JP2010266297A - Friction coefficient measuring instrument - Google Patents

Friction coefficient measuring instrument Download PDF

Info

Publication number
JP2010266297A
JP2010266297A JP2009117126A JP2009117126A JP2010266297A JP 2010266297 A JP2010266297 A JP 2010266297A JP 2009117126 A JP2009117126 A JP 2009117126A JP 2009117126 A JP2009117126 A JP 2009117126A JP 2010266297 A JP2010266297 A JP 2010266297A
Authority
JP
Japan
Prior art keywords
sample
friction coefficient
contact portion
measuring machine
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009117126A
Other languages
Japanese (ja)
Inventor
Hiroyuki Saito
博之 齋藤
Yukitoshi Takeshita
幸俊 竹下
Takao Handa
隆夫 半田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2009117126A priority Critical patent/JP2010266297A/en
Publication of JP2010266297A publication Critical patent/JP2010266297A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a friction coefficient measuring instrument for measuring a true friction coefficient of a specimen wherein the Coulomb's law does not hold in an interface and a friction coefficient depends on a relative speed between an ideal surface and a rough surface. <P>SOLUTION: This friction coefficient measuring instrument includes a movable stand 11 comprising a contact part 21 contacting with a part of the specimen 91, a control means 12 for moving the movable stand 11 with the specimen 91 kept in contact with the contact part 21, a connection means 13 connected to the specimen 91 to convey a force caused by friction between the specimen 91 and the contact part 21, a transducer 14 converting the force conveyed by the connection means 13 into an electric signal, and a measuring means 15 for sampling the electric signal from the transducer 14 in a prescribed cycle. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、粗面が弾性変形して、摩擦係数が速度や見かけの接触面積に依存する試料の摩擦係数を測定する摩擦係数測定機に関する。   The present invention relates to a friction coefficient measuring machine for measuring a friction coefficient of a sample whose rough surface is elastically deformed and whose friction coefficient depends on speed and apparent contact area.

金属、セラミック、高分子などの各種材料について、試料と可動台を用いて、引張方向の力を付与することによって物性を測定することが行われてきた。従来の測定においては、試料と可動台を密着して固定してはずれないようにして、試料に力を負荷することにより試料を破壊する形での測定を行うことが一般的であった。   About various materials, such as a metal, a ceramic, and a polymer | macromolecule, measuring the physical property has been performed by providing the force of a tension direction using a sample and a movable stand. In the conventional measurement, it has been common to perform measurement in such a manner that the sample is destroyed by applying a force to the sample so that the sample and the movable base are not in close contact with each other and fixed.

一方、材料の界面での性質を知りたい場合には、当該材料界面の一部を他の物体に接するようにして、当該物体と当該材料の間に生じる力を測定することになる。材料の界面での性質のなかで代表的な性質のひとつとして摩擦特性がある。摩擦はある物体と他の物体の界面で生じる現象である。物体を構成する材料には種々の物質があるが、図9に示すように全く変形のない平坦な理想面をもつ材料からなる物体と、一般の面粗さをもつ材料からなる粗面の物体が接している場合について考える。   On the other hand, when it is desired to know the property at the interface of the material, a force generated between the object and the material is measured by bringing a part of the material interface into contact with another object. One of the representative properties among the properties at the interface of materials is the friction property. Friction is a phenomenon that occurs at the interface between one object and another. There are various materials that make up the object, but as shown in FIG. 9, an object made of a material having a flat ideal surface without any deformation and a rough object made of a material having a general surface roughness. Think about the case of touching.

この場合、図9の荷重W1、W2、・・・、Wk(kは自然数)における面積A1、A2、・・・、Akでの接触が生じることが明らかである。ここで、粗面の降伏圧力をpとする。理想面との接触による降伏圧力pで粗面が塑性変形を生じているとき、i=1、2、・・・、k、及び、粗面と理想面との接触面積の合計(真の接触面積)をAr=A1+A2+・・・+Akとすれば、
総荷重W=ΣWi=pΣAi=pAr (1)
であるから、
真の接触面積Ar=W/p (2)
となり、真の接触面積Arは総荷重Wと降伏圧力pのみで決まる。
In this case, it is apparent that contact occurs in the areas A1, A2,..., Ak in the loads W1, W2,..., Wk (k is a natural number) in FIG. Here, p is the yield pressure of the rough surface. When the rough surface is plastically deformed by the yield pressure p due to contact with the ideal surface, i = 1, 2,..., K, and the total of the contact area between the rough surface and the ideal surface (true contact If the area is Ar = A1 + A2 + ... + Ak,
Total load W = ΣWi = pΣAi = pAr (1)
Because
True contact area Ar = W / p (2)
Thus, the true contact area Ar is determined only by the total load W and the yield pressure p.

ここで、理想面と粗面の間に働く摩擦力は、これら界面での一時的な凝着により生じるものと考えられている(例えば、非特許文献1を参照。)。すなわち、表面自由エネルギー(界面自由エネルギーともいう)が小さい材料では一般的には働く摩擦力が小さくなる。   Here, it is considered that the frictional force acting between the ideal surface and the rough surface is caused by temporary adhesion at these interfaces (for example, see Non-Patent Document 1). In other words, a material having a small surface free energy (also referred to as interface free energy) generally has a small frictional force.

次に、粗面が図9の塑性変形領域に入っている場合を考える。摩擦力を生じさせる凝着を断ち切るせん断力Fは、単位面積あたりのせん断強度をSとすると、
F=ArS (3)
となる。これに数式(2)を代入すると、
F=W/p・S =S/p・W (4)
となる。数式(4)より、摩擦力は荷重(抗力)に比例しており、クーロンの法則として一般に知られている。また、静止摩擦係数μは、
μ=F/W=S/p (5)
と表され、材料固有値である。
Next, consider a case where the rough surface is in the plastic deformation region of FIG. The shearing force F that cuts off the adhesion causing the frictional force is S, where the shearing strength per unit area is S.
F = ArS (3)
It becomes. Substituting equation (2) into this,
F = W / p · S = S / p · W (4)
It becomes. From Equation (4), the frictional force is proportional to the load (drag) and is generally known as Coulomb's law. The coefficient of static friction μ s is
μ s = F / W = S / p (5)
It is expressed as a material eigenvalue.

材料の界面の性質を測定する測定方法は、上述のような粗面が塑性変形をしたモデル条件で静的に測定することが知られている(例えば、非特許文献2を参照。)。   As a measurement method for measuring the property of the interface of the material, it is known that the measurement is performed statically under a model condition in which the rough surface is plastically deformed (see, for example, Non-Patent Document 2).

斎藤博之、高井健一、高沢寿佳、山内五郎:「材料」、46巻5号,pp.551−554(1997)Hiroyuki Saito, Kenichi Takai, Toshika Takasawa, Goro Yamauchi: “Materials”, 46, 5 pp. 551-554 (1997) 島津製作所ホームページ(平成21年2月23日検索)http://www.shimadzu.co.jp/TEST/products/mtrl03/index.htmlShimadzu Corporation website (searched on February 23, 2009) http: // www. shimadzu. co. jp / TEST / products / mtrl03 / index. html

一方、ゴムなどの高分子材料が粗面を構成するとき、この粗面が弾性変形して応力緩和成分が生じるので界面においてクーロンの法則が成り立たないことが多い。つまり、降伏圧力pによる粗面の変形が弾性変形であるときには、数式(2)は成り立たず、真の接触面積Arは総荷重Wと降伏圧力pのみでは決まらない。また、界面においてクーロンの法則が成り立たない場合、摩擦係数は理想面と粗面との相対速度に依存することが多い。このように、従来の測定機には、界面においてクーロンの法則が成り立たず、かつ摩擦係数が理想面と粗面との相対速度に依存するような材料の摩擦係数を測定することは困難という課題があった。   On the other hand, when a polymer material such as rubber forms a rough surface, the rough surface is elastically deformed to generate a stress relaxation component, so Coulomb's law often does not hold at the interface. That is, when the deformation of the rough surface due to the yield pressure p is elastic deformation, Equation (2) does not hold, and the true contact area Ar is not determined only by the total load W and the yield pressure p. Further, when Coulomb's law does not hold at the interface, the friction coefficient often depends on the relative speed between the ideal surface and the rough surface. Thus, it is difficult for conventional measuring machines to measure the coefficient of friction of a material whose Coulomb's law does not hold at the interface and whose coefficient of friction depends on the relative speed between the ideal and rough surfaces. was there.

そこで、本発明は、界面においてクーロンの法則が成立しない場合でも、摩擦係数が理想面と粗面との相対速度に依存するような試料の真の摩擦係数を測定できる摩擦係数測定機を提供することを目的とする。なお、ここで試料とは摩擦係数を測定しようとする材料のことを指す。   Therefore, the present invention provides a friction coefficient measuring machine capable of measuring the true friction coefficient of a sample whose friction coefficient depends on the relative speed between the ideal surface and the rough surface even when Coulomb's law is not established at the interface. For the purpose. Here, the sample refers to a material whose coefficient of friction is to be measured.

上記目的を達成するために、本発明に係る摩擦係数測定機は、試料を接触面上で移動させ、その間の摩擦による力の変化をサンプリングして試料と接触面との相対速度と摩擦係数の関係を算出することとした。   In order to achieve the above object, the friction coefficient measuring machine according to the present invention moves a sample on a contact surface, samples a change in force due to friction between the samples, and calculates a relative speed and a friction coefficient between the sample and the contact surface. The relationship was calculated.

具体的には、本発明に係る摩擦係数測定機は、試料の一部と接触する接触部を有する可動台と、前記試料と前記接触部とを接触させた状態で前記可動台を移動させる制御手段と、前記試料と接続されており、前記試料と前記接触部との間の摩擦に基づく力を伝える接続手段と、前記接続手段が伝える力を電気信号に変換するトランスデューサと、前記トランスデューサからの前記電気信号を所定の周期でサンプリングする測定手段と、を備える。   Specifically, the friction coefficient measuring machine according to the present invention includes a movable base having a contact portion that contacts a part of a sample, and a control for moving the movable base in a state where the sample and the contact portion are in contact with each other. Means, a connection means connected to the sample, and transmitting a force based on friction between the sample and the contact portion; a transducer for converting the force transmitted by the connection means into an electrical signal; and Measuring means for sampling the electrical signal at a predetermined period.

本摩擦係数測定機は、試料を接触部上を滑らせ、両者の間で生ずる摩擦力を所定周期で測定している。従って、本発明は、界面においてクーロンの法則が成立しない場合でも、摩擦係数が理想面と粗面との相対速度に依存するような試料の真の摩擦係数を測定できる摩擦係数測定機を提供することができる。   This friction coefficient measuring machine slides the sample on the contact portion and measures the frictional force generated between the two at a predetermined cycle. Therefore, the present invention provides a friction coefficient measuring machine capable of measuring the true friction coefficient of a sample whose friction coefficient depends on the relative speed between the ideal surface and the rough surface even when Coulomb's law is not established at the interface. be able to.

本発明に係る摩擦係数測定機の前記可動台の前記接触部は、前記試料の長手方向の一部を保持する形状とすることができる。試料と接触部とのみかけの接触面積が摩擦力に影響を及ぼすから、摩擦係数測定中はみかけの接触面積を一定にすることが望ましい。ここで、「みかけの接触面積」とは、試料と接触部との接触界面全体をその法線方向で正射影した面積をいう。例えば、図1の場合、試料91の底面積が「みかけの接触面積」に相当する。本接触部は、試料の一部を安定的に保持する形状としている。本接触部は、摩擦係数測定中も試料とのみかけの接触面積を一定にすることができる。従って、本発明は、試料の形状に関わらず試料とのみかけの接触面積を一定にすることができ、試料の真の摩擦係数を測定できる摩擦係数測定機を提供することができる。   The contact portion of the movable base of the friction coefficient measuring machine according to the present invention may have a shape that holds a part of the sample in the longitudinal direction. Since the apparent contact area between the sample and the contact portion affects the frictional force, it is desirable to make the apparent contact area constant during the measurement of the friction coefficient. Here, the “apparent contact area” means an area obtained by orthogonal projection of the entire contact interface between the sample and the contact portion in the normal direction. For example, in the case of FIG. 1, the bottom area of the sample 91 corresponds to the “apparent contact area”. This contact part is made into the shape which hold | maintains a part of sample stably. This contact portion can make the apparent contact area with the sample constant during the measurement of the friction coefficient. Therefore, the present invention can provide a friction coefficient measuring machine that can make the apparent contact area with the sample constant regardless of the shape of the sample and can measure the true friction coefficient of the sample.

ここで、試料と接触部とのみかけの接触面積が摩擦力に影響を及ぼす点について補足する。図9で説明したように、真の接触面積は総荷重と降伏圧力で定まる。降伏圧力は材料固有値であるが、真の接触面積は降伏圧力と面積Akの真の接触点の数で決定する。この真の接触点は接触界面に対して特異な点ではなく統計的に偶発的に発生するものと考えられており、接触点の数は、みかけ接触面積に対して一定割合で存在することになる。つまり、みかけ接触面積の変化は、真の接触点の数、すなわち真の接触面積の変化であるといえる。   Here, it supplements about the point in which the apparent contact area of a sample and a contact part influences frictional force. As described in FIG. 9, the true contact area is determined by the total load and the yield pressure. The yield pressure is a material specific value, but the true contact area is determined by the yield pressure and the number of true contact points of the area Ak. This true contact point is considered to occur statistically and accidentally rather than a peculiar point with respect to the contact interface, and the number of contact points exists at a constant rate with respect to the apparent contact area. Become. That is, it can be said that the change of the apparent contact area is the number of true contact points, that is, the change of the true contact area.

数式(4)のクーロンの法則が成り立つ場合、摩擦力は荷重のみに依存するので真の接触面積の変化を考慮する必要はない。しかし、クーロンの法則が成り立たない場合、具体的には材料側が弾性変形の状態にあるような場合、真の接触面積が変化すると摩擦力も変化することになる。すなわち、試料と接触部とのみかけの接触面積が摩擦力に影響を及ぼすことになる。したがって、摩擦力の測定にあたって真の接触面積を一定にするために、「みかけの接触面積」を一定にしておくことで正確な摩擦係数を測定することができる。   When Coulomb's law of Formula (4) is established, the frictional force depends only on the load, so it is not necessary to consider the change in the true contact area. However, when Coulomb's law does not hold, specifically, when the material side is in an elastically deformed state, the frictional force changes when the true contact area changes. That is, the apparent contact area between the sample and the contact portion affects the frictional force. Therefore, in order to make the true contact area constant when measuring the frictional force, it is possible to measure an accurate friction coefficient by keeping the “apparent contact area” constant.

さらに本発明に係る摩擦係数測定機の前記可動台の接触部が平面であり、前記可動台の前記接触部の法線方向且つ前記可動台の前記接触部に近づく方向の力を前記試料に印加する印加手段をさらに備えることが好ましい。本摩擦係数測定機は、荷重を変化させたときの摩擦係数を測定できる。   Furthermore, the contact part of the movable table of the friction coefficient measuring machine according to the present invention is a flat surface, and a force in a direction normal to the contact part of the movable table and a direction approaching the contact part of the movable table is applied to the sample. It is preferable to further include an applying means. This friction coefficient measuring machine can measure the friction coefficient when the load is changed.

さらに本発明に係る摩擦係数測定機の前記制御手段は、速度を一定に保ちながら前記可動台を移動させ、前記接続手段が伝える力は、前記試料と前記接触部との間で交互に現れる静止摩擦と動摩擦で変動し、前記測定手段は、前記所定の周期を前記トランスデューサに伝えられる力の変動周期とすることで、前記試料と前記接触部との間の静止摩擦係数及び動摩擦係数を算出することができる。本摩擦係数測定機は、試料のスティックスリップ振動から静止摩擦係数及び動摩擦係数を測定することができる。   Furthermore, the control means of the friction coefficient measuring machine according to the present invention moves the movable base while keeping the speed constant, and the force transmitted by the connecting means is stationary that appears alternately between the sample and the contact portion. The measurement means calculates the static friction coefficient and the dynamic friction coefficient between the sample and the contact portion by setting the predetermined period as the fluctuation period of the force transmitted to the transducer. be able to. This friction coefficient measuring device can measure a static friction coefficient and a dynamic friction coefficient from stick-slip vibration of a sample.

さらに本発明に係る摩擦係数測定機の前記制御手段は、速度を等加速度で上昇させながら前記可動台を移動させ、前記接続手段が伝える力は、前記試料と前記接触部との間の動摩擦で発生し、前記測定手段は、前記試料と前記接触部との相対速度に対する動摩擦係数を算出することができる。本摩擦係数測定機は、試料と接触部との相対速度に応じた動摩擦係数を測定することができる。   Further, the control means of the friction coefficient measuring machine according to the present invention moves the movable base while increasing the speed at a constant acceleration, and the force transmitted by the connecting means is a dynamic friction between the sample and the contact portion. The measurement means can calculate a dynamic friction coefficient with respect to a relative speed between the sample and the contact portion. This friction coefficient measuring machine can measure the dynamic friction coefficient according to the relative speed between the sample and the contact portion.

本発明は、界面においてクーロンの法則が成立しない場合でも、摩擦係数が理想面と粗面との相対速度に依存するような試料の真の摩擦係数を測定できる摩擦係数測定機を提供することができる。また、本摩擦係数測定機は、接触部との接触で塑性変形をしている試料はもちろんのこと、塑性変形をしていない試料についても摩擦係数を測定することができる。さらに、本摩擦係数測定機は、一度の測定により種々の進度における動摩擦係数を同時に求めることができる。   The present invention provides a friction coefficient measuring machine capable of measuring the true friction coefficient of a sample whose friction coefficient depends on the relative speed between the ideal surface and the rough surface even when Coulomb's law is not established at the interface. it can. In addition, this friction coefficient measuring instrument can measure the friction coefficient not only for samples that are plastically deformed by contact with the contact portion but also for samples that are not plastically deformed. Furthermore, this friction coefficient measuring machine can simultaneously determine dynamic friction coefficients at various degrees of progress by a single measurement.

本発明に係る摩擦係数測定機を説明するブロック図である。It is a block diagram explaining the friction coefficient measuring machine which concerns on this invention. 本発明に係る摩擦係数測定機を説明するブロック図である。It is a block diagram explaining the friction coefficient measuring machine which concerns on this invention. 本発明に係る摩擦係数測定機の動作を説明する図である。It is a figure explaining operation | movement of the friction coefficient measuring machine which concerns on this invention. 本発明に係る摩擦係数測定機を説明するブロック図である。It is a block diagram explaining the friction coefficient measuring machine which concerns on this invention. 本発明に係る摩擦係数測定機の保持手段を説明する図である。It is a figure explaining the holding means of the friction coefficient measuring machine which concerns on this invention. 本発明に係る摩擦係数測定機の保持手段を説明する図である。It is a figure explaining the holding means of the friction coefficient measuring machine which concerns on this invention. 本発明に係る摩擦係数測定機の動作を説明する図である。(a)は復元力が静止摩擦力より小さく、試料が可動台とともに移動する場合の図である。(b)は復元力と静止摩擦力とが一致した場合の図である。(c)は復元力が動摩擦力より大きく、試料が可動台の接触部上を滑る場合の図である。It is a figure explaining operation | movement of the friction coefficient measuring machine which concerns on this invention. (A) is a figure in case a restoring force is smaller than a static friction force, and a sample moves with a movable stand. (B) is a figure in case a restoring force and a static friction force correspond. (C) is a figure in case a restoring force is larger than a dynamic friction force, and a sample slides on the contact part of a movable stand. 試料と接触部との間で生ずる摩擦力と時間との関係を説明する図である。It is a figure explaining the relationship between the frictional force which arises between a sample and a contact part, and time. 試料の表面の性質を説明する図である。It is a figure explaining the property of the surface of a sample.

添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In the present specification and drawings, the same reference numerals denote the same components.

(実施形態1)
図1は、本実施形態の摩擦係数測定機を説明するブロック図である。本摩擦係数測定機は、試料91の一部と接触する接触部21を有する可動台11と、試料91と接触部21とを接触させた状態で可動台11を移動させる制御手段12と、試料91と接続されており、試料91と接触部21との間の摩擦に基づく力を伝える接続手段13と、接続手段13が伝える力を電気信号に変換するトランスデューサ14と、トランスデューサ14からの電気信号を所定の周期でサンプリングする測定手段15と、を備える。
(Embodiment 1)
FIG. 1 is a block diagram illustrating a friction coefficient measuring machine according to this embodiment. The friction coefficient measuring machine includes a movable base 11 having a contact portion 21 that contacts a part of a sample 91, a control means 12 that moves the movable base 11 in a state where the sample 91 and the contact portion 21 are in contact, and a sample. 91, connecting means 13 for transmitting a force based on friction between the sample 91 and the contact portion 21, a transducer 14 for converting the force transmitted by the connecting means 13 into an electric signal, and an electric signal from the transducer 14 Measuring means 15 for sampling at a predetermined cycle.

可動台11は試料91と接触する接触部21を有する。図1の可動台11の接触部21は平面である。この平面の形は任意であるが、一例として長方形にすることがあげられる。試料と同じ大きさ・形状にすることも例として挙げられる。試料91の一部は平面となっている。これを試料91の底面とする。試料91の底面を可動台11の接触部21に置く。図1の摩擦係数測定機は、可動台11の接触部21が水平になるように配置されているが、試料91の底面と接触部21とが接触する状態であれば可動台11の接触部21が斜めや垂直に配置されていてもよい。   The movable table 11 has a contact portion 21 that contacts the sample 91. The contact portion 21 of the movable base 11 in FIG. 1 is a plane. The shape of this plane is arbitrary, but an example is a rectangular shape. An example is the same size and shape as the sample. A part of the sample 91 is a flat surface. This is the bottom surface of the sample 91. The bottom surface of the sample 91 is placed on the contact portion 21 of the movable table 11. 1 is arranged so that the contact portion 21 of the movable base 11 is horizontal, but the contact portion of the movable base 11 is in a state where the bottom surface of the sample 91 and the contact portion 21 are in contact with each other. 21 may be arranged diagonally or vertically.

制御手段12は可動台11を動かすために可動台11に信号を送る。例えば、制御手段12は、可動台11に信号を送り、可動台11を方向Aへ直線運動させる。可動台11の直線運動は一定速度にすることもできるし、等加速度にすることもできる。また、可動台11の運動は、特定の曲線運動とすることもできるし、その場合も一定速度や等加速度とすることができる。   The control means 12 sends a signal to the movable table 11 in order to move the movable table 11. For example, the control means 12 sends a signal to the movable table 11 to cause the movable table 11 to linearly move in the direction A. The linear motion of the movable table 11 can be set at a constant speed or at a constant acceleration. Further, the movement of the movable table 11 can be a specific curved movement, and in that case, it can be a constant speed or a constant acceleration.

トランスデューサ14としては任意のものが利用できるが、例としてひずみゲージやロードセルを用いることができる。トランスデューサ14と試料91とは接続手段13で接続されている。接続手段13は加わる力により変形しにくい材料で行われることが望ましい。例えば、可動台11が方向Aへ直線運動するとき、接続手段13はステンレス鋼線とすることができる。また、可動台11が方向Bや曲線運動するときは、金属の棒とすることができる。   Any transducer 14 can be used, but a strain gauge or a load cell can be used as an example. The transducer 14 and the sample 91 are connected by the connecting means 13. The connecting means 13 is preferably made of a material that is not easily deformed by an applied force. For example, when the movable base 11 moves linearly in the direction A, the connecting means 13 can be a stainless steel wire. Further, when the movable base 11 moves in a direction B or a curved line, it can be a metal rod.

測定手段15は、トランスデューサ14からの電気信号を所定周期でサンプリングするが、サンプリング周期は任意に設計できる。例えば、1秒間に50回(50Hz)のサンプリングを行うことができる。この周期は東京近辺の商用電源に同期するので容易に取得できるサンプリング周期である。   The measuring means 15 samples the electrical signal from the transducer 14 at a predetermined period, but the sampling period can be designed arbitrarily. For example, sampling can be performed 50 times (50 Hz) per second. This period is a sampling period that can be easily acquired because it is synchronized with a commercial power supply in the vicinity of Tokyo.

可動台11が方向Aに直線運動した場合、試料91は接続手段13でトランスデューサ14と接続されていることから絶対位置は動かず、試料91は接触部21上を滑ることになる。このため、トランスデューサ14には接続手段13を介して試料91と接触部21との間に生ずる摩擦力が伝わる。トランスデューサ14はこの摩擦力を機械/電気変換して測定手段15に出力する。測定手段15はこの電気信号をサンプリングすることで試料91が接触部21上を滑る間の摩擦力をサンプリング周期毎に測定できる。   When the movable table 11 moves linearly in the direction A, the sample 91 is connected to the transducer 14 by the connecting means 13, so the absolute position does not move, and the sample 91 slides on the contact portion 21. For this reason, the friction force generated between the sample 91 and the contact portion 21 is transmitted to the transducer 14 via the connection means 13. The transducer 14 mechanically / electrically converts this frictional force and outputs it to the measuring means 15. The measuring means 15 can measure the frictional force while the sample 91 slides on the contact portion 21 by sampling this electric signal at every sampling period.

次に、本摩擦係数測定機の動作を説明する。ここではトランスデューサ14がロードセルであるとして説明している。まず、制御手段12が、速度を一定に保ちながら可動台11を方向Aへ移動させる場合を説明する。図7(a)〜(c)は、本摩擦係数測定機の動作を説明する図である。Fが摩擦力、Gは試料91にかかる重力、Nは重力Gの抗力、Vは可動台11の移動速度である。図7(a)〜(b)は、可動台11の移動速度Vが0でなく試料91が可動台11とともに移動しているとき(相対速度0の場合)の図である。このとき、試料91と接触部12との間には静止摩擦力が発生する。ロードセルのばねによる復元力が静止摩擦力より小さい場合、可動台11と試料91とは一体で移動する。   Next, the operation of the friction coefficient measuring machine will be described. Here, it is assumed that the transducer 14 is a load cell. First, the case where the control means 12 moves the movable stand 11 in the direction A while keeping the speed constant will be described. FIGS. 7A to 7C are diagrams illustrating the operation of the friction coefficient measuring machine. F is the frictional force, G is the gravity acting on the sample 91, N is the drag of gravity G, and V is the moving speed of the movable table 11. FIGS. 7A and 7B are diagrams when the moving speed V of the movable table 11 is not 0 and the sample 91 is moving together with the movable table 11 (when the relative speed is 0). At this time, a static frictional force is generated between the sample 91 and the contact portion 12. When the restoring force by the load cell spring is smaller than the static frictional force, the movable table 11 and the sample 91 move together.

図7(b)〜(c)は、ロードセルのばねによる復元力が静止摩擦力より大きくなり、試料91が接触面21から動摩擦力を受けながら復元力により運動しているときの図である。そして、ロードセルのばねによる復元力が静止摩擦力より小さくなると、再び試料91と可動台11は静摩擦力により一体として運動する。この現象は一般に知られるスティックスリップ振動の特殊な場合である。このとき、接続手段13が伝える力は、試料91と接触部21との間で交互に現れる静止摩擦と動摩擦で変動する。   FIGS. 7B to 7C are diagrams when the restoring force of the load cell spring is larger than the static friction force, and the sample 91 is moving by the restoring force while receiving the dynamic friction force from the contact surface 21. FIG. When the restoring force by the spring of the load cell becomes smaller than the static friction force, the sample 91 and the movable base 11 again move as a unit by the static friction force. This phenomenon is a special case of generally known stick-slip vibration. At this time, the force transmitted by the connecting means 13 varies due to static friction and dynamic friction that alternately appear between the sample 91 and the contact portion 21.

図8は、試料91と接触部21との間で生ずる摩擦力と時間との関係を説明する図である。横軸は制御手段12が可動台11を移動させる時間を示す。縦軸は試料91と接触部12との間に生ずる摩擦力を示す。図8を用いて、試料91がスティックスリップ振動を生じているときの試料91と接触部21との間に生ずる摩擦力の変化について説明する。図8の関数(i)は静止摩擦で試料91と接触部21とが一体となり等速直線運動する区間の静止摩擦力の変化を示している。この区間では次式が成り立つ。
F=−jx+μN=0 (jはばね定数、xは平衡位置からの変位)
μ/μ<1 (μは静止摩擦係数、μは動摩擦係数)
−jx<μN (6)
なお、試料91が弾性変化する領域においては、動摩擦係数μは試料と接触部21との相対速度に応じて変化する。
FIG. 8 is a diagram for explaining the relationship between the frictional force generated between the sample 91 and the contact portion 21 and time. The horizontal axis indicates the time for the control means 12 to move the movable base 11. The vertical axis represents the frictional force generated between the sample 91 and the contact portion 12. With reference to FIG. 8, the change in the frictional force generated between the sample 91 and the contact portion 21 when the sample 91 is causing stick-slip vibration will be described. A function (i) in FIG. 8 shows a change in static friction force in a section where the sample 91 and the contact portion 21 are united by static friction and linearly move at a constant speed. The following equation holds in this section.
F = −jx + μN = 0 (j is a spring constant, x is a displacement from the equilibrium position)
μ / μ s <1 (μ s is the coefficient of static friction, μ is the coefficient of dynamic friction)
−jx <μ s N (6)
In the region where the sample 91 is elastically changed, the dynamic friction coefficient μ changes according to the relative speed between the sample and the contact portion 21.

一方、図8の関数(ii)はばねの復元力で試料91が可動台11を滑るときの動摩擦力の変化の一例を示している。この区間では次式が成り立つ。
F=−jx−[sgn]μ
([sgn]は+1又は−1、μは動摩擦係数) (7)
図8の関数は時間に対する周期関数であるので、フーリエ級数展開することができるが、その第1項のみできわめて粗い近似で正弦波振動として扱うこともできる。ロ−ドセルはこの変動する摩擦力を電気的に出力する。測定手段15は、サンプリング周期をスティックスリップ振動の周期以下とすることで、試料91と接触部21との間の静止摩擦係数及び動摩擦係数を算出することができる。
On the other hand, the function (ii) in FIG. 8 shows an example of the change of the dynamic friction force when the sample 91 slides on the movable table 11 by the restoring force of the spring. The following equation holds in this section.
F = −jx− [sgn] μ d N
([Sgn] is +1 or -1, mu d dynamic friction coefficient) (7)
Since the function of FIG. 8 is a periodic function with respect to time, it can be expanded by Fourier series, but can be treated as a sinusoidal vibration with a very rough approximation only by the first term. The load cell electrically outputs this varying frictional force. The measuring means 15 can calculate the static friction coefficient and the dynamic friction coefficient between the sample 91 and the contact portion 21 by setting the sampling period to be equal to or less than the stick-slip vibration period.

次に、制御手段12が、速度を等加速度で上昇させながら可動台11を方向Aへ移動させる場合を説明する。図3は、本摩擦係数測定機の動作を説明する図である。横軸は制御手段12が可動台11を移動させる時間を示す。縦軸は可動台11の移動速度を示す。加速度が0でない等加速度直線運動が行われる際には、可動台11の移動速度Vは時々刻々と変化することになる。接続手段13が伝える力は、試料91と接触部13との間の動摩擦で発生する。測定手段15は、試料91と接触部21との相対速度Vに対する動摩擦係数を算出する。試料91の底面(粗面に相当する)が弾性変形域であるときには摩擦係数を一定とするための前提が適用できないので、一般には摩擦係数は速度、すなわち時間の関数であるとして扱わなければならない。   Next, a case where the control unit 12 moves the movable base 11 in the direction A while increasing the speed at a constant acceleration will be described. FIG. 3 is a diagram for explaining the operation of the friction coefficient measuring machine. The horizontal axis indicates the time for the control means 12 to move the movable base 11. The vertical axis represents the moving speed of the movable table 11. When a constant acceleration linear motion in which the acceleration is not 0 is performed, the moving speed V of the movable table 11 changes every moment. The force transmitted by the connecting means 13 is generated by dynamic friction between the sample 91 and the contact portion 13. The measuring means 15 calculates a dynamic friction coefficient with respect to the relative speed V between the sample 91 and the contact portion 21. When the bottom surface of the sample 91 (corresponding to a rough surface) is in the elastic deformation range, since the premise for making the friction coefficient constant cannot be applied, in general, the friction coefficient must be treated as a function of speed, that is, time. .

そこで、測定手段15は、微小時間でロードセルのサンプリングを行う。図3では、予め定めたサンプリング周期である時間t(k−1)からt(k)の区間での摩擦係数をμkで表している(k:自然数)。このサンプリング周期内の摩擦係数はサンプリング周期が短ければ一定とみなせる。測定手段15は、各々の移動時間tと移動速度(相対速度)Vにおける動摩擦孫数μ1、μ2、・・・、μkを取得することができる。このμ1、μ2、・・・、μkは各速度Vにおける摩擦力(摩擦係数)を示すインデックスとなる。   Therefore, the measuring means 15 samples the load cell in a very short time. In FIG. 3, the friction coefficient in the section from time t (k−1) to t (k), which is a predetermined sampling period, is represented by μk (k: natural number). The friction coefficient within this sampling period can be regarded as constant if the sampling period is short. The measuring means 15 can acquire the dynamic friction grandchild numbers μ1, μ2,..., Μk at each moving time t and moving speed (relative speed) V. These μ1, μ2,..., Μk serve as indexes indicating the frictional force (friction coefficient) at each speed V.

従来、移動速度が一定の場合のみ摩擦係数を取得することができたが、本摩擦係数測定機は、トランスデューサ14が出力する電気信号を測定手段15がサンプリング周期で摩擦係数を取得するため、1回の試験で様々な移動速度の摩擦係数を取得することができる。試料の底面が塑性変形域である場合にも同様の測定が行える。   Conventionally, the friction coefficient can be acquired only when the moving speed is constant. However, since the measuring unit 15 acquires the friction coefficient in the sampling period, the friction coefficient measuring machine 1 acquires the electric signal output from the transducer 14. The friction coefficient of various moving speeds can be acquired by the test of 1 time. The same measurement can be performed when the bottom surface of the sample is in the plastic deformation region.

(実施形態2)
図2は、本摩擦係数測定機を説明するブロック図である。図2の摩擦係数測定機と図1の摩擦係数測定機との違いは、図2の摩擦係数測定機が印加手段22をさらに備えていることである。印加手段22は、可動台11の接触部21の法線方向且つ可動台11の接触部21に近づく方向の力を試料91に印加する。すなわち、印加手段22は試料91を接触部21に押し付ける力を印加する。図2の摩擦係数測定機は、図1で説明した摩擦係数測定機と同様に試料91の摩擦係数を取得することができる。さらに、試料91と接触部21との圧力を変化させて摩擦係数を取得することができる。なお、印加手段22を備えた場合、試料91と印加手段22との間に生ずる摩擦力も考慮する必要がある。試料91の上から、さらに加えて重りを乗せても同様の効果を得ることができる。
(Embodiment 2)
FIG. 2 is a block diagram for explaining the friction coefficient measuring machine. The difference between the friction coefficient measuring machine in FIG. 2 and the friction coefficient measuring machine in FIG. 1 is that the friction coefficient measuring machine in FIG. The applying unit 22 applies a force in the normal direction of the contact portion 21 of the movable table 11 and in a direction approaching the contact portion 21 of the movable table 11 to the sample 91. That is, the applying means 22 applies a force that presses the sample 91 against the contact portion 21. The friction coefficient measuring machine in FIG. 2 can acquire the friction coefficient of the sample 91 in the same manner as the friction coefficient measuring machine explained in FIG. Furthermore, the friction coefficient can be acquired by changing the pressure between the sample 91 and the contact portion 21. When the application unit 22 is provided, it is necessary to consider the frictional force generated between the sample 91 and the application unit 22. The same effect can be obtained even if a weight is further added from above the sample 91.

(実施形態3)
図4は、本摩擦係数測定機を説明するブロック図である。図4の摩擦係数測定機と図1の摩擦係数測定機との違いは、図4の摩擦係数測定機が保持手段23をさらに備えていることである。試料の底面が弾性変形域にあるとき、試料と接触部とのみかけ接触面積が測定する摩擦力に影響を及ぼすため、みかけの接触面積を一定にして測定を行う必要がある。可動台11の接触部21は、試料91の長手方向の一部を保持する形状である。保持手段23の具体例を図5及び図6に示す。
(Embodiment 3)
FIG. 4 is a block diagram illustrating the friction coefficient measuring machine. The difference between the friction coefficient measuring machine of FIG. 4 and the friction coefficient measuring machine of FIG. 1 is that the friction coefficient measuring machine of FIG. When the bottom surface of the sample is in the elastic deformation range, the apparent contact area affects the frictional force measured by the apparent contact area between the sample and the contact portion. Therefore, it is necessary to perform measurement with a constant apparent contact area. The contact portion 21 of the movable table 11 has a shape that holds a part of the sample 91 in the longitudinal direction. Specific examples of the holding means 23 are shown in FIGS.

図5は試料91がシート状である場合の保持手段23を説明する図である。保持手段23はシート状の試料91の表面と裏面とを挟み込むように保持する。図5の保持手段23の場合、試料91の表面と接触する部分と試料91の裏面と接触する部分とが接触部21となる。このため、保持手段23は、試料91との相対位置の変化が少なくなり、みかけ接触面積の変化を少なくすることができる。   FIG. 5 is a view for explaining the holding means 23 when the sample 91 is in the form of a sheet. The holding means 23 holds the sheet-like sample 91 so as to sandwich the front surface and the back surface thereof. In the case of the holding means 23 in FIG. 5, a portion that contacts the surface of the sample 91 and a portion that contacts the back surface of the sample 91 become the contact portion 21. For this reason, the holding means 23 can reduce the change of the relative position with the sample 91 and can reduce the change of the apparent contact area.

一方、線状の試料91は図5のような保持手段23で固定すると、試料91と保持手段23とが接触する部分の面積は少なくなる。このため、線状の試料91と保持手段23の相対位置がずれて斜めになると接触面積の変化の割合が大きくなる。   On the other hand, when the linear sample 91 is fixed by the holding means 23 as shown in FIG. 5, the area of the portion where the sample 91 and the holding means 23 come into contact decreases. For this reason, when the relative position of the linear sample 91 and the holding means 23 is shifted and becomes oblique, the rate of change in the contact area increases.

そこで、保持手段23は上下のみならず側面に細い線を用いて線材との相対位置が変化しないように支えるか、保持手段23の側面にも接触部をつけることで、線状の試料91との相対位置の変化を生じさせないようにすることができる。なお、この際には、当該細い線や側面の接触部については、既知の摩擦係数を有するものが好ましい。また、接触部は一定の材料で構成し、その摩擦係数が測定しようとする試料に予測される摩擦係数よりも小さいものを使うことが望ましい。   Therefore, the holding means 23 is supported not only by the upper and lower sides but also by using a thin line on the side surface so that the relative position with the wire does not change, or by attaching a contact portion to the side surface of the holding means 23, It is possible to prevent the relative position from changing. In this case, the thin line and the contact portion on the side surface preferably have a known coefficient of friction. Further, it is desirable that the contact portion is made of a certain material and that the friction coefficient is smaller than the friction coefficient predicted for the sample to be measured.

線状の試料91の摩擦係数を測定する場合、図6のような保持手段23を使ってもよい。図6の保持手段23は、線状の試料91が中心を貫通するような形状である。保持手段23は、線状の試料91の外周を保持するため、みかけ接触面積の変化を少なくすることができる。   When measuring the friction coefficient of the linear sample 91, the holding means 23 as shown in FIG. 6 may be used. The holding means 23 in FIG. 6 has a shape such that a linear sample 91 passes through the center. Since the holding means 23 holds the outer periphery of the linear sample 91, the change in the apparent contact area can be reduced.

11:可動台
12:制御手段
13:接続手段
14:トランスデューサ
15:測定手段
21:接続部
22:印加手段
23:保持手段
91:試料
A、B:方向
11: Movable stage 12: Control means 13: Connection means 14: Transducer 15: Measurement means 21: Connection section 22: Application means 23: Holding means 91: Sample A, B: Direction

Claims (5)

試料の一部と接触する接触部を有する可動台と、
前記試料と前記接触部とを接触させた状態で前記可動台を移動させる制御手段と、
前記試料と接続されており、前記試料と前記接触部との間の摩擦に基づく力を伝える接続手段と、
前記接続手段が伝える力を電気信号に変換するトランスデューサと、
前記トランスデューサからの前記電気信号を所定の周期でサンプリングする測定手段と、
を備える摩擦係数測定機。
A movable table having a contact portion that contacts a part of the sample;
Control means for moving the movable base in a state where the sample and the contact portion are in contact with each other;
A connection means connected to the sample and transmitting a force based on friction between the sample and the contact portion;
A transducer that converts the force transmitted by the connecting means into an electrical signal;
Measuring means for sampling the electrical signal from the transducer at a predetermined period;
A friction coefficient measuring machine comprising:
前記可動台の前記接触部は、前記試料の長手方向の一部を保持する形状であることを特徴とする請求項1に記載の摩擦係数測定機。   The friction coefficient measuring machine according to claim 1, wherein the contact portion of the movable table has a shape that holds a part of the sample in the longitudinal direction. 前記可動台の接触部が平面であり、
前記可動台の前記接触部の法線方向且つ前記可動台の前記接触部に近づく方向の力を前記試料に印加する印加手段をさらに備えることを特徴とする請求項1に記載の摩擦係数測定機。
The contact part of the movable table is a plane;
The friction coefficient measuring machine according to claim 1, further comprising an applying unit that applies a force in a direction normal to the contact portion of the movable table and a direction approaching the contact portion of the movable table to the sample. .
前記制御手段は、速度を一定に保ちながら前記可動台を移動させ、
前記接続手段が伝える力は、前記試料と前記接触部との間で交互に現れる静止摩擦と動摩擦で変動し、
前記測定手段は、前記所定の周期を前記トランスデューサに伝えられる力の変動周期とすることで、前記試料と前記接触部との間の静止摩擦係数及び動摩擦係数を算出することを特徴とする請求項1から3のいずれかに記載の摩擦係数測定機。
The control means moves the movable base while keeping the speed constant,
The force transmitted by the connecting means varies due to static friction and dynamic friction that alternately appear between the sample and the contact portion,
The measurement means calculates a static friction coefficient and a dynamic friction coefficient between the sample and the contact portion by setting the predetermined period as a fluctuation period of a force transmitted to the transducer. The friction coefficient measuring machine according to any one of 1 to 3.
前記制御手段は、速度を等加速度で上昇させながら前記可動台を移動させ、
前記接続手段が伝える力は、前記試料と前記接触部との間の動摩擦で発生し、
前記測定手段は、前記試料と前記接触部との相対速度に対する動摩擦係数を算出することを特徴とする請求項1から3のいずれかに記載の摩擦係数測定機。
The control means moves the movable base while increasing the speed at a constant acceleration,
The force transmitted by the connecting means is generated by dynamic friction between the sample and the contact portion,
The friction coefficient measuring machine according to any one of claims 1 to 3, wherein the measuring means calculates a dynamic friction coefficient with respect to a relative speed between the sample and the contact portion.
JP2009117126A 2009-05-14 2009-05-14 Friction coefficient measuring instrument Pending JP2010266297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009117126A JP2010266297A (en) 2009-05-14 2009-05-14 Friction coefficient measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009117126A JP2010266297A (en) 2009-05-14 2009-05-14 Friction coefficient measuring instrument

Publications (1)

Publication Number Publication Date
JP2010266297A true JP2010266297A (en) 2010-11-25

Family

ID=43363402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009117126A Pending JP2010266297A (en) 2009-05-14 2009-05-14 Friction coefficient measuring instrument

Country Status (1)

Country Link
JP (1) JP2010266297A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103335942A (en) * 2013-07-08 2013-10-02 大连理工大学 Equipment and method used for measuring friction coefficient between plastic and metal mold
CN104142294A (en) * 2013-05-07 2014-11-12 上海和辉光电有限公司 Slippery feeling test device and method of protection film or protection coating
KR101611764B1 (en) * 2014-12-18 2016-04-14 한양대학교 산학협력단 Method and system for simulationg characteristic of friction
KR101787233B1 (en) 2016-01-13 2017-10-18 국방과학연구소 Method and Apparatus for Friction Characteristic Measurement of Electric Drive System
WO2017188186A1 (en) * 2016-04-25 2017-11-02 大日本印刷株式会社 Touch panel, display device, optical sheet, and optical sheet sorting method
JP2021053678A (en) * 2019-09-30 2021-04-08 名北工業株式会社 Index measuring apparatus of plastic workability of wire material or wire for cold heading and index measuring method of plastic workability of wire material or wire for cold heading
CN114543742A (en) * 2022-02-28 2022-05-27 北京理工大学 Method for measuring real contact area of metal surface in friction process

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104142294A (en) * 2013-05-07 2014-11-12 上海和辉光电有限公司 Slippery feeling test device and method of protection film or protection coating
CN103335942A (en) * 2013-07-08 2013-10-02 大连理工大学 Equipment and method used for measuring friction coefficient between plastic and metal mold
KR101611764B1 (en) * 2014-12-18 2016-04-14 한양대학교 산학협력단 Method and system for simulationg characteristic of friction
KR101787233B1 (en) 2016-01-13 2017-10-18 국방과학연구소 Method and Apparatus for Friction Characteristic Measurement of Electric Drive System
WO2017188186A1 (en) * 2016-04-25 2017-11-02 大日本印刷株式会社 Touch panel, display device, optical sheet, and optical sheet sorting method
JP2021073593A (en) * 2016-04-25 2021-05-13 大日本印刷株式会社 Touch panel, display device, optical sheet and method for selecting optical sheet
JP6996644B2 (en) 2016-04-25 2022-01-17 大日本印刷株式会社 Touch panel, display device, optical sheet and selection method of optical sheet
JP2021053678A (en) * 2019-09-30 2021-04-08 名北工業株式会社 Index measuring apparatus of plastic workability of wire material or wire for cold heading and index measuring method of plastic workability of wire material or wire for cold heading
JP7299578B2 (en) 2019-09-30 2023-06-28 名北工業株式会社 Apparatus for measuring index of plastic workability of cold heading wire or wire and method for measuring index of plastic workability of cold heading wire or wire
CN114543742A (en) * 2022-02-28 2022-05-27 北京理工大学 Method for measuring real contact area of metal surface in friction process
CN114543742B (en) * 2022-02-28 2022-11-29 北京理工大学 Method for measuring real contact area of metal surface in friction process

Similar Documents

Publication Publication Date Title
JP2010266297A (en) Friction coefficient measuring instrument
JP4977825B2 (en) Shear force detection device and object gripping system
JP2006275979A (en) Sensor element, sensor device, device for controlling movement of object, and device for discriminating object
JP5382817B2 (en) Load measuring device
CN102353576B (en) Small-size test device for mechanical and electrical coupling characteristics
JP6011486B2 (en) Material testing machine
CN103389195B (en) A kind of for the exciting rod without additional stiffness in mould measurement
Li et al. An analogue contact probe using a compact 3D optical sensor for micro/nano coordinate measuring machines
US20140224036A1 (en) Multidimensional strain gage
Zalnezhad et al. A new fretting fatigue testing machine design, utilizing rotating–bending principle approach
Ferreira et al. Integration of a silicon-based microprobe into a gear measuring instrument for accurate measurement of micro gears
CN102506688B (en) Resistance strain thickness measuring device and measurement method thereof
Cappelleri et al. Toward the Design of a Decoupled, Two-Dimensional, Vision-Based μ N Force Sensor
Fujii et al. SELF-CORRECTION METHOD FOR DYNAMIC MEASUREMENT ERROR OF FORCE SENSORS.
Read Piezo-actuated microtensile test apparatus
KR101702873B1 (en) The weight measuring device using of natural frequency
Alblalaihid et al. Variable stiffness probing systems for micro-coordinate measuring machines
CN102184664A (en) Replication experiment device and method for distribution rule of shearing stress
Milahin et al. Influence of the normal force and contact geometry on the static force of friction of an oscillating sample
Fan et al. Analysis of the contact probe mechanism for micro-coordinate measuring machines
JP2005147702A (en) Measuring device of step response characteristics of force sensor
Li et al. Elastic mechanism design of a CMM contact probe
KR100953521B1 (en) Testing apparatus of load and testing method using the same
Lee et al. Probing-error compensation using 5 degree of freedom force/moment sensor for coordinate measuring machine
Medjahdi et al. Modeling, simulation and optimization of the mechanical response of micromechanical silicon cantilever: application to piezoresistive force sensor