JP2010266127A - Heat-pump type air conditioner - Google Patents

Heat-pump type air conditioner Download PDF

Info

Publication number
JP2010266127A
JP2010266127A JP2009117999A JP2009117999A JP2010266127A JP 2010266127 A JP2010266127 A JP 2010266127A JP 2009117999 A JP2009117999 A JP 2009117999A JP 2009117999 A JP2009117999 A JP 2009117999A JP 2010266127 A JP2010266127 A JP 2010266127A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
heating
pipe
heating panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009117999A
Other languages
Japanese (ja)
Inventor
Yutaka Takahashi
豊 高橋
Takashi Yamazaki
尚 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujishima Kensetsu Kk
Original Assignee
Fujishima Kensetsu Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujishima Kensetsu Kk filed Critical Fujishima Kensetsu Kk
Priority to JP2009117999A priority Critical patent/JP2010266127A/en
Publication of JP2010266127A publication Critical patent/JP2010266127A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-pump type air conditioner capable of properly carrying out heating by an indoor heat exchanger and heating of a heating panel, when simultaneously carrying out heating of the heating panel and the heating by the indoor heat exchanger. <P>SOLUTION: A refrigeration cycle is constituted by a compressor 11, a refrigerant circulation pipe 15, the indoor heat exchanger 16, an expansion valve 17, and an outdoor heat exchanger 18. First and second bypass pipes P1, P2 are connected to an upstream side refrigerant circulating pipe 15a, and first and second floor heating refrigerant pipes 24, 34 are embedded in a floor heating panel 25. High-temperature, high-pressure refrigerant gas discharged by the compressor 11 is sent to the first bypass pipe P1, and the floor-heating panel 25 is heated by heat exchange. The refrigerant gas is supplied to the indoor heat exchanger 16; heat-exchanged with air and becomes an intermediate temperature, intermediate pressure refrigerant liquid; the refrigerant liquid is supplied to the second bypass pipe P2 by downstream side refrigerant pipe 15b; heat exchange is carried out between the refrigerant liquid and the floor heating panel 25, and the floor heating panel 25 is heated. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、床暖房パネル、パネルヒータ及びラジエータのうちいずれか一種の暖房パネルの暖房を行うことができるヒートポンプ式空調装置に関する。   The present invention relates to a heat pump air conditioner capable of heating any one of a floor heating panel, a panel heater, and a radiator.

従来のヒートポンプ式床暖房装置として、特許文献1に開示されたものが提案されている。この床暖房装置を図6に基づいて説明する。圧縮機の吐出配管12及び吸入配管13には四方弁14を介して冷媒循環配管15が接続されている。前記冷媒循環配管15には、室内熱交換機16、膨張弁17及び室外熱交換機18が接続されている。前記室内熱交換機16から膨張弁17の間の冷媒循環配管15にはバイパス配管51が接続され、該バイパス配管51は床暖房パネル52に埋設されている。前記バイパス配管51の二つの接続部の間の冷媒循環配管15には、電磁弁53が接続されている。前記圧縮機11には該圧縮機11を駆動する可変速モータの回転速度を制御するインバータ54が設けられている。前記室内熱交換機16の吹き出し口側には室内の暖房負荷又は冷房負荷を検出するための温度センサ55が設けられ、床暖房パネル52には床暖房負荷を検出するための温度センサ56が設けられている。前記温度センサ55,56によって検出された検出値によって、制御装置57から前記インバータ54及び室内熱交換機16の送風ファン58の可変速モータに制御信号を送るようになっている。   As a conventional heat pump type floor heating apparatus, the one disclosed in Patent Document 1 has been proposed. This floor heating apparatus will be described with reference to FIG. A refrigerant circulation pipe 15 is connected to the discharge pipe 12 and the suction pipe 13 of the compressor via a four-way valve 14. An indoor heat exchanger 16, an expansion valve 17 and an outdoor heat exchanger 18 are connected to the refrigerant circulation pipe 15. A bypass pipe 51 is connected to the refrigerant circulation pipe 15 between the indoor heat exchanger 16 and the expansion valve 17, and the bypass pipe 51 is embedded in the floor heating panel 52. An electromagnetic valve 53 is connected to the refrigerant circulation pipe 15 between the two connecting portions of the bypass pipe 51. The compressor 11 is provided with an inverter 54 that controls the rotational speed of a variable speed motor that drives the compressor 11. A temperature sensor 55 for detecting an indoor heating load or a cooling load is provided on the outlet side of the indoor heat exchanger 16, and a temperature sensor 56 for detecting a floor heating load is provided on the floor heating panel 52. ing. Based on the detection values detected by the temperature sensors 55 and 56, a control signal is sent from the control device 57 to the inverter 54 and the variable speed motor of the blower fan 58 of the indoor heat exchanger 16.

前記四方弁14が暖房ポートに切り換えられた状態で、暖房運転が開始された直後のように前記温度センサ55によって検出された温度が低くて、室内の暖房負荷が高い場合には、圧縮機11が高能力で運転されるとともに、室内熱交換機16の送風ファン58の連続回転の暖房が行われ、室温が急速に上昇し、床の温度が徐々に上昇する。その後、室内温度が先に設定温度に達した後、送風ファン58の制御運転により室温が維持され、圧縮機11の高能力運転が続けられる。床温度が設定温度に達したとき、室内熱交換機16の送風ファン58が停止され、暖房は主として床暖房に切り換えられ、後は圧縮機11の能力制御によって室内温度が維持される。   When the four-way valve 14 is switched to the heating port and the temperature detected by the temperature sensor 55 is low, such as immediately after the heating operation is started, and the indoor heating load is high, the compressor 11 Is operated at high capacity, and the continuous rotation heating of the blower fan 58 of the indoor heat exchanger 16 is performed, the room temperature rapidly rises, and the floor temperature gradually rises. Thereafter, after the room temperature reaches the set temperature first, the room temperature is maintained by the control operation of the blower fan 58, and the high capacity operation of the compressor 11 is continued. When the floor temperature reaches the set temperature, the blower fan 58 of the indoor heat exchanger 16 is stopped, heating is mainly switched to floor heating, and thereafter the room temperature is maintained by capacity control of the compressor 11.

なお、前記四方弁14が冷房ポートに切り換えられるとともに、前記電磁弁53が開路ポートに切り換えられた状態で、前記冷媒循環配管15内の冷媒ガスが図6の矢印と反対方向に流れ、従来周知の室内熱交換機16による室内の冷房運転が行われる。   In the state where the four-way valve 14 is switched to the cooling port and the electromagnetic valve 53 is switched to the open port, the refrigerant gas in the refrigerant circulation pipe 15 flows in the direction opposite to the arrow in FIG. The indoor cooling operation by the indoor heat exchanger 16 is performed.

実開昭61‐145244号公報Japanese Utility Model Publication No. 61-145244

ところが、上記従来のヒートポンプ式床暖房装置は、一系統のみのバイパス配管51が前記室内熱交換機16の下流側の冷媒循環配管15に接続されていたので、次のような問題があった。即ち、圧縮機11によって圧縮された高温・高圧の冷媒ガスが冷媒循環配管15から室内熱交換機16に供給されて、室内への温風の吹き出しによる室内の暖房が行われると、室内熱交換機16によって熱交換された後の冷媒ガスは、低温・低圧の気液混合状態の冷媒となって、バイパス配管51に供給される。このため、前記床暖房パネル52の面積が広い場合に床暖房に必要な熱容量を確保することが難しく、床暖房パネル52の床面の温度の上昇勾配を適正化することが難しい。   However, the conventional heat pump type floor heating apparatus has the following problems because the bypass pipe 51 of only one system is connected to the refrigerant circulation pipe 15 on the downstream side of the indoor heat exchanger 16. That is, when the high-temperature and high-pressure refrigerant gas compressed by the compressor 11 is supplied from the refrigerant circulation pipe 15 to the indoor heat exchanger 16 and the room is heated by blowing hot air into the room, the indoor heat exchanger 16 is heated. The refrigerant gas after the heat exchange is performed as a refrigerant in a low-temperature / low-pressure gas-liquid mixed state and supplied to the bypass pipe 51. For this reason, when the area of the floor heating panel 52 is large, it is difficult to ensure the heat capacity necessary for floor heating, and it is difficult to optimize the temperature rising gradient of the floor heating panel 52.

一方、室内熱交換機16の上流側の冷媒循環配管15に前記バイパス配管51を接続することも考えられる。この場合には、床暖房パネル52の面積が広い場合に、床暖房パネル52によって冷媒ガスが熱交換されて、低温・低圧の気液混合状態の冷媒に変化するので、室内熱交換機16に供給される時点で、冷媒の熱容量が低下し、室内熱交換機16による暖房を効率的に行うことができず、暖房運転開始時のような暖房負荷の大きい状態において、室内の温度の上昇勾配を適正化することができない。   On the other hand, it is also conceivable to connect the bypass pipe 51 to the refrigerant circulation pipe 15 on the upstream side of the indoor heat exchanger 16. In this case, when the floor heating panel 52 has a large area, the refrigerant gas is heat-exchanged by the floor heating panel 52 and is changed to a low-temperature / low-pressure gas-liquid mixed refrigerant, so that it is supplied to the indoor heat exchanger 16. At that time, the heat capacity of the refrigerant decreases, heating by the indoor heat exchanger 16 cannot be performed efficiently, and the rising temperature of the room temperature is appropriate in a state where the heating load is large, such as at the start of heating operation. Can not be converted.

本発明は、上記従来の技術に存する問題点を解消して、暖房パネルの暖房と、室内熱交換機による暖房とを同時に行う場合に、空調装置の冷凍サイクルの動作を安定化し、室内熱交換機による暖房と、暖房パネルの暖房とを適正に行うことができるヒートポンプ式空調装置を提供することにある。   The present invention eliminates the problems in the prior art and stabilizes the operation of the refrigeration cycle of the air conditioner when heating the heating panel and heating by the indoor heat exchanger at the same time. An object of the present invention is to provide a heat pump type air conditioner capable of appropriately performing heating and heating of a heating panel.

上記問題点を解決するために、請求項1に記載の発明は、圧縮機に四方弁を介して冷媒循環配管を接続し、該冷媒循環配管に対し空調用の室内熱交換機、膨張弁及び室外熱交換機を順に接続して冷凍サイクルを構成し、暖房運転状態において、前記室内熱交換機の上流側冷媒配管に対し、暖房パネルに埋設される第1バイパス配管を接続し、前記室内熱交換機の下流側冷媒配管に対し、暖房パネルに埋設される第2バイパス配管を接続し、前記上流側及び下流側冷媒配管に対し、前記第1及び第2バイパス配管に冷媒をそれぞれ迂回させるための流路変更手段を設け、前記第1及び第2バイパス配管に対し、冷房運転状態において、冷媒が侵入するのを阻止する侵入阻止手段を設け、前記圧縮機及び室内熱交換機を、室内の暖房負荷、暖房パネルの暖房負荷又は室内の冷房負荷に応じて制御するための制御信号を出力する制御装置を備えたことを要旨とする。   In order to solve the above problems, the invention according to claim 1 is configured such that a refrigerant circulation pipe is connected to a compressor via a four-way valve, and an indoor heat exchanger, an expansion valve, and an outdoor unit for air conditioning are connected to the refrigerant circulation pipe. A heat exchanger is connected in order to form a refrigeration cycle, and in a heating operation state, a first bypass pipe embedded in a heating panel is connected to an upstream side refrigerant pipe of the indoor heat exchanger, and downstream of the indoor heat exchanger The second bypass pipe embedded in the heating panel is connected to the side refrigerant pipe, and the flow path is changed so that the first and second bypass pipes bypass the refrigerant with respect to the upstream and downstream refrigerant pipes, respectively. Means for preventing intrusion of refrigerant in the cooling operation state with respect to the first and second bypass pipes, and the compressor and the indoor heat exchanger are connected to an indoor heating load, a heating And gist that a control device for outputting a control signal for controlling in response to the heating load or the indoor cooling load Le.

請求項2に記載の発明は、請求項1において、前記第1及び第2バイパス配管の前記暖房パネルに埋設される配管を、複数本の第1分流配管及び複数本の第2分流配管としたことを要旨とする。   A second aspect of the present invention is the first aspect, wherein the pipes embedded in the heating panel of the first and second bypass pipes are a plurality of first shunt pipes and a plurality of second shunt pipes. This is the gist.

請求項3に記載の発明は、請求項1又は2において、前記流路変更手段は、第1及び第2バイパス配管の二つの接続部の間の前記上流側及び下流側冷媒配管に設けられた逆止弁又は電磁弁であり、前記侵入阻止手段は、第1及び第2バイパス配管に設けられた逆止弁又は電磁弁であることを要旨とする。   According to a third aspect of the present invention, in the first or second aspect, the flow path changing means is provided in the upstream and downstream refrigerant pipes between the two connecting portions of the first and second bypass pipes. It is a check valve or a solenoid valve, and the gist is that the intrusion prevention means is a check valve or a solenoid valve provided in the first and second bypass pipes.

請求項4に記載の発明は、請求項1〜3のいずれか一項において、前記室内の暖房負荷又は冷房負荷を検出する手段は、室内熱交換機の空気の吸い込み口の温度を検出する温度センサであり、暖房パネルの負荷を検出する手段は、暖房パネルの温度を検出する温度センサであることを要旨とする。   The invention according to claim 4 is the temperature sensor according to any one of claims 1 to 3, wherein the means for detecting the heating load or the cooling load in the room is a temperature sensor for detecting the temperature of the air inlet of the indoor heat exchanger. The means for detecting the load on the heating panel is a temperature sensor for detecting the temperature of the heating panel.

請求項5に記載の発明は、請求項1〜4のいずれか一項において、前記室外熱交換機は地中熱を利用する地中熱交換機であることを要旨とする。
(作用)
本発明は、室内熱交換機及び床暖房パネルの暖房運転状態において、圧縮機から吐出された高温・高圧の冷媒ガスは、第1バイパス配管に導かれ、暖房パネルとの間で熱交換が行われ、暖房パネルが温められる。第1バイパス配管から流出した冷媒ガスは、室内熱交換機に入り、室内の空気との間で熱交換が行われ、室内の暖房が行われる。室内熱交換機を流出した冷媒は、第2バイパス配管に導かれ、暖房パネルとの間で熱交換が行われ、暖房パネルが温められる。従って、暖房パネルの暖房面積が同じ条件において、暖房パネルと室内熱交換機とを同時に暖房運転する場合に、暖房パネルにバイパス配管を一系統しか埋設しないものと比較して、空調装置の冷凍サイクルの動作が安定化され、室内熱交換機による暖房と、暖房パネルの暖房とを適正に行うことができる。
The gist of the invention according to claim 5 is that, in any one of claims 1 to 4, the outdoor heat exchanger is a geothermal heat exchanger that uses geothermal heat.
(Function)
In the present invention, in the heating operation state of the indoor heat exchanger and the floor heating panel, the high-temperature and high-pressure refrigerant gas discharged from the compressor is led to the first bypass pipe, and heat exchange is performed with the heating panel. The heating panel is warmed. The refrigerant gas flowing out from the first bypass pipe enters the indoor heat exchanger, heat is exchanged with the indoor air, and the room is heated. The refrigerant that has flowed out of the indoor heat exchanger is guided to the second bypass pipe, heat exchange is performed with the heating panel, and the heating panel is warmed. Therefore, when the heating panel and the indoor heat exchanger are heated simultaneously under the same heating area of the heating panel, compared with the case where only one system of the bypass piping is embedded in the heating panel, the refrigeration cycle of the air conditioner Operation is stabilized and heating by the indoor heat exchanger and heating of the heating panel can be performed appropriately.

本発明によれば、暖房パネルと室内熱交換機とを同時に暖房運転する場合に、空調装置の冷凍サイクルの動作を安定化し、室内熱交換機による暖房と、暖房パネルの暖房とを適正に行うことができる。   ADVANTAGE OF THE INVENTION According to this invention, when heating operation of a heating panel and an indoor heat exchanger is carried out simultaneously, operation | movement of the refrigerating cycle of an air conditioner is stabilized, and heating by an indoor heat exchanger and heating of a heating panel can be performed appropriately. it can.

この発明を具体化したヒートポンプ式の床暖房空調装置の一実施形態を示す暖房運転状態の回路図。The circuit diagram of the heating operation state which shows one Embodiment of the heat pump type floor heating air conditioner which actualized this invention. 床暖房空調装置の床暖房及び室内暖房運転状態の冷媒ガスの比エンタルピーと圧力との関係を示すモリエル線図。The Mollier diagram which shows the relationship between the specific enthalpy of the refrigerant | coolant gas of a floor heating of a floor heating air conditioner and a room heating operation state, and a pressure. 床暖房空調装置の床暖房運転状態の冷媒ガスの比エンタルピーと圧力との関係を示すモリエル線図。The Mollier diagram which shows the relationship between the specific enthalpy of the refrigerant gas of the floor heating operation state of a floor heating air conditioner, and a pressure. 空調装置の冷房運転状態の回路図。The circuit diagram of the cooling operation state of an air conditioner. この発明の別の実施形態を示すヒートポンプ式床暖房空調装置の回路図。The circuit diagram of the heat pump type floor heating air conditioner which shows another embodiment of this invention. 従来のヒートポンプ床暖房空調装置を示す回路図。The circuit diagram which shows the conventional heat pump floor heating air conditioner.

以下、本発明を具体化したヒートポンプ式空調装置の一実施形態を図1〜図4にしたがって説明する。
図1に示すように、低温・低圧の例えば新冷媒HFC(410A)或いは二酸化炭素の冷媒ガスを吸入して圧縮し、高温・高圧の冷媒ガスを吐出する圧縮機11の吐出口及び吸入口に接続された吐出配管12及び吸入配管13には四方弁14が接続されている。この四方弁14には、冷媒循環配管15が接続され、該冷媒循環配管15には室内熱交換機16、膨張弁17及び室外熱交換機18が順に接続され、これらの部品により、冷凍サイクルが構成されている。
Hereinafter, an embodiment of a heat pump type air conditioner embodying the present invention will be described with reference to FIGS.
As shown in FIG. 1, a low-temperature / low-pressure, for example, new refrigerant HFC (410A) or carbon dioxide refrigerant gas is sucked and compressed, and discharged to a discharge port and a suction port of a compressor 11 that discharges a high-temperature / high-pressure refrigerant gas. A four-way valve 14 is connected to the connected discharge pipe 12 and suction pipe 13. A refrigerant circulation pipe 15 is connected to the four-way valve 14, and an indoor heat exchanger 16, an expansion valve 17 and an outdoor heat exchanger 18 are sequentially connected to the refrigerant circulation pipe 15, and these parts constitute a refrigeration cycle. ing.

次に、前記冷媒循環配管15に接続された床暖房配管について説明する。
この実施形態においては、前記四方弁14と室内熱交換機16の間の冷媒循環配管15を、図1に示す空調装置の後述する暖房運転状態(図1の矢印方向に冷媒ガスが流れる)における前記室内熱交換機16の上流側冷媒配管15aと言う。又、室内熱交換機16と膨張弁17の間の冷媒循環配管15を、前記室内熱交換機16の下流側冷媒配管15bと言う。
Next, the floor heating pipe connected to the refrigerant circulation pipe 15 will be described.
In this embodiment, the refrigerant circulation pipe 15 between the four-way valve 14 and the indoor heat exchanger 16 is in the heating operation state described later of the air conditioner shown in FIG. 1 (the refrigerant gas flows in the direction of the arrow in FIG. 1). The upstream refrigerant pipe 15a of the indoor heat exchanger 16 is called. The refrigerant circulation pipe 15 between the indoor heat exchanger 16 and the expansion valve 17 is referred to as a downstream refrigerant pipe 15 b of the indoor heat exchanger 16.

前記上流側冷媒配管15aには、第1分岐器21(接続部イ)を介して冷媒配管22が分岐接続され、該冷媒配管22の先端には、第1分流器23を介して複数本(例えば三本)の第1床暖房冷媒配管24が分岐接続されている。各第1床暖房冷媒配管24は、床暖房パネル25に例えば平面視ヘアピン状にそれぞれ埋設されている。前記各第1床暖房冷媒配管24は床暖房パネル25から引き出された後、第1合流器26により合流され、該第1合流器26から冷媒配管27及び第2合流器28(接続部ロ)によって、前記上流側冷媒配管15aに接続されている。この実施形態では、前記第1分岐器21、冷媒配管22、第1分流器23、第1床暖房冷媒配管24、第1合流器26、冷媒配管27及び第2合流器28等により、床暖房パネル25の暖房を行うための第1バイパス配管P1が構成されている。   A refrigerant pipe 22 is branched and connected to the upstream refrigerant pipe 15a via a first branching device 21 (connecting part A), and a plurality of pipes ( For example, three first floor heating refrigerant pipes 24 are branched and connected. Each 1st floor heating refrigerant | coolant piping 24 is each embed | buried under the floor heating panel 25, for example in planar view hairpin shape. The first floor heating refrigerant pipes 24 are drawn out from the floor heating panel 25, and then merged by the first merger 26. From the first merger 26, the refrigerant pipe 27 and the second merger 28 (connection portion b). Is connected to the upstream refrigerant pipe 15a. In this embodiment, the first branching device 21, the refrigerant pipe 22, the first flow divider 23, the first floor heating refrigerant pipe 24, the first merger 26, the refrigerant pipe 27, the second merger 28, and the like are used. A first bypass pipe P <b> 1 for heating the panel 25 is configured.

前記第1分岐器21と第2合流器28の間の上流側冷媒配管15aには、流路変更手段としての第1逆止弁29が接続されている。そして、暖房運転状態において、冷媒ガスを第1バイパス配管P1のみへ供給し、冷房運転状態において、冷媒ガスが上流側冷媒配管15aを矢印と反対方向に流れるようにしている。前記冷媒配管27には、侵入阻止手段としての第2逆止弁30が設けられ、冷房運転状態において、冷媒ガスが第1バイパス配管P1へ侵入しないようにしている。   A first check valve 29 as a flow path changing unit is connected to the upstream refrigerant pipe 15 a between the first branching device 21 and the second merger 28. In the heating operation state, the refrigerant gas is supplied only to the first bypass pipe P1, and in the cooling operation state, the refrigerant gas flows through the upstream refrigerant pipe 15a in the direction opposite to the arrow. The refrigerant pipe 27 is provided with a second check valve 30 as intrusion prevention means so that refrigerant gas does not enter the first bypass pipe P1 in the cooling operation state.

上述した第1バイパス配管P1は、前記室内熱交換機16へ供給される前の上流側冷媒配管15a内の高温・高圧の冷媒ガスを利用して、床暖房パネル25の半分の床面の暖房を行うものである。   The above-described first bypass pipe P1 uses the high-temperature and high-pressure refrigerant gas in the upstream refrigerant pipe 15a before being supplied to the indoor heat exchanger 16 to heat the half floor surface of the floor heating panel 25. Is what you do.

ところで、第1バイパス配管P1に供給された後の冷媒ガスは、前記室内熱交換機16に供給されて、室内の空気との間で熱交換され、室内の暖房に供される。その後、室内熱交換機16から下流側冷媒配管15bに流入した冷媒を用いて、床暖房パネル25の他の半分の床面の暖房が行われる。この床暖房を行うための第2バイパス配管P2について以下に説明する。   By the way, the refrigerant gas after being supplied to the first bypass pipe P1 is supplied to the indoor heat exchanger 16, heat exchanged with indoor air, and used for indoor heating. Thereafter, the other half floor surface of the floor heating panel 25 is heated using the refrigerant flowing into the downstream side refrigerant pipe 15b from the indoor heat exchanger 16. The second bypass pipe P2 for performing this floor heating will be described below.

前記下流側冷媒配管15bには、第2分岐器31(接続部ハ)を介して冷媒配管32が分岐接続され、該冷媒配管32の先端には、第3分流器33を介して複数本(例えば三本)の第2床暖房冷媒配管34が分岐接続されている。各第2床暖房冷媒配管34は、床暖房パネル25に例えば平面視ヘアピン状にそれぞれ埋設されている。前記各第2床暖房冷媒配管34は床暖房パネル25から引き出された後、第3合流器35により合流され、該第3合流器35には 冷媒配管36及び第4合流器37(接続部ハ)によって、前記下流側冷媒配管15bに接続されている。この実施形態では、前記第2分岐器31、冷媒配管32、第3分流器33、第2床暖房冷媒配管34、第3合流器35、冷媒配管36及び第4合流器37等により、床暖房パネル25の他の半分の床面の暖房を行うための前記第2バイパス配管P2が構成されている。   A refrigerant pipe 32 is branched and connected to the downstream refrigerant pipe 15b via a second branching device 31 (connecting section C), and a plurality of pipes (a third shunt 33 is provided at the tip of the refrigerant pipe 32). For example, three) second floor heating refrigerant pipes 34 are branched and connected. Each second floor heating refrigerant pipe 34 is embedded in the floor heating panel 25, for example, in the shape of a hairpin in a plan view. Each of the second floor heating refrigerant pipes 34 is drawn out from the floor heating panel 25 and then joined by a third merger 35, and the third merger 35 includes a refrigerant pipe 36 and a fourth merger 37 (connection portion h ) Is connected to the downstream refrigerant pipe 15b. In this embodiment, the second branch 31, the refrigerant pipe 32, the third flow divider 33, the second floor heating refrigerant pipe 34, the third merger 35, the refrigerant pipe 36, the fourth merger 37, and the like are used. The second bypass pipe P2 for heating the other half of the panel 25 is configured.

前記第2分岐器31と第4合流器37の間の下流側冷媒配管15bには、流路変更手段としての第3逆止弁38が接続されている。そして、暖房運転状態において、冷媒ガスを第2バイパス配管P2へ供給し、冷房運転状態において、冷媒ガスが下流側冷媒配管15bを図1の矢印と反対方向に流れるようにしている。前記冷媒配管36には、侵入阻止手段としての第4逆止弁39が設けられ、冷房運転状態において、冷媒ガスが第2バイパス配管P2へ侵入しないようにしている。   A third check valve 38 as a flow path changing means is connected to the downstream refrigerant pipe 15 b between the second branch 31 and the fourth merger 37. In the heating operation state, the refrigerant gas is supplied to the second bypass pipe P2, and in the cooling operation state, the refrigerant gas flows through the downstream side refrigerant pipe 15b in the direction opposite to the arrow in FIG. The refrigerant pipe 36 is provided with a fourth check valve 39 as intrusion prevention means so that the refrigerant gas does not enter the second bypass pipe P2 in the cooling operation state.

前記第1バイパス配管P1の第1床暖房冷媒配管24の通路面積は、第2バイパス配管P2の第2床暖房冷媒配管34の通路面積よりも大きく設定されている。この理由は、後述するように第1床暖房冷媒配管24には、大容積を必要とする冷媒ガスが供給され、第2床暖房冷媒配管34には、大容積を必要としない冷媒液が供給されるからである。   The passage area of the first floor heating refrigerant pipe 24 of the first bypass pipe P1 is set larger than the passage area of the second floor heating refrigerant pipe 34 of the second bypass pipe P2. The reason for this is that, as will be described later, the first floor heating refrigerant pipe 24 is supplied with a refrigerant gas that requires a large volume, and the second floor heating refrigerant pipe 34 is supplied with a refrigerant liquid that does not require a large volume. Because it is done.

次に、ヒートポンプ式空調装置の動作を制御する制御システムについて説明する。
前記圧縮機11には、インバータ41が設けられ、圧縮機11を駆動する可変速モータ42の回転速度を、該モータ42に印加する電圧の周波数を変更することより調整するようになっている。前記室内熱交換機16の送風ファン43は可変速モータ44により回転されるようになっている。前記室内熱交換機16の空気の吸い込み口の近傍には、空気の吸い込み温度、即ち室内熱交換機16の暖房負荷又は冷房負荷を検出するための第1温度センサ45が設けられている。前記床暖房パネル25には床温度、即ち床暖房パネル25の暖房負荷を検出するための第2温度センサ46が設けられている。
Next, a control system for controlling the operation of the heat pump air conditioner will be described.
The compressor 11 is provided with an inverter 41 so that the rotational speed of the variable speed motor 42 that drives the compressor 11 is adjusted by changing the frequency of the voltage applied to the motor 42. The blower fan 43 of the indoor heat exchanger 16 is rotated by a variable speed motor 44. A first temperature sensor 45 for detecting the air suction temperature, that is, the heating load or the cooling load of the indoor heat exchanger 16 is provided in the vicinity of the air suction port of the indoor heat exchanger 16. The floor heating panel 25 is provided with a second temperature sensor 46 for detecting the floor temperature, that is, the heating load of the floor heating panel 25.

マイクロコンピュータを備えた制御装置47には、前記第1及び第2温度センサ45,46からの検出信号が送信されるようになっている。前記制御装置47は、二つの温度の検出値と、予め設定された基準値とを比較して、前記インバータ41、可変速モータ44及び膨張弁17の絞り調整部48に制御信号をそれぞれ出力するようになっている。又、図示しないがリモコンスイッチによって、前記制御装置47に各種の信号を出力し、例えば、暖房運転と冷房運転の切り換え動作、室内暖房温度の調整、床暖房温度の調整及び冷房温度の調整等を行う制御信号を出力したり、床暖房のみの運転と、床暖房及び室内熱交換機16による室内の暖房の運転との選択信号を出力したりするようになっている。   Detection signals from the first and second temperature sensors 45 and 46 are transmitted to the control device 47 having a microcomputer. The control device 47 compares the detected values of the two temperatures with a preset reference value and outputs control signals to the inverter 41, the variable speed motor 44, and the throttle adjustment unit 48 of the expansion valve 17, respectively. It is like that. Although not shown, various signals are output to the controller 47 by a remote control switch, for example, switching operation between heating operation and cooling operation, adjustment of indoor heating temperature, adjustment of floor heating temperature, adjustment of cooling temperature, etc. A control signal to be performed is output, or a selection signal between the operation of floor heating only and the operation of floor heating and indoor heating by the indoor heat exchanger 16 is output.

次に、前記のように構成したヒートポンプ式空調装置の動作について説明する。
図1はリモコンスイッチから前記制御装置47に暖房運転指令が送信され、空調装置の暖房運転が開始された初期の状態にある。この状態においては、制御装置47からインバータ41に制御信号が出力され、圧縮機11の可変速モータ42がインバータ41によって高速で運転されるとともに、前記可変速モータ44に制御信号が出力され、送風ファン43が高速で回転される。そして、該圧縮機11から吐出された高温(例えば90℃)・高圧の冷媒ガスは四方弁14によって上流側冷媒配管15aに供給され、第1分岐器21及び第1逆止弁29の作用により前記第1バイパス配管P1に導かれる。そして、前記各第1床暖房冷媒配管24の冷媒ガスと床暖房パネル25との間で熱交換され、床暖房パネル25が温められる。この熱交換によって冷却(例えば60℃)された気液混合状態の冷媒ガスは、第1合流器26から冷媒配管27及び第2合流器28を経て、上流側冷媒配管15aに導かれ、室内熱交換機16に供給される。該室内熱交換機16内の冷媒ガスは、前記送風ファン43によって室内に吹き出される空気との間で熱交換されて凝縮され、この凝縮潜熱で冷媒液となり、顕熱を放出して低温(例えば45℃)となり、この熱交換により室内の暖房が行われる。
Next, the operation of the heat pump type air conditioner configured as described above will be described.
FIG. 1 shows an initial state in which a heating operation command is transmitted from the remote control switch to the control device 47 and the heating operation of the air conditioner is started. In this state, a control signal is output from the control device 47 to the inverter 41, the variable speed motor 42 of the compressor 11 is operated at a high speed by the inverter 41, and a control signal is output to the variable speed motor 44. The fan 43 is rotated at high speed. The high-temperature (for example, 90 ° C.) and high-pressure refrigerant gas discharged from the compressor 11 is supplied to the upstream refrigerant pipe 15 a by the four-way valve 14, and is operated by the action of the first branching device 21 and the first check valve 29. It is led to the first bypass pipe P1. And heat exchange is carried out between the refrigerant gas of each said 1st floor heating refrigerant | coolant piping 24, and the floor heating panel 25, and the floor heating panel 25 is warmed. The refrigerant gas in a gas-liquid mixed state cooled by this heat exchange (for example, 60 ° C.) is led from the first merger 26 through the refrigerant pipe 27 and the second merger 28 to the upstream refrigerant pipe 15a, and the indoor heat It is supplied to the exchange 16. The refrigerant gas in the indoor heat exchanger 16 is heat-exchanged with the air blown into the room by the blower fan 43 and condensed, becomes a refrigerant liquid by the condensation latent heat, releases sensible heat, and has a low temperature (for example, The room is heated by this heat exchange.

その後、室内熱交換機16から流出した冷媒ガスは、下流側冷媒配管15bに供給され、第2バイパス配管P2を構成する第2分岐器31から冷媒配管32に流れ、第3分流器33から各床暖房冷媒配管34に流入し、各第2床暖房冷媒配管34内の冷媒と、床暖房パネル25との間で熱交換され、床暖房パネル25が温められる。そして、この熱交換によってさらに低温(例えば35℃)に冷却されて凝縮・液化された冷媒液は、第3合流器35から冷媒配管36及び第4合流器37を経て、下流側冷媒配管15bに導かれる。その後、冷媒液は、下流側冷媒配管15bを通して膨張弁17に導かれて、減圧・膨張されて低温(例えば7℃)・低圧の冷媒ガスとなり、室外熱交換機18によって熱交換され、大気から熱を吸収して温められた冷媒ガス(過熱蒸気)となって圧縮機11に戻される。   Thereafter, the refrigerant gas flowing out from the indoor heat exchanger 16 is supplied to the downstream refrigerant pipe 15b, flows from the second branch 31 constituting the second bypass pipe P2 to the refrigerant pipe 32, and flows from the third flow divider 33 to each floor. It flows into the heating refrigerant pipe 34, heat is exchanged between the refrigerant in each second floor heating refrigerant pipe 34 and the floor heating panel 25, and the floor heating panel 25 is warmed. Then, the refrigerant liquid cooled and condensed and liquefied by this heat exchange is cooled to a downstream refrigerant pipe 15b from the third merger 35 through the refrigerant pipe 36 and the fourth merger 37. Led. Thereafter, the refrigerant liquid is guided to the expansion valve 17 through the downstream refrigerant pipe 15b, and is decompressed and expanded to become a low-temperature (for example, 7 ° C.) and low-pressure refrigerant gas. Into the refrigerant gas (superheated steam) that has been warmed by absorbing the water and returned to the compressor 11.

空調装置の暖房運転が開始されてから所定時間が経過すると、室内の温度及び床暖房パネル25の温度が上昇する。そして、制御装置47によって第1温度センサ45の検出値が設定値以上になったと判断されると、該制御装置47から前記可変速モータ44に停止信号が出力され、室内熱交換機16による室内の暖房が停止され、冷媒ガスは室内熱交換機16を熱交換されることなく素通りして、前記第2バイパス配管P2に供給される。このようにして、前記第1及び第2バイパス配管P1,P2による床暖房パネル25のみの暖房が行われる。この床暖房状態においては、制御装置47によって第2温度センサ46の検出値に基づいて、前記圧縮機11のインバータ41に制御信号が出力され、検出温度に応じて圧縮機11の冷媒ガスの吐出容量が制御され、結果的に床暖房パネル25の床温度がほぼ一定の目標温度になるように制御される。   When a predetermined time elapses after the heating operation of the air conditioner is started, the indoor temperature and the temperature of the floor heating panel 25 rise. When the control device 47 determines that the detected value of the first temperature sensor 45 is equal to or higher than the set value, a stop signal is output from the control device 47 to the variable speed motor 44, and the indoor heat exchanger 16 Heating is stopped, and the refrigerant gas passes through the indoor heat exchanger 16 without being subjected to heat exchange, and is supplied to the second bypass pipe P2. In this way, only the floor heating panel 25 is heated by the first and second bypass pipes P1, P2. In this floor heating state, the control device 47 outputs a control signal to the inverter 41 of the compressor 11 based on the detection value of the second temperature sensor 46, and discharges the refrigerant gas of the compressor 11 according to the detected temperature. The capacity is controlled, and as a result, the floor temperature of the floor heating panel 25 is controlled to be a substantially constant target temperature.

図2には横軸に比エンタルピー、縦軸に冷媒ガスの圧力を表したモリエル線図と冷凍サイクルが示されていて、室内熱交換機16により室内の暖房が行われるとともに、第1及び第2バイパス配管P1,P2が共に床暖房の状態にある。この冷凍サイクルのうち圧縮機11から吐出された高温(例えば90℃)・高圧の冷媒ガスは、第1バイパス配管P1の接続部(イ)から(ロ)の凝縮行程において、第1バイパス配管P1の冷媒ガスの凝縮潜熱が床暖房パネル25の床暖房用放熱量として用いられる。又、接続部(ロ)から(ハ)の冷媒ガスの凝縮潜熱が室内熱交換機16の暖房放熱量として利用される。さらに、第2バイパス配管P2の接続部(ハ)から(ニ)の冷媒液の顕熱が床暖房パネル25の床暖房用放熱量として用いられる。   FIG. 2 shows a Mollier diagram in which the horizontal axis represents specific enthalpy and the vertical axis represents refrigerant gas pressure, and a refrigeration cycle. The indoor heat exchanger 16 heats the room, and the first and second Both bypass pipes P1 and P2 are in the state of floor heating. In this refrigeration cycle, the high-temperature (for example, 90 ° C.) and high-pressure refrigerant gas discharged from the compressor 11 passes through the first bypass pipe P1 in the condensing process from the connection (A) to (B) of the first bypass pipe P1. The latent heat of condensation of the refrigerant gas is used as the amount of heat radiation for floor heating of the floor heating panel 25. Further, the latent heat of condensation of the refrigerant gas from the connection part (b) to (c) is used as the heating heat radiation amount of the indoor heat exchanger 16. Further, the sensible heat of the refrigerant liquid (d) from the connection part (c) of the second bypass pipe P <b> 2 is used as the heat radiation amount for floor heating of the floor heating panel 25.

図3は、室内熱交換機16の送風ファン43が停止された場合における第1及び第2バイパス配管P1,P2の冷凍サイクルを示す。この場合には、第1及び第2バイパス配管P1,P2によって、冷媒の潜熱及び顕熱が全て床暖房用放熱量として利用される。   FIG. 3 shows the refrigeration cycle of the first and second bypass pipes P1, P2 when the blower fan 43 of the indoor heat exchanger 16 is stopped. In this case, the latent heat and sensible heat of the refrigerant are all used as the floor heating radiation amount by the first and second bypass pipes P1 and P2.

一方、図4はリモコンスイッチから冷房運転指令が制御装置47に送信されて、該制御装置47から冷房運転指令が空調装置に出力され、四方弁14によって冷媒ガスの流路方向が切り換られ、空調装置が冷房運転されている状態にある。この冷房運転状態においては、圧縮機11から吐出された高温・高圧の冷媒ガスは吐出配管12から四方弁14を通して室外熱交換機18に導かれ、ここで空気と熱交換されて、冷媒ガスが凝縮されて液化され、この冷媒液が冷媒循環配管15を通して膨張弁17に至り、この膨張弁17により冷媒液が減圧・膨張されて、冷媒ガスとなる。前記膨張弁17の絞り量は、冷房負荷に応じて制御装置47から出力される制御信号により絞り調整部48によって適宜に調整される。この冷媒ガスは、第3逆止弁38及び第4逆止弁39の作用により、第2バイパス配管P2には流れず、冷媒循環配管15から室内熱交換機16に導かれ、この室内熱交換機16によって室内の空気と熱交換されて、室内の冷房に供される。その後、室内熱交換機16から出た冷媒ガスは、第1逆止弁29と第2逆止弁30の作用により、第1バイパス配管P1には流れず、上流側冷媒配管15aを通って圧縮機11に戻される。従って、室内が冷房されている状態においては、床冷房は不要なため、第1及び第2バイパス配管P1,P2が共に停止されていて、室内熱交換機16による冷房運転のみが行われることになる。   On the other hand, in FIG. 4, a cooling operation command is transmitted from the remote control switch to the control device 47, the cooling operation command is output from the control device 47 to the air conditioning device, and the flow direction of the refrigerant gas is switched by the four-way valve 14, The air conditioner is in a cooling operation. In this cooling operation state, the high-temperature and high-pressure refrigerant gas discharged from the compressor 11 is led from the discharge pipe 12 to the outdoor heat exchanger 18 through the four-way valve 14, where heat is exchanged with air, and the refrigerant gas is condensed. Then, the refrigerant liquid reaches the expansion valve 17 through the refrigerant circulation pipe 15, and the refrigerant liquid is decompressed and expanded by the expansion valve 17 to become refrigerant gas. The throttle amount of the expansion valve 17 is appropriately adjusted by the throttle adjusting unit 48 by a control signal output from the control device 47 according to the cooling load. The refrigerant gas does not flow to the second bypass pipe P2 due to the action of the third check valve 38 and the fourth check valve 39, but is led from the refrigerant circulation pipe 15 to the indoor heat exchanger 16, and the indoor heat exchanger 16 As a result, heat is exchanged with the air in the room, and the air is cooled in the room. Thereafter, the refrigerant gas emitted from the indoor heat exchanger 16 does not flow to the first bypass pipe P1 due to the action of the first check valve 29 and the second check valve 30, and passes through the upstream refrigerant pipe 15a to be compressed. 11 is returned. Therefore, in the state where the room is cooled, floor cooling is not necessary, and both the first and second bypass pipes P1 and P2 are stopped, and only the cooling operation by the indoor heat exchanger 16 is performed. .

上記実施形態のヒートポンプ式空調装置によれば、以下のような効果を得ることができる。
(1)上記実施形態では、前記室内熱交換機16の上流側冷媒配管15aに第1バイパス配管P1を接続し、下流側冷媒配管15bに第2バイパス配管P2を接続した。このため、上流側冷媒配管15a又は下流側冷媒配管15bのみにバイパス配管を接続する従来の構成と比較して、床暖房パネル25の面積が同じ条件において、室内熱交換機16による室内の暖房運転と、第1及び第2バイパス配管P1,P2による床暖房運転とを適正に行うことができる。即ち、圧縮機11から吐出された高温・高圧の冷媒ガスが第1バイパス配管P1による熱交換によって過度に凝縮して液化し、室内熱交換機16による暖房運転において冷媒ガスが不足することはない。このため、冷媒ガスの温度及び圧力の低下もなく、室内熱交換機16に供給される冷媒ガスの温度及び圧力が適正に維持され、冷凍サイクルの冷媒の相変化が安定化され、冷凍サイクルの動作を安定化することができ、室内熱交換機16による室内の暖房を適正に行うことができる。又、室内熱交換機16から流出した冷媒液は、第2バイパス配管P2に導かれて、床暖房パネル25と熱交換され、床暖房に利用される。従って、室外熱交換機18から流出された冷媒液の顕熱を床暖房の熱源として有効に利用することができ、ヒートポンプの成績係数(COP)を向上することができる。
According to the heat pump type air conditioner of the above embodiment, the following effects can be obtained.
(1) In the above embodiment, the first bypass pipe P1 is connected to the upstream refrigerant pipe 15a of the indoor heat exchanger 16, and the second bypass pipe P2 is connected to the downstream refrigerant pipe 15b. For this reason, compared with the conventional structure which connects bypass piping only to the upstream refrigerant | coolant piping 15a or the downstream refrigerant | coolant piping 15b, in the conditions with the same area of the floor heating panel 25, the indoor heating operation by the indoor heat exchanger 16 and The floor heating operation by the first and second bypass pipes P1 and P2 can be appropriately performed. That is, the high-temperature and high-pressure refrigerant gas discharged from the compressor 11 is excessively condensed and liquefied by heat exchange through the first bypass pipe P1, and the refrigerant gas does not run short in the heating operation by the indoor heat exchanger 16. For this reason, the temperature and pressure of the refrigerant gas supplied to the indoor heat exchanger 16 are properly maintained without reducing the temperature and pressure of the refrigerant gas, the phase change of the refrigerant in the refrigeration cycle is stabilized, and the operation of the refrigeration cycle Can be stabilized, and indoor heating by the indoor heat exchanger 16 can be appropriately performed. Further, the refrigerant liquid flowing out from the indoor heat exchanger 16 is guided to the second bypass pipe P2, exchanges heat with the floor heating panel 25, and is used for floor heating. Therefore, the sensible heat of the refrigerant liquid flowing out from the outdoor heat exchanger 18 can be effectively used as a heat source for floor heating, and the coefficient of performance (COP) of the heat pump can be improved.

(2)上記実施形態では、床暖房回路の熱源として、ヒートポンプ式空調装置の冷媒を利用しているため、ボイラー機器や電気発熱式の床暖房装置と比較してランニングコストを低減することができる。   (2) In the above embodiment, since the refrigerant of the heat pump type air conditioner is used as the heat source of the floor heating circuit, the running cost can be reduced as compared with the boiler equipment and the electric heating type floor heating apparatus. .

(3)上記実施形態では、既に設置されている空調装置の上流側及び下流側冷媒配管15a,15bに対し、床暖房パネル25に埋設される第1及び第2バイパス配管P1,P2を接続するようにした。このため、床暖房パネル25及び第1及び第2バイパス配管P1,P2からなる床暖房装置を容易に施工することができ、空調装置を有する家屋においては、新たに熱源機を購入する必要がなく、施工及び設備コストを低減することができる。   (3) In the above embodiment, the first and second bypass pipes P1, P2 embedded in the floor heating panel 25 are connected to the upstream and downstream refrigerant pipes 15a, 15b of the already installed air conditioner. I did it. For this reason, the floor heating apparatus which consists of the floor heating panel 25 and the 1st and 2nd bypass piping P1, P2 can be constructed easily, and it is not necessary to purchase a heat source machine newly in the house which has an air conditioner. Construction and equipment costs can be reduced.

(4)上記実施形態では、前記上流側及び下流側冷媒配管15a,15bに第1及び第2バイパス配管P1,P2を接続するとともに、両配管15a,15bに逆止弁29,38を設け、両配管P1,P2に逆止弁30,39を設けて、空調装置が冷房運転状態において、前記第1及び第2バイパス配管P1,P2の内部に冷却された冷媒ガスが侵入しないようにした。このため、第1及び第2バイパス配管P1,P2の凍結破壊を未然に防止することができる。   (4) In the above embodiment, the first and second bypass pipes P1, P2 are connected to the upstream and downstream refrigerant pipes 15a, 15b, and check valves 29, 38 are provided on both pipes 15a, 15b. The check valves 30 and 39 are provided in both the pipes P1 and P2, so that the cooled refrigerant gas does not enter the first and second bypass pipes P1 and P2 when the air conditioner is in the cooling operation state. For this reason, it is possible to prevent the first and second bypass pipes P1 and P2 from being frozen and broken.

(5)上記実施形態では、空調装置の動作を制御する制御装置47によって、第1及び第2バイパス配管P1,P2による床暖房の制御動作を容易に行うことができる。
なお、上記実施形態は以下のように変更してもよい。
(5) In the said embodiment, the control apparatus 47 which controls operation | movement of an air conditioning apparatus can perform easily the control operation of the floor heating by 1st and 2nd bypass piping P1, P2.
In addition, you may change the said embodiment as follows.

・ 図5に示すように、前記室外熱交換機18として冷媒循環配管15を地下に埋設して、冷媒ガスと地熱との間で熱交換を行う地中熱交換機を用いてもよい。
・ 図示しないが、前記室外熱交換機18として、前記冷媒循環配管15のうち四方弁14から膨張弁17までの間の冷媒循環配管15を井戸水の中に収容し、冷媒ガスと井戸水との間で熱交換を行うようにしてもよい。
As shown in FIG. 5, a ground heat exchanger may be used as the outdoor heat exchanger 18 in which the refrigerant circulation pipe 15 is buried underground and heat exchange is performed between the refrigerant gas and the geothermal heat.
Although not shown, as the outdoor heat exchanger 18, the refrigerant circulation pipe 15 between the four-way valve 14 and the expansion valve 17 in the refrigerant circulation pipe 15 is accommodated in well water, and between the refrigerant gas and the well water. Heat exchange may be performed.

・ 前記室外熱交換機18として、水の熱を利用した室外熱交換機を用いてもよい。
・ 前記第1及び第2逆止弁29,30、第3及び第4逆止弁38,39を電磁弁に変更してもよい。
-As the outdoor heat exchanger 18, you may use the outdoor heat exchanger using the heat of water.
The first and second check valves 29, 30 and the third and fourth check valves 38, 39 may be changed to electromagnetic valves.

・ 図示しないが、前記床暖房パネル25に代えて、パネルヒータ或いはラジエータを暖房パネルとして用いてもよい。
・ 図示しないが、前記第1及び第2床暖房冷媒配管24,34を一本にしたり、二本にしたり、あるいは四本以上にしたりしてもよい。
Although not shown, a panel heater or a radiator may be used as the heating panel instead of the floor heating panel 25.
-Although not shown, the first and second floor heating refrigerant pipes 24, 34 may be one, two, or four or more.

・室内の暖房負荷、暖房パネル25の暖房負荷又は室内の冷房負荷を検出する手段として、前記第1及び第2温度センサ45,46以外に、例えば下流側冷媒配管15bの内部の冷媒の圧力を検出する圧力センサ、第1及び第2床暖房冷媒配管24,34の出口側の冷媒の圧力を検出する圧力センサを用いてもよい。   As a means for detecting the indoor heating load, the heating load of the heating panel 25, or the indoor cooling load, in addition to the first and second temperature sensors 45 and 46, for example, the refrigerant pressure inside the downstream refrigerant pipe 15b is used. You may use the pressure sensor to detect, and the pressure sensor which detects the pressure of the refrigerant | coolant of the exit side of the 1st and 2nd floor heating refrigerant | coolant piping 24,34.

P1…第1バイパス配管、P2…第2バイパス配管、11…圧縮機、14…四方弁、15…冷媒循環配管、15a…上流側冷媒配管、15b…下流側冷媒配管、16…室内熱交換機、17…膨張弁、18…室外熱交換機、25…床暖房パネル、29,30,38,39…逆止弁、47…制御装置。   P1 ... 1st bypass piping, P2 ... 2nd bypass piping, 11 ... Compressor, 14 ... Four-way valve, 15 ... Refrigerant circulation piping, 15a ... Upstream refrigerant piping, 15b ... Downstream refrigerant piping, 16 ... Indoor heat exchanger, DESCRIPTION OF SYMBOLS 17 ... Expansion valve, 18 ... Outdoor heat exchanger, 25 ... Floor heating panel, 29, 30, 38, 39 ... Check valve, 47 ... Control apparatus.

Claims (5)

圧縮機に四方弁を介して冷媒循環配管を接続し、該冷媒循環配管に対し空調用の室内熱交換機、膨張弁及び室外熱交換機を順に接続して冷凍サイクルを構成し、暖房運転状態において、前記室内熱交換機の上流側冷媒配管に対し、暖房パネルに埋設される第1バイパス配管を接続し、前記室内熱交換機の下流側冷媒配管に対し、暖房パネルに埋設される第2バイパス配管を接続し、前記上流側及び下流側冷媒配管に対し、前記第1及び第2バイパス配管に冷媒をそれぞれ迂回させるための流路変更手段を設け、前記第1及び第2バイパス配管に対し、冷房運転状態において、冷媒が侵入するのを阻止する侵入阻止手段を設け、前記圧縮機及び室内熱交換機を、室内の暖房負荷、暖房パネルの暖房負荷又は室内の冷房負荷に応じて制御するための制御信号を出力する制御装置を備えたことを特徴とするヒートポンプ式空調装置。 Refrigerant circulation piping is connected to the compressor via a four-way valve, and an indoor heat exchanger for air conditioning, an expansion valve and an outdoor heat exchanger are connected to the refrigerant circulation piping in order to constitute a refrigeration cycle. A first bypass pipe embedded in the heating panel is connected to the upstream refrigerant pipe of the indoor heat exchanger, and a second bypass pipe embedded in the heating panel is connected to the downstream refrigerant pipe of the indoor heat exchanger. And a flow path changing means for bypassing the refrigerant in the first and second bypass pipes with respect to the upstream and downstream refrigerant pipes, respectively, and in the cooling operation state with respect to the first and second bypass pipes. In order to control the compressor and the indoor heat exchanger according to the heating load of the room, the heating load of the heating panel or the cooling load of the room The heat pump type air conditioning apparatus characterized by comprising a control unit for outputting a control signal. 請求項1において、前記第1及び第2バイパス配管の前記暖房パネルに埋設される配管を、複数本の第1分流配管及び複数本の第2分流配管としたことを特徴とするヒートポンプ式空調装置。 2. The heat pump air conditioner according to claim 1, wherein the pipes embedded in the heating panel of the first and second bypass pipes are a plurality of first branch pipes and a plurality of second branch pipes. . 請求項1又は2において、前記流路変更手段は、第1及び第2バイパス配管の二つの接続部の間の前記上流側及び下流側冷媒配管に設けられた逆止弁又は電磁弁であり、前記侵入阻止手段は、第1及び第2バイパス配管に設けられた逆止弁又は電磁弁であることを特徴とするヒートポンプ式空調装置。 In Claim 1 or 2, the flow path changing means is a check valve or a solenoid valve provided in the upstream and downstream refrigerant pipes between the two connecting parts of the first and second bypass pipes, The heat pump air conditioner, wherein the intrusion prevention means is a check valve or an electromagnetic valve provided in the first and second bypass pipes. 請求項1〜3のいずれか一項において、前記室内の暖房負荷又は冷房負荷を検出する手段は、室内熱交換機の空気の吸い込み口の温度を検出する温度センサであり、暖房パネルの負荷を検出する手段は、暖房パネルの温度を検出する温度センサであることを特徴とするヒートポンプ式空調装置。 The means for detecting the indoor heating load or the cooling load according to any one of claims 1 to 3 is a temperature sensor that detects a temperature of an air intake port of the indoor heat exchanger, and detects a load on the heating panel. The heat pump type air conditioner is characterized in that the means for detecting is a temperature sensor for detecting the temperature of the heating panel. 請求項1〜4のいずれか一項において、前記室外熱交換機は地中熱を利用する地中熱交換機であることを特徴とするヒートポンプ式空調装置。 The heat pump air conditioner according to any one of claims 1 to 4, wherein the outdoor heat exchanger is a geothermal heat exchanger that uses geothermal heat.
JP2009117999A 2009-05-14 2009-05-14 Heat-pump type air conditioner Pending JP2010266127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009117999A JP2010266127A (en) 2009-05-14 2009-05-14 Heat-pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009117999A JP2010266127A (en) 2009-05-14 2009-05-14 Heat-pump type air conditioner

Publications (1)

Publication Number Publication Date
JP2010266127A true JP2010266127A (en) 2010-11-25

Family

ID=43363253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009117999A Pending JP2010266127A (en) 2009-05-14 2009-05-14 Heat-pump type air conditioner

Country Status (1)

Country Link
JP (1) JP2010266127A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014527151A (en) * 2011-08-25 2014-10-09 建良 楊 Built-in air conditioner
CN104633985A (en) * 2013-11-13 2015-05-20 孙霆 Air source superconductive radiation floor heating, hot water supplying and refrigerating system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119258A (en) * 1981-01-19 1982-07-24 Toshiba Corp Measuring device for dropping speed of reactor control rod
JPS57144311A (en) * 1981-03-03 1982-09-06 Chromex Sa Springly self-lubrication bearing
JPS59150275A (en) * 1983-02-15 1984-08-28 松下電器産業株式会社 Heat pump type floor heating apparatus
JPS63127061A (en) * 1986-11-17 1988-05-30 三菱重工業株式会社 Air conditioner with radiation panel
JPH01125976A (en) * 1987-11-11 1989-05-18 Mitsubishi Electric Corp Semiconductor device
JPH0448140A (en) * 1990-06-18 1992-02-18 Toshiba Corp Air conditioner
JP2004028450A (en) * 2002-06-26 2004-01-29 Mitsubishi Electric Corp Air conditioner
JP2007064549A (en) * 2005-08-31 2007-03-15 Nemoto Kikaku Kogyo Kk Geothermal air-conditioning system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119258A (en) * 1981-01-19 1982-07-24 Toshiba Corp Measuring device for dropping speed of reactor control rod
JPS57144311A (en) * 1981-03-03 1982-09-06 Chromex Sa Springly self-lubrication bearing
JPS59150275A (en) * 1983-02-15 1984-08-28 松下電器産業株式会社 Heat pump type floor heating apparatus
JPS63127061A (en) * 1986-11-17 1988-05-30 三菱重工業株式会社 Air conditioner with radiation panel
JPH01125976A (en) * 1987-11-11 1989-05-18 Mitsubishi Electric Corp Semiconductor device
JPH0448140A (en) * 1990-06-18 1992-02-18 Toshiba Corp Air conditioner
JP2004028450A (en) * 2002-06-26 2004-01-29 Mitsubishi Electric Corp Air conditioner
JP2007064549A (en) * 2005-08-31 2007-03-15 Nemoto Kikaku Kogyo Kk Geothermal air-conditioning system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014527151A (en) * 2011-08-25 2014-10-09 建良 楊 Built-in air conditioner
CN104633985A (en) * 2013-11-13 2015-05-20 孙霆 Air source superconductive radiation floor heating, hot water supplying and refrigerating system

Similar Documents

Publication Publication Date Title
US9322562B2 (en) Air-conditioning apparatus
JP5197576B2 (en) Heat pump equipment
US8844302B2 (en) Air-conditioning apparatus
JP5383816B2 (en) Air conditioner
US9366452B2 (en) Air-conditioning apparatus with primary and secondary heat exchange cycles
JP6479162B2 (en) Air conditioner
KR101479458B1 (en) Refrigeration device
JP5774128B2 (en) Air conditioner
US9140459B2 (en) Heat pump device
JP2015524545A (en) Air conditioner with additional unit for heating capacity enhancement
JP2007051825A (en) Air-conditioner
US20110138839A1 (en) Water circulation apparatus associated with refrigerant system
CN107429948B (en) heat pump system
WO2012042692A1 (en) Refrigeration cycle device
KR101351525B1 (en) Integrated heat pump system provided with cooling, heating, hot water and defrosting function
JP6742200B2 (en) Air conditioning hot water supply system
KR101636326B1 (en) Refrigerating Cycle Apparatus, Heat Pump Type Hot Water Supply Air conditioner and Outdoor Unit thereof
KR200412598Y1 (en) Heat pump system for having function of hot water supply
JP2010266127A (en) Heat-pump type air conditioner
KR100849613B1 (en) High effectiveness heat pump system that available water heating and floor heating
JP2012127648A (en) Heat pump apparatus
JP5441949B2 (en) Heat pump equipment
JP4522962B2 (en) Refrigeration cycle equipment
JP2009109061A (en) Heat pump type air conditioning device comprising heating panel
WO2017163305A1 (en) Heat medium circulation system

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20100916

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD03 Notification of appointment of power of attorney

Effective date: 20110912

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111017

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20111017

A977 Report on retrieval

Effective date: 20111111

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20111114

A131 Notification of reasons for refusal

Effective date: 20111118

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

A02 Decision of refusal

Effective date: 20120210

Free format text: JAPANESE INTERMEDIATE CODE: A02