデンサ切り替え手段13を駆動するためのスナバコンデンサ切り替え用ドライバ11cが、この駆動信号制御回路11aの指令を受ける構成となっている。
その他の構成は実施の形態1と同様であり、説明を省略する。
In FIG. 11, the outputs of the load discriminating means 9 and the set power generating means 12 are connected to the drive signal control circuit 11a (similar to the previous embodiment), and the snubber capacitor switching driver for driving the snubber capacitor switching means 13 is used. 11c is configured to receive a command from the drive signal control circuit 11a.
Other configurations are the same as those of the first embodiment, and the description thereof is omitted.

次に動作について図11〜図13を用いて説明する。
図11のように3a〜3dで構成されたインバータ回路3のスイッチング素子には、ノイズ低減や損失低減を目的にスナバコンデンサ(図11の8a、8b)が並列に接続される。設定電力が大きい場合、このスナバコンデンサ容量が大きい値ほどスイッチング素子損失は低減され、逆に設定電力が小さい場合、このスナバコンデンサ容量が小さい値ほどスイッチング素子損失は低減される。
Next, the operation will be described with reference to FIGS.
As shown in FIG. 11, snubber capacitors (8a and 8b in FIG. 11) are connected in parallel to the switching elements of the inverter circuit 3 configured by 3a to 3d for the purpose of noise reduction and loss reduction. When the set power is large, the switching element loss is reduced as the snubber capacitor capacity is increased. Conversely, when the set power is small, the switching element loss is reduced as the snubber capacitor capacity is decreased.

図12は負荷鍋が磁性鍋のような材質の場合のインバータトータル損失−火力特性例であるが、火力(=設定電力)が大きい場合はスナバコンデンサ容量を大きく(例えば0.3μF)した方がインバータトータル損失は小さいことが判る。これは設定電力が大きい場合、スナバコンデンサ容量を大きくした方がスイッチング素子3bターンオフ時の電圧立ち上がりは緩やかとなり、スイッチング素子3bのターンオフ損失が軽減されることに起因する。−方、火力(=設定電力)が小さい場合はスナバコンデンサ客土を小さく(例えば0.064μF)した方がインバータトータル損失は小さいことが判る。これは設定電力が小さい場合、スナバコンデンサ容量を小さくした方がスイッチング素子3aターンオン時に整流回路2出力からスイッチング素子3aに流れる電流が小さく、スイッチング素子3aの導通損失が軽減されることに起因する。
特に図13における負荷鍋が非磁性鍋のような材質の場合、スナバコンデンサ容量の違いによるインバータトータル損失の差は明白となる。
FIG. 12 shows an example of inverter total loss-thermal power characteristics when the load pan is made of a material such as a magnetic pan. When the thermal power (= set power) is large, it is better to increase the snubber capacitor capacity (for example, 0.3 μF). It can be seen that the total inverter loss is small. This is because when the set power is large, the voltage rise at the time of switching element 3b turn-off becomes slower and the turn-off loss of switching element 3b is reduced when the snubber capacitor capacity is increased. On the other hand, when the thermal power (= set power) is small, it can be seen that the total loss of the inverter is smaller when the snubber capacitor land is made smaller (for example, 0.064 μF). This is because when the set power is small, the smaller the snubber capacitor capacity, the smaller the current flowing from the output of the rectifier circuit 2 to the switching element 3a when the switching element 3a is turned on, and the conduction loss of the switching element 3a is reduced.
In particular, when the load pan in FIG. 13 is made of a material such as a non-magnetic pan, the difference in inverter total loss due to the difference in snubber capacitor capacity becomes obvious.

そこで、負荷判別手段9により負荷鍋種類(磁性鍋か非磁性鍋か等)を判別し、設定電力生成手段12出力(即ちユーザーによる火力設定値)と負荷鍋種類の双方の情報に基づき、駆動信号制御回路11aがスナバコンデンサ切り替え用ドライバ11cを介してスナバコンデンサ切り替え手段13をオンオフさせる。具体的には例えば図12から、負荷判別手段9により負荷鍋が磁性鍋のような材質と判別された場合は設定電力1.5kW程度以上でスナバコンデンサ容量大、設定電力1.5kW程度以下でスナバコンデンサ容量小とする。また例えば図13から、負荷判別手段9により負荷鍋が非磁性鍋のような材質と判別された場合は設定電力0.7kW程度以上でスナバコンデンサ容量大、設定電力0.7kW程度以下でスナバコンデンサ容量小とする。   Therefore, the load discriminating means 9 discriminates the type of the load pan (magnetic pan or non-magnetic pan, etc.) and drives based on the information on both the output of the set power generation means 12 (ie, the thermal power set value by the user) and the load pan type. The signal control circuit 11a turns on / off the snubber capacitor switching means 13 via the snubber capacitor switching driver 11c. Specifically, for example, from FIG. 12, when the load discriminating means 9 determines that the load pan is made of a material such as a magnetic pan, the set power is about 1.5 kW or more, the snubber capacitor capacity is large, and the set power is about 1.5 kW or less. Snubber capacitor capacity is small. Further, for example, from FIG. 13, when the load discriminating means 9 determines that the load pan is made of a material such as a non-magnetic pan, the snubber capacitor capacity is large when the set power is about 0.7 kW or more, and the snubber capacitor is set when the set power is about 0.7 kW or less. Small capacity.

以上のように、スナバコンデンサ容量切り替え手段を設け、負荷鍋種類と設定電力の双方の情報に基づきスナバコンデンサの容量を切り替えるようにしているので、実施の形態1〜4の効果に加え、全火力にわたりインバータトータル損失を更に低減することが可能となる。   As described above, since the snubber capacitor capacity switching means is provided and the capacity of the snubber capacitor is switched based on the information of both the load pan type and the set power, in addition to the effects of the first to fourth embodiments, It is possible to further reduce the total inverter loss.

尚、以上の実施の形態におけるインバータ回路構成は、図1、図7、図9、図10、図11で示すようなフルブリッジ構成とすることで負荷電流を低減することができ、インバータ損失低減に大きく寄与することとなるが、フルブリッジ構成以外のインバータ回路としても本発明の内容に何ら差異は生じないことを記しておく。   In addition, the inverter circuit configuration in the above embodiment can reduce the load current and reduce the inverter loss by adopting the full bridge configuration as shown in FIG. 1, FIG. 7, FIG. 9, FIG. However, it should be noted that there is no difference in the contents of the present invention even when the inverter circuit has a configuration other than the full-bridge configuration.

本発明の活用例として、誘導加熱調理器のほか、誘導加熱を利用した給湯器、炊飯器等を挙げる。   Examples of utilization of the present invention include an induction heating cooker, a water heater using induction heating, a rice cooker, and the like.

1 交流電源、2 整流回路、3 インバータ回路(スイッチング素子)、4 平滑コンデンサ、5 加熱コイル、6 負荷鍋、7 共振コンデンサ、8 スナバコンデンサ、9 負荷判別手段、10 共振周波数調整手段、11 制御手段、11a 駆動信号制御回路、11b インバータ回路用ドライバ、11c スナバコンデンサ切り替え用ドライバ、12 設定電力生成手段、13 スナバコンデンサ切り替え手段、14 共振周波数検出手段、15 天板、16 ギャップ可変手段、17 筐体板金、19 位相検知手段。   DESCRIPTION OF SYMBOLS 1 AC power supply, 2 Rectifier circuit, 3 Inverter circuit (switching element), 4 Smoothing capacitor, 5 Heating coil, 6 Load pan, 7 Resonance capacitor, 8 Snubber capacitor, 9 Load discrimination means, 10 Resonance frequency adjustment means, 11 Control means , 11a Drive signal control circuit, 11b Inverter circuit driver, 11c Snubber capacitor switching driver, 12 Set power generation means, 13 Snubber capacitor switching means, 14 Resonance frequency detection means, 15 Top plate, 16 Gap variable means, 17 Housing Sheet metal, 19 phase detection means.

Claims (7)

加熱コイルと共振コンデンサから成る共振回路と、高周波電流を前記共振回路に供給するインバータ回路とを備えた誘導加熱調理器において、
前記加熱コイルの上面側に配された天板上に載置され、前記加熱コイルに高周波電流が供給されることで加熱される負荷鍋と、
前記負荷鍋の材質を判別する負荷判別手段と、
前記共振回路で形成される共振周波数の調整を行う共振周波数調整手段と、
共振周波数を検出する共振周波数検出手段とを有し、
前記負荷判別手段の出力に応じて前記共振周波数調整手段により共振周波数の調整を行うと共に前記共振周波数検出手段により共振周波数を検出し、検出された共振周波数に応じて前記インバータ回路の駆動周波数を変化させてなる
ことを特徴とする誘導加熱調理器。
In an induction heating cooker comprising a resonance circuit composed of a heating coil and a resonance capacitor, and an inverter circuit that supplies a high-frequency current to the resonance circuit,
A load pan placed on a top plate arranged on the upper surface side of the heating coil and heated by supplying a high frequency current to the heating coil,
Load discriminating means for discriminating the material of the load pan;
Resonance frequency adjusting means for adjusting the resonance frequency formed by the resonance circuit;
Resonance frequency detection means for detecting the resonance frequency,
The resonance frequency is adjusted by the resonance frequency adjusting means according to the output of the load determining means, and the resonance frequency is detected by the resonance frequency detecting means, and the drive frequency of the inverter circuit is changed according to the detected resonance frequency. An induction heating cooker characterized by being made.
前記共振周波数調整手段による共振周波数の調整は、前記天板と前記加熱コイルとの間隔を変化させてなることを特徴とする請求項1記載の誘導加熱調理器。   The induction cooking device according to claim 1, wherein the resonance frequency is adjusted by the resonance frequency adjusting means by changing a distance between the top plate and the heating coil. 前記間隔可変を、アクチュエータを用いて行うことを特徴とする請求項2記載の誘導加熱調理器。   The induction heating cooker according to claim 2, wherein the interval is varied using an actuator. 前記共振周波数調整手段による共振周波数の調整は、前記共振コンデンサの容量を変化させてなることを特徴とする請求項1記載の誘導加熱調理器。   The induction heating cooker according to claim 1, wherein the resonance frequency is adjusted by the resonance frequency adjusting means by changing a capacity of the resonance capacitor. 前記インバータ回路へ流れる負荷電流の位相状態を検知する位相検知手段を設け、前記位相検知手段がインバータ回路の進相電流を検知した場合は進相電流が流れないように前記共振周波数調整手段により共振周波数の調整を行う、若しくは前記位相検知手段によりインバータ回路の駆動周波数を変化させてなることを特徴とする請求項1〜4のいずれかに記載の誘導加熱調理器。   Phase detection means for detecting the phase state of the load current flowing to the inverter circuit is provided, and when the phase detection means detects the phase advance current of the inverter circuit, resonance is performed by the resonance frequency adjustment means so that no phase advance current flows. The induction heating cooker according to any one of claims 1 to 4, wherein a frequency is adjusted or a drive frequency of the inverter circuit is changed by the phase detection means. 前記共振回路と前記インバータ回路を構成する直列に接続されたスイッチング素子のうち低電位側のスイッチング素子に接続されるスナバコンデンサと、
前記スナバコンデンサに接続されるスナバコンデンサ切換手段と、をさらに備え、
前記スナバコンデンサは、
複数のコンデンサが接続されて構成され、
前記スナバコンデンサ切換手段によって、前記複数のコンデンサのうち接続されるコンデンサの数が切換えられて容量可変となっている
ことを特徴とする請求項1〜5のいずれかに記載の誘導加熱調理器。
A snubber capacitor connected to a switching element on a low potential side among the switching elements connected in series constituting the resonance circuit and the inverter circuit;
Snubber capacitor switching means connected to the snubber capacitor, and further comprising:
The snubber capacitor is
Consists of multiple capacitors connected,
The induction heating cooker according to any one of claims 1 to 5, wherein the snubber capacitor switching means switches the number of capacitors to be connected among the plurality of capacitors to change the capacity.
前記負荷判別手段の判別に基づいて、前記スナバコンデンサ切換手段を制御する制御手段と、
ユーザーが設定する設定電力に関する情報を前記制御手段に出力する設定電力生成手段をさらに備え、
前記制御手段は、
前記負荷判別手段の出力と前記設定電力に関する情報に基づいて、前記スナバコンデンサ切換手段を制御し、前記スナバコンデンサの容量を変化させる
ことを特徴とする請求項6に記載の誘導加熱調理器。
Control means for controlling the snubber capacitor switching means based on the determination of the load determination means;
A set power generation unit that outputs information on the set power set by the user to the control unit;
The control means includes
7. The induction heating cooker according to claim 6, wherein the snubber capacitor switching unit is controlled based on the output of the load determination unit and information on the set power to change the capacity of the snubber capacitor.
JP2010197893A 2010-09-03 2010-09-03 Induction heating cooker Active JP5020360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010197893A JP5020360B2 (en) 2010-09-03 2010-09-03 Induction heating cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010197893A JP5020360B2 (en) 2010-09-03 2010-09-03 Induction heating cooker

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006166905A Division JP4868952B2 (en) 2006-06-16 2006-06-16 Induction heating cooker

Publications (2)

Publication Number Publication Date
JP2010267636A true JP2010267636A (en) 2010-11-25
JP5020360B2 JP5020360B2 (en) 2012-09-05

Family

ID=43364403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010197893A Active JP5020360B2 (en) 2010-09-03 2010-09-03 Induction heating cooker

Country Status (1)

Country Link
JP (1) JP5020360B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101308411B1 (en) * 2012-04-04 2013-09-13 전남대학교산학협력단 High speed resonance tracking method for induction heating system and induction heating system using high speed resonance tracking method
JP2013246896A (en) * 2012-05-23 2013-12-09 Mitsubishi Electric Corp Induction heating cooker
KR101832211B1 (en) * 2017-06-15 2018-02-26 주식회사 아미크론 Induction Heating Cooker for Heating Magnetic and Non-magnetic Containers
KR101905662B1 (en) * 2018-01-23 2018-10-08 주식회사 아미크론 Induction Heating Cooker for Heating Magnetic and Non-magnetic Containers

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61290685A (en) * 1985-06-18 1986-12-20 松下電器産業株式会社 Induction heating cooker
JPS62128471A (en) * 1985-11-28 1987-06-10 株式会社東芝 Induction heating cooker
JPH0233884A (en) * 1988-07-21 1990-02-05 Fuji Electric Co Ltd Induction heating apparatus of electro-magnetic cooker
JPH02288184A (en) * 1989-04-28 1990-11-28 Toshiba Corp Electromagnetic cooking device
JP2003151751A (en) * 2001-11-08 2003-05-23 Mitsubishi Electric Corp Induction heating cooker
JP2004071444A (en) * 2002-08-08 2004-03-04 Kansai Electric Power Co Inc:The Electromagnetic induction heating cooker
JP2006114320A (en) * 2004-10-14 2006-04-27 Mitsubishi Electric Corp Induction heating device and induction heating cooker

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61290685A (en) * 1985-06-18 1986-12-20 松下電器産業株式会社 Induction heating cooker
JPS62128471A (en) * 1985-11-28 1987-06-10 株式会社東芝 Induction heating cooker
JPH0233884A (en) * 1988-07-21 1990-02-05 Fuji Electric Co Ltd Induction heating apparatus of electro-magnetic cooker
JPH02288184A (en) * 1989-04-28 1990-11-28 Toshiba Corp Electromagnetic cooking device
JP2003151751A (en) * 2001-11-08 2003-05-23 Mitsubishi Electric Corp Induction heating cooker
JP2004071444A (en) * 2002-08-08 2004-03-04 Kansai Electric Power Co Inc:The Electromagnetic induction heating cooker
JP2006114320A (en) * 2004-10-14 2006-04-27 Mitsubishi Electric Corp Induction heating device and induction heating cooker

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101308411B1 (en) * 2012-04-04 2013-09-13 전남대학교산학협력단 High speed resonance tracking method for induction heating system and induction heating system using high speed resonance tracking method
JP2013246896A (en) * 2012-05-23 2013-12-09 Mitsubishi Electric Corp Induction heating cooker
KR101832211B1 (en) * 2017-06-15 2018-02-26 주식회사 아미크론 Induction Heating Cooker for Heating Magnetic and Non-magnetic Containers
KR101905662B1 (en) * 2018-01-23 2018-10-08 주식회사 아미크론 Induction Heating Cooker for Heating Magnetic and Non-magnetic Containers

Also Published As

Publication number Publication date
JP5020360B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP5658692B2 (en) Induction heating device
JP4900248B2 (en) Induction heating device
JP4868952B2 (en) Induction heating cooker
JP4521338B2 (en) Induction heating cooker
JP4258737B2 (en) Induction heating cooker and induction heating cooking method
WO2013137287A1 (en) Induction heat cooker
WO2015059801A1 (en) Induction heating cooker
JP5020360B2 (en) Induction heating cooker
JP4444243B2 (en) Induction heating device
JP4512525B2 (en) Induction heating cooker
JP4978059B2 (en) Induction heating device
JP6340550B2 (en) Induction heating device
JP5223315B2 (en) Induction heating device
JP2005149737A (en) Induction heating device
JP2008027922A (en) Induction heating cooking device
JP4992818B2 (en) Induction heating device
JP2016058176A (en) Induction heating device
JP2006294431A (en) Induction heating device
JP2006245013A (en) Induction heating cooker
JP2010055760A (en) Induction heating device
JP5456096B2 (en) Induction heating cooker
JP2011150799A (en) Induction heating apparatus
JP2005149736A (en) Induction heating device
JP2012028201A (en) Induction heating cooker
JP4158753B2 (en) Induction heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120612

R150 Certificate of patent or registration of utility model

Ref document number: 5020360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250