JP2010265363A - Rubber composition and tire using the same - Google Patents
Rubber composition and tire using the same Download PDFInfo
- Publication number
- JP2010265363A JP2010265363A JP2009116750A JP2009116750A JP2010265363A JP 2010265363 A JP2010265363 A JP 2010265363A JP 2009116750 A JP2009116750 A JP 2009116750A JP 2009116750 A JP2009116750 A JP 2009116750A JP 2010265363 A JP2010265363 A JP 2010265363A
- Authority
- JP
- Japan
- Prior art keywords
- vapor
- rubber
- grown carbon
- carbon fiber
- rubber composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Tires In General (AREA)
- Reinforced Plastic Materials (AREA)
Abstract
Description
本発明は、ゴム組成物及びそれを用いたタイヤに関し、詳しくは、力学強度を損なうことなく、熱伝導性に優れたゴム組成物及びそれを用いたタイヤに関する。 The present invention relates to a rubber composition and a tire using the same, and more particularly to a rubber composition excellent in thermal conductivity without impairing mechanical strength and a tire using the same.
ゴム業界においては、従来、所定のゴム物性を得ることを目的として、ゴム成分に対し炭素繊維を配合することが一般的に行われている。特に、所定形状の炭素繊維を配合することにより所望の物性を有するゴム組成物を得る技術については、これまでに種々提案され、ゴムに導電性・熱伝導性を付与するために、気相成長炭素繊維、カーボンナノチューブなどで複合化する技術が注目されている。 In the rubber industry, conventionally, carbon fiber is generally blended with a rubber component for the purpose of obtaining predetermined rubber properties. In particular, various techniques for obtaining a rubber composition having desired physical properties by blending carbon fibers having a predetermined shape have been proposed so far, and vapor phase growth has been performed to impart conductivity and thermal conductivity to rubber. A technique for compounding with carbon fiber, carbon nanotube, or the like has attracted attention.
このような技術において、気相成長炭素繊維やカーボンナノチューブなどのカーボンナノファイバーの中には、熱・電気伝導性に優れたものが有り、ゴム成分に混合することで際立った熱・電気伝導性が付与され、例えば、該ゴム組成物をタイヤに用いた場合、加硫時間の大幅な短縮が可能で、得られたタイヤは、放熱性に優れたタイヤ、ヒステリシスロス性を維持あるいは改良され、耐久性に優れたタイヤが得られる。また、逆にある種のカーボンナノナノファイバーを用いて、ゴム組成物のヒステリシスロス性が高くなる場合は、グリップ性に優れたタイヤが得られる。 In such a technology, some carbon nanofibers such as vapor-grown carbon fiber and carbon nanotube have excellent thermal and electrical conductivity, and outstanding thermal and electrical conductivity when mixed with rubber components. For example, when the rubber composition is used in a tire, the vulcanization time can be significantly shortened, and the resulting tire is a tire excellent in heat dissipation, maintained or improved in hysteresis loss, A tire having excellent durability can be obtained. Conversely, when a certain kind of carbon nano-nanofiber is used to increase the hysteresis loss of the rubber composition, a tire having excellent grip properties can be obtained.
例えば、特許文献1には、ゴム成分に対し、シリカ質充填材に加えて所定の平均直径の気相成長炭素繊維を配合することで、シリカ配合による特性を低下させることなく導電性の向上を図った帯電防止性ゴム組成物が記載されている。当該文献には、用いる気相成長炭素繊維の平均直径が0.01〜3μm、特には0.05〜0.5μmの範囲内にあることで、ゴムを混練する際に気相成長炭素繊維が破砕されず、上記目的を良好に達成することができる一方、気相成長炭素繊維の平均直径が0.01μm未満であると、ゴムの混練の際に、気相成長炭素繊維がゴム中に良好に分散せずに凝集してしまう傾向を生じ、また、気相成長炭素繊維の平均直径が3μmを超えると、ゴムとの混練に際し気相成長炭素繊維が破砕されてしまう傾向を生じることがある旨も記載されている。 For example, in Patent Document 1, by adding a vapor-grown carbon fiber having a predetermined average diameter to the rubber component in addition to the siliceous filler, the conductivity can be improved without deteriorating the characteristics due to the silica compounding. The intended antistatic rubber composition is described. In this document, the vapor-grown carbon fiber has a mean diameter of 0.01 to 3 μm, particularly 0.05 to 0.5 μm. While not being crushed, the above-mentioned object can be satisfactorily achieved. On the other hand, when the average diameter of the vapor-grown carbon fiber is less than 0.01 μm, the vapor-grown carbon fiber is good in the rubber when the rubber is kneaded. If the average diameter of the vapor grown carbon fiber exceeds 3 μm, the vapor grown carbon fiber may tend to be crushed during kneading with rubber. The effect is also described.
また、ゴムに導電性・熱伝導性を付与するために、気相成長炭素繊維、カーボンナノチューブなどを複合化する技術として、特許文献2には、ジエン系ゴムと硫黄と繊維状フィラーとを配合してなるゴム組成物であって、上記繊維状フィラーとして、高アスペクト比フィラーと低アスペクト比フィラーとの2種を併用してなることを特徴とするロール成形用ゴム組成物が記載されている。 In addition, as a technique for combining vapor-grown carbon fibers and carbon nanotubes in order to impart conductivity and thermal conductivity to rubber, Patent Document 2 contains a diene rubber, sulfur and fibrous filler. A rubber composition for roll forming is described, wherein the fibrous filler is a combination of two types of fillers, a high aspect ratio filler and a low aspect ratio filler. .
上記技術においては、気相成長炭素繊維配合ゴムの熱伝導性は卓越しているため、タイヤトレッド等に用いた場合、ゴム製品内部の熱を効率よく製品外部に逃がすことが期待され、タイヤの耐久性向上が期待される。 In the above technology, the thermal conductivity of the vapor-grown carbon fiber compounded rubber is excellent, so when used in tire treads, etc., it is expected that the heat inside the rubber product will be efficiently released to the outside of the product, Durability improvement is expected.
一方、特許文献3には、混練によるゴム物性への影響を排除して、混練条件を変えた場合であっても、所望のゴム物性を確実に実現することができるゴム組成物を得ることを目的として、ゴム成分と、気相成長炭素繊維とを含むゴム組成物であって、混練後における前記気相成長炭素繊維の、長さが0.5〜1000μmの範囲内であり、かつ、直径が0.01〜50μmの範囲内であるゴム組成物が記載されている。 On the other hand, Patent Document 3 discloses that a rubber composition capable of reliably realizing desired rubber properties can be obtained even when the kneading conditions are changed by eliminating the influence on the rubber properties due to kneading. As an object, a rubber composition containing a rubber component and vapor grown carbon fiber, the vapor grown carbon fiber after kneading has a length in the range of 0.5 to 1000 μm and a diameter. Describes a rubber composition in which is in the range of 0.01 to 50 μm.
しかしながら、特許文献1〜3に記載の従来技術では、タイヤに使用した場合の耐久性向上について効果はあるものの、気相成長炭素繊維やカーボンナノチューブなどのファイバー状ナノカーボンをゴムに混合した結果、加硫物の物性的特徴として、(1)低歪でのモジュラス(M10〜M50)が大幅に増加し、タイヤとしての剛性が増し過ぎる、(2)ファイバー状ナノカーボンの配合量が増すにつれ、破壊強度(Tb)、伸び(Eb)や磨耗性が低下する、(3)損失正接(Tanδ、ヒステリシスロス)が増し、タイヤとして、転がり抵抗の悪化、発熱性が増大し、耐久性低下を招く、(4)嵩比重が一般に低く、特に気相成長炭素繊維では際立って小さいため、配合する際に投入に多大な時間を要する、あるいは、軽く飛散し易い(正確な量の練りこみができない、環境によくない)等の現象が現れ、これを用いたタイヤとしては、さらなる改良の余地があった。 However, in the prior art described in Patent Documents 1 to 3, although effective for improving durability when used in a tire, as a result of mixing fiber-like nanocarbon such as vapor-grown carbon fiber and carbon nanotube into rubber, As physical properties of the vulcanizate, (1) the modulus at low strain (M10 to M50) is greatly increased and the rigidity as a tire is excessively increased. (2) As the compounding amount of the fibrous nanocarbon increases, Breaking strength (Tb), elongation (Eb) and wear resistance are reduced, (3) Loss tangent (Tan δ, hysteresis loss) is increased, and as a tire, rolling resistance is deteriorated, heat generation is increased, and durability is reduced. (4) Bulk specific gravity is generally low, especially in the case of vapor-grown carbon fibers, so that it takes a lot of time to be charged when blended or it is easily scattered lightly. Can not kneading precise amount, it appears phenomenon of poor) or the like in the environment, as a tire using the same, there is room for further improvement.
特に、産業分野での使用が先行している気相成長炭素繊維をゴム成分に配合した場合、損失正接(Tanδ)の温度分散挙動において、室温〜100℃の温度域にガラス転移点の主分散とは別にショルダー(ブロードなピーク)が発生する。これはタイヤの場合、当該使用温度において、発熱性が少なからず増すことを意味する。即ち、タイヤなどゴム製品に気相成長炭素繊維を導入し、熱伝導性向上により製品内部に蓄積する熱の放熱性を改良しても、同時に気相成長炭素繊維とゴム成分の混合により発熱項が増し余計な熱が発生するため、さらなる改良の余地があった。 In particular, when vapor-grown carbon fiber, which has been used in the industrial field, is blended with the rubber component, the main dispersion of the glass transition point in the temperature range of room temperature to 100 ° C. in the temperature dispersion behavior of loss tangent (Tan δ). Apart from that, shoulders (broad peaks) occur. This means that, in the case of a tire, the heat generation increases considerably at the use temperature. In other words, even when vapor-grown carbon fiber is introduced into a tire or other rubber product and the heat dissipation of the heat accumulated in the product is improved by improving thermal conductivity, the exothermic term is simultaneously generated by mixing the vapor-grown carbon fiber and the rubber component. However, there was room for further improvement since extra heat was generated.
そこで、本発明の目的は、力学強度および発熱性を損なうことなく、熱伝導性に優れたゴム組成物及びそれを用いたタイヤを提供することにある。 Accordingly, an object of the present invention is to provide a rubber composition excellent in thermal conductivity and a tire using the rubber composition without impairing mechanical strength and heat generation.
本発明者は、前記課題を解決するために鋭意検討した結果、気相成長炭素繊維を振動ミル解砕することで前記課題を解決し得ることを見出して、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventor has found that the above problems can be solved by crushing vapor-grown carbon fibers using a vibration mill, and has completed the present invention.
すなわち、本発明のゴム組成物は、ゴム成分に対し、振動ミル解砕された気相成長炭素繊維を含有することを特徴とするものである。 That is, the rubber composition of the present invention is characterized by containing vapor-grown carbon fibers that have been pulverized by a vibration mill with respect to the rubber component.
また、本発明のゴム組成物は、前記気相成長炭素繊維が、1〜300分間振動ミル解砕されたことが好ましく、前記気相成長炭素繊維の含有量が、前記ゴム成分100質量部に対して、1〜30質量部であることが好ましい。 In the rubber composition of the present invention, the vapor-grown carbon fiber is preferably pulverized by vibration mill for 1 to 300 minutes, and the content of the vapor-grown carbon fiber is 100 parts by mass of the rubber component. On the other hand, it is preferable that it is 1-30 mass parts.
さらに、本発明のゴム組成物は、前記気相成長炭素繊維以外の充填材を、前記ゴム成分100質量部に対して、20〜80質量部含有することが好ましく、前記気相成長炭素繊維以外の充填材として、カーボンブラックおよび/または無機充填材を含有することが好ましい。 Furthermore, the rubber composition of the present invention preferably contains 20 to 80 parts by mass of a filler other than the vapor-grown carbon fiber with respect to 100 parts by mass of the rubber component. It is preferable to contain carbon black and / or an inorganic filler as the filler.
また、本発明のタイヤは、前記ゴム組成物を用いたことを特徴とするものである。 The tire of the present invention is characterized by using the rubber composition.
本発明によると、力学強度および発熱性を損なうことなく、熱伝導性に優れたゴム組成物を提供することができ、このゴム組成物を補強材として用いたタイヤも力学強度および発熱性を損なうことなく、優れた熱伝導性を有する。 According to the present invention, it is possible to provide a rubber composition excellent in thermal conductivity without impairing mechanical strength and heat buildup, and a tire using the rubber composition as a reinforcing material also impairs mechanical strength and heat buildup. And has excellent thermal conductivity.
以下に本発明の実施の形態について具体的に説明する。
本発明における気相成長炭素繊維としては、振動ミル解砕され、所望の効果が得られるものであれば限定されず、如何なるものも使用できる。振動ミル解砕することにより、気相成長炭素繊維は破砕され、長さは短くなるが、気相成長炭素繊維の熱伝導性の低下は小さくなり(気相成長炭素繊維未配合のゴム対比では圧倒的に高い熱伝導率)、また、気相成長炭素繊維の損失正接(Tanδ)は大幅に低下(室温〜100℃近辺に発生するショルダーが際立って低下)し、さらに、気相成長炭素繊維導入に伴う弾性率、特に低歪でのモジュラスの上昇が小さいという効果もある。さらにまた、気相成長炭素繊維の嵩比重を大幅に上昇することができ、配合作業性を改善できる。
Embodiments of the present invention will be specifically described below.
The vapor-grown carbon fiber in the present invention is not limited as long as it can be pulverized by a vibration mill to obtain a desired effect, and any one can be used. By pulverizing the vibration mill, the vapor-grown carbon fiber is crushed and shortened in length, but the decrease in the thermal conductivity of the vapor-grown carbon fiber is reduced (as compared with rubber not containing the vapor-grown carbon fiber). The overwhelmingly high thermal conductivity) and the loss tangent (Tanδ) of the vapor grown carbon fiber are greatly reduced (the shoulder generated around room temperature to 100 ° C is markedly reduced), and the vapor grown carbon fiber is further reduced. There is also an effect that the modulus of elasticity accompanying the introduction, particularly the modulus increase at low strain is small. Furthermore, the bulk specific gravity of the vapor grown carbon fiber can be significantly increased, and the blending workability can be improved.
本発明において、振動ミル解砕された気相成長炭素繊維としては、例えば、公知の気相成長炭素繊維を振動だけで流動化させ、振動ミル用のボール等の媒体を投入して、減圧下において間接加熱で乾燥を行い、乾燥と解砕の同時処理や、スラリーフィードによる乾燥、蒸発等により、乾燥状態の気相成長炭素繊維を回収することで得られる。 In the present invention, as the vapor-grown carbon fiber pulverized by vibration mill, for example, a known vapor-grown carbon fiber is fluidized only by vibration, a medium such as a ball for vibration mill is introduced, and the pressure is reduced under reduced pressure. In this method, drying is performed by indirect heating, and the vapor-grown carbon fiber in a dry state is recovered by simultaneous treatment of drying and crushing, drying by slurry feed, evaporation, or the like.
また、本発明において、気相成長炭素繊維は、減圧下で1〜300分間振動ミル解砕されたことが好ましく、5〜150分間振動ミル解砕されたことがさらに好ましい。この範囲での振動ミル解砕により、力学強度および発熱性をより損なうことなく、熱伝導性により優れたゴム組成物を得ることができる。 In the present invention, the vapor-grown carbon fiber is preferably pulverized by vibration mill for 1 to 300 minutes under reduced pressure, more preferably pulverized by vibration mill for 5 to 150 minutes. By pulverizing the vibration mill within this range, a rubber composition having better thermal conductivity can be obtained without deteriorating the mechanical strength and heat generation.
また、振動ミル解砕前の気相成長炭素繊維としては、好適には繊維径0.04〜0.5μm、より好適には0.05〜0.4μm、特には0.07〜0.3μmのものを用いる。また、その繊維長についても特に制限されず、好適には平均繊維長0.5〜50μm、より好適には1〜40μm、特には1.5〜30μmの範囲のものを用いることができる。 Further, as the vapor growth carbon fiber before pulverizing the vibration mill, the fiber diameter is preferably 0.04 to 0.5 μm, more preferably 0.05 to 0.4 μm, and particularly 0.07 to 0.3 μm. Use one. Further, the fiber length is not particularly limited, and those having an average fiber length of 0.5 to 50 μm, more preferably 1 to 40 μm, particularly 1.5 to 30 μm can be used.
さらに、振動ミル解砕前の気相成長炭素繊維としては、例えば、昭和電工社製の気相成長炭素繊維(商品名VGCF−S、径100nm、長さ10μm、嵩密度0.02g/cm3)等を挙げることができる。
Furthermore, as the vapor growth carbon fiber before vibration mill crushing, for example, vapor growth carbon fiber (trade name VGCF-S,
本発明におけるゴム成分としては、天然ゴム、汎用合成ゴム、例えば、乳化重合スチレン−ブタジエンゴム、溶液重合スチレン−ブタジエンゴム、高シス−1,4ポリブタジエンゴム、低シス−1,4ポリブタジエンゴム、高シス−1,4ポリイソプレンゴム等、ジエン系特殊ゴム、例えば、ニトリルゴム、水添ニトリルゴム、クロロプレンゴム等、オレフィン系特殊ゴム、例えば、エチレン−プロピレンゴム、ブチルゴム、ハロゲン化ブチルゴム、アクリルゴム、クロロスルホン化ポリエチレン等、その他特殊ゴム、例えば、ヒドリンゴム、フッ素ゴム、多硫化ゴム、ウレタンゴム等を挙げることができる。コストと性能とのバランスから、好ましくは、天然ゴムまたは汎用合成ゴムである。 As the rubber component in the present invention, natural rubber, general-purpose synthetic rubber such as emulsion polymerization styrene-butadiene rubber, solution polymerization styrene-butadiene rubber, high cis-1,4 polybutadiene rubber, low cis-1,4 polybutadiene rubber, high Cis-1,4 polyisoprene rubber, etc., diene special rubber, for example, nitrile rubber, hydrogenated nitrile rubber, chloroprene rubber, etc., olefin special rubber, for example, ethylene-propylene rubber, butyl rubber, halogenated butyl rubber, acrylic rubber, Other special rubbers such as chlorosulfonated polyethylene, for example, hydrin rubber, fluorine rubber, polysulfide rubber, urethane rubber and the like can be mentioned. From the balance between cost and performance, natural rubber or general-purpose synthetic rubber is preferable.
本発明に係る振動ミル解砕された気相成長炭素繊維の含有量は、ゴム成分100質量部に対して1〜30質量部であることが好ましく、2〜25質量部であることがさらに好ましい。1質量部未満では所期の性能を十分に得ることができず、一方、30質量部を超えて含有させても、所期の性能のさらなる向上効果は発現しにくく、混合や成型等における作業性が低下するため、いずれも好ましくない。 The content of the vapor-grown carbon fiber pulverized by vibration mill according to the present invention is preferably 1 to 30 parts by mass, more preferably 2 to 25 parts by mass with respect to 100 parts by mass of the rubber component. . If the amount is less than 1 part by mass, the expected performance cannot be sufficiently obtained. On the other hand, even if the amount exceeds 30 parts by mass, the desired effect of further improvement is hardly exhibited. Neither is desirable because the properties are reduced.
本発明の組成物においては、本発明に係る振動ミル解砕された気相成長炭素繊維以外の各種充填材を、ゴム成分100質量部に対して20〜80質量部含有することが好適である。更に好適には、充填材として、カーボンブラックおよび/または無機充填材を含有させる。組成物中にカーボンブラックおよび/または無機充填材が適量含有されていると、本発明に係る気相成長炭素繊維のみを添加した場合に比してより高い補強効果が得られる。カーボンブラックとしては、HAF級のものなど公知のものを使用することができる。また、無機充填材としては、シリカ、炭酸カルシウム等が挙げられる。 In the composition of the present invention, it is preferable to contain 20 to 80 parts by mass of various fillers other than the vapor-grown carbon fiber pulverized by vibration mill according to the present invention with respect to 100 parts by mass of the rubber component. . More preferably, carbon black and / or an inorganic filler is contained as the filler. When an appropriate amount of carbon black and / or inorganic filler is contained in the composition, a higher reinforcing effect can be obtained than when only the vapor-grown carbon fiber according to the present invention is added. As the carbon black, known ones such as those of HAF grade can be used. Examples of inorganic fillers include silica and calcium carbonate.
また、かかる振動ミル解砕された気相成長炭素繊維は、通常のゴム配合の上記充填材を一部置換する形でゴム成分に配合、加硫して使用することができ、これにより、熱伝導性と力学特性に優れたゴム組成物を得ることができる。 Further, the vapor-grown carbon fiber pulverized by the vibration mill can be used after being blended with a rubber component and vulcanized in a form that partially replaces the above-mentioned filler having a normal rubber composition. A rubber composition having excellent conductivity and mechanical properties can be obtained.
また、本発明のゴム組成物には、上記ゴム成分および気相成長炭素繊維の他、ゴム業界で通常用いられている各種添加剤を、本発明の効果を阻害しない範囲で適宜配合することができる。例えば、シランカップリング剤等のカップリング剤、軟化剤、硫黄等の加硫剤、ジベンゾチアジルジスルフィド等の加硫促進剤、N−シクロへキシル−2−ベンゾチアジル−スルフェンアミド、N−オキシジエチレン−ベンゾチアジル−スルフェンアミド等の老化防止剤、酸化亜鉛、ステアリン酸、オゾン劣化防止剤、発泡剤、発泡助剤等が挙げられ、これらは1種を単独で使用してもよいし、2種以上を併用してもよい。なお、これら各種添加剤としては、市販品を使用することができる。 Moreover, in the rubber composition of the present invention, various additives usually used in the rubber industry, in addition to the rubber component and the vapor-grown carbon fiber, may be appropriately blended within a range not impairing the effects of the present invention. it can. For example, coupling agents such as silane coupling agents, softeners, vulcanizing agents such as sulfur, vulcanization accelerators such as dibenzothiazyl disulfide, N-cyclohexyl-2-benzothiazyl-sulfenamide, N-oxy Antiaging agents such as diethylene-benzothiazyl-sulfenamide, zinc oxide, stearic acid, antiozonants, foaming agents, foaming aids, etc. may be mentioned, and these may be used alone or as 2 More than one species may be used in combination. In addition, a commercial item can be used as these various additives.
本発明のゴム組成物は、常法に従い適宜装置、条件、手法等にて混練り、熱入れ、押出等することにより調製し、タイヤ等の各種ゴム製品に好適に適用することができ、特にタイヤに好適に使用できる。 The rubber composition of the present invention is prepared by kneading, heating, extruding, etc. as appropriate according to conventional methods, equipment, conditions, techniques, etc., and can be suitably applied to various rubber products such as tires. It can be suitably used for a tire.
混練りは、混練り装置への投入体積、ローターの回転速度、ラム圧等や、混練り温度、混練り時間、混練り装置等の諸条件について特に制限はなく、所望に応じ適宜選択することができる。混練り装置としては、例えば、ロールなどの開放式混練機やバンバリーミキサーなどの密閉式混練機等が挙げられ、市販品を好適に使用することができる。 The kneading is not particularly limited with respect to various conditions such as the input volume to the kneading apparatus, the rotational speed of the rotor, the ram pressure, the kneading temperature, the kneading time, the kneading apparatus, etc., and should be appropriately selected as desired. Can do. Examples of the kneading apparatus include an open kneader such as a roll and a closed kneader such as a Banbury mixer, and commercially available products can be preferably used.
熱入れまたは押出についても、熱入れまたは押出の時間、熱入れまたは押出の装置等の諸条件について特に制限はなく、所望に応じ適宜選択することができる。また、熱入れまたは押出の装置についても、市販品を好適に使用することができる。 Regarding the heating or extrusion, there are no particular limitations on the conditions such as the heating or extrusion time, the heating or extrusion apparatus, etc., and they can be appropriately selected as desired. Moreover, a commercial item can be used conveniently also about the apparatus of a hot-heating or extrusion.
また、本発明のタイヤは、トレッド、ベルトなどの部材に上記本発明のゴム組成物を補強材として用いたものであればよく、その具体的な構造や他の材料等については特に制限されるものではない。なお、本発明の空気入りタイヤに充填する気体としては、通常の或いは酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウム等の不活性ガスを用いることができる。 In addition, the tire of the present invention may be any member that uses the rubber composition of the present invention as a reinforcing material for members such as treads and belts, and its specific structure and other materials are particularly limited. It is not a thing. In addition, as gas with which the pneumatic tire of this invention is filled, inert gas, such as nitrogen, argon, helium other than the air which adjusted normal or oxygen partial pressure, can be used.
本発明のゴム組成物を用いた部材よりなるタイヤとすることにより、タイヤの剛性を大きく変化させることなく、また、タイヤとして良好な耐摩耗性、破壊物性、発熱特性を維持しつつ、熱伝導性を大幅に改良したタイヤが得られる。 By making a tire made of a member using the rubber composition of the present invention, heat conduction without significantly changing the rigidity of the tire and maintaining good wear resistance, fracture physical properties, and heat generation characteristics as a tire. A tire with greatly improved properties can be obtained.
次に、本発明を実施例により更に詳しく説明する。本発明は、この例によって限定されるものではない。 Next, the present invention will be described in more detail with reference to examples. The present invention is not limited by this example.
振動ミル解砕された気相成長炭素繊維の調製
昭和電工社製の気相成長炭素繊維(商品名VGCF−S、径100nm、長さ10μm、嵩密度0.02g/cm3)を、減圧下で、時間60、90、120分で振動ミル解砕し、振動ミル解砕された気相成長炭素繊維(VGCF−S振動ミル解砕品)を得た。なお、90分処理品である「VGCF−S振動ミル90分解砕品」の嵩密度は、0.154g/cm3であった。
Preparation of vapor-grown carbon fiber pulverized by vibration mill Vapor-grown carbon fiber (trade name VGCF-S,
実施例1〜3及び比較例1、2
混練り条件
表1に示す各種気相成長炭素繊維を用いて、ラボプラストミル((株)東洋精機製作所製)にて、天然ゴム(NR)を70℃、50rpmで3分間素練りした後、各添加剤を投入して、70℃にて30rpmで更に混合した(ノンプロ配合)。得られた混合物を取り出して、冷却、秤量した後、プラベンダーを用いて、50℃にて30rpmで再度混合した(プロ配合)。
Examples 1 to 3 and Comparative Examples 1 and 2
Kneading conditions Natural rubber (NR) was kneaded at 70 ° C. and 50 rpm for 3 minutes in a lab plast mill (manufactured by Toyo Seiki Seisakusho) using various vapor-grown carbon fibers shown in Table 1. Each additive was added and further mixed at 70 rpm at 70 ° C. (non-pro blending). The obtained mixture was taken out, cooled and weighed, and then mixed again at 30 rpm at 50 ° C. using a plastic bender (professional formulation).
ゴムシート作製条件
混練りした混合物を高温プレスを用いて150℃×15分にて加硫して、2mm厚の加硫ゴムシートを作製した。
Rubber Sheet Preparation Conditions The kneaded mixture was vulcanized at 150 ° C. for 15 minutes using a high temperature press to prepare a 2 mm thick vulcanized rubber sheet.
得られた加硫ゴムシートについて以下の試験を行い、結果を表1に併記する。 The following tests are performed on the obtained vulcanized rubber sheet, and the results are also shown in Table 1.
ゴムシートの熱伝導率の測定
京都電子(株)製の迅速熱伝導率計QTM−500を用いて、ゴムシートの熱伝導率をロール方向および反ロール方向で測定し、比較例1の値を100として、評価した。数値が大なる程、結果が良好である。
Measurement of thermal conductivity of rubber sheet Using a quick thermal conductivity meter QTM-500 manufactured by Kyoto Electronics Co., Ltd., the thermal conductivity of the rubber sheet was measured in the roll direction and in the anti-roll direction. 100 was evaluated. The higher the number, the better the result.
弾性率(E’)及び損失正接の測定
(株)東洋精機製作所製の粘弾性測定システム(レオグラフ)を使用して、50Hz、2%歪の条件で、温度60℃におけるロール方向の弾性率(E’)及び損失正接(tanδ)を測定した。
Measurement of elastic modulus (E ′) and loss tangent Using a viscoelasticity measurement system (Rheograph) manufactured by Toyo Seiki Seisakusho Co., Ltd., elastic modulus in the roll direction at a temperature of 60 ° C. under conditions of 50 Hz and 2% strain ( E ′) and loss tangent (tan δ) were measured.
M100およびM300の測定
JIS K6301−1975「加硫ゴム物理試験方法」の引張試験に準拠し、100%伸長時および300%伸長時のモジュラス(M100およびM300)を測定した。
Measurement of M100 and M300 The modulus (M100 and M300) at 100% elongation and 300% elongation was measured according to the tensile test of JIS K6301-1975 “Physical Test Method for Vulcanized Rubber”.
引張り強さ及び切断時伸びの測定
JIS K 6251に準拠して室温で引張試験を行い、加硫ゴムの引張り強さ(Tb)および切断時伸び(Eb)を測定した。
Measurement of tensile strength and elongation at break A tensile test was performed at room temperature in accordance with JIS K 6251 to measure the tensile strength (Tb) and the elongation at break (Eb) of the vulcanized rubber.
2)老化防止剤:N−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミン
2) Anti-aging agent: N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine
図1は、温度とTanδとの関係を示すグラフである。図1と表1の結果から明らかなように、振動ミル解砕した気相成長炭素繊維を配合したゴム組成物は、比較例2の解砕しない通常の気相成長炭素繊維を配合したゴム組成物と比較して、悪化したTanδを大幅に改良し、コントロールである比較例1レベルまで発熱性を是正し、温度分散チャートではショルダーが殆ど消滅して、広い温度範囲に渡って低ヒステリシスロス性を確保した。また、弾性率、低歪のモジュラスの上昇が抑えられ、タイヤとしての乗り心地を改良でき、嵩比重が大幅に上昇して、配合作業性における有効性を示した。さらに、熱伝導性の低下が小さく、実用的に高付加価値の放熱性ゴム組成物を提供することができた。 FIG. 1 is a graph showing the relationship between temperature and Tan δ. As is clear from the results of FIG. 1 and Table 1, the rubber composition containing the vapor-grown carbon fiber pulverized by vibration mill is the rubber composition containing the normal vapor-grown carbon fiber not crushed in Comparative Example 2. Compared to the product, significantly improved Tan δ deteriorated, corrected heat generation to the level of Comparative Example 1 which is the control, the shoulder was almost disappeared in the temperature dispersion chart, and low hysteresis loss property over a wide temperature range Secured. In addition, increase in modulus of elasticity and low strain was suppressed, and the riding comfort as a tire could be improved, and the bulk specific gravity increased significantly, indicating the effectiveness in blending workability. Furthermore, the heat conductivity fall was small, and it was practically possible to provide a highly value-added heat-dissipating rubber composition.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009116750A JP2010265363A (en) | 2009-05-13 | 2009-05-13 | Rubber composition and tire using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009116750A JP2010265363A (en) | 2009-05-13 | 2009-05-13 | Rubber composition and tire using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010265363A true JP2010265363A (en) | 2010-11-25 |
Family
ID=43362630
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009116750A Pending JP2010265363A (en) | 2009-05-13 | 2009-05-13 | Rubber composition and tire using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010265363A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014019772A (en) * | 2012-07-17 | 2014-02-03 | Sumitomo Rubber Ind Ltd | Tread rubber composition for high-performance tire, and high-performance tire |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6465144A (en) * | 1987-06-24 | 1989-03-10 | Yazaki Corp | Vapor-growth carbonaceous fiber and its resin composition |
WO2003102073A1 (en) * | 2002-06-03 | 2003-12-11 | Bridgestone Corporation | Rubber composition and tire obtained from the same |
JP2004143652A (en) * | 2002-08-29 | 2004-05-20 | Showa Denko Kk | Finely graphitized carbon fiber, method for producing the same and use for the same |
JP2009144131A (en) * | 2007-11-20 | 2009-07-02 | Bridgestone Corp | Rubber composition and tire using the same |
-
2009
- 2009-05-13 JP JP2009116750A patent/JP2010265363A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6465144A (en) * | 1987-06-24 | 1989-03-10 | Yazaki Corp | Vapor-growth carbonaceous fiber and its resin composition |
WO2003102073A1 (en) * | 2002-06-03 | 2003-12-11 | Bridgestone Corporation | Rubber composition and tire obtained from the same |
JP2004143652A (en) * | 2002-08-29 | 2004-05-20 | Showa Denko Kk | Finely graphitized carbon fiber, method for producing the same and use for the same |
JP2009144131A (en) * | 2007-11-20 | 2009-07-02 | Bridgestone Corp | Rubber composition and tire using the same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014019772A (en) * | 2012-07-17 | 2014-02-03 | Sumitomo Rubber Ind Ltd | Tread rubber composition for high-performance tire, and high-performance tire |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Guo et al. | Enhanced fatigue and durability of carbon black/natural rubber composites reinforced with graphene oxide and carbon nanotubes | |
JP5946675B2 (en) | Rubber composition for tire and method for producing the same | |
JP5367966B2 (en) | Rubber composition for tire | |
US20150203661A1 (en) | Improved natural rubber compositions | |
JP2010185032A (en) | Rubber composition, and tire using the same | |
JPWO2020189328A1 (en) | Rubber composition for studless tires and studless tires using it | |
JP2008222845A (en) | Rubber composition for tire | |
JPWO2020121788A1 (en) | Rubber composition, rubber composition for tread, and pneumatic tires | |
JP5495413B2 (en) | tire | |
JP2020152744A (en) | Rubber composition for tire and pneumatic tire with the same | |
Ghari et al. | Natural rubber hybrid nanocomposites reinforced with swelled organoclay and nano-calcium carbonate | |
JP5215532B2 (en) | Rubber composition and pneumatic tire using the same | |
JP2010265363A (en) | Rubber composition and tire using the same | |
JP2007070617A (en) | Rubber composition | |
JP2007099896A (en) | Rubber composition | |
JP2009102630A (en) | Rubber composition | |
JP5992747B2 (en) | High performance tire tread rubber composition and high performance tire | |
JP2009144131A (en) | Rubber composition and tire using the same | |
JP2003327753A (en) | Rubber composition | |
Velayudhan et al. | Physical property characterizations of natural rubber nanocomposites through experimental techniques, models and CRR concept | |
JP2009144110A (en) | Rubber composition and tire using the same | |
JP2009185145A (en) | Manufacturing method for rubber composition, rubber composition, and tire using it | |
JP2005200641A (en) | Rubber composition and tire using the same | |
JP2007045942A (en) | Rubber composition and tire using the same | |
JP2010275376A (en) | Rubber composition and tire using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120510 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130828 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130830 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20131227 |