JP2010265546A - Method for refining metal - Google Patents

Method for refining metal Download PDF

Info

Publication number
JP2010265546A
JP2010265546A JP2010090498A JP2010090498A JP2010265546A JP 2010265546 A JP2010265546 A JP 2010265546A JP 2010090498 A JP2010090498 A JP 2010090498A JP 2010090498 A JP2010090498 A JP 2010090498A JP 2010265546 A JP2010265546 A JP 2010265546A
Authority
JP
Japan
Prior art keywords
container
semi
liquid phase
metal
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010090498A
Other languages
Japanese (ja)
Inventor
Kazunaga Natsume
千修 棗
Hitoshi Ishida
斉 石田
Makoto Morishita
誠 森下
Kenji Tokuda
健二 徳田
Mitsuhiro Abe
光宏 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010090498A priority Critical patent/JP2010265546A/en
Publication of JP2010265546A publication Critical patent/JP2010265546A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for refining a metal by which a metallic refined material having a composition of low content of impurity and no inclining constitution can continuously be obtained from a metal containing eutectic impurity. <P>SOLUTION: The method includes the following (a)-(b) processes. (a) Primary crystal is generated from the above molten metal in a vessel for generating a first semi-solidified slurry (hereafter, a slurry-generating vessel) to obtain the semi-solidified slurry (hereafter, the slurry), and the primary crystal integrating material (metallic refined material) is formed and recovered by supplying the above slurry to a vessel for first compression (hereafter, a compressive vessel) and also, a liquid phase in the first compressive vessel is supplied to a second slurry-generating vessel and thereafter, a series of operations from the above same slurry supply, is repeated. (b) From the liquid phase supplied to the second slurry-generating vessel, the slurry is generated and supplied to a second compressive vessel to form and recover the primary crystal integration material. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、金属の精製方法に関する技術分野に属するものであり、詳細には、Alスクラップ等のような共晶系不純物を含む金属スクラップの精製方法に関する技術分野に属するものであり、特には、Alスクラップの精製方法に関する技術分野に属するものである。   The present invention belongs to a technical field related to a metal refining method, and particularly belongs to a technical field related to a method for refining metal scrap containing eutectic impurities such as Al scrap, and in particular, It belongs to the technical field of Al scrap refining methods.

近年、原材料の高騰などにより、スクラップの再利用の需要が高まっている。これらのスクラップには不純物元素が多く含まれており、不純物を取り除いた精製金属は、再利用の用途が広がる。例えば、Alスクラップには、クラッド屑のような製品から製品へ再利用出来ないものがあり、このようなAlスクラップを精製し、不純物元素を取り除いた精製Alは再利用可能となる。   In recent years, demand for scrap reuse has increased due to soaring raw materials. These scraps contain a lot of impurity elements, and the use of the refined metal from which impurities have been removed widens the reuse. For example, some Al scrap cannot be reused from product to product, such as clad scrap, and refined Al obtained by refining such Al scrap and removing impurity elements can be reused.

このような精製金属を得るための金属の精製技術としては、特開昭63−42336号公報記載の技術や、特許第3490808号公報記載の技術等がある。   As a metal refining technique for obtaining such a refined metal, there are a technique described in JP-A-63-42336, a technique described in Japanese Patent No. 3490808, and the like.

特開昭63−42336号公報記載の技術は、「鋳型内のアルミニウム溶湯を所定液面位に保持しつつ、鋳型下底に下降できるように配設され、冷却された受台に精製アルミニウムを凝固成長させる方法において、溶湯内で板状体を上下に作動させ板状体を凝固成長したアルミニウムの上部界面に押圧して、表面の結晶アルミニウムを破壊し、アルミニウム結晶間に存在する溶融アルミニウムを溶湯中に押し出し、凝固成長したアルミニウムを連続的に鋳塊として得ることを特徴とするアルミニウムの連続精製法」である。   The technology described in Japanese Patent Application Laid-Open No. 63-42336 states that “the molten aluminum in the mold is kept at a predetermined liquid level while being arranged so that it can be lowered to the bottom of the mold, and purified aluminum is placed on the cooled cradle. In the solidification growth method, the plate-like body is moved up and down in the molten metal to press the plate-like body against the upper interface of the solidified and grown aluminum, destroying the crystalline aluminum on the surface, and the molten aluminum present between the aluminum crystals. This is a “continuous aluminum refining method, characterized in that solidified and grown aluminum is continuously obtained as an ingot by extrusion into molten metal”.

特許第3490808号公報記載の技術は、「精製しようとする金属溶湯を冷却して初晶粒子を発生させ、初晶粒子を含む固相率0.3 未満の金属溶湯を得る工程と、この初晶粒子を含む固相率0.3 未満の金属溶湯を成形型に供給し、成形型内で冷却しながら、初晶粒子と濃化溶湯が混在する所定の断面形状の固相率0.3 〜0.7 の成形体を連続的に製造する工程と、得られた成形体に圧力を加えて初晶粒子塊と濃化溶湯に分離して回収する工程、を含む金属の精製方法、および、これらを実現するユニットを備えた金属の精製装置」である。   The technology described in Japanese Patent No. 3490808 is described as follows: “A step of cooling a molten metal to be purified to generate primary crystal particles to obtain a molten metal containing primary crystal particles having a solid phase ratio of less than 0.3; A molten metal with a solid phase ratio of less than 0.3 is supplied to the mold, and while cooling in the mold, a molded body with a solid phase ratio of 0.3 to 0.7 with a predetermined cross-sectional shape in which primary crystal particles and concentrated molten metal are mixed. A metal refining method including a step of continuously manufacturing, a step of applying pressure to the obtained molded body to separate and recover the primary crystal particle lump and the concentrated molten metal, and a unit for realizing the same Metal purification equipment ".

特開昭63−42336号公報JP 63-42336 A 特許第3490808号公報Japanese Patent No. 3490808

特開昭63−42336号公報記載の技術には下記のような問題点がある。連続精製において、高い共晶系不純物元素の除去が期待される高圧力で押圧した場合、精製された金属が上部からの圧力により崩壊する可能性があり、純度の高い精製金属は得られない。また、連続に押し固めることにより分離された溶湯の不純物組成は成長が進行する毎に高くなり、異なる液相組成から成長する結晶は同一組成とはならない。その結果、押圧初期の部分と最期の部分で組成が異なる精製体ができてしまう。即ち、最終部にかけて精製帯の不純物濃度が高くなる組成のもの(傾斜組成体)になってしまう。   The technique described in JP-A-63-42336 has the following problems. In continuous refining, when pressed at a high pressure at which high eutectic impurity elements are expected to be removed, the refined metal may collapse due to the pressure from above, and a purified metal with high purity cannot be obtained. In addition, the impurity composition of the melt separated by continuous consolidation becomes higher each time the growth proceeds, and crystals grown from different liquid phase compositions do not have the same composition. As a result, purified bodies having different compositions in the initial pressing portion and the final pressing portion are produced. That is, it becomes a composition (gradient composition) in which the impurity concentration in the refinement zone increases toward the final part.

特許第3490808号公報記載の技術には下記のような問題点がある。この技術は、生産性を向上させるために連続的に精製する方法であるが、流動性のない半固化成形体に圧力を加えて固液分離するため、分離効率は低くなる。実施例における精製物重量は原料のほぼ20%と生産性は高くない。   The technique described in Japanese Patent No. 3490808 has the following problems. This technique is a method of continuous purification to improve productivity, but the separation efficiency is low because solid-liquid separation is performed by applying pressure to a semi-solidified product having no fluidity. The weight of the purified product in the examples is almost 20% of the raw material, and productivity is not high.

本発明はこのような事情に鑑みてなされたものであって、その目的は、共晶系不純物を含む金属から、この不純物の含有量が低く、傾斜組成でない組成(以下、均一組成ともいう)の金属精製体を連続的に得ることができる金属の精製方法を提供しようとするものである。   The present invention has been made in view of such circumstances, and the object thereof is from a metal containing a eutectic impurity to a composition having a low content of this impurity and not a gradient composition (hereinafter also referred to as a uniform composition). It is an object of the present invention to provide a method for purifying a metal capable of continuously obtaining a purified metal product.

本発明者らは、上記目的を達成するため、鋭意検討した結果、本発明を完成するに至った。本発明によれば上記目的を達成することができる。   As a result of intensive studies to achieve the above object, the present inventors have completed the present invention. According to the present invention, the above object can be achieved.

このようにして完成され上記目的を達成することができた本発明は、金属の精製方法に係わり、請求項1〜6記載の金属の精製方法(第1〜6発明に係る金属の精製方法)であり、それは次のような構成としたものである。   The present invention completed as described above and capable of achieving the above object relates to a metal purification method, and the metal purification method according to any one of claims 1 to 6 (metal purification method according to the first to sixth inventions). It has the following configuration.

即ち、請求項1記載の金属の精製方法は、下記(a) 〜(b) の工程を有することを特徴とする金属の精製方法である〔第1発明〕。
(a) 第1半凝固スラリー生成用容器内に共晶系不純物を含む金属の溶湯を収容し、この溶湯を液相線以下固相線以上の温度まで冷却して初晶を発生させて半凝固スラリーを生成し、この半凝固スラリーを第1圧搾用容器に供給し、初晶の集積層と液相層とを形成し、次いで、この初晶の集積層を圧搾して押し固めて初晶の集積体を形成し、この初晶の集積体を第1圧搾用容器から出し、金属精製体として回収すると共に、第1圧搾用容器内の液相を第2半凝固スラリー生成用容器に供給し、この後、上記と同様の半凝固スラリーの第1圧搾用容器への供給から第1圧搾用容器内液相の第2半凝固スラリー生成用容器への供給にいたる一連の操作を繰り返して行う工程。
(b) 前記第2半凝固スラリー生成用容器に供給された液相を液相線以下固相線以上の温度まで冷却して初晶を発生させて半凝固スラリーを生成し、この半凝固スラリーを第2圧搾用容器に供給し、初晶の集積層と液相層とを形成し、次いで、この初晶の集積層を圧搾して押し固めて初晶の集積体を形成し、この初晶の集積体を第2圧搾用容器から出し、金属精製体として回収すると共に、第2圧搾用容器内の液相を第2圧搾用容器外へ排出し、この後、上記と同様の半凝固スラリーの生成から第2圧搾用容器内液相の排出にいたる一連の操作を繰り返して行う工程。
That is, the method for purifying a metal according to claim 1 is a method for purifying a metal having the following steps (a) to (b) [first invention].
(a) A molten metal containing eutectic impurities is accommodated in the first semi-solidified slurry generating vessel, and this molten metal is cooled to a temperature below the liquidus and above the solidus to generate primary crystals and semi-solid. A coagulated slurry is generated, and this semi-coagulated slurry is supplied to the first squeeze container to form a primary crystal accumulation layer and a liquid phase layer. A crystal aggregate is formed, and the primary crystal aggregate is taken out from the first pressing container and recovered as a metal refined body, and the liquid phase in the first pressing container is used as a second semi-solidified slurry generating container. After that, a series of operations from the supply of the semi-solid slurry similar to the above to the first squeeze container to the supply of the liquid phase in the first squeeze container to the second semi-solid slurry generation container are repeated. Process.
(b) The liquid phase supplied to the second semi-solidified slurry generating container is cooled to a temperature below the liquidus and above the solidus to generate primary crystals, thereby generating a semi-solid slurry. Is supplied to the second squeeze container to form the primary crystal accumulation layer and the liquid phase layer, and then the primary crystal accumulation layer is squeezed and pressed to form the primary crystal aggregate. The crystal agglomerate is taken out from the second pressing container and recovered as a metal refined body, and the liquid phase in the second pressing container is discharged out of the second pressing container. A step of repeatedly performing a series of operations from the generation of the slurry to the discharge of the liquid phase in the second pressing container.

請求項2記載の金属の精製方法は、下記(a) 〜(c) の工程を有することを特徴とする金属の精製方法である〔第2発明〕。
(a) 第1半凝固スラリー生成用容器内に共晶系不純物を含む金属の溶湯を収容し、この溶湯を液相線以下固相線以上の温度まで冷却して初晶を発生させて半凝固スラリーを生成し、この半凝固スラリーを第1圧搾用容器に供給し、初晶の集積層と液相層とを形成し、次いで、この初晶の集積層を圧搾して押し固めて初晶の集積体を形成し、この初晶の集積体を第1圧搾用容器から出し、金属精製体として回収すると共に、第1圧搾用容器内の液相を第2半凝固スラリー生成用容器に供給し、この後、上記と同様の半凝固スラリーの第1圧搾用容器への供給から第1圧搾用容器内液相の第2半凝固スラリー生成用容器への供給にいたる一連の操作を繰り返して行う工程。
(b) 前記第2半凝固スラリー生成用容器に供給された液相を液相線以下固相線以上の温度まで冷却して初晶を発生させて半凝固スラリーを生成し、この半凝固スラリーを第2圧搾用容器に供給し、初晶の集積層と液相層とを形成し、次いで、この初晶の集積層を圧搾して押し固めて初晶の集積体を形成し、この初晶の集積体を第2圧搾用容器から出し、金属精製体として回収すると共に、第2圧搾用容器内の液相を第3半凝固スラリー生成用容器に供給し、この後、上記と同様の半凝固スラリーの生成から第2圧搾用容器内液相の第3半凝固スラリー生成用容器への供給にいたる一連の操作を繰り返して行う工程。
(c) 前記第3半凝固スラリー生成用容器に供給された液相を液相線以下固相線以上の温度まで冷却して初晶を発生させて半凝固スラリーを生成し、この半凝固スラリーを第3圧搾用容器に供給し、初晶の集積層と液相層とを形成し、次いで、この初晶の集積層を圧搾して押し固めて初晶の集積体を形成し、この初晶の集積体を第3圧搾用容器から出し、金属精製体として回収すると共に、第3圧搾用容器内の液相を第3圧搾用容器外へ排出し、この後、上記と同様の半凝固スラリーの生成から第3圧搾用容器内液相の排出にいたる一連の操作を繰り返して行う工程。
The metal purification method according to claim 2 is a metal purification method characterized by having the following steps (a) to (c) [second invention].
(a) A molten metal containing eutectic impurities is accommodated in the first semi-solidified slurry generating vessel, and this molten metal is cooled to a temperature below the liquidus and above the solidus to generate primary crystals and semi-solid. A coagulated slurry is generated, and this semi-coagulated slurry is supplied to the first squeeze container to form a primary crystal accumulation layer and a liquid phase layer. A crystal aggregate is formed, and the primary crystal aggregate is taken out from the first pressing container and recovered as a metal refined body, and the liquid phase in the first pressing container is used as a second semi-solidified slurry generating container. After that, a series of operations from the supply of the semi-solid slurry similar to the above to the first squeeze container to the supply of the liquid phase in the first squeeze container to the second semi-solid slurry generation container are repeated. Process.
(b) The liquid phase supplied to the second semi-solidified slurry generating container is cooled to a temperature below the liquidus and above the solidus to generate primary crystals, thereby generating a semi-solid slurry. Is supplied to the second squeeze container to form the primary crystal accumulation layer and the liquid phase layer, and then the primary crystal accumulation layer is squeezed and pressed to form the primary crystal aggregate. The crystal agglomerate is taken out from the second pressing container and recovered as a metal refined body, and the liquid phase in the second pressing container is supplied to the third semi-solidified slurry generating container. A step of repeatedly performing a series of operations from the generation of the semi-solidified slurry to the supply of the liquid phase in the second pressing container to the third semi-solidified slurry generating container.
(c) The liquid phase supplied to the third semi-solidified slurry generating container is cooled to a temperature below the liquidus and above the solidus to generate primary crystals, thereby generating a semi-solid slurry. Is supplied to the third pressing container to form the primary crystal accumulation layer and the liquid phase layer, and then the primary crystal accumulation layer is squeezed and pressed to form the primary crystal aggregate. The crystal aggregate is taken out from the third pressing container and recovered as a metal refined body, and the liquid phase in the third pressing container is discharged out of the third pressing container. A step of repeatedly performing a series of operations from the generation of the slurry to the discharge of the liquid phase in the third pressing container.

請求項3記載の金属の精製方法は、前記半凝固スラリーの固相率が0.2以上0.4以下である請求項1または2に記載の金属の精製方法である〔第3発明〕。   The metal purification method according to claim 3 is the metal purification method according to claim 1 or 2, wherein the semisolid slurry has a solid phase ratio of 0.2 to 0.4.

請求項4記載の金属の精製方法は、前記初晶の集積層を圧搾する際の圧搾圧力が3〜10MPaであり、圧搾時間が3〜5分である請求項1〜3のいずれかに記載の金属の精製方法である〔第4発明〕。   The metal refining method according to claim 4, wherein a pressing pressure when pressing the primary crystal accumulation layer is 3 to 10 MPa, and a pressing time is 3 to 5 minutes. [4th invention].

請求項5記載の金属の精製方法は、前記初晶の集積層の圧搾に際して該集積層を冷却する請求項1〜4のいずれかに記載の金属の精製方法である〔第5発明〕。   The metal purification method according to claim 5 is the metal purification method according to any one of claims 1 to 4, wherein the accumulation layer is cooled when the primary crystal accumulation layer is pressed [fifth invention].

請求項6記載の金属の精製方法は、前記初晶の集積体を形成した後、前記圧搾用容器から出す前に、液相線以下固相線以上の温度に加熱して保持し、圧搾する請求項1〜5のいずれかに記載の金属の精製方法である〔第5発明〕。   The method for purifying a metal according to claim 6, after forming the primary crystal aggregate, heating and holding at a temperature equal to or lower than the liquidus or higher than the solidus before pressing out from the pressing container, and pressing. It is a purification method of the metal in any one of Claims 1-5 [5th invention].

本発明に係る金属の精製方法によれば、共晶系不純物を含む金属から、この不純物の含有量が低く、傾斜組成でない組成(均一組成)の金属精製体を連続的に得ることができる。   According to the method for purifying a metal according to the present invention, a metal refined body having a composition (uniform composition) having a low content of impurities and a non-gradient composition can be continuously obtained from a metal containing eutectic impurities.

本発明を実施するための装置の例を示す模式図である。It is a schematic diagram which shows the example of the apparatus for implementing this invention.

不純物の除去率と精製金属の回収率は、結晶間の液相を分離固相の上方に排出しなければならないため、排出経路長さから考えて、相反する関係になる。即ち、高不純物除去率では、高精製金属回収率は得られない。連続圧搾は、高不純物除去率の精製金属を積層することで高不純物除去率と高精製金属回収率の両方を実現できることになる。しかし、1つの圧搾用容器(以下、金属精製部ともいう)だけでは、以下の理由により傾斜組成の精製体ができてしまう。   The removal rate of impurities and the recovery rate of purified metal have a contradictory relationship because the liquid phase between crystals must be discharged above the separated solid phase, considering the length of the discharge path. That is, a high purified metal recovery rate cannot be obtained with a high impurity removal rate. Continuous squeezing can realize both a high impurity removal rate and a high purified metal recovery rate by laminating purified metals having a high impurity removal rate. However, with only one squeeze container (hereinafter also referred to as a metal refining unit), a refined body having a gradient composition is produced for the following reason.

この方法では、圧搾で分離された液相に半凝固スラリーを供給することになる。このとき、供給量は圧搾工程で分離した精製固相分であるため、金属精製部の固相率を0.2〜0.4に保つためには、残液相中での初晶の晶出が必要となる。その初晶濃度は、不純物濃化液相からの晶出になるため、初期半凝固スラリー中の初晶濃度よりも高くなってしまう。さらに初晶の形成のために液相濃度も高くなっていく。そのため、次回の圧搾での精製部位では、濃度の高い初晶の圧搾、濃度の高い未排出液相の存在により、前回の圧搾での精製部位よりも若干不純物濃度が高くなってしまう。従って、1つの金属精製部(圧搾用容器)で、圧搾を繰り返すと、精製体の下部(初期圧搾部)から上部(最終圧搾部)にかけて不純物濃度が高くなる組成(傾斜組成)の金属精製体ができてしまう。   In this method, the semi-solid slurry is supplied to the liquid phase separated by pressing. At this time, since the supply amount is the purified solid phase fraction separated in the pressing step, in order to keep the solid phase ratio of the metal purification section at 0.2 to 0.4, the primary crystal in the residual liquid phase It is necessary to go out. Since the primary crystal concentration is crystallized from the impurity-concentrated liquid phase, it becomes higher than the primary crystal concentration in the initial semi-solidified slurry. Furthermore, the liquid phase concentration also increases due to the formation of primary crystals. Therefore, in the refinement | purification site | part by the next pressing, an impurity concentration will become a little higher than the refinement | purification site | part by the last press by pressing of a high concentration primary crystal, and presence of a high concentration undrained liquid phase. Therefore, a metal refined body having a composition (gradient composition) in which the impurity concentration increases from the lower part (initial compressed part) to the upper part (final compressed part) of the refined body when pressing is repeated in one metal refined part (compression container). Can be done.

これに対し、本発明に係る金属の精製方法は、前述のような構成の金属の精製方法としているので、圧搾用容器(金属精製部)での圧搾毎に液相(不純物濃化液相)を排出してから、半凝固スラリーを圧搾用容器へ供給することになり、このため、下部から上部にかけて不純物濃度が高くなる組成(傾斜組成)でない金属精製体を、その都度(圧搾毎に)作製し得る。   On the other hand, since the metal purification method according to the present invention is a metal purification method having the above-described configuration, a liquid phase (impurity-concentrated liquid phase) is obtained for each squeezing in the squeezing container (metal purification unit). The semi-solid slurry is supplied to the squeezing container after the slag is discharged. For this reason, a metal refined body that does not have a composition (gradient composition) in which the impurity concentration increases from the lower part to the upper part each time (for each squeezing) Can be made.

即ち、本発明に係る金属の精製方法〔第1発明〕は、(a) 〜(b) の工程を有することを特徴とするものであり、(a) の工程では、第1半凝固スラリー生成用容器内に共晶系不純物を含む金属の溶湯を収容し、この溶湯を液相線以下固相線以上の温度まで冷却して初晶を発生させて半凝固スラリー(液相と初晶との混合体)を生成し、この半凝固スラリーを第1圧搾用容器(金属精製部)に供給し、初晶の集積層(液相が少し共存している)と液相層とを形成し、次いで、この初晶の集積層を圧搾して押し固めて初晶の集積体(液相が共存していないか、液相がほとんど共存していない)を形成し、この初晶の集積体を第1圧搾用容器から出し、金属精製体として回収すると共に、第1圧搾用容器内の液相(不純物濃化液相)を第2半凝固スラリー生成用容器(金属精製部)に供給し、この後、上記と同様の半凝固スラリーの第1圧搾用容器への供給から第1圧搾用容器内液相(不純物濃化液相)の第2半凝固スラリー生成用容器への供給にいたる一連の操作を繰り返して行うようにしているので、初晶の集積体(以下、金属精製体ともいう)の回収毎に傾斜組成でない組成(均一組成)の金属精製体を得ることができる。しかも、これらの金属精製体は同様の組成であるので、金属精製体の回収毎に同様組成のものが得られる。   That is, the metal refining method [first invention] according to the present invention is characterized by having the steps (a) to (b). In the step (a), the first semi-solid slurry is produced. A molten metal containing eutectic impurities is contained in a container for use, and the molten metal is cooled to a temperature below the liquidus and above the solidus to generate primary crystals, and a semi-solid slurry (liquid phase and primary crystals). And a semi-solid slurry is supplied to the first squeeze container (metal refining section) to form a primary crystal accumulation layer (a little liquid phase coexists) and a liquid phase layer. Then, the primary crystal accumulation layer is squeezed and compacted to form primary crystal aggregates (no liquid phase or almost no liquid phase), and this primary crystal aggregate Is taken out from the first pressing container and recovered as a refined metal, and the liquid phase (impurity-concentrated liquid phase) in the first pressing container is second semi-solidified slurry. It supplies to a container for a composition (metal refinement | purification part), and after this, the 2nd of the liquid phase (impurity concentration liquid phase) in the container for 1st pressing from supply to the container for 1st pressing of the semi-solidified slurry similar to the above Since a series of operations leading to the supply to the semi-solidified slurry generation container is repeated, a composition that is not a gradient composition (uniform composition) every time the primary crystal aggregate (hereinafter also referred to as a metal refined body) is recovered. A purified metal product can be obtained. Moreover, since these refined metal products have the same composition, the same composition is obtained each time the refined metal product is recovered.

(b) の工程では、前記第2半凝固スラリー生成用容器に供給された液相(不純物濃化液相)を液相線以下固相線以上の温度まで冷却して初晶を発生させて半凝固スラリーを生成し、この半凝固スラリーを第2圧搾用容器(金属精製部)に供給し、初晶の集積層と液相層とを形成し、次いで、この初晶の集積層を圧搾して押し固めて初晶の集積体を形成し、この初晶の集積体を第2圧搾用容器から出し、金属精製体として回収すると共に、第2圧搾用容器内の液相(不純物濃化液相)を第2圧搾用容器外へ排出し、この後、上記と同様の半凝固スラリーの生成から第2圧搾用容器内液相(不純物濃化液相)の排出にいたる一連の操作を繰り返して行うようにしているので、金属精製体の回収毎に、均一組成(傾斜組成でない組成)の金属精製体を得ることができる。しかも、これらの金属精製体は同様の組成であるので、金属精製体の回収毎に同様組成のものが得られる。   In step (b), the liquid phase (impurity-concentrated liquid phase) supplied to the second semi-solidified slurry generation vessel is cooled to a temperature below the liquidus and above the solidus to generate primary crystals. A semi-solid slurry is produced, and this semi-solid slurry is supplied to the second pressing container (metal refining unit) to form a primary crystal accumulation layer and a liquid phase layer, and then this primary crystal accumulation layer is compressed. Then, the primary crystal aggregate is formed by pressing and solidifying, and the primary crystal aggregate is taken out from the second pressing container and recovered as a metal refined body, and the liquid phase (impurity concentration) in the second pressing container is recovered. The liquid phase is discharged out of the second pressing container, and then a series of operations from the generation of a semi-solid slurry similar to the above to the discharging of the second pressing container liquid phase (impurity-concentrated liquid phase) is performed. Since it is performed repeatedly, every time the metal refined body is recovered, a metal refined body having a uniform composition (a composition that is not a gradient composition) is obtained. Obtainable. Moreover, since these refined metal products have the same composition, the same composition is obtained each time the refined metal product is recovered.

このように(a) の工程では、金属精製体の回収毎に次々と、均一組成(傾斜組成でない組成)で同様組成の金属精製体を得ることができ、(b) の工程では、金属精製体の回収毎に次々と、均一組成(傾斜組成でない組成)で同様組成の金属精製体を得ることができる。   Thus, in the step (a), a purified metal product having the same composition with a uniform composition (non-gradient composition) can be obtained one after another every time the refined metal product is recovered. In the step (b), the refined metal product is obtained. Each time the body is recovered, a purified metal body having a uniform composition (non-gradient composition) and a similar composition can be obtained one after another.

(a) の工程での初晶発生対象の金属の溶湯に比較して、(b) の工程での初晶発生対象の液相(不純物濃化液相)は不純物濃度が高いことに起因して、通常は、(a) の工程で得られる金属精製体に比較して、(b) の工程で得られる金属精製体は不純物濃度が高いが、不純物の含有量が低くて充分なものである。   This is because the liquid phase (impurity-concentrated liquid phase) of the primary crystal generation target in the process (b) has a higher impurity concentration than the molten metal of the primary crystal generation target in the process (a). In general, the purified metal obtained in the step (b) has a higher impurity concentration than the purified metal obtained in the step (a), but the impurity content is low and sufficient. is there.

以上よりわかるように、本発明に係る金属の精製方法によれば、共晶系不純物を含む金属から、この不純物の含有量が低く、傾斜組成でない組成(均一組成)の金属精製体を次々と(連続的に)得ることができる。このとき、(a) の工程で得られる金属精製体は同様組成のものであり、(b) の工程で得られる金属精製体は同様組成のものである。従って、(a) 〜(b) の工程で、それぞれ、不純物含有量が低く、均一組成で、同様組成の金属精製体を連続的に(次々と)得ることができる〔第1発明〕。   As can be seen from the above, according to the method for purifying a metal according to the present invention, from a metal containing an eutectic impurity, a metal refined body having a composition (uniform composition) having a low content of this impurity and a non-gradient composition is successively obtained. Can be obtained (continuously). At this time, the refined metal obtained in the step (a) has the same composition, and the refined metal obtained in the step (b) has the same composition. Therefore, in the steps (a) to (b), it is possible to obtain continuously (one after another) purified metal products having a low impurity content and a uniform composition and the same composition (first invention).

本発明に係る金属の精製方法〔第1発明〕は、前述のような(a) 〜(b) の工程を有するので、2段方式の金属精製方法ともいえる。これに代えて1段方式の金属精製方法とした場合は、金属精製体の回収率が低下する。即ち、(b) の工程を有していなくて、(a) の工程で第1圧搾用容器内の液相(不純物濃化液相)を第2半凝固スラリー生成用容器(金属精製部)に供給することに代えて、第1圧搾用容器内の液相を第1圧搾用容器外へ排出することとした場合は、この液相は不純物含有量が充分に低い金属精製体を得ることができるものであるだけに、金属精製体の回収率(精製対象の元の金属量に対する金属精製体の量の割合)が低下して生産性が低下する。   Since the metal purification method [first invention] according to the present invention has the steps (a) to (b) as described above, it can be said to be a two-stage metal purification method. Instead of this, when the single-stage metal purification method is used, the recovery rate of the metal purified product is lowered. That is, it does not have the step (b), and in the step (a), the liquid phase (impurity-concentrated liquid phase) in the first squeezing vessel is converted into the second semi-solidified slurry generating vessel (metal refining section). If the liquid phase in the first squeeze container is discharged outside the first squeeze container instead of supplying to the squeeze container, this liquid phase should obtain a purified metal having a sufficiently low impurity content. Therefore, the recovery rate of the metal refined product (ratio of the amount of the metal refined product to the amount of the original metal to be refined) is lowered, and the productivity is lowered.

また、本発明に係る金属の精製方法〔第2発明〕は、(a) 〜(c) の工程を有することを特徴とするものであり、(a) の工程では、第1半凝固スラリー生成用容器内に共晶系不純物を含む金属の溶湯を収容し、この溶湯を液相線以下固相線以上の温度まで冷却して初晶を発生させて半凝固スラリー(液相と初晶との混合体)を生成し、この半凝固スラリーを第1圧搾用容器(金属精製部)に供給し、初晶の集積層(液相が少し共存している)と液相層とを形成し、次いで、この初晶の集積層を圧搾して押し固めて初晶の集積体(液相が共存していないか、液相がほとんど共存していない)を形成し、この初晶の集積体を第1圧搾用容器から出し、金属精製体として回収すると共に、第1圧搾用容器内の液相(不純物濃化液相)を第2半凝固スラリー生成用容器(金属精製部)に供給し、この後、上記と同様の半凝固スラリーの第1圧搾用容器への供給から第1圧搾用容器内液相(不純物濃化液相)の第2半凝固スラリー生成用容器への供給にいたる一連の操作を繰り返して行うようにしているので、初晶の集積体(以下、金属精製体ともいう)の回収毎に傾斜組成でない組成(均一組成)の金属精製体を得ることができる。しかも、これらの金属精製体は同様の組成であるので、金属精製体の回収毎に同様組成のものが得られる。   In addition, the metal refining method [second invention] according to the present invention is characterized by having the steps (a) to (c). In the step (a), the first semi-solid slurry is produced. A molten metal containing eutectic impurities is contained in a container for use, and the molten metal is cooled to a temperature below the liquidus and above the solidus to generate primary crystals, and a semi-solid slurry (liquid phase and primary crystals). And a semi-solid slurry is supplied to the first squeeze container (metal refining section) to form a primary crystal accumulation layer (a little liquid phase coexists) and a liquid phase layer. Then, the primary crystal accumulation layer is squeezed and compacted to form primary crystal aggregates (no liquid phase or almost no liquid phase), and this primary crystal aggregate Is taken out from the first pressing container and recovered as a refined metal, and the liquid phase (impurity-concentrated liquid phase) in the first pressing container is second semi-solidified slurry. It supplies to a container for a composition (metal refinement | purification part), and after this, the 2nd of the liquid phase (impurity concentration liquid phase) in the container for 1st pressing from supply to the container for 1st pressing of the semi-solidified slurry similar to the above Since a series of operations leading to the supply to the semi-solidified slurry generation container is repeated, a composition that is not a gradient composition (uniform composition) every time the primary crystal aggregate (hereinafter also referred to as a metal refined body) is recovered. A purified metal product can be obtained. Moreover, since these refined metal products have the same composition, the same composition is obtained each time the refined metal product is recovered.

(b) の工程では、前記第2半凝固スラリー生成用容器に供給された液相(不純物濃化液相)を液相線以下固相線以上の温度まで冷却して初晶を発生させて半凝固スラリーを生成し、この半凝固スラリーを第2圧搾用容器(金属精製部)に供給し、初晶の集積層と液相層とを形成し、次いで、この初晶の集積層を圧搾して押し固めて初晶の集積体を形成し、この初晶の集積体を第2圧搾用容器から出し、金属精製体として回収すると共に、第2圧搾用容器内の液相(不純物濃化液相)を第3半凝固スラリー生成用容器(金属精製部)に供給し、この後、上記と同様の半凝固スラリーの生成から第2圧搾用容器内液相(不純物濃化液相)の第3半凝固スラリー生成用容器への供給にいたる一連の操作を繰り返して行うようにしているので、金属精製体(初晶の集積体)の回収毎に、均一組成(傾斜組成でない組成)の金属精製体を得ることができる。しかも、これらの金属精製体は同様の組成であるので、金属精製体の回収毎に同様組成のものが得られる。   In step (b), the liquid phase (impurity-concentrated liquid phase) supplied to the second semi-solidified slurry generation vessel is cooled to a temperature below the liquidus and above the solidus to generate primary crystals. A semi-solid slurry is produced, and this semi-solid slurry is supplied to the second pressing container (metal refining unit) to form a primary crystal accumulation layer and a liquid phase layer, and then this primary crystal accumulation layer is compressed. Then, the primary crystal aggregate is formed by pressing and solidifying, and the primary crystal aggregate is taken out from the second pressing container and recovered as a metal refined body, and the liquid phase (impurity concentration) in the second pressing container is recovered. Liquid phase) is supplied to the third semi-solidified slurry production container (metal refining section), and then the production of the same semi-solid slurry as above to the second squeeze container liquid phase (impurity-concentrated liquid phase) Since the series of operations leading to the supply to the third semi-solidified slurry generation container is repeated, metal refining Each time the body (primary crystal aggregate) is collected, a purified metal body having a uniform composition (a composition that is not a gradient composition) can be obtained. Moreover, since these refined metal products have the same composition, the same composition is obtained each time the refined metal product is recovered.

(c) の工程では、前記第3半凝固スラリー生成用容器に供給された液相(不純物濃化液相)を液相線以下固相線以上の温度まで冷却して初晶を発生させて半凝固スラリーを生成し、この半凝固スラリーを第3圧搾用容器(金属精製部)に供給し、初晶の集積層と液相層とを形成し、次いで、この初晶の集積層を圧搾して押し固めて初晶の集積体を形成し、この初晶の集積体を第3圧搾用容器から出し、金属精製体として回収すると共に、第3圧搾用容器内の液相(不純物濃化液相)を第3圧搾用容器外へ排出し、この後、上記と同様の半凝固スラリーの生成から第3圧搾用容器内液相(不純物濃化液相)の排出にいたる一連の操作を繰り返して行うようにしているので、金属精製体の回収毎に、均一組成(傾斜組成でない組成)の金属精製体を得ることができる。しかも、これらの金属精製体は同様の組成であるので、金属精製体の回収毎に同様組成のものが得られる。   In step (c), the liquid phase (impurity-concentrated liquid phase) supplied to the third semi-solidified slurry generation vessel is cooled to a temperature below the liquidus and above the solidus to generate primary crystals. A semi-solid slurry is generated, and this semi-solid slurry is supplied to the third pressing container (metal refining section) to form a primary crystal accumulation layer and a liquid phase layer, and then this primary crystal accumulation layer is compressed. Then, the primary crystal aggregate is formed by pressing and solidifying, and the primary crystal aggregate is taken out from the third pressing container and recovered as a metal purified body, and the liquid phase (impurity concentration) in the third pressing container is recovered. The liquid phase is discharged out of the third pressing container, and then a series of operations from the generation of the semi-solid slurry similar to the above to the discharging of the third pressing container liquid phase (impurity-concentrated liquid phase) is performed. Since it is performed repeatedly, every time the metal refined body is recovered, a metal refined body having a uniform composition (a composition that is not a gradient composition) is obtained. Obtainable. Moreover, since these refined metal products have the same composition, the same composition is obtained each time the refined metal product is recovered.

このように(a) の工程では、金属精製体の回収毎に次々と、均一組成(傾斜組成でない組成)で同様組成の金属精製体を得ることができ、(b) の工程では、金属精製体の回収毎に次々と、均一組成(傾斜組成でない組成)で同様組成の金属精製体を得ることができ、(c) の工程では、金属精製体の回収毎に次々と、均一組成(傾斜組成でない組成)で同様組成の金属精製体を得ることができる。   Thus, in the step (a), a purified metal product having the same composition with a uniform composition (non-gradient composition) can be obtained one after another every time the refined metal product is recovered. In the step (b), the refined metal product is obtained. Each time the body is recovered, a metal refined body having a uniform composition (non-gradient composition) and a similar composition can be obtained one after another. In the step (c), a uniform composition (gradient) is successively applied each time the refined metal body is recovered. A purified metal having the same composition can be obtained with a composition other than the composition.

(a) の工程での初晶発生対象の金属の溶湯に比較して、(b) の工程での初晶発生対象の液相(不純物濃化液相)は不純物濃度が高く、(c) の工程での初晶発生対象の液相(不純物濃化液相)は更に不純物濃度が高いことに起因して、通常は、(a) の工程で得られる金属精製体に比較して、(b) の工程で得られる金属精製体は不純物濃度が高く、(c) の工程で得られる金属精製体は更に不純物濃度が高いが、不純物の含有量が低くて充分なものである。   The liquid phase (impurity-enriched liquid phase) of the primary crystal generation target in the step (b) has a higher impurity concentration than the molten metal of the primary crystal generation target in the step (a), and (c) Due to the higher impurity concentration in the liquid phase (impurity-concentrated liquid phase) that is the target of primary crystal generation in the process of step (a), it is usually compared with the refined metal obtained in the process (a) ( The refined metal obtained in the step (b) has a high impurity concentration, and the refined metal obtained in the step (c) has a higher impurity concentration, but the impurity content is low and sufficient.

以上よりわかるように、本発明に係る金属の精製方法によれば、共晶系不純物を含む金属から、この不純物の含有量が低く、傾斜組成でない組成(均一組成)の金属精製体を次々と(連続的に)得ることができる。このとき、(a) の工程で得られる金属精製体は同様組成のものであり、(b) の工程で得られる金属精製体は同様組成のものであり、(c) の工程で得られる金属精製体は同様組成のものである。従って、(a) 〜(c) の工程で、それぞれ、不純物含有量が低く、均一組成で、同様組成の金属精製体を連続的に(次々と)得ることができる〔第2発明〕。   As can be seen from the above, according to the method for purifying a metal according to the present invention, from a metal containing an eutectic impurity, a metal refined body having a composition (uniform composition) having a low content of this impurity and a non-gradient composition is successively obtained. Can be obtained (continuously). At this time, the refined metal obtained in the step (a) has the same composition, the refined metal obtained in the step (b) has the same composition, and the refined metal obtained in the step (c). The purified product has the same composition. Therefore, in the steps (a) to (c), it is possible to obtain continuously (one after another) a purified metal having a low impurity content, a uniform composition, and a similar composition [second invention].

本発明に係る金属の精製方法〔第2発明〕は、前述のような(a) 〜(b) の工程を有するので、2段方式の金属精製方法ともいえる。第2発明の場合、第1発明の場合よりも、生産性が高い。   Since the metal purification method [second invention] according to the present invention has the steps (a) to (b) as described above, it can be said to be a two-stage metal purification method. The productivity of the second invention is higher than that of the first invention.

第2発明に係る金属の精製方法(3段方式の金属精製方法)に代えて4段方式の金属精製方法とした場合は、4段目で得られる金属精製体の不純物濃度が高くて不充分なものとなる。即ち、(c) の工程において第3圧搾用容器内の液相(不純物濃化液相)を第3圧搾用容器外へ排出することに代えて、第3圧搾用容器内の液相を第4半凝固スラリー生成用容器に供給し、更に、(d) 前記第4半凝固スラリー生成用容器に供給された液相を液相線以下固相線以上の温度まで冷却して初晶を発生させて半凝固スラリーを生成し、この半凝固スラリーを第4圧搾用容器に供給し、初晶の集積層と液相層とを形成し、次いで、この初晶の集積層を圧搾して押し固めて初晶の集積体を形成し、この初晶の集積体を第4圧搾用容器外へ出し、金属精製体として回収すると共に、第3圧搾用容器内の液相(不純物濃化液相)を第3圧搾用容器外へ排出することとした場合は、前記第4圧搾用容器から回収される初晶の集積体、つまり、4段目で得られる金属精製体の不純物濃度が高くて不充分なものとなる。以上のような理由等により、第2発明に係る金属の精製方法は、3段方式の金属精製方法としている。ただし、(a) 〜(d) の各工程での圧搾条件(圧力や時間)等の操作条件によって、(d) の工程で得られる金属精製体、即ち、4段目で得られる金属精製体の不純物濃度も低くできるので、不純物濃度の目標値によっては4段方式の金属精製方法でもよい場合がある。同様の意味で、5段方式の金属精製方法でもよい場合がある。しかし、逆に操作条件を厳しくすることは生産性の低下等につながってくるので、この点等も考慮すると、第1〜第2発明のような2〜3段方式の金属精製方法を推奨することがてきる。   If the 4-stage metal purification method is used instead of the metal purification method according to the second invention (3-stage metal purification method), the impurity concentration of the metal purification product obtained in the 4th stage is high and insufficient. It will be something. That is, instead of discharging the liquid phase (impurity-concentrated liquid phase) in the third pressing container to the outside of the third pressing container in the step (c), the liquid phase in the third pressing container is changed to the first. (4) The liquid phase supplied to the fourth semi-solidified slurry generating container is cooled to a temperature below the liquidus and above the solidus to generate primary crystals. To produce a semi-solid slurry, and supply the semi-solid slurry to the fourth squeeze container to form a primary crystal accumulation layer and a liquid phase layer. The primary crystal aggregate is solidified to be taken out of the fourth pressing container and recovered as a metal refined body, and the liquid phase (impurity-concentrated liquid phase) in the third pressing container is recovered. ) To the outside of the third pressing container, the primary crystal aggregate recovered from the fourth pressing container, that is, the fourth stage The impurity concentration of the metal purification product obtained becomes insufficient in high. For the reasons described above, the metal purification method according to the second invention is a three-stage metal purification method. However, the refined metal obtained in the step (d), that is, the refined metal obtained in the fourth stage, depending on the operating conditions such as pressing conditions (pressure and time) in each step (a) to (d) Therefore, depending on the target value of the impurity concentration, a four-stage metal purification method may be used. In the same sense, a five-stage metal purification method may be used. However, stricter operating conditions, on the other hand, lead to a decrease in productivity, etc. In view of this point, etc., it is recommended that a two- to three-stage metal refining method like the first to second inventions is recommended. Come.

前述のように、(a) の工程での初晶発生対象の金属の溶湯に比較して、(b) の工程での初晶発生対象の液相(不純物濃化液相)は不純物濃度が高く、(c) の工程での初晶発生対象の液相(不純物濃化液相)は更に不純物濃度が高いことに起因して、通常は、(a) の工程で得られる金属精製体に比較して、(b) の工程で得られる金属精製体は不純物濃度が高く、(c) の工程で得られる金属精製体は更に不純物濃度が高い。しかし、(a) 〜(c) の各工程での圧搾条件(圧力等)によって、それぞれ得られる金属精製体での不純物濃度を変えることもできるので、(a) 〜(c) の各工程で得られる金属精製体の不純物濃度を同様なものにさせることもでき、従って、同様組成の金属精製体を大量回収することも可能である。   As described above, the liquid phase (impurity-enriched liquid phase) of the primary crystal generation target in the process (b) has an impurity concentration higher than that of the metal melt of the primary crystal generation target in the process (a). The liquid phase (impurity-concentrated liquid phase) that is the target of primary crystal generation in the step (c) is usually higher in the impurity concentration. In comparison, the refined metal obtained in the step (b) has a high impurity concentration, and the refined metal obtained in the step (c) has a higher impurity concentration. However, depending on the pressing conditions (pressure, etc.) in each step of (a) to (c), the impurity concentration in the purified metal product can be changed, so in each step of (a) to (c) The impurity concentration of the obtained metal refined body can be made to be the same, so that it is possible to collect a large amount of the metal refined body having the same composition.

本発明を実施するための装置の例を図1に示す。この装置での操作は、半凝固スラリーが金属精製部1〜3(第1〜3圧搾用容器)にあるとき、以下のように行う。   An example of an apparatus for carrying out the present invention is shown in FIG. The operation in this apparatus is performed as follows when the semi-solidified slurry is in the metal refining units 1 to 3 (first to third pressing containers).

(1) 金属精製部1〜3で、ほぼ同時に圧搾して固液分離する。即ち、金属精製部(圧搾用容器)の上部から押し固め板を下降させて初晶の集積層と液相層とを形成し、次いで、押し固め板を更に下降させるか、下部から受け台を上昇させるか(あるいは、この両方をさせるか)して、上記初晶の集積層を圧搾して押し固めて初晶の集積体(金属精製体)を形成する。
(2) そして、この金属精製体を回収する。金属精製部内の液相(濃化溶湯)は、先ず金属精製部3から排出させ、次いで、金属精製部2から排出させ、次いで、金属精製部1から排出させる。この排出の操作、及び、それ以降の操作は、詳細には、次のような手順で行う。
(1) In the metal refining units 1 to 3, the solid and liquid are separated almost simultaneously. That is, the pressing plate is lowered from the upper part of the metal refining unit (pressing container) to form the primary crystal accumulation layer and the liquid phase layer, and then the pressing plate is further lowered, or the cradle is moved from the lower part. The primary crystal accumulation layer is squeezed and pressed to form a primary crystal accumulation body (metal refined body).
(2) Then, this purified metal is recovered. The liquid phase (concentrated molten metal) in the metal purification unit is first discharged from the metal purification unit 3, then discharged from the metal purification unit 2, and then discharged from the metal purification unit 1. This discharge operation and subsequent operations are performed in the following procedure in detail.

最終溶湯排出用シャッター:開→最終濃化液相回収→最終溶湯排出用シャッター:閉→溶湯液面調整用シャッター3:開→金属精製部3へスラリー3の供給→溶湯液面調整用シャッター3:閉→濃化溶湯排出用シャッター2:開→金属精製部2の濃化溶湯を半凝固スラリー生成部3へ排出→溶湯液面調整用シャッター2:開→金属精製部2へスラリー2の供給→溶湯液面調整用シャッター2:閉→濃化溶湯排出用シャッター1:開→金属精製部1の濃化溶湯を半凝固スラリー生成部2へ排出→溶湯液面調整用シャッター1:開→金属精製部1へスラリー1の供給→溶湯液面調整用シャッター1:閉   Final molten metal discharge shutter: Open → Final concentrated liquid phase recovery → Final molten metal discharge shutter: Closed → Molten liquid level adjustment shutter 3: Open → Supply of slurry 3 to metal refining unit 3 → Molten liquid level adjustment shutter 3 : Closed → Concentrated molten metal discharging shutter 2: Opened → Discharged concentrated molten metal of metal refining unit 2 to semi-solidified slurry generating unit 3 → Molten liquid level adjusting shutter 2: Opened → Supply of slurry 2 to metal refining unit 2 -> Molten liquid level adjustment shutter 2: Closed-> Concentrated molten metal discharge shutter 1: Open-> Concentrated molten metal from the metal refining unit 1 is discharged to the semi-solidified slurry generating unit 2-> Molten liquid level adjustment shutter 1: Open-> Metal Slurry 1 supply to refining unit 1 → Molten liquid level adjustment shutter 1: Closed

(3) この後、上記(1) 、(2) を繰り返す。   (3) After that, repeat (1) and (2) above.

本発明に係る金属の精製方法において、半凝固スラリーの固相率が低いほど、半凝固スラリーを圧搾用容器へ供給し易いので、効率よく(無駄なく)かつ常に固相率一定で供給することができ、また、得られる金属精製体の純度が高く(不純物の含有量が低く)なるが、1回の圧搾で得られる金属精製体の量が少なくなる。半凝固スラリーの固相率が高いほど、1回の圧搾で得られる金属精製体の量が多くなるが、得られる金属精製体の純度が低く(不純物の含有量が高く)なり、また、半凝固スラリーを圧搾用容器へ効率よく(無駄なく)かつ常に固相率一定で供給することが難しくなる。かかる点から、半凝固スラリーの固相率は0.2以上0.4以下とすることが望ましい〔第3発明〕。半凝固スラリーの固相率:0.2以上0.4以下の場合、半凝固スラリーを圧搾用容器へ効率よく(無駄なく)かつ常に固相率一定で供給することができ、また、得られる金属精製体の純度が充分に高く(不純物の含有量が充分に低く)、更に、1回の圧搾で得られる金属精製体の量も充分に多いものとなる。   In the metal refining method according to the present invention, the lower the solid fraction of the semi-solid slurry, the easier it is to supply the semi-solid slurry to the squeeze container. Moreover, although the purity of the metal refinement | purification body obtained becomes high (content of an impurity is low), the quantity of the metal refinement | purification body obtained by one pressing decreases. The higher the solid phase ratio of the semi-solidified slurry, the greater the amount of the purified metal obtained by one pressing, but the lower purity of the obtained purified metal (high impurity content), It becomes difficult to efficiently supply the coagulated slurry to the squeezing container (without waste) and always at a constant solid phase ratio. From this point, it is desirable that the solid phase ratio of the semi-solid slurry is 0.2 or more and 0.4 or less [third invention]. When the solid fraction of the semi-solidified slurry is 0.2 or more and 0.4 or less, the semi-solid slurry can be efficiently supplied to the squeeze container (without waste) and always at a constant solid fraction and is obtained. The purity of the metal purified product is sufficiently high (impurity content is sufficiently low), and the amount of the metal purified product obtained by one pressing is sufficiently large.

初晶の集積層を圧搾する際の圧搾圧力が3MPa未満の場合、初晶結晶間の液相を十分に絞り出すことができず、この圧搾圧力が10MPaを超えても、初晶結晶間の液相の絞り出し効果は3〜10MPaの場合とそれ程変わらない。また、圧力保持をすることで、比較的低圧力でも十分に液相を排出することが可能である。保持時間は、3〜5分が適切であり、5分を超えても、それ程大きな効果の向上は得られない。かかる点から、初晶の集積層を圧搾する際の圧搾圧力は3〜10MPaとし、圧搾時間は3〜5分とすることが望ましい〔第4発明〕。   If the pressing pressure when pressing the primary crystal accumulation layer is less than 3 MPa, the liquid phase between the primary crystals cannot be sufficiently squeezed, and even if this pressing pressure exceeds 10 MPa, the liquid between the primary crystals The squeezing effect of the phase is not so different from the case of 3 to 10 MPa. Further, by maintaining the pressure, the liquid phase can be sufficiently discharged even at a relatively low pressure. The holding time is suitably 3 to 5 minutes, and even if the holding time exceeds 5 minutes, a significant improvement in the effect cannot be obtained. From this point, it is desirable that the pressing pressure when pressing the primary crystal accumulation layer is 3 to 10 MPa, and the pressing time is 3 to 5 minutes [fourth invention].

初晶の集積層の圧搾に際して該集積層を冷却すると、圧搾で得られる初晶の集積体も冷却されるので、この集積体の崩壊をより確実に抑制し得てよい〔第5発明〕。この冷却の手段としては、圧搾用容器の下部に銅管等の冷却管を設けたものがよい。   When the integrated layer is cooled during the pressing of the primary crystal accumulation layer, the primary crystal aggregate obtained by pressing is also cooled, so that the collapse of the aggregate may be more reliably suppressed [fifth invention]. As this cooling means, a cooling pipe such as a copper pipe is preferably provided in the lower part of the squeezing container.

初晶の集積層を圧搾して押し固めて初晶の集積体を形成する際、初晶の集積層は冷却されながら押し固められ、そして初晶の集積体となる。このとき、初晶の集積体内の不純物濃化液相が十分に排出されずに初晶の集積体内で固まってしまうことがある。この場合、得られる初晶の集積体(金属精製体)は不純物濃化液相が固まったもの(以下、不純物濃化液相の固化物)が混在した状態のものとなっているので、この不純物濃化液相の固化物の量および不純物濃度に比例して、金属精製体の純度が低下する。   When the primary crystal accumulation layer is squeezed and compacted to form the primary crystal aggregate, the primary crystal accumulation layer is compacted while being cooled and becomes the primary crystal aggregate. At this time, the impurity-concentrated liquid phase in the primary crystal accumulation body may be solidified without being sufficiently discharged. In this case, the primary crystal aggregate (metal refined body) obtained is in a state where the impurity concentrated liquid phase is solidified (hereinafter, the impurity concentrated liquid phase solidified) is mixed. The purity of the refined metal decreases in proportion to the amount of the solidified product of the impurity-concentrated liquid phase and the impurity concentration.

そこで、初晶の集積層を圧搾して押し固めて初晶の集積体を形成した後、圧搾用容器から出す前に、液相線以下固相線以上の温度に加熱して保持し、圧搾するようにすることが望ましい〔第6発明〕。このようにすると、上記のような不純物濃化液相の固化物の混在による純度の低下を軽減または防止することができる。この詳細を以下説明する。初晶の集積体を形成した後、圧搾用容器から出す前に、液相線以下固相線以上の温度に加熱して保持すると、初晶の集積体内で不純物濃化液相の固化物のみが溶解する(初晶部は溶解しない)。次に、これを圧搾すると、上記溶解したもの(不純物濃化液相)を初晶の集積体から絞り出すことができる。従って、上記のような不純物濃化液相の固化物の混在による純度の低下を軽減または防止することができる。よって、純度の高い金属精製体が得られる。なお、上記液相線以下固相線以上の温度での保持時間は、昇温速度や金属精製部の下部からの冷却に依存するが、初晶の集積体内で不純物濃化液相の固化物が溶解するに足る時間であればよい。   Therefore, after the primary crystal accumulation layer is squeezed and formed to form the primary crystal aggregate, it is heated and held at a temperature equal to or lower than the liquidus and above the solidus before being removed from the container for pressing. It is desirable to do so [Sixth Invention]. If it does in this way, the fall of the purity by mixing of the solidified material of the above impurity-concentrated liquid phases can be reduced or prevented. Details will be described below. After forming the primary crystal aggregate, before heating it out of the container for pressing, if heated to a temperature equal to or lower than the liquidus or higher than the solidus, the solidified product of the impurity-concentrated liquid phase is only contained in the primary crystal aggregate. Dissolves (the primary crystal part does not dissolve). Next, when this is squeezed, the dissolved one (impurity-concentrated liquid phase) can be squeezed out from the primary crystal aggregate. Accordingly, it is possible to reduce or prevent a decrease in purity due to the mixture of the solidified product of the impurity concentrated liquid phase as described above. Therefore, a highly purified metal product can be obtained. The retention time at the temperature below the liquidus or above the solidus depends on the rate of temperature rise or cooling from the lower part of the metal purification unit, but the solidified product of the impurity-concentrated liquid phase in the primary crystal aggregate. It suffices if the time is sufficient to dissolve.

第5発明の場合のように、初晶の集積層の圧搾に際して該集積層を強制的に冷却する場合がある。これ以外の場合、初晶の集積層の圧搾に際して該集積層は自然冷却される。前者(強制的冷却)の場合は、後者(自然冷却)の場合に比較し、冷却速度が高いので、初晶の集積体内での不純物濃化液相の固化が起り易く、このため、上記のような不純物濃化液相の固化物の混在による純度の低下が起こり易い。従って、特に前者の場合、第6発明に係る手段を適用することが望ましい。   As in the case of the fifth aspect of the invention, there is a case where the accumulation layer is forcibly cooled when the accumulation layer of the primary crystal is pressed. In other cases, the accumulation layer is naturally cooled when the primary crystal accumulation layer is pressed. In the case of the former (forced cooling), the cooling rate is higher than in the case of the latter (natural cooling), so that the impurity-concentrated liquid phase is likely to solidify in the primary crystal accumulation body. Such purity deterioration is likely to occur due to the inclusion of solidified impurities concentrated liquid phase. Therefore, particularly in the former case, it is desirable to apply the means according to the sixth invention.

本発明に係る金属の精製方法の(a) の工程において、半凝固スラリーの第1圧搾用容器への供給から第1圧搾用容器内液相の第2半凝固スラリー生成用容器への供給にいたる一連の操作を繰り返して行うと、次第に第1半凝固スラリー生成用容器内の半凝固スラリーが減る。そして、やがて第1圧搾用容器への半凝固スラリーの供給量が不充分となり、以降の操作ができなくなる。このようになったときには、このようになってから、或いは、このようになる前に、第1半凝固スラリー生成用容器内に共晶系不純物を含む金属の溶湯を収容し、この溶湯を液相線以下固相線以上の温度まで冷却して初晶を発生させて半凝固スラリーを生成させ、以降、(a) の工程を遂行し、そして、(b) の工程、(c) の工程を遂行すると、本発明に係る金属の精製方法を再度遂行することができる。   In the step (a) of the metal refining method according to the present invention, from the supply of the semi-solid slurry to the first squeeze container to the supply of the liquid phase in the first squeeze container to the second semi-solid slurry generation container When a series of operations are repeated, the semi-solid slurry in the first semi-solid slurry generating container gradually decreases. Eventually, the amount of the semi-solidified slurry supplied to the first pressing container becomes insufficient, and subsequent operations cannot be performed. In such a case, after such or before this, a molten metal containing eutectic impurities is accommodated in the first semi-solidified slurry generation vessel, and the molten metal is liquidized. Cool to a temperature below the phase line and above the solidus to generate primary crystals to form a semi-solid slurry, and then perform the step (a), and then the steps (b) and (c). If the process is performed, the metal purification method according to the present invention can be performed again.

なお、第3発明に係る半凝固スラリー(固相率の特定)は、前記(a) 〜(c) の工程での半凝固スラリーの全て(三種)を対象としてもよいし、一種または二種を対象としてもよいが、三種を対象とすることが望ましい。第4発明に係る初晶の集積層(圧搾圧力および時間の特定)は、前記(a) 〜(c) の工程での初晶の集積層の全て(三種)を対象としてもよいし、一種または二種を対象としてもよいが、三種を対象とすることが望ましい。第5発明での初晶の集積層(圧搾に際し冷却する)は、前記(a) 〜(c) の工程での初晶の集積層の全て(三種)を対象としてもよいし、一種または二種を対象としてもよいが、三種を対象とすることが望ましい。第6発明での初晶の集積体(加熱し圧搾する)は、前記(a) 〜(c) の工程での初晶の集積体の全て(三種)を対象としてもよいし、一種または二種を対象としてもよいが、三種を対象とすることが望ましい。   The semi-solid slurry (specification of the solid phase ratio) according to the third invention may be all (three types) of the semi-solid slurry in the steps (a) to (c), or one or two types. However, it is desirable to target three types. The primary crystal accumulation layer (specification of pressing pressure and time) according to the fourth aspect of the invention may be directed to all (three types) of primary crystal accumulation layers in the steps (a) to (c). Alternatively, two types may be targeted, but it is desirable to target three types. The primary crystal accumulation layer (cooled during pressing) in the fifth invention may be all (three types) of primary crystal accumulation layers in the steps (a) to (c) described above. Species may be targeted, but it is desirable to target three species. The primary crystal aggregates (heated and squeezed) in the sixth invention may target all (three types) of primary crystal aggregates in the steps (a) to (c), or one or two primary crystal aggregates. Species may be targeted, but it is desirable to target three species.

本発明の実施例を以下に説明する。なお、本発明は、この実施例に限定されるものではなく、本発明の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   Examples of the present invention will be described below. It should be noted that the present invention is not limited to this embodiment, and can be implemented with appropriate modifications within a range that can be adapted to the spirit of the present invention. Included in the range.

〔例A〕
図1に示す装置を用いてAlスクラップの精製を行った。この詳細を以下説明する。第1〜第3圧搾用容器(金属精製部1〜3)としては、内径130mm 、高さ500mm の円筒型の黒鉛製鋳型の下部に該鋳型に内接して上下に摺動可能な受け台を設けると共に該鋳型の上部に該鋳型に内接して上下に摺動可能な押し固め板を設けてなるものを用いた。この押し固め板は、円板状で圧搾により絞り出した液相が効率よく分離するように直径5mmの通湯孔が28個設けられている。上下動のストロークは150mm である。
[Example A]
Al scrap was refined using the apparatus shown in FIG. Details will be described below. As the first to third squeezing containers (metal refining parts 1 to 3), a cradle that is inscribed in the mold and slides up and down at the bottom of a cylindrical graphite mold having an inner diameter of 130 mm and a height of 500 mm. In addition, a pressing plate that is provided on the upper part of the mold and that is inscribed in the mold and that can slide up and down is used. This compaction plate has a disk shape and is provided with 28 hot water holes having a diameter of 5 mm so that the liquid phase squeezed out by pressing is efficiently separated. The vertical stroke is 150mm.

精製処理を施すAlスクラップとしてAl-1.60wt%Si-0.14wt%Feの成分の合金(Si、Feを、それぞれ 1.60wt%、0.14wt% 含有するAl)を用い、下記(a) 〜(c) の工程を遂行した。なお、上記Si、Feは共晶系不純物に該当する。即ち、Si、Feは、Alと共晶反応を呈する共晶系元素であり、不純物である。共晶系不純物とは、例えば上記Al中のSi、Feのように、ベースの金属元素と共晶反応を呈する不純物元素のことである。   Using Al-1.60wt% Si-0.14wt% Fe alloy (Al containing Si and Fe, 1.60wt% and 0.14wt%, respectively) as Al scrap to be refined, the following (a) to (c ) Was performed. Note that Si and Fe correspond to eutectic impurities. That is, Si and Fe are eutectic elements that exhibit a eutectic reaction with Al, and are impurities. A eutectic impurity is an impurity element that exhibits a eutectic reaction with a base metal element, such as Si and Fe in Al.

(a) 上記Alスクラップを溶解して溶湯を得、この溶湯を半凝固スラリー生成室1(第1半凝固スラリー生成用容器)に供給し、該スラリー生成室1で液相線以下固相線以上の温度(640 ℃)まで冷却して初晶を発生させて半凝固スラリー1を生成した。この半凝固スラリー1は、温度640 ℃に保持され、固相率0.3である。この半凝固スラリー1を金属精製部1(第1圧搾用容器)に供給し、該金属精製部1で押し固め板を下降させて初晶の集積層と液相層とを形成し、次いで、該金属精製部1の押し固め板と受け台により上記初晶の集積層を圧搾して押し固めて初晶の集積体を形成した。この初晶の集積体(Al精製体1)を金属精製部1から出して回収すると共に、金属精製部1(第1圧搾用容器)内の液相(不純物濃化液相)を半凝固スラリー生成室2(第2半凝固スラリー生成用容器)に供給した。この後、上記と同様の半凝固スラリー1の金属精製部1(第1圧搾用容器)への供給から金属精製部1(第1圧搾用容器)内液相(不純物濃化液相)の半凝固スラリー生成室2(第2半凝固スラリー生成用容器)への供給にいたる一連の操作を繰り返して行った。なお、上記圧搾の際の圧搾圧力は4MPa、6.5MPaの2種類とした。圧搾時間は3分とした。   (a) The above Al scrap is melted to obtain a molten metal, and this molten metal is supplied to the semi-solidified slurry generating chamber 1 (first semi-solidified slurry generating container). The semi-solid slurry 1 was produced by cooling to the above temperature (640 ° C.) to generate primary crystals. This semi-solid slurry 1 is maintained at a temperature of 640 ° C. and has a solid phase ratio of 0.3. The semi-solid slurry 1 is supplied to the metal refining unit 1 (first pressing container), and the compaction plate is lowered in the metal refining unit 1 to form a primary crystal accumulation layer and a liquid phase layer, The primary crystal accumulation layer was squeezed and pressed by the compaction plate and the cradle of the metal refining unit 1 to form primary crystal aggregates. The primary crystal aggregate (Al refined body 1) is recovered from the metal refining unit 1 and the liquid phase (impurity-concentrated liquid phase) in the metal refining unit 1 (first pressing container) is semi-solidified slurry. It supplied to the production | generation chamber 2 (2nd container for semi-solidified slurry production | generation). Thereafter, from the supply of the same semi-solid slurry 1 to the metal refining unit 1 (first pressing container) as described above, the liquid phase (impurity-concentrated liquid phase) in the metal refining unit 1 (first pressing container) is half. A series of operations up to the supply to the solidified slurry generation chamber 2 (second semi-solidified slurry generation container) was repeated. In addition, the compression pressure in the case of the said compression was made into 2 types, 4 MPa and 6.5 MPa. The pressing time was 3 minutes.

(b) 前記(a) の工程で半凝固スラリー生成室2(第2半凝固スラリー生成用容器)に供給された液相(不純物濃化液相)を該スラリー生成室2で液相線以下固相線以上の温度(635 ℃)まで冷却して初晶を発生させて半凝固スラリー2を生成した。この半凝固スラリー2は、温度635 ℃に保持され、固相率0.3である。この半凝固スラリー2を金属精製部2(第2圧搾用容器)に供給し、該金属精製部2で押し固め板を下降させて初晶の集積層と液相層とを形成し、次いで、該金属精製部2の押し固め板と受け台により上記初晶の集積層を圧搾して押し固めて初晶の集積体を形成した。この初晶の集積体(Al精製体2)を金属精製部2から出して回収すると共に、金属精製部2(第2圧搾用容器)内の液相(不純物濃化液相)を半凝固スラリー生成室3(第3半凝固スラリー生成用容器)に供給した。この後、前記(a) の工程で金属精製部1(第1圧搾用容器)内の液相(不純物濃化液相)が半凝固スラリー生成室2(第2半凝固スラリー生成用容器)に供給される毎に、上記と同様の半凝固スラリー2の生成から金属精製部2(第2圧搾用容器)内液相(不純物濃化液相)の半凝固スラリー生成室3(第3半凝固スラリー生成用容器)への供給にいたる一連の操作を繰り返して行った。なお、上記圧搾の際の圧搾圧力については、前記(a) の工程での圧搾圧力4MPaの場合は、4MPaとし、前記(a) の工程での圧搾圧力6.5MPaの場合は、6.5MPaとした。圧搾時間は3分とした。   (b) The liquid phase (impurity-concentrated liquid phase) supplied to the semi-solidified slurry generation chamber 2 (second semi-solidified slurry generation container) in the step (a) is below the liquidus line in the slurry generation chamber 2. A semi-solid slurry 2 was produced by cooling to a temperature above the solidus (635 ° C.) to generate primary crystals. The semi-solid slurry 2 is maintained at a temperature of 635 ° C. and has a solid phase ratio of 0.3. This semi-solidified slurry 2 is supplied to the metal refining unit 2 (second squeezing container), and the compaction plate is lowered in the metal refining unit 2 to form an accumulation layer and a liquid phase layer of primary crystals, The primary crystal accumulation layer was squeezed and pressed with a compaction plate and a cradle of the metal refining unit 2 to form primary crystal aggregates. The primary crystal aggregate (Al refined body 2) is recovered from the metal refining unit 2 and the liquid phase (impurity-concentrated liquid phase) in the metal refining unit 2 (second pressing container) is semi-solidified slurry. It supplied to the production | generation chamber 3 (3rd semi-solidified slurry production | generation container). Thereafter, in the step (a), the liquid phase (impurity-concentrated liquid phase) in the metal refining unit 1 (first pressing container) is transferred to the semi-solid slurry generation chamber 2 (second semi-solid slurry generation container). Every time it is supplied, the semi-solid slurry 2 similar to the above is generated, and the semi-solid slurry generation chamber 3 (third semi-solid) in the liquid phase (impurity-concentrated liquid phase) in the metal refining unit 2 (second pressing container). A series of operations up to the supply to the slurry generation container) were repeated. In addition, about the pressing pressure in the case of the said pressing, it is set to 4 MPa in the case of the pressing pressure of 4 MPa in the step (a), and in the case of the pressing pressure of 6.5 MPa in the step (a), it is 6.5 MPa. It was. The pressing time was 3 minutes.

(c) 前記(b) の工程で半凝固スラリー生成室3(第3半凝固スラリー生成用容器)に供給された液相(不純物濃化液相)を該スラリー生成室2で液相線以下固相線以上の温度(635 ℃)まで冷却して初晶を発生させて半凝固スラリー3を生成した。この半凝固スラリー3は、温度635 ℃に保持され、固相率0.3である。この半凝固スラリー3を金属精製部3(第3圧搾用容器)に供給し、該金属精製部3で押し固め板を下降させて初晶の集積層と液相層とを形成し、次いで、該金属精製部3の押し固め板と受け台により上記初晶の集積層を圧搾して押し固めて初晶の集積体を形成した。この初晶の集積体(Al精製体3)を金属精製部3から出して回収すると共に、金属精製部3(第3圧搾用容器)内の液相(不純物濃化液相)を該容器外へ排出し、最終濃化溶湯回収部に回収した。この後、前記(b) の工程で金属精製部2(第2圧搾用容器)内の液相(不純物濃化液相)が半凝固スラリー生成室3(第3半凝固スラリー生成用容器)に供給される毎に、上記と同様の半凝固スラリー3の生成から金属精製部3(第3圧搾用容器)内液相(不純物濃化液相)の排出にいたる一連の操作を繰り返して行った。なお、上記圧搾の際の圧搾圧力については、前記(a) の工程での圧搾圧力4MPaの場合は、4MPaとし、前記(a) の工程での圧搾圧力6.5MPaの場合は、6.5MPaとした。圧搾時間は3分とした。   (c) The liquid phase (impurity-concentrated liquid phase) supplied to the semi-solid slurry generation chamber 3 (third semi-solid slurry generation container) in the step (b) is reduced below the liquidus line in the slurry generation chamber 2. A semi-solid slurry 3 was produced by cooling to a temperature above the solidus (635 ° C.) to generate primary crystals. This semi-solid slurry 3 is maintained at a temperature of 635 ° C. and has a solid phase ratio of 0.3. The semi-solid slurry 3 is supplied to the metal refining unit 3 (third squeezing container), and the compaction plate is lowered in the metal refining unit 3 to form a primary crystal accumulation layer and a liquid phase layer, The primary crystal accumulation layer was squeezed and pressed by the compaction plate and the cradle of the metal refining unit 3 to form primary crystal aggregates. The primary crystal aggregate (Al refined product 3) is taken out from the metal purification unit 3 and recovered, and the liquid phase (impurity-concentrated liquid phase) in the metal purification unit 3 (third squeezing container) is removed from the container. And recovered in the final concentrated molten metal recovery section. Thereafter, in the step (b), the liquid phase (impurity-concentrated liquid phase) in the metal refining unit 2 (second pressing container) is transferred to the semi-solid slurry generation chamber 3 (third semi-solid slurry generation container). Each time it was supplied, a series of operations from the generation of the semi-solid slurry 3 similar to the above to the discharge of the liquid phase (impurity-concentrated liquid phase) in the metal refining unit 3 (third pressing container) was repeated. . In addition, about the pressing pressure in the case of the said pressing, it is set to 4 MPa in the case of the pressing pressure of 4 MPa in the step (a), and in the case of the pressing pressure of 6.5 MPa in the step (a), it is 6.5 MPa. It was. The pressing time was 3 minutes.

上記(a) 〜(c) の工程を遂行した結果、上記(a) 〜(c) の工程で、それぞれ、傾斜組成でない組成(均一組成)で、同様組成のAl精製体を連続的に(次々と)得ることができた。   As a result of performing the steps (a) to (c), in the steps (a) to (c), the Al refined body having the same composition with a non-gradient composition (uniform composition) was continuously obtained ( One after another).

上記(a) 〜(c) の工程での各初期溶湯の組成(不純物のSi、Feの含有量)および各精製体の組成(不純物のSi、Feの含有量)を表1に示す。なお、この各初期溶湯は、上記(a) の工程での半凝固スラリー生成前の溶湯(Alスクラップを溶解したもの)、上記(b) の工程での半凝固スラリー生成前の液相(不純物濃化液相)すなわち上記(a) の工程での半凝固スラリー生成室2への供給前の液相(不純物濃化液相)、上記(c) の工程での半凝固スラリー生成前の液相(不純物濃化液相)すなわち上記(b) の工程での半凝固スラリー生成室3への供給前の液相(不純物濃化液相)のことである。一方、各精製体は、上記(a) の工程で回収して得た初晶の集積体(Al精製体1)、上記(b) の工程で回収して得た初晶の集積体(Al精製体2)、上記(c) の工程で回収して得た初晶の集積体(Al精製体3)のことである。最終残液は、上記(c) の工程で金属精製部3(第3圧搾用容器)から最終濃化溶湯回収部に排出し回収した液相(不純物濃化液相)のことである。   Table 1 shows the composition of each initial molten metal (contents of impurities Si and Fe) and the composition of each purified product (contents of impurities Si and Fe) in the steps (a) to (c). Each initial molten metal is a molten metal before the production of the semisolid slurry in the step (a) (dissolved Al scrap), and a liquid phase (impurities) before the production of the semisolid slurry in the step (b). Concentrated liquid phase), that is, the liquid phase (impurity concentrated liquid phase) before being supplied to the semi-solidified slurry generation chamber 2 in the step (a), and the liquid before the semi-solidified slurry generation in the step (c) This is the phase (impurity-enriched liquid phase), that is, the liquid phase (impurity-enriched liquid phase) before being supplied to the semi-solidified slurry production chamber 3 in the step (b). On the other hand, each refined body is obtained by collecting the primary crystal aggregate (Al refined body 1) recovered in the step (a) and the primary crystal aggregate (Al purified) obtained in the process (b). Purified product 2) refers to the primary crystal aggregate (Al purified product 3) obtained by recovery in the step (c). The final residual liquid is the liquid phase (impurity-concentrated liquid phase) discharged and recovered from the metal refining unit 3 (third pressing container) to the final concentrated molten metal recovery unit in the step (c).

表1からわかるように、精製処理前の溶湯(Alスクラップを溶解したもの)は、不純物元素(Si、Fe)の量が、Si:1.60wt% 、Fe:0.14wt% である。圧搾の際の圧搾圧力:4MPaの場合、Al精製体1は、不純物元素(Si、Fe)量が、Si:0.69wt% 、Fe:0.10wt% であり、精製処理前の溶湯よりも不純物元素のSiおよびFeの含有量が低くなっている。Al精製体2は、不純物元素のSiの含有量がAl精製体1の場合よりも高いが、精製処理前の溶湯よりも低くなっている。Al精製体3は、不純物元素のSiの含有量がAl精製体2の場合よりも高いが、精製処理前の溶湯よりも低くなっている。   As can be seen from Table 1, the amount of impurity elements (Si, Fe) in the molten metal (refined Al scrap) before refining treatment is Si: 1.60 wt% and Fe: 0.14 wt%. In the case of pressing pressure at the time of pressing: 4 MPa, the Al refined body 1 has an impurity element (Si, Fe) amount of Si: 0.69 wt% and Fe: 0.10 wt%, and is more impurity element than the melt before the purification treatment. The content of Si and Fe is low. In the Al refined body 2, the content of the impurity element Si is higher than that in the case of the Al refined body 1, but is lower than the molten metal before the purification treatment. In the Al refined body 3, the content of the impurity element Si is higher than that in the case of the Al refined body 2, but is lower than the molten metal before the purification treatment.

圧搾の際の圧搾圧力:6.5MPaの場合、Al精製体1は、精製処理前の溶湯よりも不純物元素のSiおよびFeの含有量が低くなっている。Al精製体2は、不純物元素のSiおよびFeの含有量がAl精製体1の場合よりも高いが、精製処理前の溶湯よりも不純物元素のSiおよびFeの含有量が低くなっている。Al精製体3は、不純物元素のSiの含有量がAl精製体2の場合よりも高いが、精製処理前の溶湯よりも低くなっている。   In the case of pressing pressure at the time of pressing: 6.5 MPa, the Al refined body 1 has a lower content of impurity elements Si and Fe than the molten metal before the purification treatment. The Al refined body 2 has a higher content of impurity elements Si and Fe than that of the Al refined body 1, but has a lower content of impurity elements Si and Fe than the melt before the purification treatment. In the Al refined body 3, the content of the impurity element Si is higher than that in the case of the Al refined body 2, but is lower than the molten metal before the purification treatment.

なお、表1の結果は、上記(a) の工程の最初(操作繰り返しでの第1回目)に得られたAl精製体1、上記(b) の工程の最初(操作繰り返しでの第1回目)に得られたAl精製体2、上記(c) の工程の最初(操作繰り返しでの第1回目)に得られたAl精製体3についてのものであるが、第n回目(n=2、3、4、5、・・・)に得られたAl精製体1、Al精製体2、Al精製体3の場合もほとんど差異がなく、略同様組成であった。   The results in Table 1 show that the Al refined body 1 obtained at the beginning of the above step (a) (first time in the repeated operation) and the first (at the first time in the repeated operation) of the above step (b). Al purified product 2 obtained in the above step (c), and the Al purified product 3 obtained at the beginning of the above step (c) (first operation), but the nth product (n = 2, 3, 4, 5, ...) Al purified body 1, Al purified body 2 and Al purified body 3 obtained were almost the same and almost the same in composition.

従って、上記(a) 〜(c) の工程で、それぞれ、精製処理対象材(Alスクラップ)よりも不純物の含有量が低く、傾斜組成でない組成(均一組成)で、同様組成のAl精製体を連続的に(次々と)得ることができることが確認できた。   Therefore, in the above steps (a) to (c), an Al refined body having the same composition with a composition (homogeneous composition) having a lower content of impurities than the material to be refined (Al scrap) and a non-gradient composition (uniform composition). It was confirmed that it can be obtained continuously (one after another).

なお、圧搾の際の圧搾圧力:4MPaの場合、Al精製体3は、不純物元素のFeの含有量が精製処理前の溶湯よりも高く、また、圧搾の際の圧搾圧力:6.5MPaの場合、Al精製体3は、不純物元素のFeの含有量が精製処理前の溶湯よりも高いので、本実施例は不純物元素のSiの含有量を低下させたい場合に好適であるといえる。不純物元素のFeの含有量も低下させたい場合、操作条件を変更すればよく、それによって不純物元素のFeの含有量も低下させることが可能である。例えば、半凝固スラリーを生成させる際の冷却温度を高くしたり、半凝固スラリーの固相率を小さくしたり、圧搾の際の圧搾圧力を高めたり、圧搾時間を長くしたりすること等によって、不純物元素のFeの含有量も低下させることが可能である。   In addition, in the case of pressing pressure at the time of pressing: 4 MPa, the Al refined body 3 has a higher content of Fe as an impurity element than the molten metal before the purification treatment, and the pressing pressure at the time of pressing: 6.5 MPa. The Al refined body 3 has a higher Fe content of the impurity element than the molten metal before the refining treatment. Therefore, it can be said that this example is suitable when it is desired to reduce the Si content of the impurity element. If it is desired to reduce the Fe content of the impurity element, the operating conditions may be changed, thereby reducing the Fe content of the impurity element. For example, by increasing the cooling temperature when generating the semi-solidified slurry, decreasing the solid phase ratio of the semi-solidified slurry, increasing the pressing pressure at the time of pressing, increasing the pressing time, etc. The content of the impurity element Fe can also be reduced.

〔例B〕
装置として前記例Aの場合と同様の装置を用い、精製処理を施すAlスクラップとして前記例Aの場合と同様のAlスクラップを用い、下記(a1)〜(c1)の工程を遂行した。
[Example B]
The same apparatus as in Example A was used as the apparatus, and Al scrap similar to that in Example A was used as the Al scrap to be refined, and the following steps (a1) to (c1) were performed.

(a1) 前記例Aの(a) の工程の場合と同様の方法(プロセスおよび条件)により、金属精製部1にて初晶の集積体を形成した後、液相線以下固相線以上の温度(640 ℃)に加熱して1分間保持し、次いで圧搾圧力:6.5MPaで圧搾し、しかる後、この初晶の集積体(Al精製体1)を金属精製部1から出して回収すると共に、金属精製部1内の不純物濃化液相を半凝固スラリー生成室2に供給した。なお、上記加熱後の圧搾の際の圧搾時間は3分とした。初晶の集積層の圧搾の際の圧搾圧力は6.5MPaとし、圧搾時間は3分とした。   (a1) After the formation of the primary crystal aggregate in the metal purification unit 1 by the same method (process and conditions) as in the step (a) of Example A, the liquidus below the solidus Heat to temperature (640 ° C.) and hold for 1 minute, then squeeze at squeezing pressure: 6.5 MPa, and then collect the primary crystal aggregate (Al purified body 1) from the metal purification section 1 and collect it. At the same time, the impurity concentrated liquid phase in the metal refining unit 1 was supplied to the semi-solidified slurry production chamber 2. In addition, the pressing time in pressing after the heating was 3 minutes. The pressing pressure for pressing the primary crystal accumulation layer was 6.5 MPa, and the pressing time was 3 minutes.

(b1) 前記例Aの(b) の工程の場合と同様の方法(プロセスおよび条件)により、金属精製部2にて初晶の集積体を形成した後、液相線以下固相線以上の温度(635 ℃)に加熱して1分間保持し、次いで圧搾圧力:6.5MPaで圧搾し、しかる後、この初晶の集積体(Al精製体2)を金属精製部2から出して回収すると共に、金属精製部2内の不純物濃化液相を半凝固スラリー生成室3に供給した。なお、上記加熱後の圧搾の際の圧搾時間は3分とした。初晶の集積層の圧搾の際の圧搾圧力は6.5MPaとし、圧搾時間は3分とした。   (b1) After the formation of the primary crystal aggregate in the metal purification unit 2 by the same method (process and conditions) as in the step (b) of Example A, the liquidus below the solidus Heat to temperature (635 ° C.) and hold for 1 minute, and then squeeze at squeezing pressure: 6.5 MPa. After that, this primary crystal aggregate (Al refined product 2) is taken out from the metal purification unit 2 and recovered. At the same time, the impurity concentrated liquid phase in the metal refining unit 2 was supplied to the semi-solidified slurry production chamber 3. In addition, the pressing time in pressing after the heating was 3 minutes. The pressing pressure for pressing the primary crystal accumulation layer was 6.5 MPa, and the pressing time was 3 minutes.

(c1) 前記例Aの(c) の工程の場合と同様の方法(プロセスおよび条件)により、金属精製部3にて初晶の集積体を形成した後、液相線以下固相線以上の温度(635 ℃)に加熱して1分間保持し、次いで圧搾圧力:6.5MPaで圧搾し、しかる後、この初晶の集積体(Al精製体3)を金属精製部3から出して回収すると共に、金属精製部3内の不純物濃化液相を該容器外へ排出し、最終濃化溶湯回収部に回収した。なお、上記加熱後の圧搾の際の圧搾時間は3分とした。初晶の集積層の圧搾の際の圧搾圧力は6.5MPaとし、圧搾時間は3分とした。   (c1) After forming the primary crystal aggregate in the metal refining unit 3 by the same method (process and conditions) as in the case of the step (c) of Example A, Heat to temperature (635 ° C.) and hold for 1 minute, then squeeze at squeezing pressure: 6.5 MPa, and then collect this primary crystal aggregate (Al purified product 3) from the metal purification unit 3 and collect it. At the same time, the impurity concentrated liquid phase in the metal refining unit 3 was discharged out of the container and recovered in the final concentrated molten metal recovery unit. In addition, the pressing time in pressing after the heating was 3 minutes. The pressing pressure for pressing the primary crystal accumulation layer was 6.5 MPa, and the pressing time was 3 minutes.

上記例Bの(a1)〜(c1)の工程で得られたAl精製体1〜3の組成(不純物のSi、Feの含有量)を表2に示す。前記例Aの(a) 〜(c) の工程で得られたAl精製体1〜3であって圧搾圧力:6.5MPaの場合のものと、上記例Bの(a1)〜(c1)の工程で得られたAl精製体1〜3とを対比する。上記例Bの(a1)〜(c1)の工程で得られたAl精製体1〜3は、前記例Aの(a) 〜(c) の工程で得られたAl精製体1〜3(圧搾圧力:6.5MPa)に比べて、不純物元素のSiおよびFeの含有量が低くなっている。即ち、例BでのAl精製体1は例AでのAl精製体1に比べて、Feの含有量は同等であるが、Siの含有量が低く、例BでのAl精製体2は例AでのAl精製体2に比べて、SiおよびFeの含有量が低く、例BでのAl精製体3は例AでのAl精製体3に比べて、SiおよびFeの含有量が低くなっている。   Table 2 shows the compositions (contents of impurities Si and Fe) of the Al purified products 1 to 3 obtained in the steps (a1) to (c1) of Example B above. Al refined bodies 1 to 3 obtained in the steps (a) to (c) of Example A, and those having a pressing pressure of 6.5 MPa, and those of (a1) to (c1) of Example B above The Al purified products 1 to 3 obtained in the process are compared. The Al purified products 1 to 3 obtained in the steps (a1) to (c1) of Example B are the Al purified products 1 to 3 (pressed) obtained in the steps (a) to (c) of Example A. Compared with the pressure (6.5 MPa), the contents of impurity elements Si and Fe are low. That is, the Al purified product 1 in Example B has the same Fe content as the Al purified product 1 in Example A, but the Si content is low, and the Al purified product 2 in Example B is an example. Compared with the Al refined body 2 in A, the contents of Si and Fe are lower, and the Al refined body 3 in Example B has a lower content of Si and Fe than the Al purified body 3 in Example A. ing.

Figure 2010265546
Figure 2010265546

Figure 2010265546
Figure 2010265546

本発明に係る金属の精製方法は、共晶系不純物を含む金属から、この不純物の含有量が低く、傾斜組成でない組成(均一組成)の金属精製体を連続的に得ることができるので、Alスクラップを精製して再利用可能とする精製方法として好適に用いることができて有用である。   Since the metal purification method according to the present invention can continuously obtain a metal refined body having a composition (homogeneous composition) having a low content and a non-gradient composition from a metal containing eutectic impurities, Al It can be suitably used as a refining method for refining scraps so that they can be reused.

Claims (6)

下記(a) 〜(b) の工程を有することを特徴とする金属の精製方法。
(a) 第1半凝固スラリー生成用容器内に共晶系不純物を含む金属の溶湯を収容し、この溶湯を液相線以下固相線以上の温度まで冷却して初晶を発生させて半凝固スラリーを生成し、この半凝固スラリーを第1圧搾用容器に供給し、初晶の集積層と液相層とを形成し、次いで、この初晶の集積層を圧搾して押し固めて初晶の集積体を形成し、この初晶の集積体を第1圧搾用容器から出し、金属精製体として回収すると共に、第1圧搾用容器内の液相を第2半凝固スラリー生成用容器に供給し、この後、上記と同様の半凝固スラリーの第1圧搾用容器への供給から第1圧搾用容器内液相の第2半凝固スラリー生成用容器への供給にいたる一連の操作を繰り返して行う工程。
(b) 前記第2半凝固スラリー生成用容器に供給された液相を液相線以下固相線以上の温度まで冷却して初晶を発生させて半凝固スラリーを生成し、この半凝固スラリーを第2圧搾用容器に供給し、初晶の集積層と液相層とを形成し、次いで、この初晶の集積層を圧搾して押し固めて初晶の集積体を形成し、この初晶の集積体を第2圧搾用容器から出し、金属精製体として回収すると共に、第2圧搾用容器内の液相を第2圧搾用容器外へ排出し、この後、上記と同様の半凝固スラリーの生成から第2圧搾用容器内液相の排出にいたる一連の操作を繰り返して行う工程。
A metal purification method comprising the following steps (a) to (b):
(a) A molten metal containing eutectic impurities is accommodated in the first semi-solidified slurry generating vessel, and this molten metal is cooled to a temperature below the liquidus and above the solidus to generate primary crystals and semi-solid. A coagulated slurry is generated, and this semi-coagulated slurry is supplied to the first squeeze container to form a primary crystal accumulation layer and a liquid phase layer. A crystal aggregate is formed, and the primary crystal aggregate is taken out from the first pressing container and recovered as a metal refined body, and the liquid phase in the first pressing container is used as a second semi-solidified slurry generating container. After that, a series of operations from the supply of the semi-solid slurry similar to the above to the first squeeze container to the supply of the liquid phase in the first squeeze container to the second semi-solid slurry generation container are repeated. Process.
(b) The liquid phase supplied to the second semi-solidified slurry generating container is cooled to a temperature below the liquidus and above the solidus to generate primary crystals, thereby generating a semi-solid slurry. Is supplied to the second squeeze container to form the primary crystal accumulation layer and the liquid phase layer, and then the primary crystal accumulation layer is squeezed and pressed to form the primary crystal aggregate. The crystal agglomerate is taken out from the second pressing container and recovered as a metal refined body, and the liquid phase in the second pressing container is discharged out of the second pressing container. A step of repeatedly performing a series of operations from the generation of the slurry to the discharge of the liquid phase in the second pressing container.
下記(a) 〜(c) の工程を有することを特徴とする金属の精製方法。
(a) 第1半凝固スラリー生成用容器内に共晶系不純物を含む金属の溶湯を収容し、この溶湯を液相線以下固相線以上の温度まで冷却して初晶を発生させて半凝固スラリーを生成し、この半凝固スラリーを第1圧搾用容器に供給し、初晶の集積層と液相層とを形成し、次いで、この初晶の集積層を圧搾して押し固めて初晶の集積体を形成し、この初晶の集積体を第1圧搾用容器から出し、金属精製体として回収すると共に、第1圧搾用容器内の液相を第2半凝固スラリー生成用容器に供給し、この後、上記と同様の半凝固スラリーの第1圧搾用容器への供給から第1圧搾用容器内液相の第2半凝固スラリー生成用容器への供給にいたる一連の操作を繰り返して行う工程。
(b) 前記第2半凝固スラリー生成用容器に供給された液相を液相線以下固相線以上の温度まで冷却して初晶を発生させて半凝固スラリーを生成し、この半凝固スラリーを第2圧搾用容器に供給し、初晶の集積層と液相層とを形成し、次いで、この初晶の集積層を圧搾して押し固めて初晶の集積体を形成し、この初晶の集積体を第2圧搾用容器から出し、金属精製体として回収すると共に、第2圧搾用容器内の液相を第3半凝固スラリー生成用容器に供給し、この後、上記と同様の半凝固スラリーの生成から第2圧搾用容器内液相の第3半凝固スラリー生成用容器への供給にいたる一連の操作を繰り返して行う工程。
(c) 前記第3半凝固スラリー生成用容器に供給された液相を液相線以下固相線以上の温度まで冷却して初晶を発生させて半凝固スラリーを生成し、この半凝固スラリーを第3圧搾用容器に供給し、初晶の集積層と液相層とを形成し、次いで、この初晶の集積層を圧搾して押し固めて初晶の集積体を形成し、この初晶の集積体を第3圧搾用容器から出し、金属精製体として回収すると共に、第3圧搾用容器内の液相を第3圧搾用容器外へ排出し、この後、上記と同様の半凝固スラリーの生成から第3圧搾用容器内液相の排出にいたる一連の操作を繰り返して行う工程。
A metal purification method comprising the following steps (a) to (c):
(a) A molten metal containing eutectic impurities is accommodated in the first semi-solidified slurry generating vessel, and this molten metal is cooled to a temperature below the liquidus and above the solidus to generate primary crystals and semi-solid. A coagulated slurry is generated, and this semi-coagulated slurry is supplied to the first squeeze container to form a primary crystal accumulation layer and a liquid phase layer. A crystal aggregate is formed, and the primary crystal aggregate is taken out from the first pressing container and recovered as a metal refined body, and the liquid phase in the first pressing container is used as a second semi-solidified slurry generating container. After that, a series of operations from the supply of the semi-solid slurry similar to the above to the first squeeze container to the supply of the liquid phase in the first squeeze container to the second semi-solid slurry generation container are repeated. Process.
(b) The liquid phase supplied to the second semi-solidified slurry generating container is cooled to a temperature below the liquidus and above the solidus to generate primary crystals, thereby generating a semi-solid slurry. Is supplied to the second squeeze container to form the primary crystal accumulation layer and the liquid phase layer, and then the primary crystal accumulation layer is squeezed and pressed to form the primary crystal aggregate. The crystal agglomerate is taken out from the second pressing container and recovered as a metal refined body, and the liquid phase in the second pressing container is supplied to the third semi-solidified slurry generating container. A step of repeatedly performing a series of operations from the generation of the semi-solidified slurry to the supply of the liquid phase in the second pressing container to the third semi-solidified slurry generating container.
(c) The liquid phase supplied to the third semi-solidified slurry generating container is cooled to a temperature below the liquidus and above the solidus to generate primary crystals, thereby generating a semi-solid slurry. Is supplied to the third pressing container to form the primary crystal accumulation layer and the liquid phase layer, and then the primary crystal accumulation layer is squeezed and pressed to form the primary crystal aggregate. The crystal aggregate is taken out from the third pressing container and recovered as a metal refined body, and the liquid phase in the third pressing container is discharged out of the third pressing container. A step of repeatedly performing a series of operations from the generation of the slurry to the discharge of the liquid phase in the third pressing container.
前記半凝固スラリーの固相率が0.2以上0.4以下である請求項1または2に記載の金属の精製方法。   The method for purifying a metal according to claim 1 or 2, wherein the semisolid slurry has a solid phase ratio of 0.2 to 0.4. 前記初晶の集積層を圧搾する際の圧搾圧力が3〜10MPaであり、圧搾時間が3〜5分である請求項1〜3のいずれかに記載の金属の精製方法。   The metal refining method according to any one of claims 1 to 3, wherein a pressing pressure when pressing the primary crystal accumulation layer is 3 to 10 MPa, and a pressing time is 3 to 5 minutes. 前記初晶の集積層の圧搾に際して該集積層を冷却する請求項1〜4のいずれかに記載の金属の精製方法。   The method for purifying a metal according to any one of claims 1 to 4, wherein the accumulation layer is cooled when the accumulation layer of the primary crystal is pressed. 前記初晶の集積体を形成した後、前記圧搾用容器から出す前に、液相線以下固相線以上の温度に加熱して保持し、圧搾する請求項1〜5のいずれかに記載の金属の精製方法。
After forming the said primary crystal aggregate, before taking out from the said container for pressing, it heats to the temperature more than a liquidus line and below a solidus line, hold | maintains, and squeezes. Metal purification method.
JP2010090498A 2009-04-16 2010-04-09 Method for refining metal Pending JP2010265546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010090498A JP2010265546A (en) 2009-04-16 2010-04-09 Method for refining metal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009100121 2009-04-16
JP2010090498A JP2010265546A (en) 2009-04-16 2010-04-09 Method for refining metal

Publications (1)

Publication Number Publication Date
JP2010265546A true JP2010265546A (en) 2010-11-25

Family

ID=43362758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010090498A Pending JP2010265546A (en) 2009-04-16 2010-04-09 Method for refining metal

Country Status (1)

Country Link
JP (1) JP2010265546A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108273975A (en) * 2018-01-31 2018-07-13 昆明理工大学 A kind of semi solid slurry preparation and moulding integrated equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108273975A (en) * 2018-01-31 2018-07-13 昆明理工大学 A kind of semi solid slurry preparation and moulding integrated equipment

Similar Documents

Publication Publication Date Title
MY156002A (en) Plasma method and apparatus for recovery of precious metals
JP6667485B2 (en) Recycling method of Al alloy
KR101264219B1 (en) Mg alloy and the manufacturing method of the same
Liang et al. Microstructure and tensile properties of in situ TiCp/Al–4.5 wt.% Cu composites obtained by direct reaction synthesis
CN103820661A (en) Preparation method of semisolid slurry of rare earth magnesium alloy
Huang et al. A metallurgical route to upgrade silicon kerf derived from diamond-wire slicing process
CN103060642A (en) High-strength aluminum alloy subjected to carbonitride complex treatment and preparation method thereof
JPH04314836A (en) Method and equipment for manufacturing alloy composed mainly of titanium and aluminum
Zou et al. Effect of traveling magnetic field on separation and purification of Si from Al–Si melt during solidification
CN102329970B (en) Method for producing ferrotungsten with tungsten carbide obtained by tungsten-containing waste processing as raw material
CN102672146A (en) Method for compositely refining solidification structure of magnesium alloy by combination of current and Zr
Sun et al. Refinement of primary Si in Al–20% Si alloy by MRB through phosphorus additions
WO2016119579A1 (en) Method for continuously producing metal semi-solid slurry
JP2010265546A (en) Method for refining metal
WO2008096411A1 (en) Process and apparatus for producing semi-solidified slurry of iron alloy
JP5537249B2 (en) Al scrap refining method
JP6800128B2 (en) How to regenerate Al alloy
JP5662857B2 (en) Al scrap refining method
JP5302645B2 (en) Al scrap refining method
JP4651335B2 (en) Method for producing titanium ingot
Eremin et al. Promising method of producing cast billets from superalloys
JP5695461B2 (en) Al scrap refining method
JP5486181B2 (en) Continuous metal purification method
CN102002649B (en) High-toughness magnesium based block body metal glass composite material and preparation method thereof
JP4309675B2 (en) Method for producing titanium alloy

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110527