JP2010266575A - Screw, developing device, image forming apparatus and process cartridge - Google Patents

Screw, developing device, image forming apparatus and process cartridge Download PDF

Info

Publication number
JP2010266575A
JP2010266575A JP2009116268A JP2009116268A JP2010266575A JP 2010266575 A JP2010266575 A JP 2010266575A JP 2009116268 A JP2009116268 A JP 2009116268A JP 2009116268 A JP2009116268 A JP 2009116268A JP 2010266575 A JP2010266575 A JP 2010266575A
Authority
JP
Japan
Prior art keywords
developer
rotation axis
screw
powder
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009116268A
Other languages
Japanese (ja)
Inventor
Kouko Fujiwara
香弘 藤原
Yasuo Miyoshi
康雄 三好
Hiroshi Hosokawa
浩 細川
Tsuneo Kudo
経生 工藤
So Kai
創 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2009116268A priority Critical patent/JP2010266575A/en
Publication of JP2010266575A publication Critical patent/JP2010266575A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Dry Development In Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide: a screw capable of improving mixability of two or more kinds of powder in a rotary shaft direction; a developing device provided with the screw; an image forming apparatus including the developing device; and a process cartridge. <P>SOLUTION: The screw has a rotary shaft supported to be rotatable, and a spiral blade protrusively provided spirally on a circumferential surface of the rotary shaft, and conveys the powder in the rotary shaft direction while stirring the powder by the spiral blade with rotation of its own, wherein the spiral blade waves within one pitch of the spiral blade. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、粉体などを撹拌しながら搬送する撹拌搬送手段としてのスクリュ、そのスクリュが設けられた現像装置、並びに、前記現像装置を備えた画像形成装置及びプロセスカートリッジに関するものである。   The present invention relates to a screw as stirring and conveying means for conveying powder and the like while stirring, a developing device provided with the screw, an image forming apparatus and a process cartridge provided with the developing device.

トナーとキャリアとを含む二成分現像剤を用いる現像装置として、現像ローラの軸と平行に現像剤を搬送しながら現像ローラに供給する現像剤供給スクリュを有する現像剤供給搬送路と、現像剤供給スクリュと逆方向に現像剤を攪拌しながら搬送する現像剤攪拌スクリュを有する現像剤攪拌搬送路とを備えたものが知られている(特許文献1など)。
現像剤供給スクリュウ及び現像剤攪拌スクリュは、回転可能な回転軸と、これの周面に螺旋状に突設せしめられた螺旋羽根とを有しており、駆動手段によって回転駆動せしめられることで、現像剤を回転軸方向に搬送する。現像剤供給搬送路の搬送方向最下流部と現像剤攪拌搬送路の最上流部とを、また、現像剤攪拌搬送路の搬送方向最下流部と現像剤供給搬送路の最上流部とをそれぞれ連通して、現像剤攪拌搬送路と現像剤供給搬送路とで現像剤を循環搬送させる。また、このような現像装置では、現像で消費されたトナーを補給するために、現像剤攪拌搬送路の搬送方向上流部の上方にトナー補給口が設けられる。
As a developing device using a two-component developer including a toner and a carrier, a developer supply conveyance path having a developer supply screw for supplying the developer to the development roller while conveying the developer parallel to the axis of the development roller, and a developer supply A device including a developer agitating / conveying path having a developer agitating screw that conveys the developer while agitating the developer in a direction opposite to the screw is known (for example, Patent Document 1).
The developer supply screw and the developer agitating screw have a rotatable rotating shaft and a spiral blade projecting spirally on the peripheral surface thereof, and are driven to rotate by a driving means. The developer is conveyed in the rotation axis direction. The most downstream part in the transport direction of the developer supply transport path and the most upstream part of the developer stirring transport path, and the most downstream part in the transport direction of the developer stirring transport path and the most upstream part of the developer supply transport path, respectively. The developer is circulated and conveyed through the developer agitation conveyance path and the developer supply conveyance path. In such a developing device, a toner replenishing port is provided above the upstream portion in the transport direction of the developer agitation transport path in order to replenish the toner consumed in the development.

トナー補給口からトナーが補給される現像剤攪拌搬送路内の現像剤を現像剤攪拌スクリュによって回転軸方向で十分に混合することができないと、トナー補給口から補給されたトナーが現像剤中に回転軸方向で分散され難くなる。そのため、現像剤攪拌搬送路内の現像剤が回転軸方向で部分的にトナー濃度が高いまま搬送されてしまい、現像剤攪拌搬送路内の現像剤に回転軸方向でトナー濃度偏差が生じてしまう。このようなトナー濃度偏差が生じたまま現像剤が現像剤攪拌搬送路から現像剤供給搬送路に送り込まれ現像ローラに供給されると、現像した画像に濃度ムラが発生するといった問題が生じる。   If the developer in the developer agitating / conveying path to which toner is replenished from the toner replenishing port cannot be sufficiently mixed in the direction of the rotation axis by the developer agitating screw, the toner replenished from the toner replenishing port will enter the developer. It becomes difficult to be dispersed in the direction of the rotation axis. As a result, the developer in the developer agitating / conveying path is partially conveyed in the rotation axis direction while the toner concentration is high, and a toner density deviation occurs in the developer in the developer agitating / conveying path in the rotation axis direction. . When the developer is fed from the developer stirring / conveying path to the developer supply / conveying path and supplied to the developing roller with the toner density deviation occurring, there is a problem that density unevenness occurs in the developed image.

本発明は以上の問題点に鑑みなされたものであり、その目的は、2種類以上の粉体の回転軸方向における混合性を向上できるスクリュ、そのスクリュが設けられた現像装置、並びに、前記現像装置を備えた画像形成装置及びプロセスカートリッジを提供することである。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a screw capable of improving the mixing property of two or more kinds of powders in the rotation axis direction, a developing device provided with the screw, and the development described above. An image forming apparatus including the apparatus and a process cartridge are provided.

上記目的を達成するために、請求項1の発明は、回転可能に支持される回転軸と、該回転軸の周面に螺旋状に突設せしめられた螺旋羽根とを有し、自身の回転に伴って該螺旋羽根により粉体を撹拌しながら回転軸方向に搬送するスクリュにおいて、前記螺旋羽根の一ピッチ内で、該螺旋羽根が波打っていることを特徴とするものである。
また、請求項2の発明は、回転可能に支持される回転軸と、該回転軸の周面に螺旋状に突設せしめられた螺旋羽根とを有し、自身の回転に伴って該螺旋羽根により粉体を撹拌しながら回転軸方向に搬送するスクリュにおいて、前記螺旋羽根の一ピッチ内で、上記螺旋羽根の稜線と上記回転軸に直交する仮想平面とで成す角の大きさが変化していることを特徴とするものである。
また、請求項3の発明は、請求項1の現像装置において、少なくとも、上記螺旋羽根の稜線と上記回転軸に直交する仮想平面とで成す角の大きさが上記一ピッチ内で変化していることを特徴とするものである。
また、請求項4の発明は、請求項1または2の現像装置において、少なくとも、上記螺旋羽根の根元と上記回転軸に直交する仮想平面とで成す角の大きさが上記一ピッチ内で変化していることを特徴とするものである。
また、請求項5の発明は、トナーとキャリアとを含有する現像剤を搬送する現像剤搬送部材と、現像剤搬送部材によって搬送されてくる現像剤を自らの無端移動する表面に担持しながら、自らの表面移動に伴って潜像担持体との対向領域に搬送して、潜像担持体に担持される潜像を現像する現像剤担持体とを有する現像装置において、前記現像剤搬送部材として、請求項1、2、3または4のスクリュを用いたことを特徴とするものである。
また、請求項6の発明は、潜像を担持する潜像担持体と、該潜像担持体上の潜像を現像する現像手段と、該潜像担持体上で現像された可視像を転写体に転写する転写手段とを備える画像形成装置における少なくとも該潜像担持体及び現像手段を1つのユニットとして共通の保持体に保持して画像形成装置本体に一体的に着脱されるプロセスカートリッジにおいて、前記現像手段として、請求項5の現像装置を用いたことを特徴とするものである。
また、請求項7の発明は、潜像を担持する潜像担持体と、該潜像担持体上の潜像を現像する現像手段とを備える画像形成装置において、前記現像手段として、請求項5の現像装置を用いたことを特徴とするものである。
In order to achieve the above-mentioned object, the invention of claim 1 has a rotating shaft that is rotatably supported, and a spiral blade that protrudes in a spiral manner on the peripheral surface of the rotating shaft. Accordingly, in the screw that conveys the powder in the direction of the rotation axis while stirring the powder by the spiral blade, the spiral blade is wavy within one pitch of the spiral blade.
Further, the invention of claim 2 has a rotating shaft that is rotatably supported, and a spiral blade that protrudes in a spiral manner on the peripheral surface of the rotating shaft, and the spiral blade as it rotates. In the screw that conveys the powder in the direction of the rotation axis while stirring the powder, the angle formed by the ridgeline of the spiral blade and the virtual plane orthogonal to the rotation axis changes within one pitch of the spiral blade. It is characterized by being.
According to a third aspect of the present invention, in the developing device of the first aspect, at least the angle formed by the ridgeline of the spiral blade and the virtual plane orthogonal to the rotation axis changes within the one pitch. It is characterized by this.
According to a fourth aspect of the present invention, in the developing device according to the first or second aspect, at least a size of an angle formed by a root of the spiral blade and a virtual plane orthogonal to the rotation axis changes within the one pitch. It is characterized by that.
Further, the invention of claim 5 is to carry a developer conveying member that conveys a developer containing toner and a carrier, and a developer conveyed by the developer conveying member on its endlessly moving surface, As a developer conveying member in a developing device having a developer carrying body that develops a latent image carried on the latent image carrying body by transporting it to a region facing the latent image carrying body as its surface moves The screw according to claim 1, 2, 3 or 4 is used.
According to a sixth aspect of the present invention, there is provided a latent image carrier that carries a latent image, a developing means that develops the latent image on the latent image carrier, and a visible image developed on the latent image carrier. In a process cartridge in which at least the latent image carrier and the developing means are held as a unit on a common holding body and are integrally attached to and detached from the main body of the image forming apparatus. A developing device according to claim 5 is used as the developing means.
According to a seventh aspect of the present invention, there is provided an image forming apparatus comprising: a latent image carrier that carries a latent image; and a developing unit that develops the latent image on the latent image carrier. The developing device is used.

請求項1の発明においては、螺旋羽根の一ピッチ内で螺旋羽根の側面が波打っていることで、回転軸に対して螺旋羽根が垂直に近くなったり平行に近くなったりする。回転軸に対して螺旋羽根が垂直に近くなるほど回転軸方向への粉体の搬送力が大きくなり、回転軸に対して螺旋羽根が平行に近くなるほど回転軸方向への粉体の搬送力が小さくなる。よって、前記一ピッチ内で、螺旋羽根が波打っていることで、螺旋羽根による回転軸方向への粉体の搬送力が一ピッチ内で異なる。前記搬送力が大きくなるほど粉体が回転軸方向へ搬送され易くなり、前記搬送力が小さくなるほど粉体が回転軸方向へ搬送され難くなるので、前記一ピッチ内で螺旋羽根によって回転軸方向に搬送される粉体の搬送速度に速度差が生じる。前記搬送速度が大きくなるほど粉体が単位時間あたりに回転軸方向へ搬送される距離が長くなり、前記搬送速度が小さくなるほど粉体が単位時間あたりに回転軸方向へ搬送される距離が短くなる。このように、単位時間あたりに粉体が回転軸方向へ搬送される距離が前記一ピッチ内で異なることにより、粉体が回転軸方向で混ざり易くなる。よって、2種類以上の粉体を攪拌搬送する際に、前記一ピッチ内で、螺旋羽根の側面が波打っていない場合よりも粉体を回転軸方向で分散させることができる。
請求項2の発明においては、螺旋羽根の一ピッチ内で、螺旋羽根の稜線と回転軸に直交する仮想平面とで成す角の大きさが変化している。前記成す角の大きさが小さくなるほど回転軸に対して螺旋羽根が垂直に近くなり、前記成す角の大きさが大きくなるほど回転軸に対して螺旋羽根が平行に近くなる。回転軸に対して螺旋羽根が垂直に近くなるほど回転軸方向への粉体の搬送力が大きくなり、回転軸に対して螺旋羽根が平行に近くなるほど回転軸方向への粉体の搬送力が小さくなる。よって、前記一ピッチ内で、螺旋羽根の稜線と回転軸に直交する仮想平面とで成す角の大きさを変化させることで、螺旋羽根による回転軸方向への粉体の搬送力が一ピッチ内で異なる。前記搬送力が大きくなるほど粉体が回転軸方向へ搬送され易くなり、前記搬送力が小さくなるほど粉体が回転軸方向へ搬送され難くなるので、前記一ピッチ内で螺旋羽根によって回転軸方向に搬送される粉体の搬送速度に速度差が生じる。前記搬送速度が大きくなるほど粉体が単位時間あたりに回転軸方向へ搬送される距離が長くなり、前記搬送速度が小さくなるほど粉体が単位時間あたりに回転軸方向へ搬送される距離が短くなる。このように、単位時間あたりに粉体が回転軸方向へ搬送される距離が前記一ピッチ内で異なることにより、粉体が回転軸方向で混ざり易くなる。よって、2種類以上の粉体を攪拌搬送する際に、前記一ピッチ内で、螺旋羽根の稜線と回転軸に直交する仮想平面とで成す角の大きさを変化させていない場合よりも粉体を回転軸方向で分散させることができる。
According to the first aspect of the present invention, the side surface of the spiral blade is wavy within one pitch of the spiral blade, so that the spiral blade is close to perpendicular or parallel to the rotation axis. The closer the spiral blade is to the rotation axis, the greater the powder conveyance force in the direction of the rotation axis, and the closer the spiral blade is to the rotation axis, the smaller the powder conveyance force in the direction of the rotation axis. Become. Therefore, the conveying force of the powder in the direction of the rotation axis by the spiral blade is different within one pitch because the spiral blade is undulating within the one pitch. As the conveying force increases, the powder becomes easier to be conveyed in the direction of the rotation axis, and as the conveying force decreases, the powder becomes less likely to be conveyed in the direction of the rotation axis. A speed difference occurs in the conveyance speed of the powder to be produced. The distance that the powder is transported in the direction of the rotation axis per unit time increases as the transport speed increases, and the distance that the powder is transported in the direction of the rotation axis per unit time decreases as the transport speed decreases. As described above, the distance that the powder is conveyed in the direction of the rotation axis per unit time is different within the one pitch, so that the powder is easily mixed in the direction of the rotation axis. Therefore, when two or more kinds of powders are stirred and conveyed, the powders can be dispersed in the direction of the rotation axis within the one pitch than when the side surfaces of the spiral blades are not wavy.
In the invention of claim 2, the size of the angle formed by the ridge line of the spiral blade and the virtual plane orthogonal to the rotation axis is changed within one pitch of the spiral blade. The smaller the angle formed, the closer the spiral blade is to the rotation axis, and the larger the angle formed, the closer the spiral blade is to the rotation axis. The closer the spiral blade is to the rotation axis, the greater the powder conveyance force in the direction of the rotation axis, and the closer the spiral blade is to the rotation axis, the smaller the powder conveyance force in the direction of the rotation axis. Become. Therefore, by changing the size of the angle formed by the ridgeline of the spiral blade and the virtual plane perpendicular to the rotation axis within the one pitch, the conveying force of the powder in the rotation axis direction by the spiral blade is within one pitch. It is different. As the conveying force increases, the powder becomes easier to be conveyed in the direction of the rotation axis, and as the conveying force decreases, the powder becomes less likely to be conveyed in the direction of the rotation axis. A speed difference occurs in the conveyance speed of the powder to be produced. The distance that the powder is transported in the direction of the rotation axis per unit time increases as the transport speed increases, and the distance that the powder is transported in the direction of the rotation axis per unit time decreases as the transport speed decreases. As described above, the distance that the powder is conveyed in the direction of the rotation axis per unit time is different within the one pitch, so that the powder is easily mixed in the direction of the rotation axis. Therefore, when two or more kinds of powders are stirred and conveyed, the powder is larger than the case where the angle formed by the ridgeline of the spiral blade and the virtual plane orthogonal to the rotation axis is not changed within the one pitch. Can be dispersed in the direction of the rotation axis.

以上、請求項1乃至7の発明によれば、回転軸方向における粉体の混合性を向上できるという優れた効果がある。   As described above, according to the first to seventh aspects of the present invention, there is an excellent effect that the powder mixing property in the rotation axis direction can be improved.

本発明を適用した羽根の搬送面、稜線部及び根元が波打っているスクリュの模式図。The schematic diagram of the screw with which the conveyance surface of the blade | wing to which this invention is applied, the ridgeline part, and the root are wavy. ノーマルスクリュの模式図。Schematic diagram of normal screw. (a)スクリュによる粉体の軸方向の搬送速度の分布にばらつきが少ない場合における粉体の軸方向の分散性の説明図。(b)スクリュによる粉体の軸方向の搬送速度の分布にばらつきが大きい場合における粉体の軸方向の分散性の説明図。(A) Explanatory drawing of the dispersibility of the powder axial direction in case there is little dispersion | distribution in the distribution of the conveying speed of the powder axial direction by a screw. (B) Explanatory drawing of the axial dispersibility of a powder in case the dispersion | distribution of the conveyance speed of the powder in the axial direction by a screw is large. 羽根の搬送面が波打っているスクリュの模式図。The schematic diagram of the screw which the conveyance surface of a blade | wing is undulating. 羽根にリード角の大きい部分とリード角の小さい部分とがありそのリード角の大きい部分と小さい部分とが滑らかに接続されず角を持ったスクリュの模式図。A schematic diagram of a screw having a blade having a large lead angle portion and a small lead angle portion and having a large lead angle portion and a small lead angle portion that are not smoothly connected. 羽根の稜線は波打っているが羽根の根元は波打っていないスクリュウの模式図。Schematic diagram of a screw where the ridgeline of the blade is undulating but the root of the blade is not undulating. 羽根の稜線は波打っていないが羽根の根元は波打っているスクリュの模式図。Schematic diagram of a screw whose ridgeline is not wavy but whose root is wavy. 実施形態2に係る複写機の概要を示す図。FIG. 4 is a diagram illustrating an outline of a copying machine according to a second embodiment. 現像装置の構成を示す断面図。Sectional drawing which shows the structure of a developing device. 現像装置の軸方向に平行な断面図。Sectional drawing parallel to the axial direction of a developing device. トナー補給時からの時間とトナー濃度との関係を示したグラフ。The graph which showed the relationship between the time after toner replenishment, and toner density. 補給トナーが現像剤中に取り込まれるまでの距離を示したグラフ。The graph which showed the distance until replenishment toner is taken in in a developing agent. ノーマルスクリュの羽根に切り欠きを入れたスクリュの模式図。Schematic diagram of a screw with a notch in the normal screw blade. ノーマルスクリュにパドルを設けたスクリュの模式図。Schematic diagram of a screw with a paddle on a normal screw. タンデム型間接転写方式のカラー複写機に構成図。Configuration diagram for tandem indirect transfer color copiers. 画像形成部の概略構成図。FIG. 2 is a schematic configuration diagram of an image forming unit.

[実施形態1]
本発明を回転可能に支持される回転軸と、回転軸の周面に螺旋状に突設せしめられた螺旋羽根とを有し、自身の回転に伴って螺旋羽根により粉体を撹拌しながら回転軸方向に搬送するスクリュに適用した場合の実施形態について説明する。また、本実施形態におけるスクリュとは、特筆しない限り、回転可能に支持される回転軸と、回転軸の周面に螺旋状に突設せしめられた螺旋羽根とを有し、自身の回転に伴って螺旋羽根により粉体を撹拌しながら回転軸方向に搬送するスクリュのことである。
[Embodiment 1]
The present invention has a rotating shaft that is rotatably supported, and a spiral blade that is spirally projected on the peripheral surface of the rotating shaft, and rotates while stirring the powder by the spiral blade as it rotates. An embodiment in which the present invention is applied to an axially conveyed screw will be described. In addition, unless otherwise specified, the screw in the present embodiment has a rotating shaft that is rotatably supported and a spiral blade that protrudes in a spiral manner on the peripheral surface of the rotating shaft. It is a screw that conveys powder in the direction of the rotation axis while stirring the powder with a spiral blade.

まず、本発明のスクリュとの比較対照として従来のスクリュ(以下、ノーマルスクリュという)を図2に示す。図2に示したノーマルスクリュは、回転軸50に回転軸方向へ向かって粉体を攪拌搬送する羽根51を螺旋状に設けたものである。図2に示した矢印は、ノーマルスクリュの羽根51に接している粉体の回転軸方向の速度ベクトルを表したものである。このノーマルスクリュは回転軸方向でリード角θ(羽根外周と回転軸50とがなす角)が常に一定であり、回転軸方向で粉体は略同じ速度で搬送される。このようなノーマルスクリュで粉体を搬送しても回転軸方向で粉体があまり混ざらない。   First, a conventional screw (hereinafter referred to as a normal screw) is shown in FIG. 2 as a comparison with the screw of the present invention. The normal screw shown in FIG. 2 has a rotating shaft 50 provided with a spiral blade 51 for stirring and conveying powder in the direction of the rotating shaft. The arrow shown in FIG. 2 represents the velocity vector of the powder in contact with the normal screw blade 51 in the rotation axis direction. In this normal screw, the lead angle θ (angle formed by the outer periphery of the blade and the rotation shaft 50) is always constant in the rotation axis direction, and the powder is conveyed at substantially the same speed in the rotation axis direction. Even if the powder is conveyed with such a normal screw, the powder is not so mixed in the direction of the rotation axis.

図3を用いてスクリュによる粉体の回転軸方向の分散性について説明する。ここでは、紛体Aと粉体Bとの2種類の紛体をスクリュによって撹拌搬送する場合の概念を説明する。図3(a)は、スクリュによる粉体の回転軸方向の搬送速度の分布にばらつきが少ない場合(搬送速度分布がシャープな場合)の図である。また、図中の黒さは粉体Aの割合が大きいほど濃くしてある。図3(a)に示すようなスクリュによる粉体の回転軸方向の搬送速度の分布にばらつきが少ない場合は、粉体Aと粉体Bとが粉体の搬送方向である回転軸方向であまり混じり合わずに搬送される。そのため、粉体Aの割合が大きい部分(色が濃い部分)は、ほとんどそのまま回転軸方向に搬送されてしまう。図2に示したのようなノーマルスクリュは、上述したように回転軸方向で粉体が略同じ速度で搬送され粉体の回転軸方向の搬送速度の分布にばらつきが少ないので、粉体の回転軸方向の分散性は、図3(a)ほど極端ではないが図3(a)のような状態に近くなる。   With reference to FIG. 3, the dispersibility of the powder in the rotation axis direction by a screw will be described. Here, the concept in the case of stirring and conveying two types of powder, powder A and powder B, with a screw will be described. FIG. 3A is a diagram in the case where there is little variation in the distribution of the conveying speed of the powder in the rotation axis direction due to the screw (when the conveying speed distribution is sharp). Further, the blackness in the figure is darker as the proportion of the powder A is larger. When the distribution of the conveying speed of the powder in the rotation axis direction by the screw as shown in FIG. 3A is small, the powder A and the powder B are not so much in the rotation axis direction that is the conveying direction of the powder. It is transported without mixing. For this reason, the portion where the ratio of the powder A is large (the portion where the color is dark) is almost transported in the direction of the rotation axis as it is. As described above, the normal screw as shown in FIG. 2 is such that the powder is conveyed at substantially the same speed in the rotation axis direction and the distribution of the conveyance speed in the rotation axis direction of the powder is less varied. Although the dispersibility in the axial direction is not as extreme as in FIG. 3A, it is close to the state shown in FIG.

一方、図3(b)のようにスクリュによる粉体の回転軸方向の搬送速度がばらついていれば、図3(b)に示した粉体Aの割合が大きい部分は、図に示すようにスクリュによって粉体が回転軸方向に搬送される過程で均一になっていく。   On the other hand, if the conveying speed of the powder in the rotation axis direction by the screw varies as shown in FIG. 3B, the portion where the ratio of the powder A shown in FIG. The powder becomes uniform in the process of being conveyed in the direction of the rotation axis by the screw.

本発明の特徴部を有するスクリュを図1及び図4に示す。図1は、羽根51の搬送面51a、稜線部51b及び根元51cが波打っているスクリュである。図4は、羽根51の搬送面51aが波打っているスクリュである。図1及び図4に示したスクリュは共に図2で示したノーマルスクリュとは異なって羽根51の1ピッチ内でリード角θが一定ではない。図1に示すスクリュは、リード角θが1度から55度まで連続的に変わる部分が1/4回転周期で存在する。図4に示すスクリュは、リード角θが1度から55度まで連続的に変わる部分が1/2回転周期で存在するスクリュである。   A screw having the features of the present invention is shown in FIGS. FIG. 1 shows a screw in which a conveying surface 51a, a ridge line portion 51b, and a root 51c of a blade 51 are undulated. FIG. 4 shows a screw in which the conveying surface 51a of the blade 51 is undulating. The screw shown in FIGS. 1 and 4 is different from the normal screw shown in FIG. 2 in that the lead angle θ is not constant within one pitch of the blades 51. The screw shown in FIG. 1 has a portion where the lead angle θ continuously changes from 1 degree to 55 degrees at a quarter rotation period. The screw shown in FIG. 4 is a screw in which a portion where the lead angle θ continuously changes from 1 degree to 55 degrees exists in a ½ rotation cycle.

回転軸50に対して羽根51が垂直に近くなるほどリード角θの角度が小さくなり、回転軸50に対して羽根51が平行に近くなるほでリード角θの角度が大きくなる。また、リード角θの角度が小さくなるほど、羽根51による回転軸方向への粉体の搬送力が大きくなり、リード角θの角度が大きくなるほど、羽根51による回転軸方向への粉体の搬送力が小さくなる。そのため、羽根51のリード角θを一ピッチ内で変化させることで、羽根51による回転軸方向への粉体の搬送力が一ピッチ内で異なる。前記搬送力が大きくなるほど粉体が回転軸方向へ搬送され易くなり、前記搬送力が小さくなるほど粉体が回転軸方向へ搬送され難くなるので、一ピッチ内で羽根51によって回転軸方向に搬送される粉体の搬送速度に速度差が生じる。   The angle of the lead angle θ decreases as the blade 51 approaches the vertical axis with respect to the rotation shaft 50, and the angle of the lead angle θ increases as the blade 51 approaches the rotation shaft 50 in parallel. Further, the smaller the lead angle θ is, the larger the powder conveying force in the direction of the rotation axis by the blade 51 is. The larger the lead angle θ is, the more the powder is conveyed in the direction of the rotation axis by the blade 51. Becomes smaller. Therefore, by changing the lead angle θ of the blade 51 within one pitch, the conveying force of the powder in the direction of the rotation axis by the blade 51 is different within one pitch. As the conveying force increases, the powder is more easily conveyed in the direction of the rotation axis, and as the conveying force decreases, the powder is less likely to be conveyed in the direction of the rotation axis. A difference in speed occurs in the conveying speed of the powder.

図4にスクリュに接している粉体の回転軸方向の速度ベクトルを矢印で示したが、スクリュのリード角θが小さい部分では粉体の搬送速度が遅くなり、粉体が溜まりやすく、一方、リード角θが大きい部分では粉体の搬送速度が速くなるのがわかる。すなわち、図1及び図4に示したスクリュには、スクリュによる粉体の回転軸方向の搬送速度が速い部分と遅い部分とが存在し、スクリュによる粉体の回転軸方向の搬送速度のバラツキが大きくなる。   In FIG. 4, the velocity vector in the rotation axis direction of the powder in contact with the screw is indicated by an arrow. However, in the portion where the lead angle θ of the screw is small, the conveying speed of the powder is slow and the powder tends to accumulate, It can be seen that the powder conveyance speed increases at the portion where the lead angle θ is large. That is, the screw shown in FIGS. 1 and 4 has a portion where the conveying speed of the powder in the rotation axis direction by the screw is fast and a slow portion, and there is a variation in the conveying speed of the powder in the rotation axis direction by the screw. growing.

前記搬送速度が大きくなるほど粉体が単位時間あたりに回転軸方向へ搬送される距離が長くなり、前記搬送速度が小さくなるほど粉体が単位時間あたりに回転軸方向へ搬送される距離が短くなる。このように、単位時間あたりに粉体が回転軸方向へ搬送される距離が一ピッチ内で異なることにより、粉体が回転軸方向で混ざり易くなる。よって、2種類以上の粉体を攪拌搬送する際に、羽根51のリード角θを一ピッチ内で変化させていない場合よりも粉体を回転軸方向で分散させることができる。   The distance that the powder is transported in the direction of the rotation axis per unit time increases as the transport speed increases, and the distance that the powder is transported in the direction of the rotation axis per unit time decreases as the transport speed decreases. As described above, the distance that the powder is transported in the rotation axis direction per unit time is different within one pitch, so that the powder is easily mixed in the rotation axis direction. Therefore, when two or more kinds of powder are stirred and conveyed, the powder can be dispersed in the direction of the rotation axis as compared with the case where the lead angle θ of the blade 51 is not changed within one pitch.

また、スクリュの羽根51にリード角θの大きい部分とリード角θの小さい部分とが交互にあるので、粉体が溜まっているリード角θの小さい部分に、リード角θの大きい部分で速い搬送速度で搬送された粉体が流入し、これによっても粉体の回転軸方向の分散性が向上する。   Further, since the portion 51 having a large lead angle θ and the portion having a small lead angle θ are alternately provided on the screw blade 51, a portion having a large lead angle θ is fast transferred to a portion having a small lead angle θ where powder is accumulated. The powder conveyed at a speed flows in, and this also improves the dispersibility of the powder in the rotation axis direction.

よって、図1に示した羽根51の搬送面51a、稜線部51b及び根元51cが波打っているスクリュを用いた場合や、図4に示した羽根51の搬送面51aが波打っているスクリュを用いた場合では、粉体の回転軸方向の分散性が図3(b)のような状態に近くなる。   Therefore, when the screw having the undulation of the conveying surface 51a, the ridge line portion 51b and the root 51c of the blade 51 shown in FIG. 1, or the screw having the undulating of the conveying surface 51a of the blade 51 shown in FIG. When used, the dispersibility in the rotational axis direction of the powder is close to the state as shown in FIG.

なお、図1及び図4に示したスクリュでは、回転軸50に対して螺旋状に巻き付いた羽根51が周期を持った形状をしているが、リード角θの大小がランダムになっている周期性を持たない羽根51の形状である場合でも同様の効果が得られる。   In the screw shown in FIGS. 1 and 4, the blades 51 spirally wound around the rotation shaft 50 have a periodic shape, but the cycle in which the magnitude of the lead angle θ is random. Even in the case of the shape of the blade 51 having no property, the same effect can be obtained.

また、図5に示した羽根51にリード角θの大きい部分とリード角θの小さい部分とがありそのリード角θの大きい部分と小さい部分とが滑らかに接続されず角を持ったスクリュ、図6に示した羽根51の稜線は波打っているが羽根51の根元51cは波打っていないスクリュウ、及び、図7に示した羽根51の稜線は波打っていないが羽根51の根元51cは波打っているスクリュでも、図1に示した羽根51の搬送面51a、稜線部51b及び根元51cが波打っているスクリュや、図4示した羽根51の搬送面51aが波打っているスクリュと同様に、上述した理由によってスクリュによる粉体の回転軸方向の搬送速度にバラツキが生じ、粉体の回転軸方向の分散性を向上させることができる。さらに、図示していないが羽根51の稜線及び根元51cは波打たずに羽根51の搬送面51aのみ波打っているスクリュでも、上述した理由によってスクリュによる粉体の回転軸方向の搬送速度にバラツキが生じ、粉体の回転軸方向の分散性を向上させることができる。   Further, the blade 51 shown in FIG. 5 has a portion having a large lead angle θ and a portion having a small lead angle θ, and a portion having a large lead angle θ and a portion having a small lead angle θ are not smoothly connected to each other, FIG. The ridgeline of the blade 51 shown in FIG. 6 is undulated but the root 51c of the blade 51 is not undulated, and the ridgeline of the blade 51 shown in FIG. The screw which is struck is the same as the screw in which the conveyance surface 51a of the blade 51 shown in FIG. 1, the ridge 51b and the root 51c is undulated, and the screw in which the conveyance surface 51a of the blade 51 shown in FIG. In addition, for the reasons described above, the conveying speed of the powder in the direction of the rotation axis of the screw varies, and the dispersibility of the powder in the direction of the rotation axis can be improved. Further, although not shown in the drawing, the ridge line and the root 51c of the blade 51 are not undulated, and even the screw having only the conveying surface 51a of the blade 51 is undulated for the reason described above, the conveying speed of the powder in the rotation axis direction by the screw is increased. Variations occur and the dispersibility of the powder in the rotation axis direction can be improved.

つまり、スクリュの羽根51の搬送面51aと回転軸50とでなす角が回転軸方向で増減していれば、スクリュによる回転軸方向の粉体の搬送速度に速度差が生じ、粉体の回転軸方向の分散性を向上させることができる。   That is, if the angle formed by the conveying surface 51a of the screw blade 51 and the rotation shaft 50 increases or decreases in the rotation axis direction, a speed difference occurs in the powder conveyance speed in the rotation axis direction by the screw, and the rotation of the powder. The dispersibility in the axial direction can be improved.

また、図1、図4、図5、図6及び図7に示したスクリュは、螺旋状の羽根51の一ピッチ内で羽根51をうねらせているとも言え、その観点からスクリュによる粉体の回転軸方向の分散性について説明する。   Moreover, it can be said that the screw shown in FIG.1, FIG.4, FIG.5, FIG.6 and FIG. 7 has swung the blade | wing 51 within one pitch of the spiral blade | wing 51. The dispersibility in the rotation axis direction will be described.

一ピッチ内で羽根51をうねらせることで、回転軸に固定された羽根51の搬送面51aと回転軸50に直交する仮想平面とで成す角を、一ピッチ内で搬送面51aの部分ごとに異ならせることができる。前記成す角が小さくなるほど搬送面51aは回転軸50に対して垂直に近くなり、前記成す角が大きくなるほど搬送面51aは回転軸50に対して平行に近くなる。羽根51は、搬送面51aが回転軸50に対して垂直に近くなるほど回転軸方向への粉体の搬送力が大きくなり、搬送面51aが回転軸50に対して平行に近くなるほど回転軸方向への粉体の搬送力が小さくなる。よって、一ピッチ内で羽根51を回転軸方向にうねらせることで、羽根51による回転軸方向への粉体の搬送力が一ピッチ内で搬送面51aの部分ごとに異なる。前記搬送力が大きくなるほど粉体が回転軸方向へ搬送され易くなり、前記搬送力が小さくなるほど粉体が回転軸方向へ搬送され難くなるので、一ピッチ内で羽根51によって回転軸方向に搬送される粉体の搬送速度に速度差が生じる。前記搬送速度が大きくなるほど粉体が単位時間あたりに回転軸方向へ搬送される距離が長くなり、前記搬送速度が小さくなるほど粉体が単位時間あたりに回転軸方向へ搬送される距離が短くなる。このように、単位時間あたりに粉体が回転軸方向へ搬送される距離が一ピッチ内で異なることにより、粉体が回転軸方向で混ざり易くなる。よって、2種類以上の粉体を攪拌搬送する際に、一ピッチ内で羽根51を回転軸方向にうねらせていない場合よりも粉体を回転軸方向で分散させることができる。   By undulating the blades 51 within one pitch, an angle formed by the conveyance surface 51a of the blade 51 fixed to the rotation shaft and a virtual plane orthogonal to the rotation shaft 50 is determined for each portion of the conveyance surface 51a within one pitch. Can be different. The smaller the angle formed, the closer the transport surface 51a is to the rotation axis 50, and the greater the angle formed, the closer the transport surface 51a is to the rotation axis 50. The blade 51 has a larger powder conveyance force in the direction of the rotation axis as the conveyance surface 51 a becomes closer to the rotation axis 50, and becomes closer to the rotation axis direction as the conveyance surface 51 a becomes closer to the rotation axis 50. The conveying power of the powder becomes smaller. Therefore, by causing the blades 51 to swell in the direction of the rotation axis within one pitch, the conveying force of the powder in the direction of the rotation axis by the blades 51 differs for each portion of the conveyance surface 51a within one pitch. As the conveying force increases, the powder is more easily conveyed in the direction of the rotation axis, and as the conveying force decreases, the powder is less likely to be conveyed in the direction of the rotation axis. A difference in speed occurs in the conveying speed of the powder. The distance that the powder is transported in the direction of the rotation axis per unit time increases as the transport speed increases, and the distance that the powder is transported in the direction of the rotation axis per unit time decreases as the transport speed decreases. As described above, the distance that the powder is transported in the rotation axis direction per unit time is different within one pitch, so that the powder is easily mixed in the rotation axis direction. Therefore, when two or more kinds of powders are stirred and conveyed, the powders can be dispersed in the direction of the rotation axis as compared with the case where the blades 51 are not swung in the direction of the rotation axis within one pitch.

ここで、紛体Aと粉体Bとの比重が異なる場合は、粉体Aと粉体Bとが2層に別れてしまう。そのため、スクリュにより粉体を回転軸方向に分散させる以外にも、スクリュによって粉体を回転軸50に直交する方向で分散させる必要がある。この際、従来では、特開平11−119529号公報などに記載されているスクリュのように、スクリュの回転軸に回転軸と平行な面を持つパドルを設け、そのパドルにより粉体を回転軸に直交方向で分散させたりしている。ところが、このようなパドルは、回転軸方向に粉体を搬送する搬送力がほとんどないため、上述したような粉体の回転軸方向の搬送速度をばらつかせる作用が得られ難く、粉体の回転軸方向の分散性の向上にほとんど寄与しない。また、パドルを設けることによって粉体の搬送速度が遅くなってしまう。   Here, when the specific gravity of the powder A and the powder B is different, the powder A and the powder B are separated into two layers. Therefore, it is necessary to disperse the powder in the direction orthogonal to the rotation shaft 50 by the screw, in addition to dispersing the powder in the rotation axis direction by the screw. At this time, conventionally, a paddle having a surface parallel to the rotation axis is provided on the rotation axis of the screw, as in the screw described in JP-A-11-119529, and the powder is used as a rotation axis by the paddle. It is dispersed in the orthogonal direction. However, such a paddle has almost no conveying force to convey the powder in the direction of the rotation axis, so that it is difficult to obtain the effect of varying the conveyance speed of the powder in the direction of the rotation axis as described above. It hardly contributes to the improvement of dispersibility in the rotation axis direction. In addition, providing the paddles slows the powder conveyance speed.

図1、図4、図5、図6及び図7に示したスクリュは、羽根51のリード角θが変わり、羽根51の搬送面51aが上記パドルに近い構成、すなわち、粉体を回転軸50に直交する方向へ分散させやすくなる部分が存在する。その部分では、上記パドルと同じような粉体を回転軸50に直交する方向へ分散させる効果が得られる。また、パドルを設けないのでパドルを設ける場合よりも、粉体の回転軸方向の搬送速度が遅くなるのを抑えることができる。そのため、図1、図4、図5、図6及び図7に示したスクリュでは、粉体の回転軸方向の搬送速度の低下を抑えつつ、回転軸方向及び回転軸50に直交する方向の粉体の攪拌を両立することができ、粉体の回転軸方向の分散性向上と粉体の回転軸50に直交する方向の分散性向上を図ることができる。   1, 4, 5, 6, and 7, the lead angle θ of the blade 51 is changed, and the conveying surface 51 a of the blade 51 is close to the paddle, that is, the powder is rotated on the rotating shaft 50. There is a portion that is easy to disperse in a direction orthogonal to the. In this portion, an effect of dispersing the same powder as the paddle in the direction orthogonal to the rotation shaft 50 can be obtained. In addition, since no paddle is provided, it is possible to suppress a decrease in the conveying speed of the powder in the direction of the rotation axis, compared to the case where a paddle is provided. Therefore, in the screws shown in FIGS. 1, 4, 5, 6, and 7, the powder in the rotation axis direction and the direction orthogonal to the rotation axis 50 is suppressed while suppressing a decrease in the conveying speed of the powder in the rotation axis direction. The agitation of the body can be achieved at the same time, and the improvement of the dispersibility in the direction of the rotation axis of the powder and the improvement of the dispersibility in the direction perpendicular to the rotation axis 50 of the powder can be achieved.

このように比重の異なる2種類の紛体を撹拌搬送する手段としてスクリュを用いているものに電子写真複写装置がある。   There is an electrophotographic copying apparatus using a screw as means for stirring and conveying two types of powders having different specific gravities.

[実施形態2]
以下、本発明を画像形成装置である電子写真複写装置(以下、複写機という)に設けられる、トナーとキャリアとからなる現像剤を収容した現像装置に用いられる現像剤攪拌搬送部材としての現像剤搬送スクリュに適用した実施形態について、図面を用いて以下説明する。なお、本発明はこの例に限定されない。
[Embodiment 2]
Hereinafter, a developer as a developer agitating / conveying member used in an electrophotographic copying apparatus (hereinafter referred to as a copying machine) that is an image forming apparatus according to the present invention and used in a developing apparatus that contains a developer composed of toner and a carrier. An embodiment applied to a conveying screw will be described below with reference to the drawings. The present invention is not limited to this example.

図8は、本発明の実施形態に係る複写機の概要を示す図である。ここで、この複写機は、読取部1、画像処理部6、像形成部12、システム制御部18、操作部19からなり、読取部1は、ランプ2、CCD3、増幅器4、A/D変換器5を有しており、画像処理部6は、シェーディング補正部8、フィルタ9、γ補正部10、階調処理部11を有しており、像形成部12は、書き込み部13、感光体ドラム30、帯電チャージャ15、現像スリーブ16、給紙トレー17、温湿度を検知する温湿度検知部20を有しており、読取部1、画像処理部6、像形成部12が、操作部19よりの指示に従うシステム制御部18の制御の下に動作するようになっている。   FIG. 8 is a diagram showing an outline of the copying machine according to the embodiment of the present invention. The copying machine includes a reading unit 1, an image processing unit 6, an image forming unit 12, a system control unit 18, and an operation unit 19. The reading unit 1 includes a lamp 2, a CCD 3, an amplifier 4, and A / D conversion. The image processing unit 6 includes a shading correction unit 8, a filter 9, a γ correction unit 10, and a gradation processing unit 11. The image forming unit 12 includes a writing unit 13, and a photoconductor. A drum 30, a charging charger 15, a developing sleeve 16, a paper feed tray 17, and a temperature / humidity detection unit 20 that detects temperature / humidity are included. The reading unit 1, the image processing unit 6, and the image forming unit 12 are connected to the operation unit 19. It operates under the control of the system control unit 18 according to the above instructions.

図8に示す複写機は、その全体構成を見れば、読取部1において、ランプ2から照射された光は原稿面で反射してCCD3により電気信号に変換され、増幅器4で振幅調整された後にA/D変換器5で量子化されたディジタル画像データとなる。生成されたディジタル画像データは、画像処理部6に入力され、シェーディング補正部8、フィルタ9、γ補正部10、階調処理部11等をこの順序で施されて像形成部12に送られる。   In the copying machine shown in FIG. 8, the light emitted from the lamp 2 in the reading unit 1 is reflected by the original surface, converted into an electric signal by the CCD 3, and adjusted in amplitude by the amplifier 4. The digital image data quantized by the A / D converter 5 is obtained. The generated digital image data is input to the image processing unit 6, subjected to the shading correction unit 8, the filter 9, the γ correction unit 10, the gradation processing unit 11, and the like in this order and sent to the image forming unit 12.

像形成部12に入力されたディジタル画像データは、書き込み部13で、そのデータ値に従いレーザ光14に変換され、帯電チャージャ15により帯電された感光体に照射され、感光体面に静電潜像を形成する。現像スリーブ16は、形成された静電潜像に従い、感光体面にトナーを付着させる。感光体面に付着したトナーは、給紙トレー17から送られてきた紙面上に転写され、定着部を通り、複写原稿として出力される。   The digital image data input to the image forming unit 12 is converted into laser light 14 in accordance with the data value in the writing unit 13 and irradiated to the photosensitive member charged by the charging charger 15, and an electrostatic latent image is formed on the surface of the photosensitive member. Form. The developing sleeve 16 adheres toner to the surface of the photoreceptor in accordance with the formed electrostatic latent image. The toner adhering to the surface of the photoconductor is transferred onto the paper surface sent from the paper feed tray 17, passes through the fixing unit, and is output as a copy document.

図9は、図8に示す複写機における現像装置40の構成を示す断面図である。この現像装置40は、感光体ドラム30の側方に配置され、感光体ドラム30に向けて開口部が形成された現像ケース42を有している。なお、少なくとも、感光体ドラム30と現像装置40とを1つのユニットとして共通の保持体に保持して複写機本体に一体的に着脱されるプロセスカートリッジとして構成することができる。このように感光体ドラム30と現像装置40とをプロセスカートリッジとして一体で着脱できることで、感光体ドラム30や現像装置40などのメンテナンス性を向上させることができる。現像装置40の現像ケース42の開口部から、トナー及び磁性粉末キャリアからなる二成分現像剤(以下、現像剤という)を表面に坦持する現像剤担持体としての現像スリーブ16が一部露出するよう配置されている。現像スリーブ16は非磁性材料からなる円筒状のものであり、内部に固定された磁界発生手段としてのマグネットローラを有している。現像スリーブ16はこのマグネットローラの周りを自在に回転することができる。   FIG. 9 is a cross-sectional view showing the configuration of the developing device 40 in the copying machine shown in FIG. The developing device 40 includes a developing case 42 that is disposed on the side of the photosensitive drum 30 and has an opening formed toward the photosensitive drum 30. Note that at least the photosensitive drum 30 and the developing device 40 can be configured as a process cartridge that is held in a common holding body as a unit and can be integrally attached to and detached from the copying machine main body. As described above, since the photosensitive drum 30 and the developing device 40 can be integrally attached and detached as a process cartridge, the maintainability of the photosensitive drum 30 and the developing device 40 can be improved. Part of the developing sleeve 16 as a developer carrying member that carries a two-component developer (hereinafter referred to as developer) composed of toner and a magnetic powder carrier is exposed from the opening of the developing case 42 of the developing device 40. It is arranged as follows. The developing sleeve 16 has a cylindrical shape made of a non-magnetic material, and has a magnet roller as a magnetic field generating means fixed inside. The developing sleeve 16 can freely rotate around the magnet roller.

また、現像スリーブ16の感光体ドラム30との対向部との反対側には、現像剤が収容される現像剤収容部41が、現像ケース42により形成されている。現像剤収容部41には、現像剤収容部内の現像剤を攪拌しながら搬送するための現像剤攪拌搬送スクリュ44、45が設けられている。   On the opposite side of the developing sleeve 16 from the portion facing the photosensitive drum 30, a developer accommodating portion 41 for accommodating a developer is formed by a developing case 42. The developer accommodating portion 41 is provided with developer agitating and conveying screws 44 and 45 for conveying the developer in the developer accommodating portion while stirring.

なお、図9では、現像剤攪拌搬送スクリュ44、45の間には仕切りがあるが、現像剤収容部41の図中手前側及び奥側では仕切りがなく、つながっており、現像剤が移動できるようになっている。また、現像スリーブ16に担持されて感光体ドラム30との対向部に搬送される現像剤量を規制するドクターブレード43を備えている。さらに、現像剤収容部41内の現像剤攪拌搬送スクリュ45の上方には、補充用トナーを収容するトナーホッパ46が設けられている。   In FIG. 9, there is a partition between the developer agitating and conveying screws 44, 45, but there is no partition on the front side and the back side of the developer accommodating portion 41 in the drawing, and the developer can move. It is like that. In addition, a doctor blade 43 that regulates the amount of developer carried on the developing sleeve 16 and conveyed to a portion facing the photosensitive drum 30 is provided. Further, a toner hopper 46 for containing replenishing toner is provided above the developer stirring and conveying screw 45 in the developer containing portion 41.

上記構成の現像装置40では、現像剤攪拌搬送スクリュ44、45が回転することにより、現像剤収容部41に収容されている現像剤が撹拌されながら現像スリーブ16近傍へ搬送される。この時、現像剤は攪拌作用により摩擦帯電する。現像スリーブ16近傍へ搬送された現像剤は現像スリーブ16内部のマグネットローラによる磁力によって現像スリーブ16表面に担持される。その後、ドクターブレード43により層厚を規制された現像剤は、感光体ドラム30に最も近接する部位まで搬送され、トナーが静電潜像に電気的に付着する。   In the developing device 40 having the above-described configuration, the developer agitating and conveying screws 44 and 45 rotate to convey the developer accommodated in the developer accommodating portion 41 to the vicinity of the developing sleeve 16 while being agitated. At this time, the developer is triboelectrically charged by the stirring action. The developer conveyed to the vicinity of the developing sleeve 16 is carried on the surface of the developing sleeve 16 by a magnetic force generated by a magnet roller inside the developing sleeve 16. Thereafter, the developer whose layer thickness is regulated by the doctor blade 43 is transported to a position closest to the photosensitive drum 30, and the toner is electrically attached to the electrostatic latent image.

この現像装置40では、現像に供される現像剤中の磁性キャリアに対するトナーの混合比率を常に適正値に保って高品質の画像を得るために、現像剤収容部41内のトナー濃度を検知してこれを所定値に維持する必要がある。トナー濃度が低下したことが検知されれば、トナーホッパ46から補充用のトナーを補給して適正なトナー濃度とするようにトナー補給制御を行うトナー補給制御部48により制御する。そのため、現像剤収容部41内の現像剤のトナー濃度を現像剤の透磁率に基づいて検知するトナー濃度検知装置としてのトナー濃度センサ27が設置されている。そして、このトナー濃度センサ27により検出した現像剤のトナー濃度TCおよび温湿度を検知する温湿度検知部20よりの温湿度に基づいて、トナー補給制御部48により後述するように現像剤のトナー濃度が調整制御される。   In this developing device 40, the toner concentration in the developer container 41 is detected in order to obtain a high quality image by always maintaining the mixing ratio of the toner with respect to the magnetic carrier in the developer to be developed at an appropriate value. It is necessary to maintain this at a predetermined value. If it is detected that the toner concentration is lowered, the toner replenishment control unit 48 that performs toner replenishment control to replenish the replenishment toner from the toner hopper 46 to obtain an appropriate toner concentration is controlled. Therefore, a toner concentration sensor 27 is installed as a toner concentration detection device that detects the toner concentration of the developer in the developer accommodating portion 41 based on the magnetic permeability of the developer. Based on the toner concentration TC of the developer detected by the toner concentration sensor 27 and the temperature / humidity from the temperature / humidity detection unit 20 that detects the temperature / humidity, the toner replenishment control unit 48 sets the toner concentration of the developer as described later. Is adjusted and controlled.

まず、本発明のスクリュとの比較対照として従来のスクリュ(以下、ノーマルスクリュという)を図2に示す。図2に示したスクリュは、回転軸50に現像剤搬送方向である回転軸方向へ向かって現像剤を攪拌搬送する羽根51を螺旋状に設けたものである。図2に示した矢印は、ノーマルスクリュの羽根51に接している粉体の回転軸方向の速度ベクトルを表したものである。このノーマルスクリュは回転軸方向でリード角θ(羽根外周と回転軸50とがなす角)が常に一定であり、回転軸方向で現像剤は略同じ速度で搬送される。このようなノーマルスクリュで現像剤を搬送しても回転軸方向で現像剤があまり混ざらない。   First, a conventional screw (hereinafter referred to as a normal screw) is shown in FIG. 2 as a comparison with the screw of the present invention. The screw shown in FIG. 2 is provided with a spiral blade 51 that stirs and conveys the developer in the direction of the rotation axis that is the developer conveyance direction. The arrow shown in FIG. 2 represents the velocity vector of the powder in contact with the normal screw blade 51 in the rotation axis direction. In this normal screw, the lead angle θ (angle formed by the blade outer periphery and the rotation shaft 50) is always constant in the rotation axis direction, and the developer is conveyed at substantially the same speed in the rotation axis direction. Even if the developer is transported with such a normal screw, the developer is not so mixed in the direction of the rotation axis.

図3を用いてスクリュによる現像剤の回転軸方向の分散性について説明する。図3(a)は、スクリュによる現像剤の回転軸方向の搬送速度の分布にばらつきが少ない場合(搬送速度分布がシャープな場合)の図である。また、図中の黒さはトナー濃度(トナー濃度は現像剤重量に対するトナー重量の割合)が高いところほど色を濃くしてある。図3(a)に示すようなスクリュによる粉体の回転軸方向の搬送速度の分布にばらつきが少ない場合は、トナー濃度が高い部分とトナー濃度が低い部分とがあまり混じり合わずに搬送される。そのため、トナー濃度が高い部分(色が濃い部分)は、ほとんどそのまま回転軸方向に搬送されてしまう。図2に示したのようなノーマルスクリュは、上述したように回転軸方向で現像剤が略同じ速度で搬送され現像剤の回転軸方向の搬送速度の分布にばらつきが少ないので、現像剤の回転軸方向の分散性は、図3(a)ほど極端ではないが図3(a)のような状態に近くなる。   The dispersibility of the developer in the rotation axis direction by the screw will be described with reference to FIG. FIG. 3A is a diagram in the case where there is little variation in the distribution of the conveyance speed of the developer in the rotation axis direction due to the screw (when the conveyance speed distribution is sharp). Further, the blackness in the figure indicates that the higher the toner density (the toner density is the ratio of the toner weight to the developer weight), the darker the color. When the distribution of the conveying speed of the powder in the direction of the rotation axis of the powder by the screw as shown in FIG. 3A is small, the portion where the toner concentration is high and the portion where the toner concentration is low are conveyed without being mixed very much. . For this reason, a portion having a high toner density (a portion having a dark color) is almost always conveyed in the direction of the rotation axis. As described above, the normal screw as shown in FIG. 2 is such that the developer is conveyed at substantially the same speed in the direction of the rotation axis, and there is little variation in the distribution of the conveyance speed of the developer in the direction of the rotation axis. Although the dispersibility in the axial direction is not as extreme as in FIG. 3A, it is close to the state shown in FIG.

一方、図3(b)のようにスクリュによる現像剤の回転軸方向の搬送速度がばらついていれば、図3(b)に示したようなトナー濃度が高い部分が存在しても、図に示すようにスクリュによって現像剤が回転軸方向に搬送されるにしたがって現像剤が混ざり合い、トナー濃度が均一になっていく。   On the other hand, if the developer conveyance speed in the direction of the rotation axis of the screw varies as shown in FIG. 3B, even if there is a portion where the toner concentration is high as shown in FIG. As shown, as the developer is conveyed in the direction of the rotation axis by the screw, the developer is mixed and the toner density becomes uniform.

本発明の特徴部を有するスクリュを図1及び図4に示す。図1は、羽根51の搬送面51a、稜線部51b及び根元51cが波打っているスクリュである。図4は、羽根51の搬送面51aが波打っているスクリュである。図1及び図4に示したスクリュ共に図2で示したノーマルスクリュとは異なってリード角θが一ピッチ内で一定ではない。図1に示すスクリュは、リード角θが1度から55度まで連続的に変わる部分が1/4回転周期で存在する。図4に示すスクリュは、リード角θが1度から55度まで連続的に変わる部分が1/2回転周期で存在するスクリュである。   A screw having the features of the present invention is shown in FIGS. FIG. 1 shows a screw in which a conveying surface 51a, a ridge line portion 51b, and a root 51c of a blade 51 are undulated. FIG. 4 shows a screw in which the conveying surface 51a of the blade 51 is undulating. Unlike the normal screw shown in FIG. 2, the lead angle θ of the screws shown in FIGS. 1 and 4 is not constant within one pitch. The screw shown in FIG. 1 has a portion where the lead angle θ continuously changes from 1 degree to 55 degrees at a quarter rotation period. The screw shown in FIG. 4 is a screw in which a portion where the lead angle θ continuously changes from 1 degree to 55 degrees exists in a ½ rotation cycle.

回転軸50に対して羽根51が垂直に近くなるほどリード角θの角度が小さくなり、回転軸50に対して羽根51が平行に近くなるほでリード角θの角度が大きくなる。また、リード角θの角度が小さくなるほど、羽根51による回転軸方向への現像剤の搬送力が大きくなり、リード角θの角度が大きくなるほど、羽根51による回転軸方向への現像剤の搬送力が小さくなる。そのため、羽根51のリード角θを一ピッチ内で変化させることで、羽根51による回転軸方向への現像剤の搬送力が一ピッチ内で異なる。前記搬送力が大きくなるほど現像剤が回転軸方向へ搬送され易くなり、前記搬送力が小さくなるほど現像剤が回転軸方向へ搬送され難くなるので、一ピッチ内で羽根51によって回転軸方向に搬送される現像剤の搬送速度に速度差が生じる。   The angle of the lead angle θ decreases as the blade 51 approaches the vertical axis with respect to the rotation shaft 50, and the angle of the lead angle θ increases as the blade 51 approaches the rotation shaft 50 in parallel. Further, as the lead angle θ decreases, the developer conveying force in the direction of the rotation axis by the blade 51 increases, and as the lead angle θ increases, the developer conveyance force in the direction of the rotation axis by the blade 51. Becomes smaller. Therefore, by changing the lead angle θ of the blade 51 within one pitch, the developer conveying force in the direction of the rotation axis by the blade 51 is different within one pitch. The developer is more easily conveyed in the direction of the rotation axis as the conveyance force is increased, and the developer is less likely to be conveyed in the direction of the rotation axis as the conveyance force is decreased. Therefore, the developer 51 is conveyed in the rotation axis direction by the blades 51 within one pitch. There is a speed difference in the developer transport speed.

図4にスクリュに接している現像剤の回転軸方向の速度ベクトルを矢印で示したが、スクリュのリード角θが小さい部分では現像剤の搬送速度が遅くなり、現像剤が溜まりやすくなり、リード角θが大きい部分では現像剤の搬送速度が速くなる。すなわち、図1及び図4に示したスクリュには、スクリュによる現像剤の回転軸方向の搬送速度が速い部分と遅い部分とが存在し、スクリュによる現像剤の回転軸方向の搬送速度のバラツキが大きくなる。   In FIG. 4, the velocity vector in the rotation axis direction of the developer in contact with the screw is indicated by an arrow. However, in the portion where the lead angle θ of the screw is small, the developer conveyance speed becomes slow and the developer tends to accumulate, and the lead In the portion where the angle θ is large, the developer conveyance speed is increased. That is, the screw shown in FIGS. 1 and 4 includes a portion where the developer conveyance speed in the rotation axis direction by the screw is fast and a portion where the developer conveyance speed in the rotation axis direction by the screw varies. growing.

前記搬送速度が大きくなるほど現像剤が単位時間あたりに回転軸方向へ搬送される距離が長くなり、前記搬送速度が小さくなるほど現像剤が単位時間あたりに回転軸方向へ搬送される距離が短くなる。このように、単位時間あたりに現像剤が回転軸方向へ搬送される距離が一ピッチ内で異なることにより、現像剤が回転軸方向で混ざり易くなる。よって、トナーとキャリアとからなる現像剤を攪拌搬送する際に、羽根51のリード角θを一ピッチ内で変化させていない場合よりも現像剤中でトナーとキャリアとを回転軸方向で分散させることができる。   As the transport speed increases, the distance that the developer is transported in the direction of the rotation axis per unit time becomes longer. As the transport speed decreases, the distance that the developer is transported in the direction of the rotation axis decreases. As described above, the developer transport distance in the rotation axis direction per unit time is different within one pitch, so that the developer is easily mixed in the rotation axis direction. Therefore, when the developer composed of the toner and the carrier is agitated and conveyed, the toner and the carrier are dispersed in the direction of the rotation axis in the developer as compared with the case where the lead angle θ of the blade 51 is not changed within one pitch. be able to.

また、スクリュの羽根51にリード角θの大きい部分とリード角θの小さい部分とが交互にあるので、現像剤が溜まっているリード角θの小さい部分に、リード角θの大きい部分で速い搬送速度で搬送された現像剤が流入し現像剤が撹拌され、これによっても現像剤の回転軸方向の分散性が向上する。   Further, since the portions having a large lead angle θ and the portions having a small lead angle θ are alternately provided on the screw blade 51, the portions having a large lead angle θ are quickly conveyed to the portions having a small lead angle θ where the developer is accumulated. The developer conveyed at a speed flows in and the developer is agitated. This also improves the dispersibility of the developer in the direction of the rotation axis.

図1に示した羽根51の搬送面51a、稜線部51b及び根元51cが波打っているスクリュを用いた場合や、図4に示した羽根51の搬送面51aが波打っているスクリュを用いた場合では、現像剤の回転軸方向の分散性が図3(b)のような状態に近くなる。   When the screw having the undulation of the conveying surface 51a, the ridge line portion 51b and the root 51c of the blade 51 shown in FIG. 1, or the screw having the undulating of the conveying surface 51a of the blade 51 shown in FIG. 4 was used. In this case, the dispersibility of the developer in the rotation axis direction is close to the state shown in FIG.

なお、図1及び図4に示したスクリュでは、回転軸50に対して螺旋状に巻き付いた羽根51が周期を持った形状をしているが、リード角θの大小がランダムになっている周期性を持たない羽根51の形状である場合でも上述したのと同様の効果が得られる。   In the screw shown in FIGS. 1 and 4, the blades 51 spirally wound around the rotation shaft 50 have a periodic shape, but the cycle in which the magnitude of the lead angle θ is random. Even in the case of the shape of the blade 51 having no property, the same effect as described above can be obtained.

また、図5に示した羽根51にリード角θの大きい部分とリード角θの小さい部分とがありそのリード角θの大きい部分と小さい部分とが滑らかに接続されず角を持ったスクリュ、図6に示した羽根51の稜線は波打っているが羽根51の根元51cは波打っていないスクリュウ、及び、図7に示した羽根51の稜線は波打っていないが羽根51の根元51cは波打っているスクリュでも、図1に示した羽根51の搬送面51a、稜線部51b及び根元51cが波打っているスクリュや、図4示した羽根51の搬送面51aが波打っているスクリュと同様に、上述した理由によってスクリュによる現像剤の回転軸方向の搬送速度にバラツキが生じ、現像剤の回転軸方向の分散性を向上させることができる。さらに、図示していないが羽根51の稜線及び根元51cは波打たずに羽根51の搬送面51aのみ波打っているスクリュでも、上述した理由によってスクリュによる現像剤の回転軸方向の搬送速度にバラツキが生じ、現像剤の回転軸方向の分散性を向上させることができる。   Further, the blade 51 shown in FIG. 5 has a portion having a large lead angle θ and a portion having a small lead angle θ, and a portion having a large lead angle θ and a portion having a small lead angle θ are not smoothly connected to each other, FIG. The ridgeline of the blade 51 shown in FIG. 6 is undulated but the root 51c of the blade 51 is not undulated, and the ridgeline of the blade 51 shown in FIG. The screw which is struck is the same as the screw in which the conveyance surface 51a of the blade 51 shown in FIG. 1, the ridge 51b and the root 51c is undulated, and the screw in which the conveyance surface 51a of the blade 51 shown in FIG. In addition, for the reasons described above, the transport speed of the developer in the direction of the rotation axis by the screw varies, and the dispersibility of the developer in the direction of the rotation axis can be improved. Further, although not shown in the drawing, the ridge line and the root 51c of the blade 51 are not undulated and even the screw having only the conveying surface 51a of the blade 51 is undulated for the reason described above, the developer conveying speed in the rotation axis direction by the screw is increased. Variations occur, and the dispersibility of the developer in the direction of the rotation axis can be improved.

つまり、スクリュの羽根51の搬送面51aと回転軸50とでなす角が回転軸方向で増減していれば、スクリュによる回転軸方向の現像剤の搬送速度に速度差が生じ、現像剤の回転軸方向の分散性を向上させることができる。   That is, if the angle formed between the conveying surface 51a of the screw blade 51 and the rotating shaft 50 increases or decreases in the rotating shaft direction, a speed difference occurs in the developer conveying speed in the rotating shaft direction by the screw, and the rotation of the developer. The dispersibility in the axial direction can be improved.

また、図1、図4、図5、図6及び図7に示したスクリュは、螺旋状の羽根51の一ピッチ内で羽根51をうねらせているとも言え、その観点からスクリュによる現像剤の回転軸方向の分散性について説明する。   The screw shown in FIGS. 1, 4, 5, 6, and 7 can be said to have the blades 51 undulating within one pitch of the spiral blades 51. The dispersibility in the rotation axis direction will be described.

一ピッチ内で羽根51をうねらせることで、回転軸に固定された羽根51の搬送面51aと回転軸50に直交する仮想平面とで成す角を、一ピッチ内で搬送面51aの部分ごとに異ならせることができる。前記成す角が小さくなるほど搬送面51aは回転軸50に対して垂直に近くなり、前記成す角が大きくなるほど搬送面51aは回転軸50に対して平行に近くなる。羽根51は、搬送面51aが回転軸50に対して垂直に近くなるほど回転軸方向への現像剤の搬送力が大きくなり、搬送面51aが回転軸50に対して平行に近くなるほど回転軸方向への現像剤の搬送力が小さくなる。よって、一ピッチ内で羽根51を回転軸方向にうねらせることで、羽根51による回転軸方向への現像剤の搬送力が一ピッチ内で搬送面51aの部分ごとに異なる。前記搬送力が大きくなるほど現像剤が回転軸方向へ搬送され易くなり、前記搬送力が小さくなるほど現像剤が回転軸方向へ搬送され難くなるので、一ピッチ内で羽根51によって回転軸方向に搬送される現像剤の搬送速度に速度差が生じる。前記搬送速度が大きくなるほど現像剤が単位時間あたりに回転軸方向へ搬送される距離が長くなり、前記搬送速度が小さくなるほど現像剤が単位時間あたりに回転軸方向へ搬送される距離が短くなる。このように、単位時間あたりに現像剤が回転軸方向へ搬送される距離が一ピッチ内で異なることにより、現像剤が回転軸方向で混ざり易くなる。よって、トナーとキャリアとからなる現像剤を攪拌搬送する際に、一ピッチ内で羽根51を回転軸方向にうねらせていない場合よりも現像剤中でトナーとキャリアとを回転軸方向で分散させることができる。   By undulating the blades 51 within one pitch, an angle formed by the conveyance surface 51a of the blade 51 fixed to the rotation shaft and a virtual plane orthogonal to the rotation shaft 50 is determined for each portion of the conveyance surface 51a within one pitch. Can be different. The smaller the angle formed, the closer the transport surface 51a is to the rotation axis 50, and the greater the angle formed, the closer the transport surface 51a is to the rotation axis 50. The blade 51 has a greater developer conveying force in the direction of the rotation axis as the conveyance surface 51 a becomes closer to the rotation axis 50, and in the rotation axis direction as the conveyance surface 51 a becomes closer to the rotation axis 50 in parallel. The developer transport force of the developer becomes smaller. Therefore, by causing the blades 51 to swell in the direction of the rotation axis within one pitch, the developer conveying force in the direction of the rotation axis by the blades 51 differs for each portion of the conveyance surface 51a within one pitch. The developer is more easily conveyed in the direction of the rotation axis as the conveyance force is increased, and the developer is less likely to be conveyed in the direction of the rotation axis as the conveyance force is decreased. Therefore, the developer 51 is conveyed in the rotation axis direction by the blades 51 within one pitch. There is a speed difference in the developer transport speed. As the transport speed increases, the distance that the developer is transported in the direction of the rotation axis per unit time becomes longer. As the transport speed decreases, the distance that the developer is transported in the direction of the rotation axis decreases. As described above, the developer transport distance in the rotation axis direction per unit time is different within one pitch, so that the developer is easily mixed in the rotation axis direction. Therefore, when the developer composed of toner and carrier is agitated and conveyed, the toner and carrier are dispersed in the developer in the direction of the rotation axis rather than the case where the blades 51 are not swung in the rotation axis direction within one pitch. be able to.

本実施形態においては、現像剤搬送スクリュ45として、回転軸方向の一端側から他端側にわたって、現像剤搬送スクリュの螺旋状の羽根51の搬送面51a、稜線部51b及び根元51cの少なくとも一つが、図1、図4、図5、図6及び図7に示したスクリュなどのように螺旋状の羽根51の一ピッチ内で波打っているものを用いている。   In the present embodiment, as the developer transport screw 45, at least one of the transport surface 51a, the ridge line portion 51b, and the root 51c of the spiral blade 51 of the developer transport screw extends from one end side to the other end side in the rotation axis direction. 1, 4, 5, 6, and 7, and the like that are undulated within one pitch of the spiral blade 51 are used.

ここで、トナーホッパ46から現像剤搬送スクリュ45が設けられた現像剤収容部41に補給されたトナーは現像剤収容部41に収容される現像剤上面に落下する。トナー補給箇所付近の現像剤収容部41の現像剤嵩が高く、現像剤搬送スクリュ45が現像剤で覆われていると、トナーは現像剤に比べて軽いため現像剤搬送スクリュ45の回転軌跡内に入り込むことが難しく、現像剤搬送スクリュ45より上方の現像剤上面に浮いた状態となる。この現像剤上面に浮いた状態のトナーは、現像剤と十分攪拌されないまま徐々に搬送方向下流部に移動する。トナーが十分攪拌されずに帯電量が低いままで搬送方向最下流部まで達して、現像剤搬送スクリュ44が設けられた現像剤収容部41に受け渡され、その現像剤収容部41から現像ローラに供給されて現像に使用されてしまうと、現像に用いられた現像剤にトナー濃度偏差が生じ異常画像を発生させてしまう。そのため、現像剤上面に浮いたトナーを現像剤に取り込む必要がある。   Here, the toner replenished from the toner hopper 46 to the developer accommodating portion 41 provided with the developer conveying screw 45 falls on the upper surface of the developer accommodated in the developer accommodating portion 41. If the developer bulk of the developer accommodating portion 41 near the toner replenishment location is high and the developer transport screw 45 is covered with the developer, the toner is lighter than the developer, so that the toner is within the rotation trajectory of the developer transport screw 45. It is difficult to enter and floats on the upper surface of the developer above the developer transport screw 45. The toner floating on the upper surface of the developer gradually moves downstream in the transport direction without being sufficiently agitated with the developer. The toner is not sufficiently agitated and reaches the most downstream portion in the transport direction with the charge amount being low, and is transferred to the developer storage portion 41 provided with the developer transport screw 44, from the developer storage portion 41 to the developing roller. If the toner is supplied to the toner and used for development, a toner density deviation occurs in the developer used for development, and an abnormal image is generated. Therefore, it is necessary to take in the toner that floats on the upper surface of the developer.

従来では、スクリュの回転軸に回転軸と平行な面を持つパドルを設け、そのパドルにより現像剤上面に浮いたトナーを現像剤に取り込み、現像剤を回転軸に直交方向で分散させたりしている。ところが、このようなパドルは、回転軸方向に粉体を搬送する搬送力がほとんどないため、上述したような粉体の回転軸方向の搬送速度をばらつかせる作用が得られ難く、現像剤の回転軸方向の分散性の向上にほとんど寄与しない。また、パドルを設けることによって現像剤の搬送速度が遅くなってしまう。   Conventionally, a paddle having a surface parallel to the rotation axis is provided on the rotation axis of the screw, and the toner floating on the upper surface of the developer is taken into the developer by the paddle, and the developer is dispersed in a direction orthogonal to the rotation axis. Yes. However, such a paddle has almost no conveying force to convey the powder in the direction of the rotation axis, so that it is difficult to obtain the effect of varying the conveyance speed of the powder in the direction of the rotation axis as described above. It hardly contributes to the improvement of dispersibility in the rotation axis direction. Also, the developer transport speed is slowed by providing the paddle.

図1、図4、図5、図6及び図7に示したスクリュは、羽根51のリード角θが変わり、羽根51の搬送面51aが上記パドルに近い構成、すなわち、現像剤上面に浮いたトナーを現像剤に取り込み、現像剤を回転軸50に直交する方向へ分散させやすくなる部分が存在する。その部分では、上記パドルと同じような現像剤上面に浮いたトナーを現像剤に取り込み、現像剤を回転軸50に直交する方向へ分散させる効果が得られる。また、パドルを設けないのでパドルを設ける場合よりも、現像剤の回転軸方向の搬送速度が遅くなるのを抑えることができる。そのため、図1、図4、図5、図6及び図7に示したスクリュでは、現像剤の回転軸方向の搬送速度の低下を抑えつつ、現像剤上面に浮いたトナーを現像剤に取り込め、回転軸方向及び回転軸50に直交する方向の現像剤の攪拌を両立することができ、現像剤の回転軸方向の分散性向上と現像剤の回転軸50に直交する方向の分散性向上を図ることができる。   1, 4, 5, 6, and 7, the lead angle θ of the blade 51 changes, and the conveying surface 51 a of the blade 51 is close to the paddle, that is, floats on the upper surface of the developer. There is a portion where the toner is taken into the developer and the developer is easily dispersed in a direction perpendicular to the rotation axis 50. In that portion, the same effect as that of the paddle can be obtained by taking the toner floating on the upper surface of the developer into the developer and dispersing the developer in a direction perpendicular to the rotation shaft 50. Further, since the paddle is not provided, it is possible to suppress a decrease in the conveyance speed of the developer in the direction of the rotation axis as compared with the case where the paddle is provided. Therefore, in the screw shown in FIG. 1, FIG. 4, FIG. 5, FIG. 6 and FIG. 7, the toner floating on the upper surface of the developer is taken into the developer while suppressing a decrease in the conveying speed of the developer in the rotation axis direction. It is possible to achieve both stirring of the developer in the direction of the rotation axis and the direction orthogonal to the rotation axis 50, and to improve the dispersibility in the direction of the rotation axis of the developer and the dispersibility in the direction orthogonal to the rotation axis 50 of the developer. be able to.

次に上記波打ちスクリュを用いた場合の改善効果について説明する。
図11は、現像装置40内の現像剤が収容された現像剤収容部41にトナーホッパ46からトナーを補給した後、現像剤収容部41の現像剤搬送スクリュ回転軸方向の一端側にあるトナー補給位置P1から他端側にあるトナー濃度センサが設けられたトナー濃度検知位置P2まで(250[mm])、現像剤搬送スクリュ45により現像剤を搬送した後のトナー濃度検知位置P2での現像剤のトナー濃度をで検知した結果である。トナー補給位置P1やトナー濃度検知位置P2の大まかな場所は図10に示している。
Next, the improvement effect in the case of using the wavy screw will be described.
FIG. 11 shows a toner replenishment at one end of the developer accommodating portion 41 in the direction of the rotation axis of the developer conveying screw after replenishing toner from the toner hopper 46 to the developer accommodating portion 41 accommodating the developer in the developing device 40. From the position P1 to the toner density detection position P2 provided with the toner density sensor on the other end side (250 [mm]), the developer at the toner density detection position P2 after the developer is transported by the developer transport screw 45 This is the result of detecting the toner density. The rough locations of the toner supply position P1 and the toner density detection position P2 are shown in FIG.

図11では、下記の3つのスクリュを用いて測定を行った。
1)羽根51の搬送面51a、稜線部51b及び根元51cが波打っているスクリュ(図1参照)
2)羽根51の搬送面51a、稜線部51b及び根元51cのいずれも波打っていないノーマルスクリュ(図2参照)
3)上記ノーマルスクリュに対し、スクリュ一周ごと(羽根51の一ピッチごと)に2箇所、スクリュの羽根51に2[mm](羽根51の先端から中央付近まで)の切り欠き52を入れたスクリュ(図13参照)
In FIG. 11, the measurement was performed using the following three screws.
1) Screw in which the conveying surface 51a, the ridge line portion 51b, and the root 51c of the blade 51 are undulating (see FIG. 1).
2) A normal screw in which none of the conveying surface 51a, the ridge line portion 51b, and the root 51c of the blade 51 is wavy (see FIG. 2).
3) A screw in which notches 52 of 2 [mm] (from the tip of the blade 51 to the vicinity of the center) are inserted into the screw blade 51 at two locations for each round of the screw (one pitch of the blade 51) with respect to the normal screw. (See Figure 13)

図11のグラフでは、補給したトナーがトナー濃度検知位置P2に早く到着するほど、及び、補給したトナーによる現像剤のトナー濃度変動が小さいほど、現像剤搬送スクリュによる現像剤の搬送性、補給トナー分散性として望ましい状態を示す。   In the graph of FIG. 11, as the replenished toner arrives at the toner density detection position P2 earlier and the toner density fluctuation of the developer due to the replenished toner is smaller, the developer transportability by the developer transport screw, the replenishment toner A desirable state for dispersibility is shown.

図11からわかるように、ノーマルスクリュを用いた場合は、トナー補給位置P1からトナー濃度検知位置P2までの到着時間が一番早く現像剤の搬送速度が一番速いが、現像剤のトナー濃度変動が大きい。次に、ノーマルスクリュに切り欠き52を入れたスクリュを用いた場合は、現像剤のトナー濃度変動が小さく現像剤中のトナーを回転軸方向に分散させる効果は大きいが、トナー補給位置P1からトナー濃度検知位置P2までの到着時間が最も遅く現像剤の搬送速度がノーマルスクリュを用いた場合に比べて大きく落ちてしまう。その点、波打ちスクリュを用いた場合は現像剤のトナー濃度変動が小さく現像剤中のトナーを回転軸方向で分散させる効果が大きい。また、トナー補給位置P1からトナー濃度検知位置P2までの到着時間もノーマルスクリュよりかは少し遅くなるが、ノーマルスクリュに切り欠き52を入れたスクリュを用いた場合ほど遅くならず、現像剤の搬送速度もノーマルスクリュに比べてそれほど落ちていない。これは、波打ちスクリュは一回転で進む現像剤の距離(ピッチ速度)が、ノーマルスクリュとほとんど変わらないため、現像剤の搬送速度がノーマルスクリュを用いた場合に対し、さほど落ちない。   As can be seen from FIG. 11, when the normal screw is used, the arrival time from the toner replenishment position P1 to the toner density detection position P2 is the earliest, and the developer transport speed is the fastest. Is big. Next, when a screw having a notch 52 in a normal screw is used, the toner concentration fluctuation of the developer is small and the effect of dispersing the toner in the developer in the direction of the rotation axis is great, but the toner is supplied from the toner replenishment position P1. The arrival time to the density detection position P2 is the latest, and the developer transport speed is greatly reduced as compared with the case where a normal screw is used. On the other hand, when the wavy screw is used, the toner density fluctuation of the developer is small, and the effect of dispersing the toner in the developer in the rotation axis direction is great. Also, the arrival time from the toner replenishment position P1 to the toner density detection position P2 is slightly slower than that of the normal screw, but is not as slow as when using a screw having a notch 52 in the normal screw, and the developer transport. The speed is not so much lower than the normal screw. This is because the wavy screw has almost the same distance (pitch speed) as the developer traveling in one rotation as compared with the normal screw, so that the developer transport speed does not drop much compared to the case where the normal screw is used.

なお、ノーマルスクリュにパドルをつけた構成の場合、現像剤の上に浮いているトナーを現像剤中に取り込む効果は大きいが、パドルによる回転軸方向への分散性はほとんど無い。そのためノーマルスクリュにパドルをつけたスクリュを用いて図11の実験を行うと、図2に示したノーマルスクリュの結果とほぼ同じになった。すなわち、補給トナーの現像剤中への取り込みと回転軸方向の分散性との両方を向上させる目的を、ノーマルスクリュにパドルをつけた構成では達成できない。   In the case where the paddle is attached to the normal screw, the effect of taking the toner floating on the developer into the developer is great, but there is almost no dispersibility in the rotation axis direction by the paddle. Therefore, when the experiment of FIG. 11 was performed using a screw with a paddle attached to the normal screw, the result of the normal screw shown in FIG. 2 was almost the same. In other words, the purpose of improving both the incorporation of the replenishment toner into the developer and the dispersibility in the direction of the rotation axis cannot be achieved with the configuration in which the paddle is attached to the normal screw.

図12は補給したトナーが現像剤中に取り込まれるまでの距離を示したものである。図12では、現像装置40内の現像剤が収容された現像剤収容部41にトナーホッパ46からトナーを補給した後、現像剤収容部41の現像剤搬送スクリュ回転軸方向の一端側にあるトナー補給位置P1から他端側にあるトナー濃度センサが設けられたトナー濃度検知位置P2までの間に、目視で観測を行った補給したトナーが完全に現像剤中に取り込まれるまでの距離を示したものである。   FIG. 12 shows the distance until the replenished toner is taken into the developer. In FIG. 12, after replenishing toner from the toner hopper 46 to the developer accommodating portion 41 containing the developer in the developing device 40, toner replenishment at one end side of the developer conveying screw rotating shaft direction of the developer accommodating portion 41. The distance from the position P1 to the toner density detection position P2 where the toner density sensor on the other end is provided until the replenished toner that has been visually observed is completely taken into the developer. It is.

図12では、補給したトナーが現像剤中に取り込まれるまでの距離を下記の4つのスクリュを用いて測定を行った。
1)羽根51の搬送面51a、稜線部51b及び根元51cが波打っているスクリュ(図1参照)
2)羽根51の搬送面51a、稜線部51b及び根元51cのいずれも波打っていないノーマルスクリュ(図2参照)
3)上記ノーマルスクリュに対して、スクリュ一周ごと(羽根51の一ピッチごと)にパドル53を設けたスクリュ(図14参照)
4)上記ノーマルスクリュに対して、スクリュ一周ごと(羽根51の一ピッチごと)に2箇所、スクリュの羽根51に2[mm](羽根51の先端から中央付近まで)の切り欠き52を入れたスクリュ(図13参照)
In FIG. 12, the distance until the replenished toner is taken into the developer was measured using the following four screws.
1) Screw in which the conveying surface 51a, the ridge line portion 51b, and the root 51c of the blade 51 are undulating (see FIG. 1).
2) A normal screw in which none of the conveying surface 51a, the ridge line portion 51b, and the root 51c of the blade 51 is wavy (see FIG. 2).
3) A screw provided with a paddle 53 for each round of the screw (every pitch of the blades 51) with respect to the normal screw (see FIG. 14).
4) Notches 52 of 2 [mm] (from the tip of the blade 51 to the vicinity of the center) were inserted into the screw blade 51 at two locations for each screw revolution (one pitch of the blade 51) with respect to the normal screw. Screw (see Fig. 13)

図12からわかるように、補給トナーが現像剤に取り込むまでの距離は、切り欠きスクリュが一番長く、次にノーマルスクリュ、波打ちスクリュ、パドルありスクリュと続く。このように、切り欠きスクリュはノーマルスクリュよりも現像剤中へのトナー取り込み速度が遅く、波打ちスクリュはノーマルスクリュよりも現像剤中へのトナー取り込み速度が速いことがわかる。   As can be seen from FIG. 12, the distance until the replenishment toner is taken into the developer is the longest for the notched screw, followed by the normal screw, the wavy screw, and the screw with paddle. Thus, it can be seen that the notch screw has a slower toner uptake rate into the developer than the normal screw, and the wavy screw has a faster toner uptake rate into the developer than the normal screw.

また、補給トナーの量を多くすると補給トナーが現像剤中に取り込まれるまでの距離が長くなる。   Further, when the amount of the replenishment toner is increased, the distance until the replenishment toner is taken into the developer becomes longer.

波打ちスクリュでは、スクリュの羽根51のリード角θが大きい部分での現像剤上面に浮いた補給トナーを現像剤中に取り込む量が多くなる。つまり、リード角θが大きくなるとスクリュの羽根51がパドルに近い構成となり、現像剤上面に浮いた補給トナーを現像剤中に取り込む量が多くなる。そのため、ノーマルスクリュに比べて波打ちスクリュの羽根51にリード角θが大きい部分があることで、ノーマルスクリュに比べて波打ちスクリュのほうが現像剤上面に浮いた補給トナーと現像剤との混合が早くなるという効果が得られる。   In the corrugated screw, the amount of supply toner floating on the upper surface of the developer at the portion where the lead angle θ of the blade 51 of the screw is large is taken into the developer. That is, when the lead angle θ is increased, the screw blades 51 are configured to be close to paddles, and the amount of supply toner floating on the upper surface of the developer is taken into the developer. For this reason, the wavy screw blade 51 has a larger lead angle θ than the normal screw, so that the wavy screw has a faster mixing of the replenishment toner and the developer floating on the upper surface of the developer than the normal screw. The effect is obtained.

図11、図12の結果を総合すると、羽根51の搬送面51a、稜線部51b及び根元51cが波打っているスクリュは、現像剤上面に浮いた補給トナーの現像剤中への取り込みと、現像剤中のトナーの回転軸方向の分散性向上とを、両立させることができるスクリュであることがわかる。   11 and 12, the screw having the undulation of the conveying surface 51a, the ridge line portion 51b, and the root 51c of the blade 51 causes the supply of the replenishment toner floating on the upper surface of the developer to the developer and the development. It can be seen that the screw can achieve both improvement in the dispersibility in the rotation axis direction of the toner in the agent.

よって、波打ちスクリュを用いることで、現像ローラに供給される現像剤のトナー濃度を均一にしトナー濃度変動を小さくすることができ異常画像が発生するのを抑制できる。   Therefore, by using the wavy screw, the toner concentration of the developer supplied to the developing roller can be made uniform, the toner concentration fluctuation can be reduced, and the occurrence of an abnormal image can be suppressed.

また、本発明を図15に示すタンデム型間接転写方式のカラー複写機に適用することも可能であり、上述したのと同様の効果を得ることができる。図15は、本発明を実施したタンデム型間接転写方式のカラー複写機に構成図である。この画像形成装置は、複写装置本体200、この複写機本体を載せる給紙テーブル300、複写装置本体上に取り付けるスキャナ400、さらにその上に取り付ける原稿自動搬送装置(ADF)500から主に構成されている。   Further, the present invention can also be applied to a tandem indirect transfer type color copying machine shown in FIG. 15, and the same effects as described above can be obtained. FIG. 15 is a block diagram of a tandem indirect transfer type color copying machine embodying the present invention. This image forming apparatus is mainly composed of a copying machine main body 200, a paper feed table 300 on which the copying machine main body is mounted, a scanner 400 mounted on the copying apparatus main body, and an automatic document feeder (ADF) 500 mounted thereon. Yes.

複写装置本体200には、中央に、無端ベルト状の中間転写体である中間転写ベルト210を設ける。そして、図15の例では、中間転写ベルト210を、3つの支持ローラ214、215、216に掛け回して図中時計回り方向に回転搬送可能とする。図示の例では、3つの支持ローラのうち支持ローラ215の左側に、画像転写後に中間転写ベルト210上に残留する残留トナーを除去する中間転写体クリーニング装置217を設ける。また、支持ローラ214と支持ローラ215との間に張り渡した中間転写ベルト210上には、その搬送方向に沿って、ブラック、イエロー、マゼンタ、シアンの4つの画像形成部218を横に並べて配置してタンデム画像形成部220を構成する。そのタンデム画像形成部220の上方には、図15に示すように、露光装置221を設ける。   The copying machine main body 200 is provided with an intermediate transfer belt 210 that is an endless belt-like intermediate transfer member at the center. In the example of FIG. 15, the intermediate transfer belt 210 is wound around three support rollers 214, 215, and 216 so as to be able to rotate and convey in the clockwise direction in the drawing. In the illustrated example, an intermediate transfer member cleaning device 217 that removes residual toner remaining on the intermediate transfer belt 210 after image transfer is provided on the left side of the support roller 215 among the three support rollers. Further, on the intermediate transfer belt 210 stretched between the support roller 214 and the support roller 215, four image forming units 218 of black, yellow, magenta, and cyan are arranged side by side along the conveyance direction. Thus, the tandem image forming unit 220 is configured. An exposure device 221 is provided above the tandem image forming unit 220 as shown in FIG.

一方、中間転写ベルト210を挟んでタンデム画像形成部220と反対の側には、二次転写装置222を備える。二次転写装置222は、図示の例では、2つのローラ223a、223b間に、無端ベルトである二次転写ベルト224を掛け渡して構成し、中間転写ベルト210を介して支持ローラ216に押し当てて配置し、中間転写ベルト210上の画像をシートに転写する。   On the other hand, a secondary transfer device 222 is provided on the opposite side of the intermediate transfer belt 210 from the tandem image forming unit 220. In the illustrated example, the secondary transfer device 222 is configured such that a secondary transfer belt 224 that is an endless belt is stretched between two rollers 223 a and 223 b, and is pressed against the support roller 216 via the intermediate transfer belt 210. The image on the intermediate transfer belt 210 is transferred to a sheet.

また、二次転写装置222の図中左横には、シート上の転写画像を定着する定着装置225を設ける。定着装置225は、無端ベルトである定着ベルト226に加圧ローラ227を押し当てて構成する。   A fixing device 225 for fixing the transferred image on the sheet is provided on the left side of the secondary transfer device 222 in the drawing. The fixing device 225 is configured by pressing a pressure roller 227 against a fixing belt 226 that is an endless belt.

上述した二次転写装置222には、画像転写後のシートをこの定着装置225へと搬送するシート搬送機能も備えてなる。もちろん、二次転写装置222として、転写ローラや非接触のチャージャを配置してもよく、そのような場合は、このシート搬送機能を併せて備えることは難しくなる。   The secondary transfer device 222 described above is also provided with a sheet transport function for transporting the sheet after image transfer to the fixing device 225. Of course, a transfer roller or a non-contact charger may be arranged as the secondary transfer device 222. In such a case, it is difficult to provide this sheet conveyance function together.

なお、図示の例では、このような二次転写装置222および定着装置225の下方に、上述したタンデム画像形成部220と平行に配設され、シートの両面に画像を記録すべくシートを反転するシート反転装置228を備える。   In the illustrated example, the sheet is disposed below the secondary transfer device 222 and the fixing device 225 in parallel with the tandem image forming unit 220 described above, and the sheet is reversed to record images on both sides of the sheet. A sheet reversing device 228 is provided.

次に、タンデム画像形成部220の個々の画像形成部218について説明する。
図16は、画像形成部218の概略構成図である。画像形成部218は、像担持体としての感光体ドラム240、その感光体ドラム240のまわりに、帯電手段としての帯電装置260、現像手段としての現像装置261、及び、温湿度を検知する温湿度検知部282などを備えている。
Next, the individual image forming units 218 of the tandem image forming unit 220 will be described.
FIG. 16 is a schematic configuration diagram of the image forming unit 218. The image forming unit 218 includes a photosensitive drum 240 as an image carrier, a charging device 260 as a charging unit, a developing device 261 as a developing unit, and a temperature / humidity for detecting temperature / humidity around the photosensitive drum 240. A detection unit 282 and the like are provided.

上記画像形成部218を構成する部分のうち、帯電装置260はローラ状であり、感光体ドラム240に接触して電圧を印加することによりその感光体ドラム240の帯電を行う。もちろん、非接触のスコロトロンチャージャで帯電を行うこともできる。上記現像装置261は、磁性キャリアと非磁性のトナーとを含む二成分現像剤を使用し、現像剤収容部266を備えている。   Among the parts constituting the image forming unit 218, the charging device 260 has a roller shape, and charges the photosensitive drum 240 by applying a voltage in contact with the photosensitive drum 240. Of course, charging can be performed by a non-contact scorotron charger. The developing device 261 uses a two-component developer containing a magnetic carrier and non-magnetic toner, and includes a developer container 266.

上記現像剤収容部266、二成分現像剤を攪拌しながら搬送して現像スリーブ265に二成分現像剤を供給付着させるものである。この現像剤収容部266、平行な2本の現像剤撹拌スクリュ267、268が設けられ、2本の現像剤撹拌スクリュ267、268の間は、回転軸方向両端部を除いて仕切り板269で仕切られている。また、現像ケース270にはトナー濃度センサ271が取り付けられている。そして、このトナー濃度センサ271により検出した現像剤のトナー濃度TCおよび温湿度を検知する温湿度検知部282よりの温湿度に基づいて、トナー補給制御部280によって後述するように現像剤のトナー濃度が調整制御される。   The developer accommodating portion 266 conveys the two-component developer with stirring and supplies and adheres the two-component developer to the developing sleeve 265. The developer accommodating portion 266 and two parallel developer agitating screws 267 and 268 are provided, and the space between the two developer agitating screws 267 and 268 is partitioned by a partition plate 269 except for both ends in the rotation axis direction. It has been. Further, a toner density sensor 271 is attached to the developing case 270. Based on the toner concentration TC of the developer detected by the toner concentration sensor 271 and the temperature / humidity from the temperature / humidity detection unit 282 that detects the temperature / humidity, the toner replenishment control unit 280 determines the toner concentration of the developer as will be described later. Is adjusted and controlled.

上記現像剤収容部266は、現像スリーブ265に付着した二成分現像剤のうちのトナーを感光体ドラム240に転移させるものであり、現像ケース270の開口を通して感光体ドラム240と対向する現像剤担持体としての現像スリーブ265が設けられている。また、現像スリーブ265の表面に対して一定距離で離間した隙間をもって保持されたドクターブレード273が設けられている。   The developer accommodating portion 266 is configured to transfer the toner of the two-component developer attached to the developing sleeve 265 to the photosensitive drum 240 and to carry the developer facing the photosensitive drum 240 through the opening of the developing case 270. A developing sleeve 265 as a body is provided. Further, a doctor blade 273 is provided that is held with a gap spaced apart from the surface of the developing sleeve 265 by a certain distance.

このカラー電子写真複写機を用いてコピーをとるときは、原稿自動搬送装置500の原稿台530上に原稿をセットする。または、原稿自動搬送装置500を開いてスキャナ400のコンタクトガラス532上に原稿をセットし、原稿自動搬送装置500を閉じてそれで押さえる。   When making a copy using this color electrophotographic copying machine, a document is set on the document table 530 of the automatic document feeder 500. Alternatively, the automatic document feeder 500 is opened, a document is set on the contact glass 532 of the scanner 400, and the automatic document feeder 500 is closed and pressed.

そして、不図示のスタートスイッチを押すと、原稿自動搬送装置500に原稿をセットしたときは、原稿を搬送してコンタクトガラス532上へと移動して後、他方コンタクトガラス532上に原稿をセットしたときは、直ちにスキャナ400を駆動し、第一走行体433および第二走行体434を走行する。そして、第一走行体433で光源から光を発射するとともに原稿面からの反射光をさらに反射して第二走行体434に向け、第二走行体434のミラーで反射して結像レンズ435を通して読み取りセンサ436に入れ、原稿内容を読み取る。   When a start switch (not shown) is pressed, when the document is set on the automatic document feeder 500, the document is transported and moved onto the contact glass 532, and then the document is set on the other contact glass 532. At that time, the scanner 400 is immediately driven, and the first traveling body 433 and the second traveling body 434 travel. Then, the first traveling body 433 emits light from the light source and further reflects the reflected light from the document surface toward the second traveling body 434 and reflects by the mirror of the second traveling body 434 and passes through the imaging lens 435. The document is placed in the reading sensor 436 and the original content is read.

また、不図示のスタートスイッチを押すと、不図示の駆動モータで支持ローラ214、215、216の1つを回転駆動して他の2つの支持ローラを従動回転し、中間転写ベルト210を回転搬送する。同時に、個々の画像形成部218でその感光体ドラム240を回転して各感光体ドラム240上にそれぞれ、ブラック、イエロー、マゼンタ、シアンの単色画像を形成する。そして、中間転写ベルト210の搬送とともに、それらの単色画像を順次転写して中間転写ベルト210上に合成カラー画像を形成する。   When a start switch (not shown) is pressed, one of the support rollers 214, 215, and 216 is rotationally driven by a drive motor (not shown), the other two support rollers are driven to rotate, and the intermediate transfer belt 210 is rotated and conveyed. To do. At the same time, the photosensitive drums 240 are rotated by the individual image forming units 218 to form black, yellow, magenta, and cyan monochrome images on the respective photosensitive drums 240, respectively. Then, along with the conveyance of the intermediate transfer belt 210, these single color images are sequentially transferred to form a composite color image on the intermediate transfer belt 210.

一方、不図示のスタートスイッチを押すと、給紙テーブル300の給紙ローラ342の1つを選択回転し、ペーパーバンク343に多段に備える給紙カセット344の1つからシートを繰り出し、分離ローラ345で1枚ずつ分離して給紙路346に入れ、搬送ローラ347で搬送して複写装置本体200内の給紙路248に導き、レジストローラ249に突き当てて止める。   On the other hand, when a start switch (not shown) is pressed, one of the paper feed rollers 342 of the paper feed table 300 is selectively rotated, the sheet is fed out from one of the paper feed cassettes 344 provided in multiple stages in the paper bank 343, and the separation roller 345. Are separated one by one into the paper feed path 346, transported by the transport roller 347, guided to the paper feed path 248 in the copying apparatus main body 200, and abutted against the registration roller 249 to stop.

または、給紙ローラ250を回転して手差しトレイ251上のシートを繰り出し、分離ローラ252で1枚ずつ分離して手差し給紙路253に入れ、同じくレジストローラ249に突き当てて止める。   Alternatively, the sheet feeding roller 250 is rotated to feed out the sheets on the manual feed tray 251, separated one by one by the separation roller 252, put into the manual sheet feeding path 253, and abutted against the registration roller 249 and stopped.

そして、中間転写ベルト210上の合成カラー画像にタイミングを合わせてレジストローラ249を回転し、中間転写ベルト210と二次転写装置222との間にシートを送り込み、二次転写装置222で転写してシート上にカラー画像を記録する。   Then, the registration roller 249 is rotated in synchronization with the composite color image on the intermediate transfer belt 210, the sheet is fed between the intermediate transfer belt 210 and the secondary transfer device 222, and is transferred by the secondary transfer device 222. A color image is recorded on the sheet.

画像転写後のシートは、二次転写装置222で搬送して定着装置225へと送り込み、定着装置225で熱と圧力とを加えて転写画像を定着して後、切換爪255で切り換えて排出ローラ256で排出し、排紙トレイ257上にスタックする。または、切換爪255で切り換えてシート反転装置228に入れ、そこで反転して再び転写位置へと導き、裏面にも画像を記録して後、排出ローラ256で排紙トレイ257上に排出する。   The sheet after the image transfer is conveyed by the secondary transfer device 222 and sent to the fixing device 225. The fixing device 225 applies heat and pressure to fix the transferred image, and then is switched by the switching claw 255 and discharged. The paper is discharged at 256 and stacked on the paper discharge tray 257. Alternatively, it is switched by the switching claw 255 and put into the sheet reversing device 228, where it is reversed and guided again to the transfer position, and an image is recorded also on the back surface, and then discharged onto the discharge tray 257 by the discharge roller 256.

一方、画像転写後の中間転写ベルト210は、中間転写体クリーニング装置217で、画像転写後に中間転写ベルト210上に残留する残留トナーを除去し、タンデム画像形成部220による再度の画像形成に備える。   On the other hand, the intermediate transfer belt 210 after image transfer is removed by the intermediate transfer body cleaning device 217 to remove residual toner remaining on the intermediate transfer belt 210 after image transfer, and prepares for the image formation by the tandem image forming unit 220 again.

以上、本実施形態によれば、回転可能に支持される回転軸50と、回転軸50の周面に螺旋状に突設せしめられた螺旋羽根である羽根51とを有し、自身の回転に伴って粉体を撹拌しながら羽根51により回転軸方向に搬送するスクリュにおいて、羽根51の一ピッチ内で、羽根51の搬送面51aが波打っている。羽根51の一ピッチ内で、羽根51のが波打っていることで、回転軸50に対して羽根51aが垂直に近くなったり平行に近くなったりする。回転軸50に対して羽根51が垂直に近くなるほど回転軸方向への粉体の搬送力が大きくなり、回転軸50に対して羽根51aが平行に近くなるほど回転軸方向への粉体の搬送力が小さくなる。よって、前記一ピッチ内で、羽根51の側面が波打っていることで、羽根51による回転軸方向への粉体の搬送力が一ピッチ内で異なる。前記搬送力が大きくなるほど粉体が回転軸方向へ搬送され易くなり、前記搬送力が小さくなるほど粉体が回転軸方向へ搬送され難くなるので、前記一ピッチ内で羽根51によって回転軸方向に搬送される粉体の搬送速度に速度差が生じる。前記搬送速度が大きくなるほど粉体が単位時間あたりに回転軸方向へ搬送される距離が長くなり、前記搬送速度が小さくなるほど粉体が単位時間あたりに回転軸方向へ搬送される距離が短くなる。このように、単位時間あたりに粉体が回転軸方向へ搬送される距離が前記一ピッチ内で異なることにより、粉体が回転軸方向で混ざり易くなる。よって、2種類以上の粉体を攪拌搬送する際に、前記一ピッチ内で、羽根51の搬送面51aが波打っていない場合よりも粉体を回転軸方向で分散させることができる。
また、本実施形態によれば、回転可能に支持される回転軸50と、回転軸50の周面に螺旋状に突設せしめられた螺旋羽根である羽根51とを有し、自身の回転に伴って羽根51により粉体を撹拌しながら回転軸方向に搬送するスクリュにおいて、羽根51の一ピッチ内で、羽根51の稜線と回転軸50に直交する仮想平面とで成す角の大きさが変化している。前記成す角の大きさが小さくなるほど回転軸50に対して羽根51が垂直に近くなり、前記成す角の大きさが大きくなるほど回転軸50に対して羽根51が平行に近くなる。回転軸50に対して羽根51が垂直に近くなるほど回転軸方向への粉体の搬送力が大きくなり、回転軸に対して羽根51が平行に近くなるほど回転軸方向への粉体の搬送力が小さくなる。よって、前記一ピッチ内で、羽根51の稜線と回転軸50に直交する仮想平面とで成す角の大きさを変化させることで、羽根51による回転軸方向への粉体の搬送力が一ピッチ内で異なる。前記搬送力が大きくなるほど粉体が回転軸方向へ搬送され易くなり、前記搬送力が小さくなるほど粉体が回転軸方向へ搬送され難くなるので、前記一ピッチ内で羽根51によって回転軸方向に搬送される粉体の搬送速度に速度差が生じる。前記搬送速度が大きくなるほど粉体が単位時間あたりに回転軸方向へ搬送される距離が長くなり、前記搬送速度が小さくなるほど粉体が単位時間あたりに回転軸方向へ搬送される距離が短くなる。このように、単位時間あたりに粉体が回転軸方向へ搬送される距離が前記一ピッチ内で異なることにより、粉体が回転軸方向で混ざり易くなる。よって、2種類以上の粉体を攪拌搬送する際に、前記一ピッチ内で、羽根51の稜線と回転軸50に直交する仮想平面とで成す角の大きさを変化させていない場合よりも粉体を回転軸方向で分散させることができる。
また、本実施形態によれば、羽根51の一ピッチ内で羽根51の搬送面51aが波打っているスクリュの少なくとも羽根51の稜線と回転軸50に直交する仮想平面とで成す角の大きさが上記一ピッチ内で変化していることで、羽根51の稜線部51bも波打っている。羽根51の稜線部51bが波打っているスクリュは回転軸50に対する羽根51の角度が徐々に変わるため、現像剤の搬送速度も刻々と変わり速度差によって回転軸方向に分散することができる。羽根51の稜線部51bが波打つことで羽根51が回転軸50に対して寝ている箇所では、羽根51の稜線部51が波打っていないスクリュよりも現像剤上面に浮遊したトナーを現像剤中に取り込む力が強くなる。そのため、補給トナーの現像剤中への取り込み、分散を従来の羽根51の稜線部51bが波打っていないスクリュよりも早く行うことができる。また、回転軸50に回転軸方向と平行に設けられたパドル53よりも回転軸方向への搬送力があるので、回転軸50にパドル53を設けた構成よりも現像剤の回転軸方向の搬送速度の低下を抑えることができる。
また、本実施形態によれば、羽根51の一ピッチ内で羽根51の搬送面51aが波打っているスクリュの少なくとも羽根51の根元51cと回転軸50に直交する仮想平面とで成す角の大きさが上記一ピッチ内で変化していることで、羽根51の根元51cも波打っている。羽根51の根元51cが波打っていることで、羽根51の根元51cが波打っているスクリュは回転軸50に対する羽根51の角度が徐々に変わるため、粉体の搬送速度も刻々と変わり速度差によって回転軸方向に粉体を分散することができる。羽根51の根元51cが波打つことで羽根51が回転軸50に対して寝ている箇所では、羽根51の根元51cが波打っていないスクリュよりも現像剤上面に浮遊したトナーを現像剤中に取り込む力が強くなる。そのため、補給したトナーの現像剤中への取り込み、分散を従来の羽根51の根元51cが波打っていないスクリュよりも早く行うことができる。また、回転軸50に回転軸方向と平行に設けられたパドル53よりも回転軸方向への搬送力があるので、回転軸50にパドル53を設けた構成よりも現像剤の回転軸方向の搬送速度の低下を抑えることができる。
また、本実施形態によれば、トナーとキャリアとを含有する現像剤を搬送する現像剤搬送部材と、現像剤搬送部材によって搬送されてくる現像剤を自らの無端移動する表面に担持しながら、自らの表面移動に伴って潜像担持体との対向領域に搬送して、潜像担持体に担持される潜像を現像する現像剤担持体とを有する現像装置において、前記現像剤搬送部材とし、本発明のスクリュを用いることで、現像剤担持体へ供給する現像剤のトナー濃度を均一にし、画像濃度変動を小さくすることができ異常画像が発生するのを抑制できる。
また、本実施形態によれば、潜像を担持する潜像担持体と、潜像担持体上の潜像を現像する現像手段と、潜像担持体上で現像された可視像を転写体に転写する転写手段とを備える画像形成装置における少なくとも潜像担持体及び現像手段を1つのユニットとして共通の保持体に保持して画像形成装置本体に一体的に着脱されるプロセスカートリッジにおいて、前記現像手段として、本発明のスクリュが設けられた現像装置を用いることで、現像剤担持体へ供給する現像剤のトナー濃度を均一にし、画像濃度変動を小さくすることができ異常画像が発生するのを抑制できる。
また、本実施形態によれば、潜像を担持する潜像担持体と、潜像担持体上の潜像を現像する現像手段とを備える画像形成装置において、前記現像手段として、本発明のスクリュが設けられた現像装置を用いることで、現像剤担持体へ供給する現像剤のトナー濃度を均一にし、画像濃度変動を小さくすることができ異常画像が発生するのを抑制できる。
As mentioned above, according to this embodiment, it has the rotating shaft 50 supported rotatably, and the blade | wing 51 which is the spiral blade protruded helically on the surrounding surface of the rotating shaft 50, and is self-rotating. Along with this, in the screw that conveys the powder in the direction of the rotation axis by the blade 51 while stirring the powder, the conveying surface 51a of the blade 51 is undulated within one pitch of the blade 51. Since the blades 51 are wavy within one pitch of the blades 51, the blades 51 a are close to vertical or parallel to the rotation shaft 50. The closer the blades 51 are perpendicular to the rotation shaft 50, the greater the powder conveyance force in the rotation axis direction, and the closer the blades 51a are parallel to the rotation shaft 50, the powder conveyance force in the rotation axis direction. Becomes smaller. Therefore, the conveying force of the powder in the direction of the rotation axis by the blades 51 varies within one pitch because the side surfaces of the blades 51 are wavy within the one pitch. As the conveying force increases, the powder becomes easier to be conveyed in the direction of the rotation axis, and as the conveying force decreases, the powder becomes less likely to be conveyed in the direction of the rotation axis. A speed difference occurs in the conveyance speed of the powder to be produced. The distance that the powder is transported in the direction of the rotation axis per unit time increases as the transport speed increases, and the distance that the powder is transported in the direction of the rotation axis per unit time decreases as the transport speed decreases. As described above, the distance that the powder is conveyed in the direction of the rotation axis per unit time is different within the one pitch, so that the powder is easily mixed in the direction of the rotation axis. Therefore, when two or more kinds of powders are stirred and conveyed, the powders can be dispersed in the direction of the rotation axis within the above-mentioned one pitch as compared with the case where the conveying surface 51a of the blade 51 is not wavy.
Moreover, according to this embodiment, it has the rotating shaft 50 supported rotatably, and the blade | wing 51 which is the spiral blade projected on the surrounding surface of the rotating shaft 50 helically, and can rotate itself. Along with this, in the screw that conveys the powder in the direction of the rotation axis while stirring the powder by the blade 51, the size of the angle formed by the ridgeline of the blade 51 and the virtual plane orthogonal to the rotation shaft 50 changes within one pitch of the blade 51. is doing. The smaller the angle formed, the closer the blade 51 is to the rotating shaft 50, and the larger the angle formed, the closer the blade 51 is parallel to the rotating shaft 50. The closer the blades 51 are perpendicular to the rotation shaft 50, the greater the powder conveyance force in the rotation axis direction, and the closer the blades 51 are parallel to the rotation shaft, the more powder conveyance force in the rotation axis direction is. Get smaller. Therefore, by changing the size of the angle formed by the ridge line of the blade 51 and the virtual plane orthogonal to the rotation axis 50 within the one pitch, the conveying force of the powder in the rotation axis direction by the blade 51 is one pitch. Different within. As the conveying force increases, the powder becomes easier to be conveyed in the direction of the rotation axis, and as the conveying force decreases, the powder becomes less likely to be conveyed in the direction of the rotation axis. A speed difference occurs in the conveyance speed of the powder to be produced. The distance that the powder is transported in the direction of the rotation axis per unit time increases as the transport speed increases, and the distance that the powder is transported in the direction of the rotation axis per unit time decreases as the transport speed decreases. As described above, the distance that the powder is conveyed in the direction of the rotation axis per unit time is different within the one pitch, so that the powder is easily mixed in the direction of the rotation axis. Therefore, when two or more kinds of powders are agitated and conveyed, the powder is larger than the case where the angle formed by the ridge line of the blade 51 and the virtual plane orthogonal to the rotation axis 50 is not changed within the one pitch. The body can be dispersed in the direction of the axis of rotation.
Further, according to the present embodiment, the size of the angle formed by at least the ridgeline of the blade 51 of the screw on which the conveying surface 51 a of the blade 51 is wavy within one pitch of the blade 51 and the virtual plane orthogonal to the rotation axis 50. Is changing within the above pitch, the ridge line portion 51b of the blade 51 is also wavy. Since the angle of the blade 51 with respect to the rotation shaft 50 gradually changes in the screw in which the ridge line portion 51b of the blade 51 is wavy, the developer conveyance speed also changes momentarily and can be dispersed in the rotation axis direction due to the speed difference. In the portion where the ridge line portion 51b of the blade 51 undulates and the blade 51 lies on the rotation shaft 50, the toner floating on the upper surface of the developer is more concentrated in the developer than the screw where the ridge line portion 51 of the blade 51 is not undulated. The power to capture is increased. Therefore, the replenishment toner can be taken in and dispersed in the developer faster than the conventional screw in which the ridge line portion 51b of the blade 51 is not wavy. Further, since the rotating shaft 50 has a conveying force in the rotating shaft direction than the paddle 53 provided in parallel with the rotating shaft direction, the developer is transported in the rotating shaft direction more than the configuration in which the paddle 53 is provided on the rotating shaft 50. A decrease in speed can be suppressed.
In addition, according to the present embodiment, the angle formed by at least the root 51c of the blade 51 of the screw on which the conveying surface 51a of the blade 51 is wavy within one pitch of the blade 51 and the virtual plane orthogonal to the rotation shaft 50 is large. Is changing within the one pitch, the root 51c of the blade 51 is also wavy. Since the root 51c of the blade 51 is wavy, the angle of the blade 51 with respect to the rotating shaft 50 of the screw in which the root 51c of the blade 51 is waved gradually changes. Can disperse the powder in the direction of the rotation axis. Where the root 51c of the blade 51 undulates and the blade 51 lies on the rotation shaft 50, the toner floating on the upper surface of the developer is taken into the developer more than the screw where the root 51c of the blade 51 is not undulated. Strength becomes stronger. For this reason, the replenished toner can be taken into and dispersed in the developer faster than a screw in which the root 51c of the conventional blade 51 is not wavy. Further, since the rotating shaft 50 has a conveying force in the rotating shaft direction than the paddle 53 provided in parallel with the rotating shaft direction, the developer is transported in the rotating shaft direction more than the configuration in which the paddle 53 is provided on the rotating shaft 50. A decrease in speed can be suppressed.
In addition, according to the present embodiment, while carrying the developer transport member that transports the developer containing toner and carrier, and the developer transported by the developer transport member on its endlessly moving surface, In a developing device having a developer carrying member that develops a latent image carried on the latent image carrier by transporting it to a region opposite to the latent image carrier as its surface moves, the developer carrying member By using the screw of the present invention, it is possible to make the toner density of the developer supplied to the developer carrying member uniform, to reduce the fluctuation of the image density, and to suppress the occurrence of an abnormal image.
According to the present embodiment, the latent image carrier that carries the latent image, the developing means that develops the latent image on the latent image carrier, and the visible image developed on the latent image carrier are transferred. In the process cartridge that is held in a common holder as a unit, at least the latent image carrier and the developing means in the image forming apparatus including the transfer means for transferring to the image forming apparatus main body, As a means, by using the developing device provided with the screw of the present invention, the toner density of the developer supplied to the developer carrying member can be made uniform, the fluctuation of the image density can be reduced, and an abnormal image is generated. Can be suppressed.
Further, according to the present embodiment, in the image forming apparatus including the latent image carrier that carries the latent image and the developing unit that develops the latent image on the latent image carrier, the screw of the present invention is used as the developing unit. By using the developing device provided with, the toner density of the developer supplied to the developer carrying member can be made uniform, the fluctuation in image density can be reduced, and the occurrence of abnormal images can be suppressed.

1 読取部
2 ランプ
4 増幅器
5 変換器
6 画像処理部
8 シェーディング補正部
9 フィルタ
10 補正部
11 階調処理部
12 像形成部
13 書き込み部
14 レーザ光
15 帯電チャージャ
16 現像スリーブ
17 給紙トレー
18 システム制御部
19 操作部
20 温湿度検知部
27 トナー濃度センサ
30 感光体ドラム
40 現像装置
41 現像剤収容部
42 現像ケース
43 ドクターブレード
44 現像剤撹拌搬送スクリュ
45 現像剤撹拌搬送スクリュ
46 トナーホッパ
48 トナー補給制御部
50 回転軸
51 羽根
51a 搬送面
51b 稜線部
51c 根元
52 切り欠き
53 パドル
200 複写装置本体
210 中間転写ベルト
214 支持ローラ
215 支持ローラ
216 支持ローラ
217 中間転写体クリーニング装置
218 画像形成部
220 タンデム画像形成部
221 露光装置
222 二次転写装置
223a ローラ
224 二次転写ベルト
225 定着装置
226 定着ベルト
227 加圧ローラ
228 シート反転装置
240 感光体ドラム
248 給紙路
249 レジストローラ
250 給紙ローラ
251 手差しトレイ
252 分離ローラ
253 給紙路
255 切換爪
256 排出ローラ
257 排紙トレイ
260 帯電装置
261 現像装置
265 現像スリーブ
266 現像剤収容部
267 現像剤撹拌スクリュ
269 仕切り板
270 現像ケース
271 トナー濃度センサ
273 ドクターブレード
280 トナー補給制御部
282 温湿度検知部
300 給紙テーブル
342 給紙ローラ
343 ペーパーバンク
344 給紙カセット
345 分離ローラ
346 給紙路
347 搬送ローラ
400 スキャナ
433 第一走行体
434 第二走行体
435 結像レンズ
436 センサ
500 原稿自動搬送装置
530 原稿台
532 コンタクトガラス
DESCRIPTION OF SYMBOLS 1 Reading part 2 Lamp 4 Amplifier 5 Converter 6 Image processing part 8 Shading correction part 9 Filter 10 Correction part 11 Gradation processing part 12 Image formation part 13 Writing part 14 Laser beam 15 Charging charger 16 Developing sleeve 17 Paper feed tray 18 System Control unit 19 Operation unit 20 Temperature / humidity detection unit 27 Toner density sensor 30 Photosensitive drum 40 Developing device 41 Developer container 42 Developing case 43 Doctor blade 44 Developer stirring and conveying screw 45 Developer stirring and conveying screw 46 Toner hopper 48 Toner supply control Part 50 Rotating shaft 51 Blade 51a Conveying surface 51b Edge line part 51c Root 52 Notch 53 Paddle 200 Copying device main body 210 Intermediate transfer belt 214 Support roller 215 Support roller 216 Support roller 217 Intermediate transfer member cleaning device 21 8 Image forming unit 220 Tandem image forming unit 221 Exposure device 222 Secondary transfer device 223a Roller 224 Secondary transfer belt 225 Fixing device 226 Fixing belt 227 Pressure roller 228 Sheet reversing device 240 Photosensitive drum 248 Feed path 249 Registration roller 250 Feed roller 251 Manual feed tray 252 Separating roller 253 Feed path 255 Switching claw 256 Discharge roller 257 Discharge tray 260 Charging device 261 Developing device 265 Developing sleeve 266 Developer container 267 Developer stirring screw 269 Partition plate 270 Developing case 271 Toner Density sensor 273 Doctor blade 280 Toner replenishment control unit 282 Temperature / humidity detection unit 300 Paper feed table 342 Paper feed roller 343 Paper bank 344 Paper feed cassette 345 Separating roller 34 Feeding path 347 transport rollers 400 scanner 433 first carriage 434 second traveling body 435 imaging lens 436 sensor 500 automatic document feeder 530 platen 532 contact glass

特開2007−334287号公報JP 2007-334287 A

Claims (7)

回転可能に支持される回転軸と、
該回転軸の周面に螺旋状に突設せしめられた螺旋羽根とを有し、
自身の回転に伴って該螺旋羽根により粉体を撹拌しながら回転軸方向に搬送するスクリュにおいて、
前記螺旋羽根の一ピッチ内で、該螺旋羽根が波打っていることを特徴とする現像装置。
A rotating shaft that is rotatably supported;
A spiral blade projecting spirally on the peripheral surface of the rotating shaft,
In a screw that conveys the powder in the direction of the rotation axis while stirring the powder by the spiral blade with its rotation,
2. A developing device according to claim 1, wherein the spiral blade is undulated within one pitch of the spiral blade.
回転可能に支持される回転軸と、
該回転軸の周面に螺旋状に突設せしめられた螺旋羽根とを有し、
自身の回転に伴って該螺旋羽根により粉体を撹拌しながら回転軸方向に搬送するスクリュにおいて、
前記螺旋羽根の一ピッチ内で、上記螺旋羽根の稜線と上記回転軸に直交する仮想平面とで成す角の大きさが変化していることを特徴とする現像装置。
A rotating shaft that is rotatably supported;
A spiral blade projecting spirally on the peripheral surface of the rotating shaft,
In the screw that conveys in the direction of the rotation axis while stirring the powder by the spiral blade with its rotation,
The developing device according to claim 1, wherein an angle formed by a ridge line of the spiral blade and a virtual plane orthogonal to the rotation axis is changed within one pitch of the spiral blade.
請求項1の現像装置において、
少なくとも、上記螺旋羽根の稜線と上記回転軸に直交する仮想平面とで成す角の大きさが上記一ピッチ内で変化していることを特徴とする現像装置。
The developing device according to claim 1.
A developing device characterized in that at least an angle formed by a ridgeline of the spiral blade and a virtual plane orthogonal to the rotation axis changes within the one pitch.
請求項1または2の現像装置において、
少なくとも、上記螺旋羽根の根元と上記回転軸に直交する仮想平面とで成す角の大きさが上記一ピッチ内で変化していることを特徴とする現像装置。
The developing device according to claim 1 or 2,
A developing device characterized in that at least an angle formed by a root of the spiral blade and a virtual plane orthogonal to the rotation axis changes within the one pitch.
トナーとキャリアとを含有する現像剤を搬送する現像剤搬送部材と、現像剤搬送部材によって搬送されてくる現像剤を自らの無端移動する表面に担持しながら、自らの表面移動に伴って潜像担持体との対向領域に搬送して、潜像担持体に担持される潜像を現像する現像剤担持体とを有する現像装置において、
前記現像剤搬送部材として、請求項1、2、3または4のスクリュを用いたことを特徴とする現像装置。
A developer conveying member that conveys a developer containing toner and a carrier, and the developer conveyed by the developer conveying member is carried on the surface that moves endlessly while the latent image is moved along with its own surface movement. In a developing device having a developer carrier that is transported to a region facing the carrier and develops a latent image carried on the latent image carrier,
A developing device using the screw according to claim 1, 2, 3, or 4 as the developer conveying member.
潜像を担持する潜像担持体と、該潜像担持体上の潜像を現像する現像手段と、該潜像担持体上で現像された可視像を転写体に転写する転写手段とを備える画像形成装置における少なくとも該潜像担持体及び現像手段を1つのユニットとして共通の保持体に保持して画像形成装置本体に一体的に着脱されるプロセスカートリッジにおいて、
前記現像手段として、請求項5の現像装置を用いたことを特徴とするプロセスカートリッジ。
A latent image carrier that carries a latent image; a developing unit that develops the latent image on the latent image carrier; and a transfer unit that transfers a visible image developed on the latent image carrier to a transfer member. In a process cartridge that is held in a common holding body as a unit and at least the latent image carrier and the developing unit in the image forming apparatus provided, and is integrally attached to and detached from the image forming apparatus main body,
A process cartridge using the developing device according to claim 5 as the developing means.
潜像を担持する潜像担持体と、該潜像担持体上の潜像を現像する現像手段とを備える画像形成装置において、
前記現像手段として、請求項5の現像装置を用いたことを特徴とする画像形成装置。
In an image forming apparatus comprising: a latent image carrier that carries a latent image; and a developing unit that develops the latent image on the latent image carrier.
An image forming apparatus using the developing device according to claim 5 as the developing means.
JP2009116268A 2009-05-13 2009-05-13 Screw, developing device, image forming apparatus and process cartridge Withdrawn JP2010266575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009116268A JP2010266575A (en) 2009-05-13 2009-05-13 Screw, developing device, image forming apparatus and process cartridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009116268A JP2010266575A (en) 2009-05-13 2009-05-13 Screw, developing device, image forming apparatus and process cartridge

Publications (1)

Publication Number Publication Date
JP2010266575A true JP2010266575A (en) 2010-11-25

Family

ID=43363615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009116268A Withdrawn JP2010266575A (en) 2009-05-13 2009-05-13 Screw, developing device, image forming apparatus and process cartridge

Country Status (1)

Country Link
JP (1) JP2010266575A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110182624A1 (en) * 2010-01-25 2011-07-28 Koichi Mihara Developing device and image forming apparatus using the developing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110182624A1 (en) * 2010-01-25 2011-07-28 Koichi Mihara Developing device and image forming apparatus using the developing device
JP2011150246A (en) * 2010-01-25 2011-08-04 Sharp Corp Developing device and image forming apparatus using the same

Similar Documents

Publication Publication Date Title
JP5611146B2 (en) Developing device and image forming apparatus including the same
JP5175923B2 (en) Developing device, image forming apparatus, and developer stirring and conveying method
JP5777255B2 (en) Developing device and image forming apparatus having the same
JP5325761B2 (en) Developing device and image forming apparatus including the same
JP6344272B2 (en) Developing device and image forming apparatus including the same
JP5505606B2 (en) Developing device, process cartridge, and image forming apparatus
JP5439409B2 (en) Developing device and image forming apparatus including the same
JP5500437B2 (en) Developing device, and image forming apparatus and process cartridge using the same
JP2008310200A (en) Powder agitating device, developing device and image forming apparatus
US9846391B2 (en) Developing device replenished with new two-component developer while discharging surplus developer and image forming apparatus therewith
JP5481319B2 (en) Developing device and image forming apparatus including the same
JP2011069850A (en) Developing device and image forming apparatus
JP5789702B2 (en) Developing device and image forming apparatus including the same
JP2010266575A (en) Screw, developing device, image forming apparatus and process cartridge
JP2013061458A (en) Development device, process cartridge, and image forming apparatus
JP5600563B2 (en) Developing device, image forming apparatus, and developer stirring and conveying method
JP5641320B2 (en) Developing device, process cartridge, and image forming apparatus
JP6528737B2 (en) Developing device and image forming apparatus provided with the same
JP5679509B2 (en) Developing device, process cartridge, and image forming apparatus
JP5510734B2 (en) Developing device, process cartridge, and image forming apparatus
JP2010072149A (en) Powder conveying device
JP2012145729A (en) Developing device and image forming apparatus including the same
JP5460628B2 (en) Developing device and image forming apparatus including the same
JP5376153B2 (en) Developing device, process cartridge, and image forming apparatus
JP2014191233A (en) Developing device, image carrier unit, and image forming apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120807