JP2010263758A - Rotor in cage-type induction machine and cage-type induction machine - Google Patents

Rotor in cage-type induction machine and cage-type induction machine Download PDF

Info

Publication number
JP2010263758A
JP2010263758A JP2009115009A JP2009115009A JP2010263758A JP 2010263758 A JP2010263758 A JP 2010263758A JP 2009115009 A JP2009115009 A JP 2009115009A JP 2009115009 A JP2009115009 A JP 2009115009A JP 2010263758 A JP2010263758 A JP 2010263758A
Authority
JP
Japan
Prior art keywords
rotor
induction machine
passage
rotor core
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009115009A
Other languages
Japanese (ja)
Other versions
JP5218263B2 (en
Inventor
Tatsuya Hattori
達哉 服部
Yoichi Saito
洋一 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2009115009A priority Critical patent/JP5218263B2/en
Publication of JP2010263758A publication Critical patent/JP2010263758A/en
Application granted granted Critical
Publication of JP5218263B2 publication Critical patent/JP5218263B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Induction Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the performance of cooling conductors at a rotor in a cage-type induction machine. <P>SOLUTION: A plurality of heat dissipation pieces 28, 29 are formed integrally on the inner peripheral surfaces of short circuit rings 18, 19. The heat dissipation piece 28 is formed so as to be projected into a penetration passage 160 from an edge 181 side of the short circuit ring 18 facing one edge 162 of the a rotor core 16, and the heat dissipation piece 29 is formed so as to be projected into the penetration passage 160 form the edge 191 side of the short circuit ring 19 facing the other edge 163 of the rotor core 16. Namely, parts of the heat dissipation pieces 28, 29 are projected into the penetration passage 160 through which a rotary shaft 17 passes. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ロータコアの周方向に配列された複数のスロット内に導体を設けたかご形誘導機における回転子及びかご形誘導機に関する。   The present invention relates to a rotor and a squirrel cage in a cage induction machine in which conductors are provided in a plurality of slots arranged in the circumferential direction of a rotor core.

かご形誘導機としては、ロータコアの周方向に並んだ状態で二次導体としての複数の導体をロータコアに収容するとともに、複数の導体の両端を短絡環で短絡して回転子を構成したものが知られている。このかご形誘導機では、ステータコアに巻回された固定子巻線に電流が流されると、固定子から磁束が発生し、この磁束がロータコアの周方向に並んだ導体と順に鎖交することによって、各導体に順に電流が流れ、導体を流れる電流と磁束との相互作用によって回転子が回転する。   As a squirrel-cage induction machine, a rotor is configured by accommodating a plurality of conductors as secondary conductors in the rotor core while being arranged in the circumferential direction of the rotor core, and shorting both ends of the plurality of conductors with a short-circuit ring. Are known. In this squirrel-cage induction machine, when a current is passed through the stator winding wound around the stator core, a magnetic flux is generated from the stator, and this magnetic flux is interlinked in sequence with the conductors arranged in the circumferential direction of the rotor core. A current flows through each conductor in turn, and the rotor rotates due to the interaction between the current flowing through the conductor and the magnetic flux.

回転子で発生した熱を排除するため、特許文献1では、ロータコアに中空部が形成され、中空部内に通された回転軸の外周面と回転子の内周面との間にファン形状の通風装置が介在されている。ロータコアは、通風装置を介して回転軸に支持されており、回転軸、通風装置及びロータコアが一体的に回転する。回転する通風装置は、中空部内の流体を回転軸の軸方向へ流して回転子を冷却する。   In order to eliminate the heat generated in the rotor, in Patent Document 1, a hollow portion is formed in the rotor core, and a fan-shaped ventilation is provided between the outer peripheral surface of the rotating shaft passed through the hollow portion and the inner peripheral surface of the rotor. The device is interposed. The rotor core is supported on the rotation shaft via the ventilation device, and the rotation shaft, the ventilation device, and the rotor core rotate integrally. The rotating ventilation device cools the rotor by flowing the fluid in the hollow portion in the axial direction of the rotation shaft.

特表2002−537748号公報Special Table 2002-537748

回転子内の発熱する導体を冷却するには、導体の熱を通風装置の回転による通風領域へ導いてくることが望ましい。しかし、特許文献1には、そのための具体的な構成の開示はなく、回転子内の導体を冷却する性能が不十分である。   In order to cool the heat-generating conductor in the rotor, it is desirable to conduct the heat of the conductor to the ventilation region by the rotation of the ventilation device. However, Patent Document 1 does not disclose a specific configuration for that purpose, and the performance of cooling the conductor in the rotor is insufficient.

本発明は、かご形誘導機における回転子内の導体を冷却する性能を高めることを目的とする。   An object of this invention is to improve the performance which cools the conductor in the rotor in a cage induction machine.

本発明は、固定子の内側にロータコアが設けられており、前記ロータコアは、その周方向に配列された複数のスロットを備えており、前記スロット内には導体が設けられており、前記ロータコアの一対の端面には短絡環が前記導体に接触するように設けられており、前記ロータコアにはその回転軸線の方向に貫通する貫通路が設けられているかご形誘導機における回転子を対象とし、請求項1の発明では、前記短絡環には放熱器が設けられており、前記放熱器は、放熱片を備えており、前記放熱片の少なくとも一部は、前記貫通路内に突入されている。   In the present invention, a rotor core is provided inside a stator, and the rotor core includes a plurality of slots arranged in a circumferential direction thereof, and a conductor is provided in the slot. A short-circuit ring is provided on a pair of end faces so as to contact the conductor, and the rotor core is provided with a rotor in a squirrel-cage induction machine provided with a through passage extending in the direction of the rotation axis thereof. In the invention of claim 1, a heat radiator is provided in the short-circuit ring, the heat radiator includes a heat radiating piece, and at least a part of the heat radiating piece is inserted into the through passage. .

放熱片は、ロータコアと一体的に回転する。ロータコア内の導体で発生する熱の一部は、短絡環を介して放熱片に伝わり、放熱片に伝えられた熱は、回転する放熱片から貫通路内の流体へ伝えられる。導体から貫通路内の放熱片へのこのような熱伝達は、導体を冷却する性能を高める。   The heat radiating piece rotates integrally with the rotor core. Part of the heat generated by the conductor in the rotor core is transferred to the heat radiating piece through the short-circuit ring, and the heat transferred to the heat radiating piece is transferred from the rotating heat radiating piece to the fluid in the through passage. Such heat transfer from the conductor to the heat radiating piece in the through passage enhances the performance of cooling the conductor.

好適な例では、前記放熱片は、前記短絡環に一体形成されている。
このような一体構成は、熱伝達の向上に寄与する。
好適な例では、前記放熱器は、前記短絡環の環内又は前記貫通路内に嵌合された円環を備えており、前記放熱片は、前記円環に一体形成されている。
In a preferred example, the heat dissipating piece is integrally formed with the short-circuit ring.
Such an integrated configuration contributes to an improvement in heat transfer.
In a preferred example, the radiator includes a circular ring fitted in the ring of the short-circuit ring or the through-passage, and the heat radiating piece is integrally formed with the circular ring.

好適な例では、前記貫通路周壁面と前記回転軸の外周面との間には、前記回転軸の回転に伴って流体を送る送流装置が介在されており、前記ロータコアは、前記送流装置を介して前記回転軸に支持されている。   In a preferred example, a flow feeding device is interposed between the through wall circumferential wall surface and the outer circumferential surface of the rotary shaft, and the rotor core is configured to send the fluid along with the rotation of the rotary shaft. It is supported by the rotating shaft through a device.

放熱片に伝えられた熱は、送流装置によって送られる流体へ伝えられる。
好適な例では、前記貫通路は、前記ロータコアに貫設された複数の送流路と、前記端面に開口すると共に、前記送流路に接続する凹部とを有し、前記凹部内には前記放熱片の少なくとも一部が突入されている。
The heat transferred to the heat radiating piece is transferred to the fluid sent by the flow sending device.
In a preferred example, the through passage has a plurality of feed passages penetrating the rotor core, and a recess that opens to the end surface and connects to the feed passage, At least a part of the heat dissipation piece is inserted.

放熱片に伝えられた熱は、凹部内の流体へ伝えられる。
請求項6の発明は、請求項1乃至請求項5のいずれか1項に記載の回転子を備えたかご形誘導機である。
The heat transferred to the heat radiating piece is transferred to the fluid in the recess.
A sixth aspect of the present invention is a squirrel-cage induction machine provided with the rotor according to any one of the first to fifth aspects.

本発明は、かご形誘導機における回転子内の導体を冷却する性能を高めることができるという優れた効果を奏する。   The present invention has an excellent effect that the performance of cooling a conductor in a rotor in a cage induction machine can be enhanced.

第1の実施形態を示す側断面図。1 is a side sectional view showing a first embodiment. 図1のA−A線断面図。AA sectional view taken on the line AA of FIG. 回転子の断面図。Sectional drawing of a rotor. 展開図。Development view. 第2の実施形態を示し、(a)は、回転子の断面図。(b)は、展開図。A 2nd embodiment is shown and (a) is a sectional view of a rotor. (B) is a development view. 別の実施形態を示す断面図。Sectional drawing which shows another embodiment. 別の実施形態を示す断面図。Sectional drawing which shows another embodiment. 別の実施形態を示し、(a)は、側断面図。(b)は、図8(a)のB−B線断面図。Another embodiment is shown, (a) is a sectional side view. (B) is the BB sectional drawing of Fig.8 (a). 別の実施形態を示し、(a)は、側断面図。(b)は、図9(a)のC−C線断面図。Another embodiment is shown, (a) is a sectional side view. (B) is CC sectional view taken on the line of Fig.9 (a).

以下、本発明を具体化した第1の実施形態を図1〜図4について説明する。
図1に示すように、かご形誘導機Mは、モータハウジング10と、モータハウジング10の内周面に固定された環状の固定子11と、モータハウジング10に回転可能に支持された回転子15とを備えている。
A first embodiment embodying the present invention will be described below with reference to FIGS.
As shown in FIG. 1, the cage induction machine M includes a motor housing 10, an annular stator 11 fixed to the inner peripheral surface of the motor housing 10, and a rotor 15 rotatably supported by the motor housing 10. And.

図2に示すように、かご形誘導機Mを構成する固定子11は、環状のステータコア12と、ステータコア12の内周に複数配列されたティース121間のスロット122に施された巻線13とからなる。スロット122は、環状の固定子11の周方向に等ピッチで配列されている。   As shown in FIG. 2, the stator 11 constituting the squirrel-cage induction machine M includes an annular stator core 12 and windings 13 applied to slots 122 between a plurality of teeth 121 arranged on the inner periphery of the stator core 12. Consists of. The slots 122 are arranged at an equal pitch in the circumferential direction of the annular stator 11.

図1に示すように、ステータコア12は、磁性体(電磁鋼板)製の複数枚のコア板14を積層して構成されており、ロータコア16は、磁性体(電磁鋼板)製の複数枚のコア板20を積層して構成されている。   As shown in FIG. 1, the stator core 12 is configured by laminating a plurality of core plates 14 made of a magnetic material (magnetic steel plate), and the rotor core 16 is a plurality of cores made of a magnetic material (magnetic steel plate). The plate 20 is laminated.

回転子15は、円筒形状のロータコア16と、ロータコア16の筒内(以下においては貫通路160と記す)に通された回転軸17と、ロータコア16の両端面162,163に接合された一対の短絡環18,19とを備えている。ロータコア16は、一対の送風装置21,22を介して回転軸17に支持されている。   The rotor 15 includes a cylindrical rotor core 16, a rotating shaft 17 that passes through a cylinder of the rotor core 16 (hereinafter referred to as a through-passage 160), and a pair of joints that are joined to both end faces 162 and 163 of the rotor core 16. Shorting rings 18 and 19 are provided. The rotor core 16 is supported on the rotating shaft 17 via a pair of blowers 21 and 22.

図3に示すように、送風装置22は、回転軸17に嵌合される内輪部23と、円筒形状のロータコア16の内周面に嵌合される外輪部24と、内輪部23と外輪部24とに連結された複数の羽根25とから構成されている。送風装置21も同様の構成である。回転軸17の外周面171と貫通路160の周壁面161との間に介在された送流装置としての送風装置21,22、回転軸17及びロータコア16は、矢印Rの方向へ一体的に回転する。   As shown in FIG. 3, the air blower 22 includes an inner ring portion 23 fitted to the rotating shaft 17, an outer ring portion 24 fitted to the inner peripheral surface of the cylindrical rotor core 16, the inner ring portion 23, and the outer ring portion. 24 and a plurality of blades 25 connected to each other. The air blower 21 has the same configuration. The air blowers 21 and 22, the rotating shaft 17, and the rotor core 16 as flow feeding devices interposed between the outer peripheral surface 171 of the rotating shaft 17 and the peripheral wall surface 161 of the through passage 160 rotate integrally in the direction of arrow R. To do.

図1に示すように、環状の固定子11の内側に設けられたロータコア16には複数のスロット26が回転子15の回転軸線151の方向に貫通するように形成されている。各スロット26内には導体27が充填されている。導体27は、その両端が短絡環18,19に固定されて短絡されている。   As shown in FIG. 1, a plurality of slots 26 are formed in the rotor core 16 provided inside the annular stator 11 so as to penetrate in the direction of the rotation axis 151 of the rotor 15. Each slot 26 is filled with a conductor 27. The conductor 27 is short-circuited with both ends fixed to the short-circuit rings 18 and 19.

回転子15は、巻線13への通電制御によって回転軸線151を中心にして回転する。
短絡環18,19の内周面には複数の放熱片28,29(図2に示すように、本実施形態ではそれぞれ5つ)が一体形成されている。放熱片28は、ロータコア16の一方の端面162に対向する短絡環18の端面181側から貫通路160内に突入するように形成されており、放熱片29は、ロータコア16の他方の端面163に対向する短絡環19の端面191側から貫通路160内に突入するように形成されている。つまり、放熱片28,29の一部は、貫通路160内に突入されている。短絡環18及び放熱片28は、放熱器30Aを構成し、短絡環19及び放熱片29は、放熱器30Bを構成する。
The rotor 15 rotates around the rotation axis 151 by energization control to the winding 13.
A plurality of heat dissipating pieces 28 and 29 (five each in this embodiment, as shown in FIG. 2) are integrally formed on the inner peripheral surfaces of the short-circuit rings 18 and 19. The heat radiating piece 28 is formed so as to protrude into the through-hole 160 from the end face 181 side of the short-circuit ring 18 facing one end face 162 of the rotor core 16, and the heat radiating piece 29 is formed on the other end face 163 of the rotor core 16. The shunt ring 19 is formed so as to enter the through passage 160 from the end surface 191 side of the opposing short-circuit ring 19. That is, a part of the heat radiation pieces 28 and 29 are inserted into the through passage 160. The short-circuit ring 18 and the heat radiating piece 28 constitute a heat radiator 30A, and the short-circuit ring 19 and the heat radiating piece 29 constitute a heat radiator 30B.

図4は、ロータコア16の内周面、送風装置21,22の外輪部24の内周面、及び短絡環18,19の内周面を平面展開した展開図を表す。
図1に示すモータハウジング10内は、図示しない導入通路及び図示しない排出通路を介して大気に連通している。本実施形態では、回転軸17の矢印Rの方向への回転に伴って、送風装置21,22の羽根25が貫通路160内で矢印Q〔図1参照〕の方向へ空気を送る。送風装置21,22の回転に伴い、モータハウジング10外の大気から空気が前記導入通路を介してモータハウジング10内へ導入される。モータハウジング10内へ導入された空気は、送風装置21側から貫通路160を通って送風装置22側へ送られる。送風装置21側から貫通路160を通って送風装置22側へ送られた空気は、前記排出通路からモータハウジング10外へ流出する。
FIG. 4 is a development view in which the inner peripheral surface of the rotor core 16, the inner peripheral surface of the outer ring portion 24 of the blowers 21 and 22, and the inner peripheral surfaces of the short-circuit rings 18 and 19 are developed in a plane.
The motor housing 10 shown in FIG. 1 communicates with the atmosphere through an introduction passage (not shown) and a discharge passage (not shown). In the present embodiment, as the rotary shaft 17 rotates in the direction of arrow R, the blades 25 of the blowers 21 and 22 send air in the direction of the arrow Q [see FIG. As the blowers 21 and 22 rotate, air is introduced from the atmosphere outside the motor housing 10 into the motor housing 10 through the introduction passage. The air introduced into the motor housing 10 is sent from the blower 21 side to the blower 22 side through the through passage 160. The air sent from the blower 21 side to the blower 22 side through the through passage 160 flows out of the motor housing 10 from the discharge passage.

ロータコア16の外周面の近くにある導体27で発生する熱の一部は、短絡環18,19を介して放熱片28,29に伝わる。放熱片28,29に伝えられた熱は、貫通路160内を流れる空気に伝わる。つまり、貫通路160内の放熱片28,29と貫通路160内を流れる空気との間の熱伝達作用は、ロータコア16の外周面付近の冷却をもたらす。   Part of the heat generated in the conductor 27 near the outer peripheral surface of the rotor core 16 is transmitted to the heat radiating pieces 28 and 29 via the short-circuit rings 18 and 19. The heat transmitted to the heat radiating pieces 28 and 29 is transmitted to the air flowing through the through passage 160. That is, the heat transfer action between the heat dissipating pieces 28 and 29 in the through passage 160 and the air flowing through the through passage 160 brings about cooling of the vicinity of the outer peripheral surface of the rotor core 16.

第1の実施形態では以下の効果が得られる。
(1)導体27から短絡環18,19を介して放熱片28,29に伝えられた熱は、回転する放熱片28,29から貫通路160内を流れる空気へ伝えられる。モータハウジング10内における空気流速は、空気流を発生させる送風装置21,22を設けた貫通路160内で最速である。短絡環18,19に一体に連結する放熱片28,29を空気流速最速となる貫通路160内に突入された構成は、ロータコア16内(回転子15内)の導体27を冷却する性能を高める。
In the first embodiment, the following effects can be obtained.
(1) The heat transferred from the conductor 27 to the heat radiating pieces 28 and 29 through the short-circuit rings 18 and 19 is transferred from the rotating heat radiating pieces 28 and 29 to the air flowing through the through passage 160. The air flow velocity in the motor housing 10 is the fastest in the through passage 160 provided with the blowers 21 and 22 that generate the air flow. The structure in which the heat dissipating pieces 28 and 29 that are integrally connected to the short-circuit rings 18 and 19 are inserted into the through-passage 160 having the highest air flow rate improves the performance of cooling the conductor 27 in the rotor core 16 (in the rotor 15). .

(2)短絡環18,19に放熱片28,29を別体で連結した場合に比べ、放熱片28,29を短絡環18,19に一体形成した構成は、導体27から放熱片28,29への熱伝達効率を高める。このような一体構成は、導体27を冷却する性能の向上に寄与する。   (2) Compared to the case where the radiating pieces 28 and 29 are separately connected to the short-circuiting rings 18 and 19, the configuration in which the radiating pieces 28 and 29 are integrally formed with the short-circuiting rings 18 and 19, Increase heat transfer efficiency to. Such an integrated configuration contributes to an improvement in performance for cooling the conductor 27.

又、このような一体構成は、放熱器30A,30Bの形成工程の簡素化に寄与する。
次に、図5の第2の実施形態を説明する。第1の実施形態と同じ構成部には同じ符合を用い、その詳細説明は省略する。
Further, such an integrated configuration contributes to simplification of the process of forming the radiators 30A and 30B.
Next, a second embodiment of FIG. 5 will be described. The same reference numerals are used for the same components as those in the first embodiment, and detailed description thereof is omitted.

図5(b)は、ロータコア16の内周面、送風装置21,22の外輪部24の内周面、及び短絡環18,19の内周面を平面展開した展開図を表す。図5(a)は、送風装置21側から放熱片29Aを見た図である。   FIG. 5B shows a development in which the inner peripheral surface of the rotor core 16, the inner peripheral surface of the outer ring portion 24 of the blower devices 21 and 22, and the inner peripheral surfaces of the short-circuit rings 18 and 19 are developed in a plane. Fig.5 (a) is the figure which looked at the thermal radiation piece 29A from the air blower 21 side.

放熱片28A,29Aは、回転軸線151に沿って送風装置21側から送風装置22側へと向かうにつれて、ロータコア16の回転方向Rとは反対側に向かう送風面281,291を有する形状に形成されている。ロータコア16の回転に伴い、放熱片28A.29Aの送風面281,291は、回転軸線151に沿って送風装置21側から送風装置22側へと貫通路160内の空気を送る。送風面281,291は、ロータコア16の回転に伴って回転軸線151の方向へ送られる空気(冷却流体)流の送流成分を生成する。送風面281,291を有する放熱片28A,29Aは、放熱片28A,29Aから空気への熱伝達の効率向上に有利である。   The heat dissipating pieces 28A and 29A are formed in a shape having air blowing surfaces 281 and 291 that are directed to the side opposite to the rotation direction R of the rotor core 16 along the rotation axis 151 from the air blowing device 21 side toward the air blowing device 22 side. ing. As the rotor core 16 rotates, the heat dissipating pieces 28A. The air blowing surfaces 281 and 291 of 29A send the air in the through passage 160 along the rotation axis 151 from the air blowing device 21 side to the air blowing device 22 side. The air blowing surfaces 281 and 291 generate a flow component of an air (cooling fluid) flow sent in the direction of the rotation axis 151 as the rotor core 16 rotates. The heat radiating pieces 28A and 29A having the air blowing surfaces 281 and 291 are advantageous in improving the efficiency of heat transfer from the heat radiating pieces 28A and 29A to the air.

本発明では以下のような実施形態も可能である。
○図6に示すように、貫通路160内に全て嵌入された円環33の内周面に放熱片28Bを一体形成してもよい。この場合、放熱片28Bは、全て貫通路160内に入り込んでおり、円環33の端面は、短絡環18の端面181〔図1参照〕に接合している。短絡環18、円環33及び放熱片28Bは、放熱器を構成する。
In the present invention, the following embodiments are also possible.
As shown in FIG. 6, the heat radiating piece 28 </ b> B may be integrally formed on the inner peripheral surface of the annular ring 33 that is entirely inserted into the through passage 160. In this case, the heat radiating pieces 28B all enter the through passage 160, and the end face of the annular ring 33 is joined to the end face 181 of the short-circuit ring 18 (see FIG. 1). The short ring 18, the circular ring 33, and the heat dissipation piece 28 </ b> B constitute a heat radiator.

○図7に示すように、円環33の内周面に放熱片28Cを別体形成してもよい。
○図8(a)に示すように、ファン型の放熱器31A,31Bを採用してもよい。図8(b)に示すように、放熱器31Bは、回転軸17に嵌合される内輪部311と、円筒形状のロータコア16の内周面に嵌合される外輪部312と、内輪部311と外輪部312とに連結された複数の放熱片313とを備えている。放熱器31Aの構成も放熱器31Bと同様である。内輪部311は、短絡環18,19の端面181,191に接触している。
As shown in FIG. 7, the heat dissipating piece 28 </ b> C may be separately formed on the inner peripheral surface of the annular ring 33.
As shown in FIG. 8A, fan-type radiators 31A and 31B may be employed. As shown in FIG. 8B, the radiator 31 </ b> B includes an inner ring portion 311 fitted to the rotating shaft 17, an outer ring portion 312 fitted to the inner peripheral surface of the cylindrical rotor core 16, and the inner ring portion 311. And a plurality of heat dissipating pieces 313 connected to the outer ring portion 312. The configuration of the radiator 31A is the same as that of the radiator 31B. The inner ring portion 311 is in contact with the end faces 181 and 191 of the short-circuit rings 18 and 19.

ロータコア16、回転軸17及び放熱器31A,31Bは、一体的に回転する。放熱器31A,31Bの矢印Rの方向への回転に伴って、放熱片313が貫通路160内で矢印Qの方向へ空気を送る。   The rotor core 16, the rotating shaft 17, and the radiators 31A and 31B rotate integrally. As the radiators 31 </ b> A and 31 </ b> B rotate in the direction of the arrow R, the heat radiating piece 313 sends air in the direction of the arrow Q in the through passage 160.

この実施形態では、図5の第2の実施形態と同様の効果が得られる。
○図9(a),(b)に示すように、ロータコア16の端面162,163に凹部32A,32Bを形成し、凹部32A,32Bの底を貫通する軸通し孔164に回転軸17を嵌入してロータコア16を回転軸17によって直接支持してもよい。この場合、回転軸線151の方向に延びる複数の送流路165が凹部32A,32Bの底を通るようにロータコア16に貫設される。送風装置21側の空気は、送流路165を通って送風装置22側へ流れる。複数の送流路165及び凹部32A,32Bは、貫通路を構成する。
In this embodiment, the same effect as the second embodiment of FIG. 5 is obtained.
○ As shown in FIGS. 9A and 9B, the recesses 32A and 32B are formed in the end faces 162 and 163 of the rotor core 16, and the rotary shaft 17 is inserted into the shaft through hole 164 passing through the bottom of the recesses 32A and 32B. Then, the rotor core 16 may be directly supported by the rotating shaft 17. In this case, a plurality of feed passages 165 extending in the direction of the rotation axis 151 are provided through the rotor core 16 so as to pass through the bottoms of the recesses 32A and 32B. The air on the blower 21 side flows through the feed channel 165 to the blower 22 side. The plurality of feed channels 165 and the recesses 32A and 32B constitute a through path.

図示の例では、送流路165の個数と放熱片28の個数と放熱片29の個数とは、同じであり、回転軸線151の方向に見た場合、送流路165と放熱片28,29とは部分的に重なっている。このような重なり構成では、送風装置21側から送流路165へ流入する空気流の一部が放熱片28に当たり、送流路165から送風装置22側へ流出する空気流の一部が放熱片29に当たる。これは、放熱片28,29から空気への熱伝達効率を高める。   In the illustrated example, the number of the transmission channels 165, the number of the heat radiation pieces 28, and the number of the heat radiation pieces 29 are the same, and when viewed in the direction of the rotation axis 151, the transmission channels 165 and the heat radiation pieces 28, 29 are provided. And partially overlap. In such an overlapping configuration, a part of the air flow flowing from the blower device 21 side to the sending passage 165 hits the heat radiating piece 28, and a part of the air flow flowing out from the sending passage 165 to the blower device 22 side is a heat radiating piece. It hits 29. This increases the efficiency of heat transfer from the heat radiation pieces 28 and 29 to the air.

○送風装置21,22と同様の送風装置を貫通路160外に設けてもよい。
○一対の送風装置21,22のうち、一方のみを採用してもよい。
○短絡環18,19の環内に円環33を嵌合してもよい。
A blower similar to the blowers 21 and 22 may be provided outside the through passage 160.
Only one of the pair of blowers 21 and 22 may be adopted.
The ring 33 may be fitted in the rings of the short-circuit rings 18 and 19.

○冷却流体として、空気以外の気体や液体を用いてもいよい。
前記した実施形態から把握できる技術思想について以下に記載する。
〔1〕前記放熱片は、前記ロータコアの回転に伴って前記回転軸線の方向への送流成分を生成する送風面を有している請求項1乃至請求項5のいずれか1項に記載のかご形誘導機における回転子。
○ A gas or liquid other than air may be used as the cooling fluid.
The technical idea that can be grasped from the embodiment described above will be described below.
[1] The heat dissipation piece according to any one of claims 1 to 5, wherein the heat radiating piece has a blower surface that generates a flow component in the direction of the rotation axis along with the rotation of the rotor core. A rotor in a cage induction machine.

11…固定子。15…回転子。151…回転軸線。16…ロータコア。160…貫通路。161…周壁面。162,163…端面。164…軸通し孔。165…送流路。17…回転軸。171…外周面。18,19…短絡環。21,22…送流装置としての送風装置。26…スロット。27…導体。28,28A,28B,28C,29,29A,313…放熱片。30A,30B,31A,31B…放熱器。32A,32B…凹部。33…円環。M…かご形誘導機。   11 ... Stator. 15 ... Rotor. 151: A rotational axis. 16 ... Rotor core. 160 ... a through passage. 161 ... A peripheral wall surface. 162, 163 ... end faces. 164 ... A shaft through hole. 165... 17 ... Rotating shaft. 171 ... Outer peripheral surface. 18, 19 ... Short circuit ring. 21, 22... Blower as a flow sending device. 26: Slot. 27: Conductor. 28, 28A, 28B, 28C, 29, 29A, 313. 30A, 30B, 31A, 31B ... radiator. 32A, 32B ... concave portions. 33 ... An annulus. M: A cage induction machine.

Claims (6)

固定子の内側にロータコアが設けられており、前記ロータコアは、その周方向に配列された複数のスロットを備えており、前記スロット内には導体が設けられており、前記ロータコアの一対の端面には短絡環が前記導体に接触するように設けられており、前記ロータコアにはその回転軸線の方向に貫通する貫通路が設けられているかご形誘導機における回転子において、
前記短絡環には放熱器が設けられており、
前記放熱器は、放熱片を備えており、
前記放熱片の少なくとも一部は、前記貫通路内に突入されているかご形誘導機における回転子。
A rotor core is provided inside the stator, and the rotor core includes a plurality of slots arranged in a circumferential direction thereof, and a conductor is provided in the slot, and a pair of end faces of the rotor core are provided on the pair of end faces. Is provided in such a manner that a short-circuit ring is in contact with the conductor, and in the rotor in the squirrel-cage induction machine in which the rotor core is provided with a through passage extending in the direction of the rotation axis thereof,
The short-circuit ring is provided with a radiator.
The radiator includes a radiator piece,
At least a part of the heat dissipating piece is a rotor in a squirrel-cage induction machine that is inserted into the through passage.
前記放熱片は、前記短絡環に一体形成されている請求項1に記載のかご形誘導機における回転子。   The rotor in a squirrel-cage induction machine according to claim 1, wherein the heat dissipating piece is integrally formed with the short-circuit ring. 前記放熱器は、前記短絡環の環内又は前記貫通路内に嵌合された円環を備えており、前記放熱片は、前記円環に一体形成されている請求項1に記載のかご形誘導機における回転子。   2. The cage according to claim 1, wherein the radiator includes an annular ring fitted in the ring of the short-circuited ring or the through-passage, and the radiator piece is integrally formed with the annular ring. Rotor in induction machine. 前記貫通路周壁面と前記回転軸の外周面との間には、前記回転軸の回転に伴って流体を送る送流装置が介在されており、前記ロータコアは、前記送流装置を介して前記回転軸に支持されている請求項1乃至請求項3のいずれか1項に記載のかご形誘導機における回転子。   Between the through-passage peripheral wall surface and the outer peripheral surface of the rotating shaft, a flow feeding device that sends fluid along with the rotation of the rotating shaft is interposed, and the rotor core passes through the flow feeding device. The rotor in the squirrel-cage induction machine according to any one of claims 1 to 3, wherein the rotor is supported by a rotating shaft. 前記貫通路は、前記ロータコアに貫設された複数の送流路と、前記端面に開口すると共に、前記送流路に接続する凹部とを有し、前記凹部内には前記放熱片の少なくとも一部が突入されている請求項1乃至請求項3のいずれか1項に記載のかご形誘導機における回転子。   The through passage has a plurality of feed passages penetrating the rotor core and a recess that opens to the end surface and connects to the feed passage. At least one of the heat radiating pieces is in the recess. The rotor in the squirrel-cage induction machine according to any one of claims 1 to 3, wherein the portion is plunged. 請求項1乃至請求項5のいずれか1項に記載の回転子を備えたかご形誘導機。   A squirrel-cage induction machine comprising the rotor according to any one of claims 1 to 5.
JP2009115009A 2009-05-11 2009-05-11 Rotor and cage induction machine in cage induction machine Expired - Fee Related JP5218263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009115009A JP5218263B2 (en) 2009-05-11 2009-05-11 Rotor and cage induction machine in cage induction machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009115009A JP5218263B2 (en) 2009-05-11 2009-05-11 Rotor and cage induction machine in cage induction machine

Publications (2)

Publication Number Publication Date
JP2010263758A true JP2010263758A (en) 2010-11-18
JP5218263B2 JP5218263B2 (en) 2013-06-26

Family

ID=43361370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009115009A Expired - Fee Related JP5218263B2 (en) 2009-05-11 2009-05-11 Rotor and cage induction machine in cage induction machine

Country Status (1)

Country Link
JP (1) JP5218263B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7329721B1 (en) * 2022-07-06 2023-08-18 三菱電機株式会社 Rotating electric machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06153471A (en) * 1992-11-04 1994-05-31 East Japan Railway Co Construction of rotor of induction motor
JP2000023415A (en) * 1998-07-03 2000-01-21 Ebara Corp Sealed motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06153471A (en) * 1992-11-04 1994-05-31 East Japan Railway Co Construction of rotor of induction motor
JP2000023415A (en) * 1998-07-03 2000-01-21 Ebara Corp Sealed motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7329721B1 (en) * 2022-07-06 2023-08-18 三菱電機株式会社 Rotating electric machine
WO2024009414A1 (en) * 2022-07-06 2024-01-11 三菱電機株式会社 Rotary electric machine

Also Published As

Publication number Publication date
JP5218263B2 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
JP5080603B2 (en) Apparatus and method for cooling an electric machine
US8760016B2 (en) Electric machine with enhanced cooling
JP6059906B2 (en) Axial gap type rotating electrical machine
JP7201601B2 (en) Enclosed rotating electrical machine with an internal air cooling system for the magnets in the rotor
US9570952B2 (en) Disk motor, electric working machine including disk motor and method for manufacturing disk motor
JP2010226947A6 (en) Apparatus and method for cooling an electric machine
JP2015192474A (en) Rotary electric machine device
JP2008017656A (en) Closed electric machine having enclosing air chamber and vent of radius direction
JP2011254577A (en) Rotary electric machine
JP6225730B2 (en) Rotating electric machine
JP2016052221A (en) Brushless rotary electric machine
JP2014017980A (en) Rotary machine
JP2011172375A (en) Rotor for rotating electric machine
JP2008043149A (en) Motor cooling structure
JP2012161134A (en) Rotary electric machine
JP6247555B2 (en) Rotating electric machine
JP2012029398A (en) Rotary electric machine
JP5787184B2 (en) Rotor and rotating electric machine using the same
JP5218263B2 (en) Rotor and cage induction machine in cage induction machine
CN107710562B (en) Rotating electrical machine
JP2019213282A (en) Dynamo-electric machine and stator cooling structure
CN111628589B (en) Rotary electric machine
JP5517714B2 (en) Rotating electric machine
US9362794B2 (en) Stator winding comprising multiple phase windings
WO2018131197A1 (en) Motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees