JP2010265428A - Working fluid for car air conditioner - Google Patents

Working fluid for car air conditioner Download PDF

Info

Publication number
JP2010265428A
JP2010265428A JP2009120022A JP2009120022A JP2010265428A JP 2010265428 A JP2010265428 A JP 2010265428A JP 2009120022 A JP2009120022 A JP 2009120022A JP 2009120022 A JP2009120022 A JP 2009120022A JP 2010265428 A JP2010265428 A JP 2010265428A
Authority
JP
Japan
Prior art keywords
working fluid
car air
refrigerant
air conditioner
tetrafluoropropene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009120022A
Other languages
Japanese (ja)
Other versions
JP5464512B2 (en
Inventor
Masayoshi Ito
真嘉 伊藤
Shuichiro Tanaka
修一朗 田中
Rikako Nakamura
里歌子 中村
Rei Saito
玲 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Sun Oil Co Ltd
Original Assignee
Japan Sun Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Sun Oil Co Ltd filed Critical Japan Sun Oil Co Ltd
Priority to JP2009120022A priority Critical patent/JP5464512B2/en
Publication of JP2010265428A publication Critical patent/JP2010265428A/en
Application granted granted Critical
Publication of JP5464512B2 publication Critical patent/JP5464512B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To improve cooling performance and stability by solving the problem of compatibility of tetrafluoro propene and decomposition of tetrafluoro propene in a new working fluid for a car air conditioner having tetrafluoro propene to be the main current from now as a refrigerant. <P>SOLUTION: In the working fluid for the car air conditioner, tetrafluoro propene is used as the refrigerant and the refrigerant is dissolved in a refrigerator oil using, as a base oil, a polypropylene glycol having average molecular weight of 800 to 1,200 and having acyl groups at both terminals. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、テトラフルオロプロペンを冷媒とするカーエアコン用作動流体に関する。   The present invention relates to a working fluid for a car air conditioner using tetrafluoropropene as a refrigerant.

カーエアコンには冷媒を冷凍機油に溶解させた作動流体が使用されているが、従来から、環境面を配慮してR−134a等のように塩素を含有せず、水素、炭素及びフッ素からなるハイドロフルオロカーボン(HFC)冷媒が使用されており、それに伴い、HFC冷媒と相溶性があるポリオールエステル油等のエステル系冷凍機油や、PAG等のグリコール系冷凍機油が広く用いられている(例えば、特許文献1参照)。   For car air conditioners, a working fluid in which a refrigerant is dissolved in refrigeration oil has been used. Conventionally, considering environmental aspects, it does not contain chlorine like R-134a, etc., and consists of hydrogen, carbon and fluorine. Hydrofluorocarbon (HFC) refrigerants are used, and accordingly, ester-based refrigeration oils such as polyol ester oils compatible with HFC refrigerants and glycol-based refrigeration oils such as PAGs are widely used (for example, patents). Reference 1).

しかし、環境保全への要求はより厳しくなってきており、特に欧州では2011年以降に生産される自動車のカーエアコンには、新冷媒としてテトラフルオロプロペン(2,3,3,3−テトラフルオロ−1−プロペン;HFO−1234yf)を使用することが決定している(2nd International Workshop on Mobile Air Conditioning and Auxiliary Systems−Trono,Italy Nov.29,2007及びEuropean Automotive A/C Convention, Sep.22−23, 2008)。   However, the demand for environmental protection has become more severe. In particular, in car air conditioners for automobiles produced after 2011, tetrafluoropropene (2,3,3,3-tetrafluoro- 1-propene; HFO-1234yf) has been decided to be used (2nd International Worksshop on Mobile Air Conditioning and Auxiliary Systems-Trono, Italy Novo 29, 2007, Europian 23, Europ. , 2008).

特許第2787083号公報Japanese Patent No. 2787083

しかし、テトラフルオロプロペンは、従来の冷凍機油に溶解し難く、比較的低温度で二層分離を起こすという問題がある。また、テトラフルオロプロペンは、大気中で分解することにより成層圏への到達を抑えるため、従来のHFC冷媒に比べて化学的安定性が低くなっている。そのため、分解により発生した重合物による装置配管の閉塞や、分解により発生した酸性化合物による装置の腐食を引き起こす可能性が高く、更には冷凍機油と冷媒劣化物とが反応して冷凍機油の粘度が低下するおそれもある。二層分離により冷却性能が低下して高温になると、このようなテトラフルオロプロペンの分解が顕著になる。   However, tetrafluoropropene is difficult to dissolve in conventional refrigerating machine oil and has a problem of causing two-layer separation at a relatively low temperature. Tetrafluoropropene has a lower chemical stability than conventional HFC refrigerants, because it decomposes in the atmosphere to suppress reaching the stratosphere. For this reason, there is a high possibility that the piping of the equipment will be blocked by the polymer generated by the decomposition, or the equipment will be corroded by the acidic compound generated by the decomposition. There is also a risk of decline. When the cooling performance decreases due to the two-layer separation and the temperature becomes high, such decomposition of tetrafluoropropene becomes remarkable.

そこで本発明は、今後主流となるテトラフルオロプロペンを冷媒とする新たなカーエアコン用作動流体における、テトラフルオロプロペンとの相溶性、テトラフルオロプロペンの分解に係る問題を解消して冷却性能及び安定性を改善することを目的とする。   Therefore, the present invention eliminates problems related to compatibility with tetrafluoropropene and decomposition of tetrafluoropropene in a new automotive air conditioner working fluid that uses tetrafluoropropene as a refrigerant, which will become the mainstream in the future, and provides cooling performance and stability. The purpose is to improve.

上記目的を達成するために本発明は、下記のカーエアコン用作動流体を提供する。
(1)テトラフルオロプロペンを冷媒とし、前記冷媒をポリスチレン換算のGPCによる平均分子量が800〜1200で、両末端にアシル基を有するポリプロピレングリコールを基油とする冷凍機油に溶解してなることを特徴とするカーエアコン用作動流体。
(2)フェノール系ラジカル反応抑制剤、分子中にエステル基を持たないエポキシ系酸補足剤及びリン系極圧剤を含有することを特徴とする上記(1)記載のカーエアコン用作動流体。
(3)リン系極圧剤の一部または全部に代えて、グリセリンと、分子中に1または2個の不飽和結合を有する脂肪酸とからなるモノエステルを含有することを特徴とする上記(2)記載のカーエアコン用作動流体。
(4)サイトグラスを備えるカーエアコン用であることを特徴とする上記(1)〜(3)の何れか1項に記載のカーエアコン用作動流体。
In order to achieve the above object, the present invention provides the following working fluid for a car air conditioner.
(1) Tetrafluoropropene is used as a refrigerant, and the refrigerant is dissolved in a refrigerating machine oil having an average molecular weight of 800 to 1200 based on polystyrene-equivalent GPC and having a polypropylene glycol having an acyl group at both ends as a base oil. Working fluid for car air conditioner.
(2) The working fluid for a car air conditioner according to (1) above, comprising a phenolic radical reaction inhibitor, an epoxy acid scavenger having no ester group in the molecule, and a phosphorus extreme pressure agent.
(3) The above-mentioned (2), which contains a monoester composed of glycerin and a fatty acid having 1 or 2 unsaturated bonds in the molecule instead of part or all of the phosphorus-based extreme pressure agent ) Working fluid for car air conditioners.
(4) The working fluid for a car air conditioner according to any one of the above (1) to (3), which is for a car air conditioner including a sight glass.

本発明において冷凍機油の基油に用いる、特定の分子量で、かつ両末端にアシル基を有するプロピレングリコールは、流動性及びテトラフルオロプロペンとの相溶性に優れるため、今後主流となるテトラフルオロプロペンを冷媒とするカーエアコンの運転を長期にわたり安定に維持できる。   In the present invention, propylene glycol having a specific molecular weight and an acyl group at both ends used for the base oil of refrigerator oil is excellent in fluidity and compatibility with tetrafluoropropene. The operation of the car air conditioner as a refrigerant can be stably maintained over a long period of time.

以下、本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明のカーエアコン用作動流体では、冷媒としてテトラフルオロプロペンを使用する。テトラフルオロプロペンには異性体が存在し、2,3,3,3−テトラフルオロ−1−プロペン及び1,3,3,3−テトラフルオロ−1−プロペンがあり、本発明では両方が対象となる。   In the working fluid for a car air conditioner of the present invention, tetrafluoropropene is used as a refrigerant. There are isomers in tetrafluoropropene, including 2,3,3,3-tetrafluoro-1-propene and 1,3,3,3-tetrafluoro-1-propene. Become.

冷凍機油の基油には、上記のテトラフルオロプロペンとの相溶性を高めるために、両末端にアシル基を有するプロピレングリコール(以下「両末端アシル基変性プロピレングリコール」)を用いる。この両末端アシル基変性プロピレングリコールにより、二層分離温度が高まり、通常の使用温度で冷媒/冷凍機油混合液が均一に溶解して白濁しないため、カーエアコンの冷媒充填量を確認するサイトグラスで適正な充填量判断が可能となる。アシル基以外の官能基で変性しても、テトラフルオロプロペンとの相溶性が低く、二層分離温度も低くなる。   In order to improve the compatibility with the above tetrafluoropropene, propylene glycol having an acyl group at both ends (hereinafter referred to as “both end acyl group-modified propylene glycol”) is used for the base oil of the refrigerator oil. This two-terminal acyl group-modified propylene glycol increases the two-layer separation temperature, and the refrigerant / refrigerant oil mixture is uniformly dissolved at normal operating temperatures and does not become cloudy. Appropriate filling amount can be determined. Even if it is modified with a functional group other than an acyl group, the compatibility with tetrafluoropropene is low and the two-layer separation temperature is also low.

また、基油として実用上必要な粘性は、100℃での動粘度で9mm/s以上とされており、このような粘性を満足するために両末端アシル基変性プロピレングリコールの分子量をポリスチレン換算のGPC測定で800〜1200、好ましくは950〜1100とする。 In addition, the viscosity necessary for practical use as a base oil is 9 mm 2 / s or more in terms of kinematic viscosity at 100 ° C. In order to satisfy such viscosity, the molecular weight of both end acyl group-modified propylene glycol is converted to polystyrene. The GPC measurement is 800 to 1200, preferably 950 to 1100.

上記基油には、種々の添加剤を添加することができるが、テトラフルオロプロペンの分解を抑制するためにフェノール系ラジカル反応抑制剤を添加することが好ましい。フェノール系ラジカル反応抑制剤は、テトラフルオロプロペンの不飽和結合に起因する分解・劣化を効果的に抑制することができる。ラジカル反応抑制剤として、フェノール系以外にもチオリン酸系のものも広く使用されているが、硫黄化合物が析出して好ましくない。フェノール系ラジカル反応抑制剤としては、公知のもので構わないが、2,6‐ジターシャリーブチル‐4‐メチルフェノール、4,4’−ビス(2,6‐ジターシャリーブチルフェノールなどが好適である。   Although various additives can be added to the base oil, it is preferable to add a phenol-based radical reaction inhibitor in order to suppress the decomposition of tetrafluoropropene. The phenol-based radical reaction inhibitor can effectively suppress decomposition / deterioration due to the unsaturated bond of tetrafluoropropene. As a radical reaction inhibitor, thiophosphoric acid-based inhibitors are widely used in addition to phenol-based compounds, but sulfur compounds are not preferable. As the phenol radical reaction inhibitor, known ones may be used, but 2,6-ditertiarybutyl-4-methylphenol, 4,4'-bis (2,6-ditertiarybutylphenol) and the like are suitable.

また、エポキシ系酸捕捉剤を添加することにより、テトラフルオロプロペンが分解した場合、発生した酸成分を捕捉して冷凍システム内の腐食等を抑えることができる。酸捕捉効果が高いことから、グリリジルエーテルのような分子中にエステル基を持たないエポキシ系酸捕捉剤が好ましく、特にテトラフルオロプロパン及び基油との親和性からポリプロピレングリコールの両末端をグリシジル化したエポキシ系酸捕捉剤を用いることが好ましい。また、炭素数10以下のアルコールをグリシジル化したエポキシ系酸捕捉剤は、テトラフルオロプロペン中での分散性が高いことから酸捕捉能力が向上して好ましい。   Moreover, by adding an epoxy-based acid scavenger, when tetrafluoropropene is decomposed, the generated acid component can be captured and corrosion in the refrigeration system can be suppressed. Epoxy acid scavengers that do not have an ester group in the molecule, such as glycidyl ether, are preferred because of their high acid scavenging effect. Especially, both ends of polypropylene glycol are glycidylated due to their affinity with tetrafluoropropane and base oil. It is preferable to use an epoxy acid scavenger prepared. An epoxy acid scavenger obtained by glycidylation of an alcohol having 10 or less carbon atoms is preferable because of its high dispersibility in tetrafluoropropene and thus improved acid scavenging ability.

また、リン酸系極圧剤を添加することにより、摺動部分の金属面に極圧剤が作用して摩耗や焼付きを防止することができ、更には潤滑性が高まり摩擦熱が少なくなることからテトラフルオロプロペンの分解を抑えることもできる。また、リン酸系極圧剤は金属の腐食を起こし難いことから、冷凍システム内の腐食等を抑制する効果もある。極圧剤として、リン酸系以外にもチオリン酸系のものが広く使用されているが、硫黄化合物が析出して好ましくない。リン酸系極圧剤としては、公知のもので構わないが、トリクレジルホスフェート、トリオクチルホスフェートなどが好適である。   In addition, by adding a phosphoric acid extreme pressure agent, the extreme pressure agent acts on the metal surface of the sliding portion to prevent wear and seizure, and further, lubricity increases and frictional heat decreases. Therefore, decomposition of tetrafluoropropene can also be suppressed. In addition, since the phosphoric acid extreme pressure agent hardly causes metal corrosion, it has an effect of suppressing corrosion in the refrigeration system. As extreme pressure agents, those other than phosphoric acid are widely used. However, sulfur compounds are not preferable because they are precipitated. The phosphoric acid extreme pressure agent may be a known one, but tricresyl phosphate, trioctyl phosphate, and the like are suitable.

上記のフェノール系ラジカル反応抑制剤、エポキシ系酸捕捉剤及びリン酸系極圧剤は、3者を併用することにより、それぞれ単独で使用する場合に比べて効果が高まる。また、それぞれの添加量は、効果が現れる限り制限はないが、基油に対してフェノール系ラジカル反応抑制剤は0.5〜2質量%、エポキシ系酸捕捉剤は0.5〜4質量%、リン酸系極圧剤は0.5〜2質量%とすることが好ましい。添加量がこれより少ないと、それぞれの効果が十分に発現できず、これより多くても効果が飽和するだけでなく、相対的に基油量が減って潤滑性が劣るようになる。   The above-mentioned phenol-based radical reaction inhibitor, epoxy-based acid scavenger and phosphoric acid-based extreme pressure agent are more effective when used in combination with the three than when used alone. The amount of each additive is not limited as long as the effect appears, but the phenol-based radical reaction inhibitor is 0.5 to 2% by mass and the epoxy acid scavenger is 0.5 to 4% by mass with respect to the base oil. The phosphoric acid extreme pressure agent is preferably 0.5 to 2% by mass. If the addition amount is less than this, the respective effects cannot be sufficiently exhibited, and if the addition amount is more than this, not only the effect is saturated, but also the base oil amount is relatively reduced and the lubricity becomes inferior.

尚、リン酸系極圧剤は、分解した場合に酸を発生することから、その一部もしくは全部を、グリセリンと、分子中に1または2個の不飽和結合を有する脂肪酸とからなるモノエステルで代替してリン酸系極圧剤の含有量を0.5質量%以下にすることが好ましい。このモノエステルは油性向上剤として機能し、摩擦熱の発生を抑えてテトラフルオロプロペンの熱分解を抑える。また、酸を発生し難いため、酸によるテトラフルオロプロペンの分解も抑えることができる。   In addition, since a phosphoric acid extreme pressure agent generates an acid when it is decomposed, a part or all of it is a monoester composed of glycerin and a fatty acid having one or two unsaturated bonds in the molecule. It is preferable that the content of the phosphoric acid extreme pressure agent be 0.5% by mass or less. This monoester functions as an oiliness improver and suppresses the generation of frictional heat and suppresses thermal decomposition of tetrafluoropropene. Moreover, since it is hard to generate | occur | produce an acid, decomposition | disassembly of the tetrafluoro propene by an acid can also be suppressed.

その他にも、上記以外の性能を向上させる目的で通常用いられる添加剤を添加してもよい。   In addition, additives that are usually used for the purpose of improving the performance other than the above may be added.

以下に試験例を挙げて本発明を更に説明するが、本発明はこれにより何ら制限されるものではない。尚、試験例3、4は添加剤の効果を確認するものであり、何れも実施例である。   Hereinafter, the present invention will be further described with reference to test examples, but the present invention is not limited thereto. In addition, Test Examples 3 and 4 confirm the effect of the additive, and all are examples.

(試験例1:高温冷媒溶解性)
冷媒として2,3,3,3−テトラフルオロ−1−プロペンを用い、表1に示す基油とともに規定のガラス管に封入し、湯浴によりゆっくり加熱した。そして、均一な層から油層と冷媒層とに分かれる温度を測定した。尚、基油量は5質量%または15質量%とした。結果を表1に併記する。
(Test Example 1: High-temperature refrigerant solubility)
2,3,3,3-tetrafluoro-1-propene was used as a refrigerant, sealed in a specified glass tube together with the base oil shown in Table 1, and slowly heated in a hot water bath. And the temperature which separates into an oil layer and a refrigerant | coolant layer from a uniform layer was measured. The base oil amount was 5% by mass or 15% by mass. The results are also shown in Table 1.

Figure 2010265428
Figure 2010265428

表1に示すように、実施例1、2の基油は、分子量が800〜1200の範囲の両末端アシル基変性プロピレングリコールであるが、2,3,3,3−テトラフルオロ−1−プロペンとの相溶性が高く、二層分離温度も高くなっている。これに対し、アシル基以外で変性したプロピレングリコールでは、2,3,3,3−テトラフルオロ−1−プロペンとの相溶性が低く、二層分離温度も低くなっている。また、比較例11の基油は、両末端アシル基変性プロピレングリコールであるが、分子量が1200を超えており、二層分離温度が低くカーエアコン用としては実用的ではない。   As shown in Table 1, the base oils of Examples 1 and 2 are both terminal acyl group-modified propylene glycol having a molecular weight in the range of 800 to 1200, but 2,3,3,3-tetrafluoro-1-propene. And the two-layer separation temperature is also high. On the other hand, propylene glycol modified with other than acyl groups has low compatibility with 2,3,3,3-tetrafluoro-1-propene, and the two-layer separation temperature is also low. Moreover, although the base oil of the comparative example 11 is a both-ends acyl group modification | denaturation propylene glycol, molecular weight exceeds 1200, two-layer separation temperature is low, and it is not practical as an object for car air conditioners.

(試験例2:動粘度)
試験例1で用いた実施例1、2、比較例1、3、9、11、12の各基油の動粘度及び粘度指数を測定した。結果を表2に示すが、実施例1、2の基油は動粘度及び粘度指数ともに実用的である。これに対し、比較例12の基油は、両末端アシル基変性プロピレングリコールであるが、分子量が800未満であり、流動性に劣り実用的ではない。
(Test Example 2: Kinematic viscosity)
The kinematic viscosity and viscosity index of each base oil of Examples 1 and 2 and Comparative Examples 1, 3, 9, 11, and 12 used in Test Example 1 were measured. The results are shown in Table 2, and the base oils of Examples 1 and 2 are practical in both kinematic viscosity and viscosity index. On the other hand, the base oil of Comparative Example 12 is a propylene glycol modified with acyl groups at both ends, but has a molecular weight of less than 800 and is not practical because of poor fluidity.

Figure 2010265428
Figure 2010265428

(試験例3:化学安定性)
実施例1の基油に表3に示す如く添加剤を添加し、2,3,3,3−テトラフルオロ−1−プロペンと混合して試料を調製した。尚、添加量は基油に対する割合である。そして、シールドチューブ試験(JIS K2211準拠)により試料の変色、全酸価及び析出物の有無を評価した。試験条件は下記の通りであり、結果を表3に併記する。
・油/冷媒 : 2mL/2mL
・試験温度 : 175℃
・試験期間 : 14日間
・油中水分量: 2000ppm
・管内空気量: 分圧0.1mmHg以下
・触媒 : 鉄線、銅線、アルミ線を各3cm
(Test Example 3: Chemical stability)
An additive was added to the base oil of Example 1 as shown in Table 3 and mixed with 2,3,3,3-tetrafluoro-1-propene to prepare a sample. In addition, the addition amount is a ratio with respect to the base oil. And the discoloration of a sample, the total acid value, and the presence or absence of the deposit were evaluated by the shield tube test (JISK2211 conformity). The test conditions are as follows, and the results are shown in Table 3.
・ Oil / refrigerant: 2mL / 2mL
Test temperature: 175 ° C
・ Test period: 14 days ・ Water content in oil: 2000 ppm
・ Pipe air volume: Partial pressure 0.1mmHg or less ・ Catalyst: Iron wire, copper wire, aluminum wire 3cm each

Figure 2010265428
Figure 2010265428
Figure 2010265428
Figure 2010265428

フェノール系ラジカル反応抑制剤:ジアルキルメチルフェノール
チオリン酸系ラジカル反応抑制剤:ジアルキルジチオリン酸亜鉛
グリシジルエーテル系酸捕捉剤:アルキルグリシジルエーテル
イミド系酸捕捉剤:ビス(ジアルキルフェニル)カルボジイミド
リン酸系極圧剤:トリアリールホスフェート
チオリン酸系極圧剤:トリアルキルフェニルチオホスフェート
グリセリド系油性向上剤:グリセリンモノエステル
硫化油脂:硫化なたね油
Phenolic radical reaction inhibitor: Dialkylmethylphenol thiophosphate radical reaction inhibitor: Dialkyldithiophosphate zinc glycidyl ether acid scavenger: Alkyl glycidyl ether imide acid scavenger: Bis (dialkylphenyl) carbodiimide phosphate extreme pressure agent : Triaryl phosphate thiophosphate extreme pressure agent: Trialkylphenyl thiophosphate glyceride oil improver: Glycerin monoester sulfurized oil: Sulfur rapeseed oil

表3の試行例1〜10に示すように、フェノール系ラジカル反応抑制剤、グリシジルエーテル系酸捕捉剤、リン酸系極圧剤、あるいはリン酸系極圧剤の一部もしくは全部に代えてグリセリド系油性向上剤を添加することにより、両末端アシル基変性ポリプロピレングリコールの安定性を大きく向上させることができる。また、試行例11〜20に示すように、これら何れかの添加剤を含まないと、安定性の向上効果は少なくなる。   As shown in Trial Examples 1 to 10 in Table 3, instead of a phenol radical reaction inhibitor, a glycidyl ether acid scavenger, a phosphoric acid extreme pressure agent, or a part or all of a phosphoric acid extreme pressure agent, glycerides By adding a system oiliness improver, the stability of both terminal acyl group-modified polypropylene glycols can be greatly improved. Moreover, as shown in Trial Examples 11 to 20, if any of these additives is not included, the stability improvement effect is reduced.

(試験例4:潤滑性)
実施例1の基油に、試験例3で用いたフェノール系ラジカル反応抑制剤を1質量%、グリシジルエーテル系酸捕捉剤を1質量%添加し、更に表4に示す如く試験例3で用いたリン酸系極圧及びグリセリド系油性向上剤を添加し、2,3,3,3−テトラフルオロ−1−プロペンと混合して試料を調製した。尚、添加量は基油に対する割合である。そして、FALEX試験(Pin−Vee Block)により耐焼付性及び耐摩耗性を評価した。試験条件は下記の通りであり、結果を表4に併記する。
・耐焼付性:50℃、慣らし250lbs×5分、回転数290rpm
・耐摩耗性:50℃、300lbs×2時間、回転数290rpm
(Test Example 4: Lubricity)
1% by mass of the phenol-based radical reaction inhibitor used in Test Example 3 and 1% by mass of the glycidyl ether-based acid scavenger were added to the base oil of Example 1, and further used in Test Example 3 as shown in Table 4. A phosphoric acid extreme pressure and a glyceride oiliness improver were added and mixed with 2,3,3,3-tetrafluoro-1-propene to prepare a sample. In addition, the addition amount is a ratio with respect to the base oil. Then, seizure resistance and wear resistance were evaluated by a FALEX test (Pin-Vee Block). The test conditions are as follows, and the results are shown in Table 4.
Seizure resistance: 50 ° C., break-in 250 lbs × 5 minutes, rotation speed 290 rpm
Abrasion resistance: 50 ° C., 300 lbs × 2 hours, rotation speed 290 rpm

Figure 2010265428
Figure 2010265428

表4の試行例21〜24に示すように、リン酸系極圧剤及びグリセリド系油性向上剤の少なくとも一方を適量添加することにより、全く添加しない試行例25や、過剰に添加した試行例26、27に比べて化学安定性や冷媒溶解性を良好にしたまま耐焼付性や耐摩耗性をより向上させることができる。   As shown in Trial Examples 21 to 24 in Table 4, by adding an appropriate amount of at least one of a phosphoric acid extreme pressure agent and a glyceride oiliness improver, Trial Example 25 not added at all or Trial Example 26 added excessively. , 27, the seizure resistance and the wear resistance can be further improved while the chemical stability and the refrigerant solubility are improved.

Claims (4)

テトラフルオロプロペンを冷媒とし、前記冷媒を平均分子量が800〜1200で、両末端にアシル基を有するポリプロピレングリコールを基油とする冷凍機油に溶解してなることを特徴とするカーエアコン用作動流体。   A working fluid for a car air conditioner comprising tetrafluoropropene as a refrigerant, and the refrigerant is dissolved in a refrigerating machine oil having an average molecular weight of 800 to 1200 and a polypropylene glycol having an acyl group at both ends as a base oil. フェノール系ラジカル反応抑制剤、分子中にエステル基を持たないエポキシ系酸補足剤及びリン系極圧剤を含有することを特徴とする請求項1記載のカーエアコン用作動流体。   The working fluid for a car air conditioner according to claim 1, comprising a phenol radical reaction inhibitor, an epoxy acid scavenger having no ester group in the molecule, and a phosphorus extreme pressure agent. リン系極圧剤の一部または全部に代えて、グリセリンと、分子中に1または2個の不飽和結合を有する脂肪酸とからなるモノエステルを含有することを特徴とする請求項2記載のカーエアコン用作動流体。   3. The car according to claim 2, comprising a monoester composed of glycerin and a fatty acid having one or two unsaturated bonds in the molecule, instead of part or all of the phosphorus-based extreme pressure agent. Working fluid for air conditioners. サイトグラスを備えるカーエアコン用であることを特徴とする請求項1〜3の何れか1項に記載のカーエアコン用作動流体。   It is an object for car air conditioners provided with a sight glass, The working fluid for car air conditioners of any one of Claims 1-3 characterized by the above-mentioned.
JP2009120022A 2009-05-18 2009-05-18 Working fluid for car air conditioner Active JP5464512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009120022A JP5464512B2 (en) 2009-05-18 2009-05-18 Working fluid for car air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009120022A JP5464512B2 (en) 2009-05-18 2009-05-18 Working fluid for car air conditioner

Publications (2)

Publication Number Publication Date
JP2010265428A true JP2010265428A (en) 2010-11-25
JP5464512B2 JP5464512B2 (en) 2014-04-09

Family

ID=43362687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009120022A Active JP5464512B2 (en) 2009-05-18 2009-05-18 Working fluid for car air conditioner

Country Status (1)

Country Link
JP (1) JP5464512B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012001842A1 (en) * 2010-07-02 2012-01-05 パナソニック株式会社 Compressor and refrigeration cycle device using same
WO2022009931A1 (en) * 2020-07-08 2022-01-13 Eneos株式会社 Refrigerator oil, and working fluid composition for refrigerator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105896A (en) * 1991-10-15 1993-04-27 Asahi Denka Kogyo Kk Lubricant for refrigerator
JPH07133487A (en) * 1993-11-09 1995-05-23 Asahi Glass Co Ltd Refrigerator oil composition for hydrofuluorocarbon-based redfrigerant
WO2005012469A1 (en) * 2003-08-01 2005-02-10 Nippon Oil Corporation Refrigerating machine oil composition
JP2008115266A (en) * 2006-11-02 2008-05-22 Idemitsu Kosan Co Ltd Lubricating oil composition for refrigerator
JP2008266423A (en) * 2007-04-18 2008-11-06 Idemitsu Kosan Co Ltd Lubricating oil composition for refrigerator
WO2009057475A1 (en) * 2007-10-29 2009-05-07 Nippon Oil Corporation Refrigerator oil and working fluid composition for refrigerating machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105896A (en) * 1991-10-15 1993-04-27 Asahi Denka Kogyo Kk Lubricant for refrigerator
JPH07133487A (en) * 1993-11-09 1995-05-23 Asahi Glass Co Ltd Refrigerator oil composition for hydrofuluorocarbon-based redfrigerant
WO2005012469A1 (en) * 2003-08-01 2005-02-10 Nippon Oil Corporation Refrigerating machine oil composition
JP2008115266A (en) * 2006-11-02 2008-05-22 Idemitsu Kosan Co Ltd Lubricating oil composition for refrigerator
JP2008266423A (en) * 2007-04-18 2008-11-06 Idemitsu Kosan Co Ltd Lubricating oil composition for refrigerator
WO2009057475A1 (en) * 2007-10-29 2009-05-07 Nippon Oil Corporation Refrigerator oil and working fluid composition for refrigerating machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012001842A1 (en) * 2010-07-02 2012-01-05 パナソニック株式会社 Compressor and refrigeration cycle device using same
JP2012012532A (en) * 2010-07-02 2012-01-19 Panasonic Corp Compressor and refrigerating cycle equipment
US9005469B2 (en) 2010-07-02 2015-04-14 Panasonic Intellectual Property Management Co., Ltd. Compressor and refrigeration cycle device using same
WO2022009931A1 (en) * 2020-07-08 2022-01-13 Eneos株式会社 Refrigerator oil, and working fluid composition for refrigerator

Also Published As

Publication number Publication date
JP5464512B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
EP2891703B1 (en) Lubricant composition
JP5852176B2 (en) Refrigerating machine oil for refrigerant 2,3,3,3-tetrafluoro-1-propene
JP5941056B2 (en) Working fluid composition for refrigerator and refrigerator oil
JP5241262B2 (en) Lubricating oil composition for refrigerator
JP5226242B2 (en) Lubricating oil composition for refrigerator
JP6195429B2 (en) Working fluid composition for refrigerator and refrigerator oil
JP5231060B2 (en) Refrigerating machine oil for refrigerant
JP6224965B2 (en) Mixing composition for refrigerator
US20150076393A1 (en) Working fluid composition for refrigerator
JP2013133443A (en) Refrigerating machine oil composition
JP2017508829A (en) Dry synthetic cooling lubricant composition
JP5464513B2 (en) Working fluid for car air conditioner
JP5704837B2 (en) Working fluid for car air conditioner
TW201546260A (en) Refrigerating-machine oil and working-fluid composition for refrigerating machine
JP5464512B2 (en) Working fluid for car air conditioner
JP6059320B2 (en) Working fluid composition for refrigerator and refrigerator oil
CN112126495B (en) Refrigerating machine oil composition
CN115353921A (en) Anti-wear agent for refrigerating machine oil, refrigerating machine oil and working fluid composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140110

R150 Certificate of patent or registration of utility model

Ref document number: 5464512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140210

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20140603

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250