JP2010266261A - Apparatus and method for measuring oxygen - Google Patents

Apparatus and method for measuring oxygen Download PDF

Info

Publication number
JP2010266261A
JP2010266261A JP2009116230A JP2009116230A JP2010266261A JP 2010266261 A JP2010266261 A JP 2010266261A JP 2009116230 A JP2009116230 A JP 2009116230A JP 2009116230 A JP2009116230 A JP 2009116230A JP 2010266261 A JP2010266261 A JP 2010266261A
Authority
JP
Japan
Prior art keywords
biological sample
oxygen
medium
storage container
sample storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009116230A
Other languages
Japanese (ja)
Inventor
Takashi Nakahara
貴 中原
Hiroki Kumazawa
弘樹 熊沢
Akihiro Oyama
晃弘 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
NIPPON DENTAL UNIV
Original Assignee
NIPPON DENTAL UNIV
Aloka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DENTAL UNIV, Aloka Co Ltd filed Critical NIPPON DENTAL UNIV
Priority to JP2009116230A priority Critical patent/JP2010266261A/en
Publication of JP2010266261A publication Critical patent/JP2010266261A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for measuring oxygen for performing a highly reliable evaluation of an oxygen consumption of biological samples such as cells attached to a carrier. <P>SOLUTION: The oxygen measuring apparatus includes a biological sample storage container for storing a biological sample attached to the carrier, a medium perfusion system for perfusing a medium to the biological sample storage container, and a flow cell which is disposed at a medium outlet of the biological sample storage container and in which an oxygen electrode is integrated. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、担体に付着された細胞などの生物試料の酸素消費量などを測定する酸素測定装置および酸素測定方法に関する。   The present invention relates to an oxygen measuring device and an oxygen measuring method for measuring oxygen consumption of a biological sample such as a cell attached to a carrier.

近年、細胞などの生物試料の活性を示す指標の一つと考えられている呼吸活性を溶液中の溶存酸素濃度などから測定する研究が盛んに行われている。例えば、溶液中において生物試料が消費する酸素量などを溶液中の溶存酸素濃度などから測定する研究である。   In recent years, active research has been conducted to measure respiratory activity, which is considered to be one of the indicators of the activity of biological samples such as cells, from the concentration of dissolved oxygen in a solution. For example, a study for measuring the amount of oxygen consumed by a biological sample in a solution from the concentration of dissolved oxygen in the solution.

現在、一般的に用いられる溶液中の酸素濃度測定方法には、酸素分圧に比例する電流を発生する酸素電極を用いる酸素電極法、酸素分圧に逆相関する蛍光を発する酸素感受性蛍光物質を利用する蛍光法などがある。   Currently, the oxygen concentration method in a solution generally used includes an oxygen electrode method using an oxygen electrode that generates a current proportional to the oxygen partial pressure, and an oxygen-sensitive fluorescent substance that emits fluorescence that is inversely related to the oxygen partial pressure. There are fluorescent methods used.

また、特許文献1には、溶液を収容する容器と、容器内に設けられる一対の電極と、容器内に配置された一対の電極のうちの一方の電極の付近に生物試料を導く試料ガイドと、を有し、試料ガイドには、一方の電極を取り囲む微小領域とその微小領域内へ生物試料を導く導入領域とが形成され、一対の電極を介して流れる微小電流に基づいて、試料ガイドの微小領域内に導入された生物試料の近傍の溶存酸素に関する測定量が測定される酸素測定装置が記載されている。   Patent Document 1 discloses a container for storing a solution, a pair of electrodes provided in the container, and a sample guide for guiding a biological sample to one of the pair of electrodes arranged in the container. In the sample guide, a micro area surrounding one electrode and an introduction area for guiding the biological sample into the micro area are formed. Based on the micro current flowing through the pair of electrodes, the sample guide An oxygen measuring device is described in which a measurement amount relating to dissolved oxygen in the vicinity of a biological sample introduced into a micro region is measured.

これらの方法を利用して、担体に付着された定着性細胞の酸素消費量を測定する場合、例えば、次のような手順で細胞の試料液を調製する。
(1)培養容器中の古い培地を吸引除去
(2)容器の壁着細胞をバッファ(Hanks液など)で洗浄した後、バッファを吸引除去
(3)トリプシン溶液などの酵素溶液を培養容器に入れ、細胞を充分に濡らし、インキュベータに入れて、5分から10分程度放置
(4)新しい培地を加え、ピペッティングし、細胞を培地に分散させた後、細胞液を遠心分離にかけ、上澄み液を吸引除去
(5)新しい培地を入れ、撹拌して、細胞の塊をばらして、充分に分散
(6)液の細胞濃度を調べ、必要な濃度に調整希釈
When measuring the oxygen consumption of the fixing cells attached to the carrier using these methods, for example, a cell sample solution is prepared by the following procedure.
(1) Remove the old medium in the culture container by suction. (2) Wash the cell wall cells with a buffer (such as Hanks solution) and then remove the buffer by suction. (3) Put an enzyme solution such as trypsin solution in the culture container. Wet the cells thoroughly, put them in an incubator and leave them for about 5 to 10 minutes. (4) Add new medium, pipet, disperse the cells in the medium, centrifuge the cell solution, and aspirate the supernatant. Removal (5) Add fresh medium, stir to break up cell clumps and disperse well (6) Check the cell concentration of the solution and adjust to the required concentration

このようにして作製した細胞試料溶液を測定容器に分注し、容器に設置した酸素センサ(酸素電極法または蛍光法)により、液中の溶存酸素濃度の経時変化を測定し、細胞の酸素消費量を得る。   Dispensing the cell sample solution thus prepared into a measurement container, and measuring the time-dependent change in the dissolved oxygen concentration in the liquid with an oxygen sensor (oxygen electrode method or fluorescence method) installed in the container, the oxygen consumption of the cell Get quantity.

血液系細胞など、体液中に漂う細胞を除き、多くの細胞は適当な担体に付着された状態で増殖、分化など本来の細胞活動を営み、その機能を発現する。上記の測定方法では、細胞を担体から剥離することで細胞の活性が低下するだけでなく、増殖など本来の細胞機能が損なわれた状態で細胞の酸素消費量が評価されることになる。また、細胞はその活動により、酸素や培地中の栄養成分を消費し、アンモニアや乳酸のような有害な老廃物を産生する。酸素については、測定容器を密閉構造としなければ、気液境界面からの拡散、対流などにより、ある程度補給されるが、栄養成分の消費と老廃物の産生などにより、細胞の環境が経時的に悪化することが避けられない。   Except for cells that float in body fluids, such as blood cells, many cells perform their own cellular activities such as proliferation and differentiation while being attached to an appropriate carrier, and express their functions. In the measurement method described above, not only the cell activity is reduced by detaching the cell from the carrier, but also the oxygen consumption of the cell is evaluated in a state where the original cell function such as proliferation is impaired. In addition, the cell consumes oxygen and nutrients in the medium due to its activity, and produces harmful waste products such as ammonia and lactic acid. If the measurement container is not sealed, oxygen is replenished to some extent by diffusion and convection from the gas-liquid interface, but the cellular environment changes over time due to consumption of nutrients and production of waste products. It is inevitable that it gets worse.

したがって、従来の測定方法は、定着性細胞の増殖に関わる物質の影響を評価したり、効果や害が現れるまでに長い期間を必要とする物質の細胞への影響を調べるような場合には、必ずしも適したものではない。   Therefore, the conventional measurement method evaluates the influence of substances related to the growth of fixed cells, or examines the influence of substances that require a long period of time before effects and harm appear, It is not necessarily suitable.

例えば、特許文献2には、対象物質を固定化してなる固定化層に対して検体を供給し、対象物質と検体との反応を電極で検出することにより検体の測定を達成する検体測定方法であって、濃度を経時的に変化させながら検体を供給し、電極からの出力信号の変化量に基づいて検体の測定を行う検体測定方法が記載されている。しかし、特許文献2の装置では、対象物質を固定化してなる固定化層と電極がともに測定容器の同じ部屋(第2室)に収容されているため、信頼性が高い評価が得られない。   For example, Patent Document 2 discloses a sample measurement method that achieves measurement of a sample by supplying the sample to an immobilized layer formed by immobilizing the target material and detecting the reaction between the target material and the sample with an electrode. A sample measurement method is described in which a sample is supplied while changing its concentration over time, and the sample is measured based on the amount of change in the output signal from the electrode. However, in the apparatus of Patent Document 2, since the immobilization layer obtained by immobilizing the target substance and the electrode are both housed in the same chamber (second chamber) of the measurement container, highly reliable evaluation cannot be obtained.

特開2008−64661号公報JP 2008-64661 A 特開2000−270838号公報JP 2000-270838 A

本発明は、担体に付着された細胞などの生物試料の酸素消費量などの信頼性が高い評価が可能となる酸素測定装置および酸素測定方法である。   The present invention is an oxygen measuring apparatus and an oxygen measuring method that enable highly reliable evaluation of oxygen consumption of a biological sample such as a cell attached to a carrier.

本発明は、担体に付着された生物試料を収容する生物試料収容容器と、前記生物試料収容容器へ培地を灌流する培地灌流システムと、前記生物試料収容容器の培地出口に設置された、酸素電極が組み込まれたフローセルと、を備える酸素測定装置である。   The present invention relates to a biological sample storage container for storing a biological sample attached to a carrier, a culture medium perfusion system for perfusing a culture medium to the biological sample storage container, and an oxygen electrode installed at the culture medium outlet of the biological sample storage container Is an oxygen measuring device.

また、前記酸素測定装置において、前記生物試料収容容器の培地入口側の配管と培地出口側の配管とを接続するバイパス経路を備えることが好ましい。   In the oxygen measuring device, it is preferable that a bypass path for connecting a culture medium inlet side pipe and a culture medium outlet side pipe of the biological sample storage container is provided.

また、本発明は、担体に付着された生物試料を収容する生物試料収容容器へ培地を灌流し、前記生物試料収容容器からの流出後の培地の溶存酸素濃度を測定する酸素測定方法である。   The present invention is also an oxygen measurement method in which a culture medium is perfused into a biological sample storage container that stores a biological sample attached to a carrier, and a dissolved oxygen concentration of the culture medium after flowing out of the biological sample storage container is measured.

また、前記酸素測定方法において、前記生物試料収容容器を経由しない培地の溶存酸素濃度を測定して基準溶存酸素濃度を求め、前記基準溶存酸素濃度に対する、前記生物試料収容容器からの流出後の培地の溶存酸素濃度の変化量を求めることにより、前記生物試料による酸素消費量を測定することが好ましい。   Further, in the oxygen measurement method, the dissolved oxygen concentration of the medium not passing through the biological sample storage container is measured to obtain a reference dissolved oxygen concentration, and the medium after flowing out of the biological sample storage container with respect to the reference dissolved oxygen concentration It is preferable to measure the amount of oxygen consumed by the biological sample by determining the amount of change in the dissolved oxygen concentration.

本発明では、担体に付着された生物試料を収容する生物試料収容容器と、生物試料収容容器へ培地を灌流する培地灌流システムと、生物試料収容容器の培地出口に設置された、酸素電極が組み込まれたフローセルと、を備えることにより、細胞などの生物試料の酸素消費量などの信頼性が高い評価が可能となる酸素測定装置を提供することができる。   In the present invention, a biological sample storage container for storing a biological sample attached to a carrier, a culture medium perfusion system for perfusing a culture medium to the biological sample storage container, and an oxygen electrode installed at the culture medium outlet of the biological sample storage container are incorporated. By providing such a flow cell, it is possible to provide an oxygen measuring device that enables highly reliable evaluation of oxygen consumption of biological samples such as cells.

また、本発明では、担体に付着された生物試料を収容する生物試料収容容器へ培地を灌流し、生物試料収容容器からの流出後の培地の溶存酸素濃度を測定することにより、細胞などの生物試料の酸素消費量などの信頼性が高い評価が可能となる酸素測定方法を提供することができる。   In the present invention, the culture medium is perfused into a biological sample storage container that stores the biological sample attached to the carrier, and the dissolved oxygen concentration of the culture medium after flowing out from the biological sample storage container is measured, so that a biological material such as a cell is obtained. It is possible to provide an oxygen measuring method that enables highly reliable evaluation such as oxygen consumption of a sample.

本発明の実施形態に係る酸素測定装置の一例を示す概略構成図である。It is a schematic structure figure showing an example of the oxygen measuring device concerning the embodiment of the present invention. 本発明の実施例における、酸素電極による細胞(SDR−M)の酸素消費量の測定結果を示す図である。It is a figure which shows the measurement result of the oxygen consumption of the cell (SDR-M) by the oxygen electrode in the Example of this invention.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

本発明の実施形態に係る酸素測定装置1は、培地を灌流しながら、細胞などの生物試料の呼吸(酸素消費)などによる培地中の溶存酸素濃度を測定することにより、信頼性の高い生物試料による酸素消費量の測定を実現するものである。本実施形態に係る酸素測定装置の一例の概略を図1に示し、その構成について説明する。酸素測定装置1は、担体に付着された細胞などの生物試料を収容する生物試料収容容器10と、生物試料収容容器10へ培地を灌流する培地灌流システム12と、酸素電極14が組み込まれたフローセル16と、酸素電極14による出力される応答電流値を経時的に測定、記録可能な微小電流計32および記録・表示装置34とを備える。培地灌流システム12は、培地容器18と、送液ポンプ20とを備える。   The oxygen measuring device 1 according to the embodiment of the present invention measures a dissolved oxygen concentration in a culture medium by respiration (oxygen consumption) of a biological sample such as a cell while perfusing the culture medium, thereby providing a highly reliable biological sample. The measurement of oxygen consumption by means of is realized. An outline of an example of the oxygen measuring apparatus according to the present embodiment is shown in FIG. 1 and the configuration thereof will be described. The oxygen measuring apparatus 1 includes a biological sample storage container 10 that stores a biological sample such as a cell attached to a carrier, a culture medium perfusion system 12 that perfuses a culture medium to the biological sample storage container 10, and a flow cell in which an oxygen electrode 14 is incorporated. 16 and a microammeter 32 and a recording / display device 34 capable of measuring and recording the response current value output from the oxygen electrode 14 over time. The medium perfusion system 12 includes a medium container 18 and a liquid feed pump 20.

酸素測定装置1において、培地容器18は、送液ポンプ20の流入側に配管などにより接続され、送液ポンプ20の吐出側に配管などにより生物試料収容容器10の入口が接続されている。生物試料収容容器10の出口は、配管などによりフローセル16の入口に接続され、フローセル16の出口には配管などにより、フローセル16から排出された培地を貯留するための容器22が接続されている。フローセル16には、酸素電極14が組み込まれている。生物試料収容容器10の入口側の配管と出口側の配管とは、流路が切り替え可能な三方バルブ24a,24bを介して、バイパス配管26により接続されている。培地容器18には、スターラ28などの撹拌装置が設置され、撹拌装置には撹拌装置を制御する制御部30が電気的接続などにより接続されている。酸素電極14には、微小電流計32が電気的接続などにより接続され、微小電流計32には、記録・表示装置34が電気的接続などにより接続されている。   In the oxygen measuring apparatus 1, the culture medium container 18 is connected to the inflow side of the liquid feed pump 20 by a pipe or the like, and the inlet of the biological sample storage container 10 is connected to the discharge side of the liquid feed pump 20 by a pipe or the like. The outlet of the biological sample storage container 10 is connected to the inlet of the flow cell 16 by piping or the like, and the outlet 22 of the flow cell 16 is connected to the container 22 for storing the medium discharged from the flow cell 16 by piping or the like. An oxygen electrode 14 is incorporated in the flow cell 16. The pipe on the inlet side and the pipe on the outlet side of the biological sample storage container 10 are connected by a bypass pipe 26 via three-way valves 24a and 24b whose flow paths can be switched. The medium container 18 is provided with a stirrer such as a stirrer 28, and a controller 30 that controls the stirrer is connected to the stirrer by electrical connection or the like. A microammeter 32 is connected to the oxygen electrode 14 by electrical connection or the like, and a recording / display device 34 is connected to the microammeter 32 by electrical connection or the like.

液体中の溶存酸素濃度や酸素電極の応答電流には温度依存性があるので、温度補正(校正)を避けるために、微小電流計32や記録・表示装置34などの測定装置類を除いた、培地容器18、生物試料収容容器10、フローセル16、酸素電極14などは、一定の温度条件に保つことができる環境に設置することが好ましい。図1では、培地容器18、スターラ28、生物試料収容容器10、フローセル16、酸素電極14、容器22が、恒温槽36の中に収容されている。培地容器18の内部、恒温槽36の内部、フローセル16の内部には、温度センサ38a,38b,38cがそれぞれ設置されている。   Since the dissolved oxygen concentration in the liquid and the response current of the oxygen electrode are temperature dependent, in order to avoid temperature correction (calibration), measurement devices such as the microammeter 32 and the recording / display device 34 are excluded. The culture medium container 18, the biological sample storage container 10, the flow cell 16, the oxygen electrode 14 and the like are preferably installed in an environment that can be maintained at a constant temperature condition. In FIG. 1, the culture medium container 18, the stirrer 28, the biological sample storage container 10, the flow cell 16, the oxygen electrode 14, and the container 22 are stored in a thermostatic chamber 36. Temperature sensors 38a, 38b, and 38c are installed in the medium container 18, the thermostat 36, and the flow cell 16, respectively.

生物試料収容容器10としては、担体に付着された細胞などの生物試料を収容する収容部と、収容部に通じる入口部および出口部とを有し、液体である培地を収容部に流すことができるものであればよい。生物試料収容容器10の液容量が大きいと、細胞などの呼吸代謝などによる溶存酸素濃度の変化速度が遅くなるので、溶存酸素濃度の変化に対する応答性を高めるために生物試料収容容器10の液容量はできるだけ小さい方が好ましい。生物試料収容容器10は、収容部に、ガラスまたは樹脂などの透明材料を用いた観察窓を有していてもよい。   The biological sample storage container 10 includes a storage unit that stores a biological sample such as a cell attached to a carrier, an inlet unit and an outlet unit that communicate with the storage unit, and allows a liquid medium to flow into the storage unit. Anything is possible. If the liquid volume of the biological sample storage container 10 is large, the rate of change of the dissolved oxygen concentration due to respiratory metabolism of cells and the like is slowed down. Therefore, the liquid volume of the biological sample storage container 10 is increased in order to increase the responsiveness to changes in the dissolved oxygen concentration. Is preferably as small as possible. The biological sample storage container 10 may have an observation window using a transparent material such as glass or resin in the storage unit.

フローセル16は、流路と、流路に通じる入口部および出口部とを有し、液体である培地を流路に流すことができて、酸素電極14を流路で検出可能なように組み込むことができるものであればよい。溶存酸素濃度の変化に対する酸素電極14の応答性を高めるためにフローセル16の液容量はできるだけ小さい方が好ましい。   The flow cell 16 has a flow path, an inlet part and an outlet part that communicate with the flow path, and can incorporate a liquid medium so that the oxygen electrode 14 can be detected in the flow path. Anything that can do. In order to increase the responsiveness of the oxygen electrode 14 to changes in the dissolved oxygen concentration, the liquid capacity of the flow cell 16 is preferably as small as possible.

生物試料収容容器10とフローセル16は、図1に示すようにそれぞれ独立した構造のものを配管などにより接続してもよいが、生物試料収容容器10と、生物試料収容容器10からの培地が流入し、酸素電極14が組み込まれたフローセル16とが一体化した構造(図1の一点鎖線部分)のものであってもよい。生物試料収容容器10とフローセル16とが一体化した構造であると、応答速度が高く、配管や接続部品などからの酸素などの漏れを避けることができるため、好ましい。   As shown in FIG. 1, the biological sample storage container 10 and the flow cell 16 may be connected to each other by piping or the like, but the biological sample storage container 10 and the culture medium from the biological sample storage container 10 flow in. However, it may have a structure (one-dot chain line portion in FIG. 1) in which the flow cell 16 incorporating the oxygen electrode 14 is integrated. A structure in which the biological sample storage container 10 and the flow cell 16 are integrated is preferable because the response speed is high and leakage of oxygen and the like from piping and connecting parts can be avoided.

溶存酸素濃度の変化に対する酸素電極14の応答速度を上げるためには、生物試料収容容器10とフローセル16との間の配管の容量はできるだけ小さくして、培地がスムースに流れるようにすることが好ましい。   In order to increase the response speed of the oxygen electrode 14 to changes in the dissolved oxygen concentration, it is preferable to reduce the capacity of the pipe between the biological sample storage container 10 and the flow cell 16 so that the medium flows smoothly. .

酸素電極14としては、酸素分圧に比例する電流を発生するものであればよく、特に制限はないが、接液面積が小さく、少ない流量(例えば、2mL/hr程度)の培地灌流システムにおいても安定した応答電流値が得られるものが好ましい。このような電極として、例えば、酸素を検出する電極部分(カソード)が極めて小さな面積を持つように構成され、自己酸素消費量が極めて少ないマイクロカソード酸素電極などが挙げられる。   The oxygen electrode 14 is not particularly limited as long as it generates a current proportional to the oxygen partial pressure. However, even in a medium perfusion system having a small liquid contact area and a small flow rate (for example, about 2 mL / hr). What can obtain a stable response current value is preferable. As such an electrode, for example, a microcathode oxygen electrode in which an electrode portion (cathode) for detecting oxygen is configured to have an extremely small area and self-oxygen consumption is extremely small.

送液ポンプ20としては、少ない流量(例えば、2mL/hr程度)で、流量精度、再現性がよいものであることが好ましい。   The liquid feed pump 20 preferably has a small flow rate (for example, about 2 mL / hr) and good flow rate accuracy and reproducibility.

本実施形態に係る酸素測定装置1を用いた、細胞などの生物試料による酸素消費量の測定方法について説明する。   A method for measuring oxygen consumption by a biological sample such as a cell using the oxygen measuring device 1 according to this embodiment will be described.

<測定対象の生物試料の準備>
測定対象となる細胞などの生物試料を、ガラス板などの担体に付着などしたものを、担体ごと生物試料収容容器10に収容する。
<Preparation of biological sample to be measured>
A biological sample such as a cell to be measured attached to a carrier such as a glass plate is accommodated in the biological sample container 10 together with the carrier.

測定対象となる生物試料としては、細胞などが挙げられる。生物試料を付着する担体としては、ガラス、樹脂などが挙げられる。例えば、細胞をガラス板により単層培養したものを用いればよいが、灌流系に組み込める形態であれば、どのような培養形態であってもよい。担体として、表面積が既知であるものを用いることで、後述するように、細胞数当たりの酸素消費量を求めることができる。   Examples of biological samples to be measured include cells. Examples of the carrier to which the biological sample is attached include glass and resin. For example, cells obtained by monolayer culture with a glass plate may be used, but any culture form may be used as long as it can be incorporated into a perfusion system. By using a carrier having a known surface area, the oxygen consumption per cell number can be determined as described later.

<培地の加温・脱ガス>
培地容器18内には培地を収容する。培地は、生物試料の生存に適した成分を含む液体である。低温では液体へのガス飽和濃度が高く、冷蔵保存された培地には培養に用いる37℃前後の培地に比べて、2倍近いガス(酸素、窒素など)が溶解していることがある。十分に脱ガスせずに培地の送液を行うと、送液途中の温度上昇などにより気泡が発生し、送液や溶存酸素濃度の測定に障害となる可能性がある。そのため、培地容器18内の培地は、必要に応じてスターラ28などの撹拌装置により撹拌しながら、恒温槽36により所定の温度(例えば、37℃前後)に加温、制御することが好ましい。培地容器18内に収容する前に恒温水槽など用いて、別途、培地を加温しておいてもよい。また、気液界面で十分なガス交換が可能なように、培地容器18は密封せずに開放状態にしておくほうがよい。スターラ28などの撹拌装置は、制御部30により制御する。また、培地容器18内の培地の温度、恒温槽36内部の温度は、温度センサ38a,38bによりそれぞれモニタリングし、必要に応じて記録・表示装置34により、データとして記録し、グラフなどによって表示する。
<Warming and degassing of medium>
A medium is accommodated in the medium container 18. The medium is a liquid containing components suitable for the survival of the biological sample. At low temperatures, the gas saturation concentration in the liquid is high, and in the refrigerated medium, nearly twice as much gas (oxygen, nitrogen, etc.) may be dissolved as compared to the medium at around 37 ° C. used for culture. If the medium is fed without sufficiently degassing, bubbles may be generated due to a temperature rise in the middle of the feeding, which may hinder measurement of the feeding and dissolved oxygen concentration. Therefore, it is preferable that the medium in the medium container 18 is heated and controlled to a predetermined temperature (for example, around 37 ° C.) by the thermostatic bath 36 while being stirred by a stirring device such as a stirrer 28 as necessary. The medium may be separately heated using a thermostatic water tank or the like before being accommodated in the medium container 18. Moreover, it is better to keep the culture medium container 18 open without sealing so that sufficient gas exchange is possible at the gas-liquid interface. The stirring device such as the stirrer 28 is controlled by the control unit 30. The temperature of the medium in the medium container 18 and the temperature in the thermostatic chamber 36 are monitored by the temperature sensors 38a and 38b, recorded as data by the recording / display device 34 as necessary, and displayed as a graph or the like. .

<基準溶存酸素濃度電流値の測定>
まず、基準溶存酸素濃度電流値(A)の測定を行う。バイパス配管26を経由する経路に三方バルブ24a,24bを切り替えた状態で、培地容器18内の培地を、送液ポンプ20によりフローセル16へ送液する。送液流量は、例えば、後述する実施例1では1〜3mL/hrであるが、細胞などの酸素消費速度は種により大きく異なり、細胞数に比例するので、生物試料収容容器10に収容する細胞などの生物試料の種類、数などにより適宜設定すればよい。必要に応じて、送液流量を高くして、配管系のパージを行ってもよい。フローセル16の流路を流れる培地に含まれる溶存酸素濃度に相応(比例)して生じる酸素電極14の応答電流値を微小電流計32により測定し、必要に応じて記録・表示装置34により、記録、表示する。また、フローセル16内の温度は、温度センサ38cによりモニタリングし、必要に応じて記録・表示装置34により、記録、表示する。培地の温度が所定の温度(例えば、37℃前後)に達していても、溶存酸素濃度がその温度の飽和濃度まで低下しているとは限らないため、酸素電極14による電流値、温度センサ38a,38b,38cによる温度が十分に安定するまで、測定を行う。測定が完了したら、次工程に進む。なお、基準溶存酸素濃度電流値の測定は、次工程の溶存酸素濃度電流値の測定の後に行ってもよい。
<Measurement of standard dissolved oxygen concentration current value>
First, the reference dissolved oxygen concentration current value (A) is measured. In a state where the three-way valves 24 a and 24 b are switched to a path passing through the bypass pipe 26, the medium in the medium container 18 is fed to the flow cell 16 by the liquid feeding pump 20. For example, in Example 1, which will be described later, the liquid feeding flow rate is 1 to 3 mL / hr, but the oxygen consumption rate of cells and the like varies greatly depending on the species and is proportional to the number of cells. What is necessary is just to set suitably by the kind of biological sample, such as, the number, etc. If necessary, the piping system may be purged by increasing the liquid feed flow rate. The response current value of the oxygen electrode 14 generated in proportion (proportional) to the dissolved oxygen concentration contained in the medium flowing through the flow path of the flow cell 16 is measured by the microammeter 32 and recorded by the recording / display device 34 as necessary. ,indicate. The temperature in the flow cell 16 is monitored by the temperature sensor 38c, and recorded and displayed by the recording / display device 34 as necessary. Even if the temperature of the culture medium reaches a predetermined temperature (for example, around 37 ° C.), the dissolved oxygen concentration does not always decrease to the saturation concentration of the temperature, so the current value by the oxygen electrode 14 and the temperature sensor 38a. , 38b, 38c until the temperature is sufficiently stabilized. When the measurement is complete, proceed to the next step. The measurement of the reference dissolved oxygen concentration current value may be performed after the measurement of the dissolved oxygen concentration current value in the next step.

<溶存酸素濃度電流値の測定>
次に、細胞などの生物試料による培地の酸素消費を反映する溶存酸素濃度電流値(B)の測定を行う。生物試料収容容器10を経由する経路に三方バルブ24a,24bを切り替えた状態で、培地容器18内の培地を、送液ポンプ20によりフローセル16へ送液する。フローセル16の流路を流れる培地に含まれる溶存酸素濃度に相応(比例)して生じる酸素電極14の応答電流値を微小電流計32により測定し、必要に応じて記録・表示装置34により、記録、表示する。酸素電極14による電流値、温度センサ38a,38b,38cによる温度が十分に安定するまで、測定を行う。測定が完了したら、次工程に進む。
<Measurement of dissolved oxygen concentration current value>
Next, a dissolved oxygen concentration current value (B) that reflects oxygen consumption of the culture medium by a biological sample such as a cell is measured. In a state where the three-way valves 24 a and 24 b are switched to the path passing through the biological sample storage container 10, the medium in the medium container 18 is fed to the flow cell 16 by the liquid feed pump 20. The response current value of the oxygen electrode 14 generated in proportion (proportional) to the dissolved oxygen concentration contained in the medium flowing through the flow path of the flow cell 16 is measured by the microammeter 32 and recorded by the recording / display device 34 as necessary. ,indicate. Measurement is performed until the current value by the oxygen electrode 14 and the temperature by the temperature sensors 38a, 38b, and 38c are sufficiently stabilized. When the measurement is complete, proceed to the next step.

<基準溶存酸素濃度電流値の測定(確認)>
確認などのため、再び、基準溶存酸素濃度電流値(C)の測定を行う。バイパス配管26を経由する経路に三方バルブ24a,24bを切り替えた状態で、培地容器18内の培地を、送液ポンプ20によりフローセル16へ送液する。必要に応じて、送液流量を高くして、生物試料収容容器10を経由した培地を追い出すために配管系のパージを行ってもよい。フローセル16の流路を流れる培地に含まれる溶存酸素濃度に相応(比例)して生じる酸素電極14の応答電流値を微小電流計32により測定し、必要に応じて記録・表示装置34により、記録、表示する。酸素電極14による電流値、温度センサ38a,38b,38cによる温度が十分に安定するまで、測定を行う。
<Measurement (confirmation) of reference dissolved oxygen concentration current value>
For confirmation, the standard dissolved oxygen concentration current value (C) is measured again. In a state where the three-way valves 24 a and 24 b are switched to a path passing through the bypass pipe 26, the medium in the medium container 18 is fed to the flow cell 16 by the liquid feeding pump 20. If necessary, the piping system may be purged in order to increase the flow rate of the liquid and expel the medium passing through the biological sample storage container 10. The response current value of the oxygen electrode 14 generated in proportion (proportional) to the dissolved oxygen concentration contained in the medium flowing through the flow path of the flow cell 16 is measured by the microammeter 32 and recorded by the recording / display device 34 as necessary. ,indicate. Measurement is performed until the current value by the oxygen electrode 14 and the temperature by the temperature sensors 38a, 38b, and 38c are sufficiently stabilized.

基準溶存酸素濃度電流値(A)と、基準溶存酸素濃度電流値(C)との値が一致しない場合は、流路などの汚染や、基準溶存酸素濃度電流値(A)の測定時に温度に対する飽和酸素濃度に達していなかったことなどが考えられる。また、溶存酸素濃度電流値(B)の測定では、測定の初期段階において、室温程度の温度で酸素飽和していた溶存酸素濃度が高い培地が流れることがあるため、一時的に基準溶存酸素濃度電流値(A)や、基準溶存酸素濃度電流値(C)よりも電流値が高くなることがある。   If the reference dissolved oxygen concentration current value (A) and the reference dissolved oxygen concentration current value (C) do not match, contamination of the flow path, etc., or the temperature during measurement of the reference dissolved oxygen concentration current value (A) It is possible that the saturated oxygen concentration was not reached. In the measurement of the dissolved oxygen concentration current value (B), a medium having a high dissolved oxygen concentration that has been saturated with oxygen at a temperature of about room temperature may flow in the initial stage of the measurement. The current value may be higher than the current value (A) or the reference dissolved oxygen concentration current value (C).

基準溶存酸素濃度電流値(A),(C)、溶存酸素濃度電流値(B)の測定は、バイパス配管26を設けずに、生物試料収容容器10の上流側、下流側のそれぞれに酸素電極が組み込まれたフローセルを設けて、測定してもよい。1つの酸素電極で共通して測定することにより、電極間のばらつきによる測定ばらつきをなくすこと、充分に滅菌されていない酸素電極やフローセルなどに起因する雑菌混入や、電極やフローセルなどからの溶出物質などの影響を受ける可能性を低減して生物試料収容容器10へ培地を流すことができることなどから、バイパス配管26を設け、経路を切り替えて測定することが好ましい。   The reference dissolved oxygen concentration current values (A) and (C) and the dissolved oxygen concentration current value (B) are measured on the upstream and downstream sides of the biological sample container 10 without providing the bypass pipe 26, respectively. Measurement may be performed by providing a flow cell in which is incorporated. By measuring in common with one oxygen electrode, the measurement variation due to the variation between electrodes is eliminated, contamination by germs caused by oxygen electrode and flow cell that is not sufficiently sterilized, and elution substances from the electrode and flow cell It is preferable to measure by switching the path by providing a bypass pipe 26 because the medium can be flowed to the biological sample storage container 10 by reducing the possibility of being affected by the above.

<酸素消費量の算出>
培地内の溶存酸素濃度は、生物試料の呼吸に応じて、つまり生物試料による酸素消費量に応じて変化する。そのため、溶存酸素濃度から、例えば生物試料の呼吸活性を評価することができる。
<Calculation of oxygen consumption>
The dissolved oxygen concentration in the medium changes according to the respiration of the biological sample, that is, according to the oxygen consumption by the biological sample. Therefore, for example, the respiratory activity of a biological sample can be evaluated from the dissolved oxygen concentration.

生物試料収容容器10中の生物試料を経由したことによる酸素電極応答電流値の変化量(基準溶存酸素濃度電流値(A)に対する溶存酸素濃度電流値(B)の変化量、すなわち、生物試料(ここでは、生物試料収容容器10)に供給される酸素量に対する、生物試料経由後(ここでは、生物試料収容容器10経由後)の酸素量の変化量)を求める。変化量とは、例えば、変化率、差分などである。例えば、基準溶存酸素濃度電流値(A)に対する溶存酸素濃度電流値(B)の変化率、すなわち、生物試料に供給される酸素量に対する、生物試料経由後の酸素量の変化率に、酸素供給量を乗じて生物試料の酸素消費量を求める。供給酸素量は、培地に接する気体の酸素分圧や、測定時の温度、塩分濃度などにより定まる培地の飽和酸素濃度と、送液流量とから、(飽和酸素濃度)×(送液流量)により算出される。また、酸素消費量を生物試料収容容器10中の細胞数で除して、細胞1個当たりの細胞酸素消費量を算出することができる。   Change amount of oxygen electrode response current value due to passing through biological sample in biological sample storage container 10 (change amount of dissolved oxygen concentration current value (B) with respect to reference dissolved oxygen concentration current value (A), ie, biological sample ( Here, the change amount of the oxygen amount after passing through the biological sample (here, the change amount of oxygen after passing through the biological sample storage vessel 10) with respect to the oxygen amount supplied to the biological sample storage vessel 10) is obtained. The amount of change is, for example, a change rate or a difference. For example, the supply rate of oxygen to the change rate of the dissolved oxygen concentration current value (B) with respect to the reference dissolved oxygen concentration current value (A), that is, the change rate of the oxygen amount after passing through the biological sample with respect to the oxygen amount supplied to the biological sample. Multiply the amount to determine the oxygen consumption of the biological sample. The amount of oxygen supplied is determined by (saturated oxygen concentration) x (liquid feed flow rate) from the oxygen partial pressure of the gas in contact with the medium, the saturated oxygen concentration of the medium determined by the measurement temperature, salt concentration, etc., and the liquid feed flow rate. Calculated. Moreover, the oxygen consumption amount can be calculated by dividing the oxygen consumption amount by the number of cells in the biological sample storage container 10.

得られる酸素消費量には、酸素電極14自身による酸素消費も含まれる。電極の酸素消費は、ファラデイの法則により算出することができる。上記の通り、酸素電極14として、自己酸素消費量が極めて少ないマイクロカソード酸素電極などを用いることにより、酸素電極14自身による酸素消費はほとんど無視することができる。   The obtained oxygen consumption includes oxygen consumption by the oxygen electrode 14 itself. The oxygen consumption of the electrode can be calculated according to Faraday's law. As described above, the oxygen consumption by the oxygen electrode 14 itself can be almost ignored by using a micro-cathode oxygen electrode or the like that consumes very little oxygen as the oxygen electrode 14.

本実施形態に係る酸素測定装置および酸素測定方法により、定着性細胞などの生物試料を担体から剥離する必要がないため、生物試料の活性や機能を本来のものに近い状態に保ちながら、細胞などの活性を示す指標の1つである呼吸酸素消費量の測定ができる。担体ごと生物試料を取り扱うことができるため、測定のための準備作業が簡略化される。また、生物試料の損傷や損失が少なく、繰り返し利用しやすい。   Since it is not necessary to peel biological samples such as fixing cells from the carrier by the oxygen measuring device and the oxygen measuring method according to the present embodiment, the cells and the like while maintaining the activity and function of the biological sample close to the original ones. Respiratory oxygen consumption, which is one of the indices indicating the activity of, can be measured. Since the biological sample can be handled together with the carrier, the preparation work for the measurement is simplified. Moreover, there is little damage and loss of a biological sample, and it is easy to use repeatedly.

また、灌流により培地が新鮮な状態で生物試料に供給されるため、細胞などの活性を長期間維持することができ、長期間の酸素消費動態の測定が可能であるため、効果や毒性が比較的弱い物質による細胞への影響を評価することができる。灌流により、培地中の試薬、添加物などの濃度および時間的制御を容易に行うことができる。   In addition, since the culture medium is supplied to the biological sample in a fresh state by perfusion, the activity of cells and the like can be maintained for a long period of time, and long-term oxygen consumption kinetics can be measured. It is possible to evaluate the effects on the cells by weak substances. By perfusion, it is possible to easily control the concentration and time of reagents and additives in the medium.

また、細胞の担体としてガラス板などの表面積が既知である担体を利用することで、細胞数当たりの酸素消費量を評価することができる。   Moreover, the oxygen consumption per cell number can be evaluated by utilizing a carrier having a known surface area such as a glass plate as the cell carrier.

さらに、生物試料収容容器10に、観察窓としてガラスまたは樹脂などの透明材料を用いることにより、酸素消費量の測定とともに光学顕微鏡などによる細胞の観察などを行うことができる。   Furthermore, by using a transparent material such as glass or resin as an observation window in the biological sample storage container 10, it is possible to perform observation of cells with an optical microscope or the like as well as measurement of oxygen consumption.

以上のことから、本実施形態に係る酸素測定装置および酸素測定方法により、担体に付着された生物試料の酸素消費量の信頼性が高い評価が可能となる。もちろん、生物試料による酸素消費量以外の酸素に関する測定量(例えば、補液や輸血、透析などにおける液中の酸素量など)を測定してもよい。   From the above, the oxygen measuring device and the oxygen measuring method according to the present embodiment enable highly reliable evaluation of the oxygen consumption of the biological sample attached to the carrier. Of course, a measurement amount related to oxygen other than the oxygen consumption by the biological sample (for example, the amount of oxygen in the fluid in replacement fluid, blood transfusion, dialysis, etc.) may be measured.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.

<実施例1>
以下の構成の酸素測定装置を用いて、細胞の酸素消費量を測定した。
[酸素濃度測定フローセル]
フローセル:液容量0.6mL
酸素電極:1302型マイクロカソード電極(strathkelvin社製、酸素自己消費量:93fmol/min(typical、応答電流0.6nA時))
内蔵温度センサ:白金測温抵抗体 Pt100classA(±0.15+0.002t℃)
[酸素電極電源]
酸化銀電池(抵抗により電極への印加電圧を0.65Vに調整した)
[生物試料収容容器]
内径:25mm(φ22ガラス板対応)
ガラス板収容時の液容量:0.4mL
[送液ポンプ]
ポンプ:チュービングポンプ(AC−2120、atto製)
流量:0.1〜1000mL/hr
[送液配管]
送液チューブ:Tygon R3603
[温度センサ]
恒温槽:白金測温抵抗体 Pt100classA(±0.15+0.002t℃)
培地容器:T型熱電対
[微小電流計]
微小電流計TR8652(advantest製、電流測定精度:1pA)
[記録装置]
データロガーNR−500(keyence製)
<Example 1>
The oxygen consumption of the cells was measured using an oxygen measuring device having the following configuration.
[Oxygen concentration measurement flow cell]
Flow cell: Liquid capacity 0.6mL
Oxygen electrode: 1302 type micro cathode electrode (manufactured by Strathkelvin, oxygen self-consumption: 93 fmol / min (typical, response current 0.6 nA))
Built-in temperature sensor: Platinum resistance thermometer Pt100classA (± 0.15 + 0.002t ° C)
[Oxygen electrode power supply]
Silver oxide battery (The voltage applied to the electrode was adjusted to 0.65 V by resistance)
[Biological sample container]
Inner diameter: 25mm (for φ22 glass plate)
Liquid capacity when glass plate is accommodated: 0.4 mL
[Feed pump]
Pump: Tubing pump (AC-2120, manufactured by atto)
Flow rate: 0.1 to 1000 mL / hr
[Liquid feeding piping]
Liquid feeding tube: Tygon R3603
[Temperature sensor]
Constant temperature bath: Platinum resistance thermometer Pt100classA (± 0.15 + 0.002t ° C.)
Medium container: T-type thermocouple [microammeter]
Micro ammeter TR8652 (manufactured by advantest, current measurement accuracy: 1 pA)
[Recording device]
Data logger NR-500 (manufactured by keyence)

生物試料、培地は以下のものを用いた。
[生物試料]
歯根膜由来上皮細胞(SDR−M)、φ22ガラス板単層培養(培養日数:7日〜90日、細胞数:2E+5個(コンフレント(増殖飽和状態)時、推定値)
[培地]
DMEM/F12培地 血清15%
培地流量:2mL/hr
The following biological samples and media were used.
[Biological sample]
Periodontal ligament-derived epithelial cells (SDR-M), φ22 glass plate monolayer culture (culture days: 7 to 90 days, cell count: 2E + 5 (estimated value when confluent (growth saturation))
[Culture medium]
DMEM / F12 medium Serum 15%
Medium flow rate: 2 mL / hr

φ22ガラス板上で培養した歯根膜由来上皮細胞(SDR−M、培養日数:7日,8日,15日,22日,3ヶ月)について、酸素電極の応答電流を細胞測定時の電流最大値(本実施例で基準溶存酸素濃度電流値として用いた)でノーマライズした結果を図2に示す。酸素電極電流値の変化率、すなわち溶存酸素濃度の変化は、−3%〜−6%程度であった。37℃培地の飽和酸素濃度は、約6.7%であり、培地流量2mL/hr(0.033mL/min)では、細胞(生物試料収容容器)への酸素供給量は、約0.7nmol/minである。よって、各測定結果の酸素消費量は、0.21〜0.42nmol/minとなり、φ22ガラス板でコンフレント(増殖飽和状態)時の細胞数は200,000個と推定されるため、SDR−M細胞の酸素消費速度は、1〜2fmol/min/cellと算出される。   Periodontal ligament-derived epithelial cells cultured on a φ22 glass plate (SDR-M, culture days: 7, 8, 15, 22, 3 months) The oxygen electrode response current at the time of cell measurement FIG. 2 shows the result of normalization (used as the reference dissolved oxygen concentration current value in this example). The rate of change of the oxygen electrode current value, that is, the change of the dissolved oxygen concentration was about −3% to −6%. The saturated oxygen concentration of the 37 ° C. medium is about 6.7%, and when the medium flow rate is 2 mL / hr (0.033 mL / min), the oxygen supply amount to the cells (biological sample storage container) is about 0.7 nmol / min. Therefore, the oxygen consumption amount of each measurement result is 0.21 to 0.42 nmol / min, and the number of cells at the time of confluence (growth saturation state) with a φ22 glass plate is estimated to be 200,000, so SDR-M The oxygen consumption rate of the cells is calculated as 1 to 2 fmol / min / cell.

このように、細胞の本来の活性、機能を妨げることなく、酸素消費量の測定が可能であった。   Thus, it was possible to measure the oxygen consumption without interfering with the original activity and function of the cells.

1 酸素測定装置、10 生物試料収容容器、12 培地灌流システム、14 酸素電極、16 フローセル、18 培地容器、20 送液ポンプ、22 容器、24a,24b 三方バルブ、26 バイパス配管、28 スターラ、30 制御部、32 微小電流計、34 記録・表示装置、36 恒温槽、38a,38b,38c 温度センサ。   DESCRIPTION OF SYMBOLS 1 Oxygen measuring apparatus, 10 biological sample storage container, 12 culture medium perfusion system, 14 oxygen electrode, 16 flow cell, 18 culture medium container, 20 liquid feeding pump, 22 containers, 24a, 24b three-way valve, 26 bypass piping, 28 stirrer, 30 control Part, 32 microammeter, 34 recording / display device, 36 thermostat, 38a, 38b, 38c temperature sensor.

Claims (4)

担体に付着された生物試料を収容する生物試料収容容器と、
前記生物試料収容容器へ培地を灌流する培地灌流システムと、
前記生物試料収容容器の培地出口に設置された、酸素電極が組み込まれたフローセルと、
を備えることを特徴とする酸素測定装置。
A biological sample storage container for storing the biological sample attached to the carrier;
A medium perfusion system for perfusing a medium to the biological sample storage container;
A flow cell installed at the culture medium outlet of the biological sample storage container and incorporating an oxygen electrode;
An oxygen measuring device comprising:
請求項1に記載の酸素測定装置であって、
前記生物試料収容容器の培地入口側の配管と培地出口側の配管とを接続するバイパス経路を備えることを特徴とする酸素測定装置。
The oxygen measuring device according to claim 1,
An oxygen measuring apparatus comprising a bypass path for connecting a culture medium inlet side pipe and a culture medium outlet side pipe of the biological sample storage container.
担体に付着された生物試料を収容する生物試料収容容器へ培地を灌流し、前記生物試料収容容器からの流出後の培地の溶存酸素濃度を測定することを特徴とする酸素測定方法。   A method for measuring oxygen, comprising: perfusing a culture medium into a biological sample storage container storing a biological sample attached to a carrier, and measuring a dissolved oxygen concentration of the culture medium after flowing out of the biological sample storage container. 請求項3に記載の酸素測定方法であって、
前記生物試料収容容器を経由しない培地の溶存酸素濃度を測定して基準溶存酸素濃度を求め、前記基準溶存酸素濃度に対する、前記生物試料収容容器からの流出後の培地の溶存酸素濃度の変化量を求めることにより、前記生物試料による酸素消費量を測定することを特徴とする酸素測定方法。
The oxygen measuring method according to claim 3,
A reference dissolved oxygen concentration is determined by measuring a dissolved oxygen concentration of the medium not passing through the biological sample storage container, and a change amount of the dissolved oxygen concentration of the medium after flowing out of the biological sample storage container with respect to the reference dissolved oxygen concentration is determined. An oxygen measuring method characterized by measuring the oxygen consumption by the biological sample by obtaining.
JP2009116230A 2009-05-13 2009-05-13 Apparatus and method for measuring oxygen Pending JP2010266261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009116230A JP2010266261A (en) 2009-05-13 2009-05-13 Apparatus and method for measuring oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009116230A JP2010266261A (en) 2009-05-13 2009-05-13 Apparatus and method for measuring oxygen

Publications (1)

Publication Number Publication Date
JP2010266261A true JP2010266261A (en) 2010-11-25

Family

ID=43363369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009116230A Pending JP2010266261A (en) 2009-05-13 2009-05-13 Apparatus and method for measuring oxygen

Country Status (1)

Country Link
JP (1) JP2010266261A (en)

Similar Documents

Publication Publication Date Title
Kieninger et al. Microsensor systems for cell metabolism–from 2D culture to organ-on-chip
US6123827A (en) Method for calibrating sensors used in diagnostic testing
US8321145B2 (en) Predictor of when to harvest cells grown in a bioreactor
JP3025015B2 (en) Fluid medium analyzer
AU2011343776B2 (en) Single use bioreactor for use with detachable dissolved oxygen sensor
JPH0366364A (en) Refillable glucose sensor used in vivo
KR20190104139A (en) Method and system for real-time evaluation of cells before and after transplantation in encapsulation device
RU2470300C2 (en) Portable device to measure and control analytes in biological liquids
WO2016012249A1 (en) Method and system for suspension culture
CN101498713B (en) Blood-gas reaction monitoring and control device
CN113588739A (en) Continuous arterial blood detection system
JP4901956B2 (en) Substrate concentration measuring method and substrate concentration measuring apparatus
ES2837632T3 (en) Use of gas void fraction measurement in closed-loop control of a fermentation procedure
JP2010266261A (en) Apparatus and method for measuring oxygen
US20150093775A1 (en) System and method for analyte sensing and monitoring
US6677132B1 (en) Device and method for monitoring and controlling biologically active fluids
CN211978896U (en) Device for rapidly obtaining maximum breathing rate of activated sludge
US7780917B2 (en) Calibratable flow detector
JP2010252753A (en) System and method for perfusion culture medium monitoring use
Hwang et al. Evaluation of the paratrend multi-analyte sensor for potential utilization in long-duration automated cell culture monitoring
Wu et al. Dissolved oxygen-sensing chip integrating an open container connected with a position-raised channel for estimation of cellular mitochondrial activity
EP4303294A1 (en) Sampling device and cell cultivation system
JP2004037273A (en) Water analyzing method and device
EP4245836A1 (en) Cell culture system and method of detecting proliferative properties of cells
JP4384556B2 (en) Biosensor device replacement unit