JP2010263065A - Organic light-emitting element - Google Patents

Organic light-emitting element Download PDF

Info

Publication number
JP2010263065A
JP2010263065A JP2009112499A JP2009112499A JP2010263065A JP 2010263065 A JP2010263065 A JP 2010263065A JP 2009112499 A JP2009112499 A JP 2009112499A JP 2009112499 A JP2009112499 A JP 2009112499A JP 2010263065 A JP2010263065 A JP 2010263065A
Authority
JP
Japan
Prior art keywords
group
substituted
light emitting
formula
condensed polycyclic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009112499A
Other languages
Japanese (ja)
Inventor
Katanori Muratsubaki
方規 村椿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009112499A priority Critical patent/JP2010263065A/en
Publication of JP2010263065A publication Critical patent/JP2010263065A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic light-emitting element which is superior in durability. <P>SOLUTION: A condensed-polycyclic compound formed by condensation of two benzo terphenyls to perylene, and a condensed-polycyclic compound formed by condensation of two benzo terphenyls to naphthalene are included in a light-emitting layer of the organic light-emitting element composed of an organic compound layer which is sandwiched between an anode and a cathode, and has at least the light-emitting layer. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、有機発光素子に関する。   The present invention relates to an organic light emitting device.

有機発光素子は、陽極と陰極との間に蛍光性有機化合物を含む薄膜を挟持させてなる電子素子である。また各電極から電子及びホール(正孔)を注入することにより、蛍光性有機化合物の励起子が生成され、この励起子が基底状態に戻る際に、有機発光素子は光を発する。   An organic light emitting device is an electronic device in which a thin film containing a fluorescent organic compound is sandwiched between an anode and a cathode. Further, by injecting electrons and holes from each electrode, excitons of the fluorescent organic compound are generated, and the organic light emitting element emits light when the excitons return to the ground state.

近年、有機発光素子における進歩は著しく、その特徴として、低電圧で高輝度、発光波長の多様性、高速応答性、発光デバイスの薄型化・軽量化が可能であることが挙げられる。   2. Description of the Related Art In recent years, organic light-emitting devices have made remarkable progress, and their features include low voltage, high brightness, a variety of emission wavelengths, high-speed response, and light-emitting devices that can be made thinner and lighter.

しかし、フルカラーディスプレイ等への応用を考えた場合、現在有機発光素子が有する発光効率、安定性ではまだ不十分であり、さらなる改良が必要である。   However, when considering application to a full-color display or the like, the light emission efficiency and stability of the organic light-emitting element are still insufficient, and further improvement is necessary.

そこでさらなる素子特性の向上を目的としてさまざまな研究が行われている。例えば、特許文献1では、発光層の構成材料、より具体的には発光層のドーパントとして、ペリフルオランテン骨格を有する有機化合物を使用した有機発光素子が開示されている。また特許文献2では、発光層をナフタセン誘導体とインデノペリレン誘導体との混合物で構成した有機発光素子が開示されている。   Therefore, various studies have been conducted for the purpose of further improving device characteristics. For example, Patent Document 1 discloses an organic light-emitting device using an organic compound having a perfluoranthene skeleton as a constituent material of the light-emitting layer, more specifically, as a dopant of the light-emitting layer. Patent Document 2 discloses an organic light-emitting device in which a light-emitting layer is composed of a mixture of a naphthacene derivative and an indenoperylene derivative.

特開平11−233261号公報JP-A-11-233261 特開2003−338377号公報JP 2003-338377 A

本発明は、上述した従来技術の問題点を解決するためになされたものであり、その目的は、耐久性に優れた有機発光素子を提供することである。   The present invention has been made to solve the above-described problems of the prior art, and an object of the present invention is to provide an organic light emitting device having excellent durability.

本発明の有機発光素子は、陽極と陰極と、
該陽極と該陰極との間に挟持され少なくとも発光層を有する有機化合物層と、から構成され、
該発光層に下記一般式[1]で示される縮合多環化合物と、下記一般式[2]で示される縮合多環化合物とが含まれることを特徴とする。
The organic light-emitting device of the present invention comprises an anode, a cathode,
An organic compound layer sandwiched between the anode and the cathode and having at least a light emitting layer,
The light emitting layer contains a condensed polycyclic compound represented by the following general formula [1] and a condensed polycyclic compound represented by the following general formula [2].

Figure 2010263065
(式[1]において、R1乃至R36は、それぞれ水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアルコキシ基、置換あるいは無置換のアリール基、置換あるいは無置換の複素環基、置換あるいは無置換のアリールオキシ基、置換アミノ基、ハロゲン原子、スルフィド基及びシリル基からなる群より選ばれる置換基であり、同じであっても異なっていてもよい。)
Figure 2010263065
(In the formula [1], R 1 to R 36 are each a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group A substituent selected from the group consisting of a substituted or unsubstituted aryloxy group, a substituted amino group, a halogen atom, a sulfide group and a silyl group, which may be the same or different.

Figure 2010263065
(式[2]において、R1乃至R32は、それぞれ水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアルコキシ基、置換あるいは無置換のアリール基、置換あるいは無置換の複素環基、置換あるいは無置換のアリールオキシ基、置換アミノ基、ハロゲン原子、スルフィド基及びシリル基からなる群より選ばれる置換基であり、同じであっても異なっていてもよい。)
Figure 2010263065
(In the formula [2], R 1 to R 32 are each a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, respectively. A substituent selected from the group consisting of a substituted or unsubstituted aryloxy group, a substituted amino group, a halogen atom, a sulfide group and a silyl group, which may be the same or different.

本発明によれば、耐久性に優れた有機発光素子を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the organic light emitting element excellent in durability can be provided.

本発明の有機発光素子における実施形態の一例を示す断面外略図である。1 is a schematic cross-sectional view illustrating an example of an embodiment of an organic light-emitting device of the present invention.

以下、本発明に関して詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の有機発光素子は、陽極と陰極と、該陽極と該陰極との間に挟持され少なくとも発光層を有する有機化合物層と、から構成される。   The organic light emitting device of the present invention comprises an anode, a cathode, and an organic compound layer sandwiched between the anode and the cathode and having at least a light emitting layer.

以下、図面を参照しながら本発明の有機発光素子について詳細に説明する。   Hereinafter, the organic light emitting device of the present invention will be described in detail with reference to the drawings.

図1は、本発明の有機発光素子における実施形態の一例を示す断面外略図である。図1の有機発光素子10は、基板1上に、陽極2、ホール輸送層3、発光層4、電子輸送層5及び陰極6がこの順に積層されている。   FIG. 1 is a schematic cross-sectional view illustrating an example of an embodiment of the organic light-emitting device of the present invention. In the organic light emitting device 10 of FIG. 1, an anode 2, a hole transport layer 3, a light emitting layer 4, an electron transport layer 5 and a cathode 6 are laminated on a substrate 1 in this order.

ただし、図1はあくまでごく基本的な素子構成であり、本発明の有機発光素子の構成はこれに限定されるものではない。例えば、電極と有機化合物層との界面に絶縁性層、接着層又は干渉層を設ける、正孔輸送層がイオン化ポテンシャルの異なる2層から構成される等多様な層構成をとることができる。   However, FIG. 1 is a very basic element structure, and the structure of the organic light-emitting element of the present invention is not limited to this. For example, various layer configurations such as providing an insulating layer, an adhesive layer, or an interference layer at the interface between the electrode and the organic compound layer, and a hole transport layer including two layers having different ionization potentials can be employed.

本発明の有機発光素子は、発光層4に下記一般式[1]で示される縮合多環化合物と、下記一般式[2]で示される縮合多環化合物とが含まれている。   In the organic light emitting device of the present invention, the light emitting layer 4 contains a condensed polycyclic compound represented by the following general formula [1] and a condensed polycyclic compound represented by the following general formula [2].

Figure 2010263065
Figure 2010263065

まず一般式[1]で示される縮合多環化合物について説明する。   First, the condensed polycyclic compound represented by the general formula [1] will be described.

式[1]において、R1乃至R36は、それぞれ水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアルコキシ基、置換あるいは無置換のアリール基、置換あるいは無置換の複素環基、置換あるいは無置換のアリールオキシ基、置換アミノ基、ハロゲン原子、スルフィド基及びシリル基からなる群より選ばれる置換基である。 In the formula [1], R 1 to R 36 are each a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, It is a substituent selected from the group consisting of a substituted or unsubstituted aryloxy group, a substituted amino group, a halogen atom, a sulfide group and a silyl group.

1乃至R36で表されるアルキル基として、メチル基、メチル−d1基、メチル−d3基、エチル基、エチル−d5基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−デシル基、iso−プロピル基、iso−プロピル−d7基、iso−ブチル基、sec−ブチル基、tert−ブチル基、tert−ブチル−d9基、iso−ペンチル基、ネオペンチル基、tert−オクチル基、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2−フルオロエチル基、2,2,2−トリフルオロメチル基、パーフルオロエチル基、3−フルオロプロピル基、パーフルオロプロピル基、4−フルオロブチル基、パーフルオロブチル基、5−フルオロペンチル基、6−フルオロヘキシル基、クロロメチル基、トリクロロメチル基、2−クロロエチル基、2,2,2−トリクロロエチル基、4−クロロブチル基、5−クロロペンチル基、6−クロロヘキシル基、ブロモメチル基、2−ブロモエチル基、ヨードメチル基、2−ヨードエチル基、ヒドロキシメチル基、ヒドロキシエチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロペンチルメチル基、シクロヘキシルメチル基、シクロヘキシルエチル基、4−フルオロシクロヘキシル基、ノルボルニル基、アダマンチル基等が挙げられるが、もちろんこれらに限定されるものではない。 Examples of the alkyl group represented by R 1 to R 36 include methyl group, methyl-d1 group, methyl-d3 group, ethyl group, ethyl-d5 group, n-propyl group, n-butyl group, n-pentyl group, n -Hexyl group, n-heptyl group, n-octyl group, n-decyl group, iso-propyl group, iso-propyl-d7 group, iso-butyl group, sec-butyl group, tert-butyl group, tert-butyl- d9 group, iso-pentyl group, neopentyl group, tert-octyl group, fluoromethyl group, difluoromethyl group, trifluoromethyl group, 2-fluoroethyl group, 2,2,2-trifluoromethyl group, perfluoroethyl group 3-fluoropropyl group, perfluoropropyl group, 4-fluorobutyl group, perfluorobutyl group, 5-fluoropentyl group, 6-fluoro Hexyl group, chloromethyl group, trichloromethyl group, 2-chloroethyl group, 2,2,2-trichloroethyl group, 4-chlorobutyl group, 5-chloropentyl group, 6-chlorohexyl group, bromomethyl group, 2-bromoethyl group , Iodomethyl group, 2-iodoethyl group, hydroxymethyl group, hydroxyethyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cyclopentylmethyl group, cyclohexylmethyl group, cyclohexylethyl group, 4-fluorocyclohexyl group, norbornyl group And adamantyl group and the like, but are not limited thereto.

1乃至R36で表されるアルコキシ基として、上述したアルキル基を有するアルキルオキシ基、及びアラルキルオキシ基を挙げることができる。具体的には、メトキシ基、エトキシ基、プロポキシ基、2−エチル−オクチルオキシ基、ベンジルオキシ基等が挙げられるが、もちろんこれらに限定されるものではない。 Examples of the alkoxy group represented by R 1 to R 36 include the above-described alkyloxy groups having an alkyl group and aralkyloxy groups. Specific examples include a methoxy group, an ethoxy group, a propoxy group, a 2-ethyl-octyloxy group, a benzyloxy group, and the like, but of course not limited thereto.

1乃至R36で表されるアリール基として、フェニル基、フェニル−d5基、4−メチルフェニル基、4−メトキシフェニル基、4−エチルフェニル基、4−フルオロフェニル基、4−トリフルオロメチルフェニル基、3,5−ジメチルフェニル基、2,6−ジエチルフェニル基、メシチル基、4−tert−ブチルフェニル基、ジトリルアミノフェニル基、ビフェニル基、ターフェニル基、ナフチル基、ナフチル−d7基、アセナフチレニル基、アントリル基、アントリル−d9基、フェナントリル基、フェナントリル−d9基、ピレニル基、ピレニル−d9基、アセフェナントリレニル基、アセアントリレニル基、クリセニル基、ジベンゾクリセニル基、ベンゾアントリル基、ベンゾアントリル−d11基、ジベンゾアントリル基、ナフタセニル基、ピセニル基、ペンタセニル基、フルオレニル基、トリフェニレニル基、ペリレニル基、ペリレニル−d11基等が挙げられるが、もちろんこれらに限定されるものではない。 Examples of the aryl group represented by R 1 to R 36, a phenyl group, a phenyl -d5 group, 4-methylphenyl group, a 4-methoxyphenyl group, 4-ethylphenyl group, a 4-fluorophenyl group, 4-trifluoromethyl Phenyl group, 3,5-dimethylphenyl group, 2,6-diethylphenyl group, mesityl group, 4-tert-butylphenyl group, ditolylaminophenyl group, biphenyl group, terphenyl group, naphthyl group, naphthyl-d7 group Acenaphthylenyl group, anthryl group, anthryl-d9 group, phenanthryl group, phenanthryl-d9 group, pyrenyl group, pyrenyl-d9 group, acephenanthrenyl group, aceanthrylenyl group, chrysenyl group, dibenzochrysenyl group, benzo Anthryl, benzoanthryl-d11, dibenzoanthryl, naphth Seniru group, picenyl group, a pentacenyl group, a fluorenyl group, a triphenylenyl group, a perylenyl group, but perylenyl -d11 groups and the like, but the present invention is of course not limited thereto.

1乃至R36で表される複素環基として、ピロリル基、ピリジル基、ピリジル−d5基、ビピリジル基、メチルピリジル基、ピリミジニル基、ピラジニル基、ピリダジニル基、ターピロリル基、チエニル基、チエニル−d4基、ターチエニル基、プロピルチエニル基、ベンゾチエニル基、ジベンゾチエニル基、ジベンゾチエニル−d7基、フリル基、フリル−d4基、ベンゾフリル基、イソベンゾフリル基、ジベンゾフリル基、ジベンゾフリル−d7基、キノリル基、キノリル−d6基、イソキノリル基、キノキサリニル基、ナフチリジニル基、キナゾリニル基、フェナントリジニル基、インドリジニル基、フェナジニル基、カルバゾリル基、オキサゾリル基、オキサジアゾリル基、チアゾリル基、チアジアゾリル基、アクリジニル基、フェナジニル基等が挙げられるが、もちろんこれらに限定されるものではない。 Examples of the heterocyclic group represented by R 1 to R 36 include pyrrolyl, pyridyl, pyridyl-d5, bipyridyl, methylpyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, terpyrrolyl, thienyl, and thienyl-d4. Group, tertenyl group, propylthienyl group, benzothienyl group, dibenzothienyl group, dibenzothienyl-d7 group, furyl group, furyl-d4 group, benzofuryl group, isobenzofuryl group, dibenzofuryl group, dibenzofuryl-d7 group, quinolyl Group, quinolyl-d6 group, isoquinolyl group, quinoxalinyl group, naphthyridinyl group, quinazolinyl group, phenanthridinyl group, indolizinyl group, phenazinyl group, carbazolyl group, oxazolyl group, oxadiazolyl group, thiazolyl group, thiadiazolyl group, acridinyl group, Jiniru group, and the like, but the invention is of course not limited thereto.

1乃至R36で表されるアリールオキシ基として、上述したアリール基又は複素環基を有するアリールオキシ基を挙げることができる。具体的には、フェノキシ基、4−tert−ブチルフェノキシ基、チエニルオキシ基等が挙げられるが、もちろんこれらに限定されるものではない。 Examples of the aryloxy group represented by R 1 to R 36 include the aryloxy group having the aryl group or heterocyclic group described above. Specific examples include a phenoxy group, a 4-tert-butylphenoxy group, a thienyloxy group, and the like, but are not limited thereto.

1乃至R36で表される置換アミノ基として、ジメチルアミノ基、ジエチルアミノ基、ジベンジルアミノ基、ジフェニルアミノ基、ジトリルアミノ基、ジアニソリルアミノ基等が挙げられるが、もちろんこれらに限定されるものではない。 Examples of the substituted amino group represented by R 1 to R 36 include a dimethylamino group, a diethylamino group, a dibenzylamino group, a diphenylamino group, a ditolylamino group, a dianisolylamino group, and the like. It is not a thing.

1乃至R36で表されるハロゲン原子として、フッ素、塩素、臭素、ヨウ素等が挙げられるが、もちろんこれらに限定されるものではない。 As the halogen atom represented by R 1 to R 36, fluorine, chlorine, bromine, and iodine and the like, but the present invention is of course not limited thereto.

1乃至R36で表されるシリル基として、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基等が挙げられるが、もちろんこれらに限定されるものではない。 Examples of the silyl group represented by R 1 to R 36 include, but are not limited to, a trimethylsilyl group, a triethylsilyl group, and a triisopropylsilyl group.

上記アルキル基、アルコキシ基、アリール基、複素環基及びアリールオキシ基がさらに有してもよい置換基として、メチル基、エチル基、プロピル基等のアルキル基、フェニル基、ビフェニル基等のアリール基、チエニル基、ピロリル基、ピリジル基等の複素環基、ジメチルアミノ基、ジエチルアミノ基、ジベンジルアミノ基、ジフェニルアミノ基、ジトリルアミノ基、ジアニソリルアミノ基等の置換アミノ基、メトキシ基、エトキシ基等のアルコキシ基、フッ素、塩素、臭素、ヨウ素等のハロゲン原子、水酸基、シアノ基、ニトロ基等が挙げられるが、もちろんこれらに限定されるものではない。   As the substituent that the alkyl group, alkoxy group, aryl group, heterocyclic group and aryloxy group may further have, an alkyl group such as a methyl group, an ethyl group or a propyl group, an aryl group such as a phenyl group or a biphenyl group , Heterocyclic groups such as thienyl group, pyrrolyl group and pyridyl group, substituted amino groups such as dimethylamino group, diethylamino group, dibenzylamino group, diphenylamino group, ditolylamino group and dianisolylamino group, methoxy group and ethoxy group And alkoxy groups such as fluorine, chlorine, bromine, iodine and the like, hydroxyl groups, cyano groups, nitro groups, and the like, but are not limited thereto.

式[1]において、R1乃至R36は、それぞれ同じであっても異なっていてもよい。また式[1]において、隣り合う置換基が互いに結合して、例えば、ベンゼン環等の環構造を形成してもよい。 In the formula [1], R 1 to R 36 may be the same or different. In the formula [1], adjacent substituents may be bonded to each other to form a ring structure such as a benzene ring.

式[1]で表される縮合多環化合物の具体例を以下に示す。ただし、これらの化合物はあくまでも具体例であり、本発明はこれらに限定されるものではない。   Specific examples of the condensed polycyclic compound represented by the formula [1] are shown below. However, these compounds are only specific examples, and the present invention is not limited to these.

Figure 2010263065
Figure 2010263065

次に、一般式[2]で示される縮合多環化合物について説明する。   Next, the condensed polycyclic compound represented by the general formula [2] will be described.

式[2]において、R1乃至R32は、それぞれ水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアルコキシ基、置換あるいは無置換のアリール基、置換あるいは無置換の複素環基、置換アミノ基、ハロゲン原子、スルフィド基及びシリル基からなる群より選ばれる置換基である。 In the formula [2], R 1 to R 32 are each a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, It is a substituent selected from the group consisting of a substituted amino group, a halogen atom, a sulfide group and a silyl group.

1乃至R32で表されるアルキル基として、メチル基、メチル−d1基、メチル−d3基、エチル基、エチル−d5基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−デシル基、iso−プロピル基、iso−プロピル−d7基、iso−ブチル基、sec−ブチル基、tert−ブチル基、tert−ブチル−d9基、iso−ペンチル基、ネオペンチル基、tert−オクチル基、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2−フルオロエチル基、2,2,2−トリフルオロメチル基、パーフルオロエチル基、3−フルオロプロピル基、パーフルオロプロピル基、4−フルオロブチル基、パーフルオロブチル基、5−フルオロペンチル基、6−フルオロヘキシル基、クロロメチル基、トリクロロメチル基、2−クロロエチル基、2,2,2−トリクロロエチル基、4−クロロブチル基、5−クロロペンチル基、6−クロロヘキシル基、ブロモメチル基、2−ブロモエチル基、ヨードメチル基、2−ヨードエチル基、ヒドロキシメチル基、ヒドロキシエチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロペンチルメチル基、シクロヘキシルメチル基、シクロヘキシルエチル基、4−フルオロシクロヘキシル基、ノルボルニル基、アダマンチル基等が挙げられるが、もちろんこれらに限定されるものではない。 Examples of the alkyl group represented by R 1 to R 32 include methyl group, methyl-d1 group, methyl-d3 group, ethyl group, ethyl-d5 group, n-propyl group, n-butyl group, n-pentyl group, n -Hexyl group, n-heptyl group, n-octyl group, n-decyl group, iso-propyl group, iso-propyl-d7 group, iso-butyl group, sec-butyl group, tert-butyl group, tert-butyl- d9 group, iso-pentyl group, neopentyl group, tert-octyl group, fluoromethyl group, difluoromethyl group, trifluoromethyl group, 2-fluoroethyl group, 2,2,2-trifluoromethyl group, perfluoroethyl group 3-fluoropropyl group, perfluoropropyl group, 4-fluorobutyl group, perfluorobutyl group, 5-fluoropentyl group, 6-fluoro Hexyl group, chloromethyl group, trichloromethyl group, 2-chloroethyl group, 2,2,2-trichloroethyl group, 4-chlorobutyl group, 5-chloropentyl group, 6-chlorohexyl group, bromomethyl group, 2-bromoethyl group , Iodomethyl group, 2-iodoethyl group, hydroxymethyl group, hydroxyethyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cyclopentylmethyl group, cyclohexylmethyl group, cyclohexylethyl group, 4-fluorocyclohexyl group, norbornyl group And adamantyl group and the like, but are not limited thereto.

1乃至R32で表されるアルコキシ基として、上述したアルキル基を有するアルキルオキシ基、及びアラルキルオキシ基を挙げることができる。具体的には、メトキシ基、エトキシ基、プロポキシ基、2−エチル−オクチルオキシ基、ベンジルオキシ基等が挙げられるが、もちろんこれらに限定されるものではない。 Examples of the alkoxy group represented by R 1 to R 32 include the above-described alkyloxy groups having an alkyl group and aralkyloxy groups. Specific examples include a methoxy group, an ethoxy group, a propoxy group, a 2-ethyl-octyloxy group, a benzyloxy group, and the like, but of course not limited thereto.

1乃至R32で表されるアリール基として、フェニル基、フェニル−d5基、4−メチルフェニル基、4−メトキシフェニル基、4−エチルフェニル基、4−フルオロフェニル基、4−トリフルオロメチルフェニル基、3,5−ジメチルフェニル基、2,6−ジエチルフェニル基、メシチル基、4−tert−ブチルフェニル基、ジトリルアミノフェニル基、ビフェニル基、ターフェニル基、ナフチル基、ナフチル−d7基、アセナフチレニル基、アントリル基、アントリル−d9基、フェナントリル基、フェナントリル−d9基、ピレニル基、ピレニル−d9基、アセフェナントリレニル基、アセアントリレニル基、クリセニル基、ジベンゾクリセニル基、ベンゾアントリル基、ベンゾアントリル−d11基、ジベンゾアントリル基、ナフタセニル基、ピセニル基、ペンタセニル基、フルオレニル基、トリフェニレニル基、ペリレニル基、ペリレニル−d11基等が挙げられるが、もちろんこれらに限定されるものではない。 As the aryl group represented by R 1 to R 32 , phenyl group, phenyl-d5 group, 4-methylphenyl group, 4-methoxyphenyl group, 4-ethylphenyl group, 4-fluorophenyl group, 4-trifluoromethyl Phenyl group, 3,5-dimethylphenyl group, 2,6-diethylphenyl group, mesityl group, 4-tert-butylphenyl group, ditolylaminophenyl group, biphenyl group, terphenyl group, naphthyl group, naphthyl-d7 group Acenaphthylenyl group, anthryl group, anthryl-d9 group, phenanthryl group, phenanthryl-d9 group, pyrenyl group, pyrenyl-d9 group, acephenanthrenyl group, aceanthrylenyl group, chrysenyl group, dibenzochrysenyl group, benzo Anthryl, benzoanthryl-d11, dibenzoanthryl, naphth Seniru group, picenyl group, a pentacenyl group, a fluorenyl group, a triphenylenyl group, a perylenyl group, but perylenyl -d11 groups and the like, but the present invention is of course not limited thereto.

1乃至R32で表される複素環基として、ピロリル基、ピリジル基、ピリジル−d5基、ビピリジル基、メチルピリジル基、ピリミジニル基、ピラジニル基、ピリダジニル基、ターピロリル基、チエニル基、チエニル−d4基、ターチエニル基、プロピルチエニル基、ベンゾチエニル基、ジベンゾチエニル基、ジベンゾチエニル−d7基、フリル基、フリル−d4基、ベンゾフリル基、イソベンゾフリル基、ジベンゾフリル基、ジベンゾフリル−d7基、キノリル基、キノリル−d6基、イソキノリル基、キノキサリニル基、ナフチリジニル基、キナゾリニル基、フェナントリジニル基、インドリジニル基、フェナジニル基、カルバゾリル基、オキサゾリル基、オキサジアゾリル基、チアゾリル基、チアジアゾリル基、アクリジニル基、フェナジニル基等が挙げられるが、もちろんこれらに限定されるものではない。 As the heterocyclic group represented by R 1 to R 32 , pyrrolyl group, pyridyl group, pyridyl-d5 group, bipyridyl group, methylpyridyl group, pyrimidinyl group, pyrazinyl group, pyridazinyl group, terpyrrolyl group, thienyl group, thienyl-d4 Group, tertenyl group, propylthienyl group, benzothienyl group, dibenzothienyl group, dibenzothienyl-d7 group, furyl group, furyl-d4 group, benzofuryl group, isobenzofuryl group, dibenzofuryl group, dibenzofuryl-d7 group, quinolyl Group, quinolyl-d6 group, isoquinolyl group, quinoxalinyl group, naphthyridinyl group, quinazolinyl group, phenanthridinyl group, indolizinyl group, phenazinyl group, carbazolyl group, oxazolyl group, oxadiazolyl group, thiazolyl group, thiadiazolyl group, acridinyl group, Jiniru group, and the like, but the invention is of course not limited thereto.

1乃至R36で表されるアリールオキシ基として、上述したアリール基又は複素環基を有するアリールオキシ基を挙げることができる。具体的には、フェノキシ基、4−tert−ブチルフェノキシ基、チエニルオキシ基等が挙げられるが、もちろんこれらに限定されるものではない。 Examples of the aryloxy group represented by R 1 to R 36 include the aryloxy group having the aryl group or heterocyclic group described above. Specific examples include a phenoxy group, a 4-tert-butylphenoxy group, a thienyloxy group, and the like, but are not limited thereto.

1乃至R32で表される置換アミノ基として、ジメチルアミノ基、ジエチルアミノ基、ジベンジルアミノ基、ジフェニルアミノ基、ジトリルアミノ基、ジアニソリルアミノ基等が挙げられるが、もちろんこれらに限定されるものではない。 As the substituted amino group represented by R 1 to R 32, dimethylamino group, diethylamino group, dibenzylamino group, diphenylamino group, ditolylamino group, dianisolylamino an amino group and the like are of course limited to It is not a thing.

1乃至R32で表されるハロゲン原子として、フッ素、塩素、臭素、ヨウ素等が挙げられるが、もちろんこれらに限定されるものではない。 Examples of the halogen atom represented by R 1 to R 32 include, but are not limited to, fluorine, chlorine, bromine, iodine and the like.

1乃至R32で表されるシリル基として、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基等が挙げられるが、もちろんこれらに限定されるものではない。 Examples of the silyl group represented by R 1 to R 32 include, but are not limited to, a trimethylsilyl group, a triethylsilyl group, and a triisopropylsilyl group.

上記アルキル基、アルコキシ基、アリール基、複素環基及びアリールオキシ基がさらに有してもよい置換基として、メチル基、エチル基、プロピル基等のアルキル基、フェニル基、ビフェニル基等のアリール基、チエニル基、ピロリル基、ピリジル基等の複素環基、ジメチルアミノ基、ジエチルアミノ基、ジベンジルアミノ基、ジフェニルアミノ基、ジトリルアミノ基、ジアニソリルアミノ基等の置換アミノ基、メトキシ基、エトキシ基等のアルコキシ基、フッ素、塩素、臭素、ヨウ素等のハロゲン原子、水酸基、シアノ基、ニトロ基等が挙げられるが、もちろんこれらに限定されるものではない。   As the substituent that the alkyl group, alkoxy group, aryl group, heterocyclic group and aryloxy group may further have, an alkyl group such as a methyl group, an ethyl group or a propyl group, an aryl group such as a phenyl group or a biphenyl group , Heterocyclic groups such as thienyl group, pyrrolyl group and pyridyl group, substituted amino groups such as dimethylamino group, diethylamino group, dibenzylamino group, diphenylamino group, ditolylamino group and dianisolylamino group, methoxy group and ethoxy group And alkoxy groups such as fluorine, chlorine, bromine, iodine and the like, hydroxyl groups, cyano groups, nitro groups, and the like, but are not limited thereto.

式[2]において、R1乃至R32は、それぞれ同じであっても異なっていてもよい。 In the formula [2], R 1 to R 32 may be different even in respectively the same.

式[2]で表される縮合多環化合物の具体例を以下に示す。ただし、これらの化合物はあくまでも具体例であり、本発明はこれらに限定されるものではない。   Specific examples of the condensed polycyclic compound represented by the formula [2] are shown below. However, these compounds are only specific examples, and the present invention is not limited to these.

Figure 2010263065
Figure 2010263065

また本発明の有機発光素子において、好ましくは、発光層4にピレン骨格を有する縮合多環化合物がさらに含まれる。ここでピレン骨格を有する縮合多環化合物として、例えば、下記に示される化合物を挙げることができる。ただし下記に示される化合物はあくまでも具体例であり、本発明はこれらに限定されるものではない。   In the organic light emitting device of the present invention, the light emitting layer 4 preferably further includes a condensed polycyclic compound having a pyrene skeleton. Here, examples of the condensed polycyclic compound having a pyrene skeleton include the following compounds. However, the compounds shown below are only specific examples, and the present invention is not limited thereto.

Figure 2010263065
Figure 2010263065

本発明の有機発光素子において、発光層4は、式[1]及び式[2]の縮合多環化合物のみで構成されていてもよいが、好ましくは、ホストとゲスト(ドーパント)とで構成される。発光層4がホストとゲストとで構成される場合、式[1]及び式[2]の縮合多環化合物は、ホストとして使用してもよいし、ゲストとして使用してもよい。   In the organic light emitting device of the present invention, the light emitting layer 4 may be composed of only the condensed polycyclic compound of the formula [1] and the formula [2], but is preferably composed of a host and a guest (dopant). The When the light emitting layer 4 is comprised with a host and a guest, the condensed polycyclic compound of Formula [1] and Formula [2] may be used as a host, and may be used as a guest.

発光層が、キャリア輸送性のホストとゲストとからなる場合、発光に至る主な過程は、以下のいくつかの過程からなる。
1.発光層内での電子・正孔の輸送。
2.ホストの励起子生成。
3.ホスト分子間の励起エネルギー伝達。
4.ホストからゲストへの励起エネルギー移動。
When the light-emitting layer is composed of a carrier transporting host and guest, the main process leading to light emission includes the following several processes.
1. Transport of electrons and holes in the light emitting layer.
2. Host exciton generation.
3. Excitation energy transfer between host molecules.
4). Excitation energy transfer from host to guest.

それぞれの過程における所望のエネルギー移動や、発光はさまざまな失活過程と競争で起こる。   Desired energy transfer and light emission in each process occur by various deactivation processes and competition.

ここで有機発光素子の発光効率を高めるためには、発光中心材料そのものの発光量子収率が大きい方が好ましい。しかしながら、ホストとホストとの間、又はホストとゲストとの間のエネルギー移動が以下の効率的にできるか、についても大きな問題となる。また、通電による発光劣化は今のところ原因は明らかではないが、少なくとも発光中心材料そのもの、又は当該発光中心材料の周辺に存在する分子に起因する発光中心材料の環境変化に関連したものと想定される。   Here, in order to increase the light emission efficiency of the organic light emitting device, it is preferable that the emission center material itself has a higher emission quantum yield. However, whether or not energy transfer between the host and the host or between the host and the guest can be efficiently performed is also a big problem. In addition, although the cause of luminescence degradation due to energization is not clear at present, it is assumed that it is related to the environmental change of the luminescent center material due to at least the luminescent center material itself or molecules existing around the luminescent center material. The

一方、式[1]及び式[2]の縮合多環化合物は、いずれも分子中にジフェニルベンゾフルオランテン骨格という共通骨格を有しているので、双方の化合物の相溶性は良好である。そこで、式[1]及び式[2]の縮合多環化合物を発光層のホスト又はゲストとして使用すると、式[1]及び式[2]の縮合多環化合物は、それぞれ発光層4となる薄膜内に均一に分散される。これにより発光層内においてゲストとゲストとが会合されにくくなる。   On the other hand, the condensed polycyclic compounds of the formulas [1] and [2] both have a common skeleton called a diphenylbenzofluoranthene skeleton in the molecule, so that both compounds have good compatibility. Therefore, when the condensed polycyclic compound of the formula [1] and the formula [2] is used as a host or guest of the light emitting layer, the condensed polycyclic compound of the formula [1] and the formula [2] is a thin film that becomes the light emitting layer 4 respectively. Uniformly distributed within. This makes it difficult for the guests to associate with each other in the light emitting layer.

また式[1]の縮合多環化合物のHOMOエネルギーは、式[2]の縮合多環化合物のHOMOエネルギーと比べて浅い。このため、式[1]の縮合多環化合物を発光層のゲストとして使用すると、式[1]の縮合多環化合物がホール(正孔)をトラップしやすいため、発光領域が陽極側に偏りやすい。従って、素子を連続駆動したときに素子の劣化を引き起こすと考えられる。   Further, the HOMO energy of the condensed polycyclic compound of the formula [1] is shallower than the HOMO energy of the condensed polycyclic compound of the formula [2]. For this reason, when the condensed polycyclic compound of the formula [1] is used as a guest in the light emitting layer, the condensed polycyclic compound of the formula [1] tends to trap holes, so that the light emitting region tends to be biased toward the anode side. . Therefore, it is considered that the element is deteriorated when the element is continuously driven.

そこで上述したホールのトラップを防ぐために、例えば、発光層内において、ホールだけでなく電子をトラップする形態にすることが考えられる。こうすることで発光層内の発光領域を特定の箇所に偏らせることなく広げることができる。   In order to prevent the above-described hole trapping, for example, it is conceivable to form not only holes but also electrons in the light emitting layer. By doing so, the light emitting region in the light emitting layer can be expanded without being biased to a specific location.

ここでホール及び電子をそれぞれ十分にトラップするためには、好ましくは、ホストのHOMOがゲストのHOMOよりも0.3eVよりも深く設定し、ホストのLUMOがゲストのLUMOよりも0.3eVよりも浅く設定する。一方、式[1]の縮合多環化合物のエネルギーギャップは2.1eV程度であるため、上述したHOMO及びLUMOの関係を実現するには、ホストは2.7eV程度のエネルギーギャップを有するのが好ましい。   Here, in order to sufficiently trap holes and electrons, preferably, the host HOMO is set to be deeper than the guest HOMO by 0.3 eV, and the host LUMO is more than 0.3 eV than the guest LUMO. Set shallow. On the other hand, since the energy gap of the condensed polycyclic compound of the formula [1] is about 2.1 eV, the host preferably has an energy gap of about 2.7 eV in order to realize the above-described relationship between HOMO and LUMO. .

このようにホストがエネルギーギャップの広い材料とすることにより、このホストの発光波長が短波長領域に存在することになる。これに対して、式[1]の縮合多環化合物の吸収帯は短波長領域にはほとんど存在しないため、式[1]の縮合多環化合物のみをゲストとして使用すると、ホストとゲストとの間におけるエネルギー移動効率が低下し、色純度が低下する。   Thus, when the host is made of a material having a wide energy gap, the emission wavelength of the host exists in a short wavelength region. On the other hand, since the absorption band of the condensed polycyclic compound of the formula [1] hardly exists in the short wavelength region, when only the condensed polycyclic compound of the formula [1] is used as a guest, In this case, the energy transfer efficiency is lowered and the color purity is lowered.

そこで式[2]の縮合多環化合物を、例えば、補助ドーパント(アシストドーパント)として、式[1]の縮合多環化合物と共に発光層の構成材料として使用する。このとき式[2]の縮合多環化合物は式[1]の縮合多環化合物との相溶性が良好で、かつホストの発光領域に吸収帯を有するので、ホストから式[1]の縮合多環化合物へのエネルギー移動をスムーズかつ効率的に行うことができる。従って、ゲスト本来の発光を取り出すことができると共に素子を長寿命化することもできる。また式[1]の縮合多環化合物をゲストとして使用する場合、式[2]の縮合多環化合物を当該ゲストに対応するホストとして使用しても同様の効果が現われる。   Therefore, the condensed polycyclic compound of the formula [2] is used as a constituent material of the light emitting layer together with the condensed polycyclic compound of the formula [1] as an auxiliary dopant (assist dopant), for example. At this time, the condensed polycyclic compound of the formula [2] has good compatibility with the condensed polycyclic compound of the formula [1] and has an absorption band in the light emitting region of the host. Energy transfer to the ring compound can be performed smoothly and efficiently. Therefore, the light emitted from the guest can be extracted and the life of the device can be extended. Further, when the condensed polycyclic compound of the formula [1] is used as a guest, the same effect appears even if the condensed polycyclic compound of the formula [2] is used as a host corresponding to the guest.

他方、上述したピレン骨格を有する縮合多環化合物は、アモルファス性に優れ、高いガラス転移温度を有するため耐熱性が高い。このため、当該ピレン骨格を有する縮合多環化合物を発光層のホストとして使用すると、安定した良好な薄膜を形成することができるので、ムラのない均一な発光を得ることができる。   On the other hand, the above-mentioned condensed polycyclic compound having a pyrene skeleton is excellent in amorphous properties and has a high glass transition temperature, and thus has high heat resistance. For this reason, when the condensed polycyclic compound having the pyrene skeleton is used as a host of the light emitting layer, a stable and good thin film can be formed, and uniform light emission without unevenness can be obtained.

以上より、発光層4の構成材料として式[1]の縮合多環化合物と式[2]の縮合多環化合物とを組み合わせて使用することにより、長い期間輝度を維持することができると共に、通電劣化を小さくすることができる。また式[1]の縮合多環化合物及び式[2]の縮合多環化合物に加えて、ピレン骨格を有する縮合多環化合物を発光層4の構成材料として使用することにより通電劣化をさらに小さくすることができる。   As described above, the combined use of the condensed polycyclic compound of the formula [1] and the condensed polycyclic compound of the formula [2] as the constituent material of the light emitting layer 4 can maintain the luminance for a long period of time and Deterioration can be reduced. Further, in addition to the condensed polycyclic compound of the formula [1] and the condensed polycyclic compound of the formula [2], the use of a condensed polycyclic compound having a pyrene skeleton as a constituent material of the light emitting layer 4 further reduces the deterioration of energization. be able to.

式[1]の縮合多環化合物、又は式[1]及び式[2]の縮合多環化合物を発光層4のゲストとして使用する場合、ホストに対するゲストの濃度は0.01重量%乃至50重量%、好ましくは、1重量%乃至20重量%である。ゲストはホストからなる層の全体に均一に含まれてもよく、濃度勾配を有して含まれてもよい。またある領域に部分的に含ませることでゲスト材料を含まないホストからなる層の領域があってもよい。   When the condensed polycyclic compound of the formula [1] or the condensed polycyclic compound of the formulas [1] and [2] is used as the guest of the light emitting layer 4, the concentration of the guest with respect to the host is 0.01 wt% to 50 wt%. %, Preferably 1% to 20% by weight. The guest may be uniformly contained in the entire layer composed of the host, or may be contained with a concentration gradient. In addition, a region of a layer made of a host that does not include the guest material may be provided by being partially included in a certain region.

本発明の有機発光素子は、発光層4の構成材料として、式[1]及び式[2]の縮合多環化合物を使用する。また、これらの化合物に加えて、必要に応じてこれまで知られている低分子系及びポリマー系の正孔輸送性材料、発光性材料あるいは電子輸送性材料等を一緒に使用してもよい。   The organic light emitting device of the present invention uses the condensed polycyclic compound of the formula [1] and the formula [2] as a constituent material of the light emitting layer 4. In addition to these compounds, if necessary, low molecular weight and polymer hole transporting materials, light emitting materials, electron transporting materials and the like may be used together.

以下にこれらの化合物例を挙げる。   Examples of these compounds are given below.

正孔注入輸送性材料としては、陽極からの正孔の注入を容易にし、また注入された正孔を発光層に輸送する優れたモビリティを有することが好ましい。正孔注入輸送性能を有する低分子及び高分子系材料としては、トリアリールアミン誘導体、フェニレンジアミン誘導体、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体、ピラゾロン誘導体、オキサゾール誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、及びポリ(ビニルカルバゾール)、ポリ(シリレン)、ポリ(チオフェン)、その他導電性高分子が挙げられるが、これらに限定されるものではない。   The hole injecting and transporting material preferably has excellent mobility for facilitating the injection of holes from the anode and transporting the injected holes to the light emitting layer. Low molecular and high molecular weight materials having hole injection and transport performance include triarylamine derivatives, phenylenediamine derivatives, triazole derivatives, oxadiazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, oxazole derivatives, fluorenone derivatives, hydrazones. Examples include, but are not limited to, derivatives, stilbene derivatives, phthalocyanine derivatives, porphyrin derivatives, poly (vinyl carbazole), poly (silylene), poly (thiophene), and other conductive polymers.

電子注入輸送性材料としては、陰極からの電子の注入を容易にし、注入された電子を発光層に輸送する機能を有するものから任意に選ぶことができる。また、正孔輸送材料のキャリア移動度とのバランス等を考慮し選択される。電子注入輸送性能を有する材料としては、オキサジアゾール誘導体、オキサゾール誘導体、チアゾール誘導体、チアジアゾール誘導体、ピラジン誘導体、トリアゾール誘導体、トリアジン誘導体、ペリレン誘導体、キノリン誘導体、キノキサリン誘導体、フルオレノン誘導体、アントロン誘導体、フェナントロリン誘導体、有機金属錯体等が挙げられるが、これらに限定されるものではない。   The electron injection / transport material can be arbitrarily selected from those having a function of facilitating injection of electrons from the cathode and transporting the injected electrons to the light emitting layer. Further, it is selected in consideration of the balance with the carrier mobility of the hole transport material. Materials having electron injection and transport performance include oxadiazole derivatives, oxazole derivatives, thiazole derivatives, thiadiazole derivatives, pyrazine derivatives, triazole derivatives, triazine derivatives, perylene derivatives, quinoline derivatives, quinoxaline derivatives, fluorenone derivatives, anthrone derivatives, phenanthroline derivatives. , Organometallic complexes and the like, but are not limited thereto.

次に本発明の有機発光素子を構成するその他の部材について説明する。   Next, other members constituting the organic light emitting device of the present invention will be described.

陽極の構成材料としては、仕事関数がなるべく大きなものがよい。例えば、金、白金、銀、銅、ニッケル、パラジウム、コバルト、セレン、バナジウム、タングステン等の金属単体又はこれらの合金、酸化錫、酸化亜鉛、酸化インジウム、酸化錫インジウム(ITO),酸化亜鉛インジウム等の金属酸化物が使用できる。また、ポリアニリン、ポリピロール、ポリチオフェン、ポリフェニレンスルフィド等の導電性ポリマーも使用できる。これらの電極物質は一種類を単独で使用してもよいし、二種類以上を併用して使用してもよい。また、陽極は一層で構成されていてもよいし、複数の層で構成されていてもよい。   As a constituent material of the anode, a material having a work function as large as possible is preferable. For example, simple metals such as gold, platinum, silver, copper, nickel, palladium, cobalt, selenium, vanadium, tungsten, or alloys thereof, tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide, etc. The metal oxide can be used. In addition, conductive polymers such as polyaniline, polypyrrole, polythiophene, and polyphenylene sulfide can also be used. These electrode materials may be used alone or in combination of two or more. Moreover, the anode may be composed of a single layer or a plurality of layers.

一方、陰極の構成材料としては、仕事関数が小さいものがよい。例えば、リチウム、ナトリウム、カリウム、カルシウム、マグネシウム、アルミニウム、インジウム、ルテニウム、チタニウム、マンガン、イットリウム、銀、鉛、錫、クロム等の金属単体が挙げられる。また、これらの金属を組み合わせて合金にしてもよい。例えば、リチウム−インジウム、ナトリウム−カリウム、マグネシウム−銀、アルミニウム−リチウム、アルミニウム−マグネシウム、マグネシウム−インジウム等の合金が使用できる。また、酸化錫インジウム(ITO)等の金属酸化物の利用も可能である。これらの電極物質は一種類を単独で使用してもよいし、二種類以上を併用して使用してもよい。また、陰極は一層で構成されていてもよいし、複数の層で構成されていてもよい。   On the other hand, the material constituting the cathode is preferably a material having a small work function. Examples thereof include simple metals such as lithium, sodium, potassium, calcium, magnesium, aluminum, indium, ruthenium, titanium, manganese, yttrium, silver, lead, tin, and chromium. Further, these metals may be combined to form an alloy. For example, alloys such as lithium-indium, sodium-potassium, magnesium-silver, aluminum-lithium, aluminum-magnesium, and magnesium-indium can be used. Also, metal oxides such as indium tin oxide (ITO) can be used. These electrode materials may be used alone or in combination of two or more. Moreover, the cathode may be composed of a single layer or a plurality of layers.

本発明の有機発光素子で用いる基板としては、特に限定するものではないが、金属製基板、セラミックス製基板等の不透明性基板、ガラス、石英、プラスチックシート等の透明性基板が用いられる。また、基板にカラーフィルター膜、蛍光色変換フィルター膜、誘電体反射膜等を用いて発色光をコントロールすることも可能である。   Although it does not specifically limit as a board | substrate used with the organic light emitting element of this invention, Transparent substrates, such as opaque board | substrates, such as a metal board | substrate and a ceramic board | substrate, glass, quartz, a plastic sheet, are used. It is also possible to control the color light by using a color filter film, a fluorescent color conversion filter film, a dielectric reflection film or the like on the substrate.

尚、作製した素子に対して、酸素や水分等との接触を防止する目的で保護層あるいは封止層を設けることもできる。保護層としては、ダイヤモンド薄膜、金属酸化物、金属窒化物等の無機材料膜、フッ素樹脂、ポリパラキシレン、ポリエチレン、シリコーン樹脂、ポリスチレン樹脂等の高分子膜、さらには、光硬化性樹脂等が挙げられる。また、ガラス、気体不透過性フィルム、金属等をカバーし、適当な封止樹脂により素子自体をパッケージングすることもできる。   Note that a protective layer or a sealing layer can be provided for the manufactured element in order to prevent contact with oxygen, moisture, or the like. Examples of protective layers include diamond thin films, inorganic material films such as metal oxides and metal nitrides, polymer films such as fluororesins, polyparaxylene, polyethylene, silicone resins, and polystyrene resins, and photocurable resins. Can be mentioned. Further, it is possible to cover glass, a gas-impermeable film, a metal, etc., and to package the element itself with an appropriate sealing resin.

本発明の素子は、基板上に薄膜トランジスタ(TFT)を作製し、それに接続して作製することも可能である。   The element of the present invention can be manufactured by forming a thin film transistor (TFT) on a substrate and connecting it.

また、素子の光取り出し方向に関しては、ボトムエミッション型(基板側から光を取り出す構成)及びトップエミッション型(基板の反対側から光を取り出す構成)のいずれも可能である。   As for the light extraction direction of the element, either a bottom emission type (a configuration in which light is extracted from the substrate side) or a top emission type (a configuration in which light is extracted from the opposite side of the substrate) is possible.

本発明の有機発光素子において、発光層及びその他の有機化合物層は、以下に示す方法により形成される。一般には、真空蒸着法、イオン化蒸着法、スパッタリング、プラズマを用いて作製する。また、適当な溶媒に溶解させて公知の塗布法(例えば、スピンコーティング、ディッピング、キャスト法、LB法、インクジェット法等)により薄膜を形成してもよい。特に塗布法で成膜する場合は、適当な結着樹脂と組み合わせて膜を形成することもできる。   In the organic light emitting device of the present invention, the light emitting layer and other organic compound layers are formed by the following method. In general, it is manufactured using a vacuum deposition method, an ionization deposition method, sputtering, or plasma. Further, it may be dissolved in an appropriate solvent to form a thin film by a known coating method (for example, spin coating, dipping, casting method, LB method, ink jet method, etc.). In particular, when a film is formed by a coating method, the film can be formed in combination with an appropriate binder resin.

上記結着樹脂としては、広範囲な結着性樹脂より選択できる。例えば、ポリビニルカルバゾール樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアリレート樹脂、ポリスチレン樹脂、ABS樹脂、ポリブタジエン樹脂、ポリウレタン樹脂、アクリル樹脂、メタクリル樹脂、ブチラール樹脂、ポリビニルアセタール樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエチレン樹脂、ポリエーテルスルホン樹脂、ジアリルフタレート樹脂、フェノール樹脂、エポキシ樹脂、シリコーン樹脂、ポリスルホン樹脂、尿素樹脂等が挙げられるが、これらに限定されるものではない。また、これらは単独又は共重合体ポリマーとして1種又は2種以上混合してもよい。さらに必要に応じて、公知の可塑剤、酸化防止剤、紫外線吸収剤等の添加剤を併用してもよい。   The binder resin can be selected from a wide range of binder resins. For example, polyvinyl carbazole resin, polycarbonate resin, polyester resin, polyarylate resin, polystyrene resin, ABS resin, polybutadiene resin, polyurethane resin, acrylic resin, methacrylic resin, butyral resin, polyvinyl acetal resin, polyamide resin, polyimide resin, polyethylene resin, Examples include, but are not limited to, polyethersulfone resins, diallyl phthalate resins, phenol resins, epoxy resins, silicone resins, polysulfone resins, urea resins, and the like. Moreover, you may mix these 1 type, or 2 or more types as a single or copolymer polymer. Furthermore, you may use together additives, such as a well-known plasticizer, antioxidant, and an ultraviolet absorber, as needed.

以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.

<HOMOエネルギー及びLUMOエネルギーの評価>
後述する実施例において、発光層の構成材料として使用される化合物について、HOMOエネルギー及びLUMOエネルギーの評価を行った。
<Evaluation of HOMO energy and LUMO energy>
In Examples described later, HOMO energy and LUMO energy were evaluated for compounds used as constituent materials of the light emitting layer.

まず真空蒸着法により、ガラス基板上に、発光層の構成材料からなる薄膜(膜厚20nm)を形成した。次に、この薄膜について、大気下光電子分光装置(測定機器名:AC−2、理研機器製)を用いてHOMOエネルギーを測定した。また、この薄膜について、分光光度計(測定機器名:U−3010、日立製作所製)を用いて、紫外−可視光吸収スペクトル測定を行い、当該吸収スペクトルの吸収端からエネルギーギャップを求めた。次に、このようにして得られたHOMOエネルギーの値とエネルギーギャップの値とを用いてLUMOエネルギーを算出した。結果を表1に示す。   First, a thin film (thickness 20 nm) made of the constituent material of the light emitting layer was formed on a glass substrate by vacuum deposition. Next, the HOMO energy of this thin film was measured using an atmospheric photoelectron spectrometer (measuring instrument name: AC-2, manufactured by Riken Kikai Co., Ltd.). Moreover, about this thin film, the ultraviolet-visible light absorption spectrum measurement was performed using the spectrophotometer (measurement apparatus name: U-3010, Hitachi Ltd. make), and the energy gap was calculated | required from the absorption edge of the said absorption spectrum. Next, LUMO energy was calculated using the HOMO energy value and the energy gap value thus obtained. The results are shown in Table 1.

Figure 2010263065
Figure 2010263065

<実施例1>
図1に示される有機発光素子を以下に示す方法により作製した。
<Example 1>
The organic light emitting device shown in FIG. 1 was produced by the method shown below.

ガラス基板(基板1)上に、スパッタ法により酸化錫インジウム(ITO)を成膜して陽極2を形成した。このとき陽極2の膜厚を120nmとした。次に、これをアセトン、イソプロピルアルコール(IPA)で順次超音波洗浄し、次いで純水で洗浄後乾燥した。さらに、UV/オゾン洗浄を施した。以上に示す通りに処理を行った基板を透明導電性支持基板として使用した。   On the glass substrate (substrate 1), indium tin oxide (ITO) was formed by sputtering to form the anode 2. At this time, the film thickness of the anode 2 was 120 nm. Next, this was ultrasonically washed successively with acetone and isopropyl alcohol (IPA), then washed with pure water and dried. Further, UV / ozone cleaning was performed. The substrate processed as described above was used as a transparent conductive support substrate.

次に、下記に示される化合物A1とクロロホルムとを混合して、濃度0.1重量%のクロロホルム溶液を調製した。   Next, Compound A1 shown below and chloroform were mixed to prepare a chloroform solution having a concentration of 0.1% by weight.

Figure 2010263065
Figure 2010263065

次に、このクロロホルム溶液を陽極2上に滴下し、スピンコートを行うことにより薄膜を成膜した。次に、真空オーブン中において、80℃で10分間の条件で加熱乾燥し薄膜中の溶剤を完全に除去することによりホール輸送層3を形成した。このときホール輸送層3の膜厚は10nmであった。   Next, this chloroform solution was dropped on the anode 2 and spin coating was performed to form a thin film. Next, the hole transport layer 3 was formed by heating and drying in a vacuum oven at 80 ° C. for 10 minutes to completely remove the solvent in the thin film. At this time, the film thickness of the hole transport layer 3 was 10 nm.

次に、真空蒸着法により、ホール輸送層3上に、ホストである例示化合物No.2−2と、ゲスト(第一ゲスト)である例示化合物No.1−1とを、重量比にして98:2となるように共蒸着して発光層4を形成した。このとき発光層4の膜厚を40nmとし、蒸着時の真空度を1.0×10-4Paとし、成膜速度を0.1nm/sec乃至0.2nm/secとした。 Next, the exemplified compound No. which is a host is formed on the hole transport layer 3 by a vacuum deposition method. 2-2 and Exemplified Compound No. 1 which is a guest (first guest). 1-1 was co-evaporated to a weight ratio of 98: 2 to form the light emitting layer 4. At this time, the thickness of the light emitting layer 4 was 40 nm, the degree of vacuum during vapor deposition was 1.0 × 10 −4 Pa, and the film formation rate was 0.1 nm / sec to 0.2 nm / sec.

次に、真空蒸着法により、発光層4上に、2,9−ビス[2−(9,9’−ジメチルフルオレニル)]−1,10−フェナントロリンを成膜して電子輸送層5を形成した。このとき電子輸送層5の膜厚を20nmとし、蒸着時の真空度を1.0×10-4Paとし、成膜速度を0.1nm/sec乃至0.2nm/secとした。 Next, 2,9-bis [2- (9,9′-dimethylfluorenyl)]-1,10-phenanthroline is formed on the light-emitting layer 4 by vacuum deposition to form the electron transport layer 5. Formed. At this time, the thickness of the electron transport layer 5 was 20 nm, the degree of vacuum during vapor deposition was 1.0 × 10 −4 Pa, and the film formation rate was 0.1 nm / sec to 0.2 nm / sec.

次に、真空蒸着法により、電子輸送層5上に、フッ化リチウムを成膜しLiF膜を形成した。このときLiF膜の膜厚を0.5nmとし、蒸着時の真空度を1.0×10-4Paとし、成膜速度を0.01nm/secとした。次に、真空蒸着法により、LiF膜上にアルミニウムを成膜しAl膜を形成した。このときAl膜の膜厚を100nmとし、蒸着時の真空度を1.0×10-4Paとし、成膜速度を0.5nm/sec乃至1.0nm/secとした。ここで、上記LiF膜及びAl膜(アルミニウム−リチウム合金膜)は、電子注入電極(陰極6)として機能する。 Next, a lithium fluoride film was formed on the electron transport layer 5 by a vacuum deposition method to form a LiF film. At this time, the film thickness of the LiF film was set to 0.5 nm, the degree of vacuum during vapor deposition was set to 1.0 × 10 −4 Pa, and the film formation rate was set to 0.01 nm / sec. Next, aluminum was formed on the LiF film by vacuum deposition to form an Al film. At this time, the thickness of the Al film was set to 100 nm, the degree of vacuum at the time of vapor deposition was set to 1.0 × 10 −4 Pa, and the film formation rate was set to 0.5 nm / sec to 1.0 nm / sec. Here, the LiF film and the Al film (aluminum-lithium alloy film) function as an electron injection electrode (cathode 6).

次に、水分の吸着によって素子劣化が起こらないように、乾燥空気雰囲気中で保護用ガラス板をかぶせてアクリル樹脂系接着材で封止した。以上のようにして有機発光素子を得た。   Next, a protective glass plate was placed in a dry air atmosphere and sealed with an acrylic resin adhesive so as not to cause element degradation due to moisture adsorption. An organic light emitting device was obtained as described above.

得られた素子に、ITO電極(陽極2)を正極、Al電極(陰極6)を負極にして、20mA/cm2の電流を印加したところ赤色の発光を観測した。 When an electric current of 20 mA / cm 2 was applied to the obtained device with an ITO electrode (anode 2) as a positive electrode and an Al electrode (cathode 6) as a negative electrode, red light emission was observed.

次に、素子に印加する電流を100mA/cm2に設定し、素子の信頼性を調べた。ここで、信頼性とは、100mA/cm2に設定し、素子を連続駆動させたときの初期輝度に対する100時間後の輝度の割合を示すものである。結果を表2に示す。 Next, the current applied to the device was set to 100 mA / cm 2 and the reliability of the device was examined. Here, the reliability refers to the ratio of the luminance after 100 hours to the initial luminance when the element is continuously driven at 100 mA / cm 2 . The results are shown in Table 2.

<実施例2>
実施例1において、化合物A1の代わりに、下記に示す化合物A2とクロロホルムとを混合して、濃度0.1重量%のクロロホルム溶液を調製した。
<Example 2>
In Example 1, instead of Compound A1, Compound A2 shown below and chloroform were mixed to prepare a chloroform solution having a concentration of 0.1% by weight.

Figure 2010263065
Figure 2010263065

これ以外は、実施例1と同様の方法により有機発光素子を作製した。得られた素子について、実施例1と同様に評価した。結果を表2に示す。   Except for this, an organic light emitting device was fabricated in the same manner as in Example 1. The obtained device was evaluated in the same manner as in Example 1. The results are shown in Table 2.

<比較例1>
実施例1において、例示化合物No.2−2の代わりに、ルブレンを発光層のホストとして使用した。これ以外は、実施例1と同様の方法により有機発光素子を作製した。得られた素子について、実施例1と同様に評価した。結果を表2に示す。
<Comparative Example 1>
In Example 1, Exemplified Compound No. Instead of 2-2, rubrene was used as the host of the light emitting layer. Except for this, an organic light emitting device was fabricated in the same manner as in Example 1. The obtained device was evaluated in the same manner as in Example 1. The results are shown in Table 2.

<実施例3>
実施例1において、例示化合物No.2−2の代わりに、例示化合物No.3−3を発光層のホストとして使用した。また第二ゲスト(アシストドーパント)として例示化合物No.2−2を使用した。さらに例示化合物No.1−1、No.2−2及びNo.3−3の重量比が、2:1:97となるように共蒸着をして発光層4を形成した。これ以外は、実施例1と同様の方法により有機発光素子を作製した。得られた素子について、実施例1と同様に評価した。結果を表2に示す。
<Example 3>
In Example 1, Exemplified Compound No. Instead of 2-2, Exemplified Compound No. 3-3 was used as the host of the light emitting layer. As the second guest (assist dopant), Exemplified Compound No. 2-2 was used. Furthermore, Exemplified Compound No. 1-1, no. 2-2 and No. The light emitting layer 4 was formed by co-evaporation so that the weight ratio of 3-3 was 2: 1: 97. Except for this, an organic light emitting device was fabricated in the same manner as in Example 1. The obtained device was evaluated in the same manner as in Example 1. The results are shown in Table 2.

Figure 2010263065
Figure 2010263065

上記表2より、式[1]及び式[2]で示される縮合多環化合物がいずれも含まれている有機発光素子は、連続駆動時の輝度劣化を低減することが示された。また式[1]及び式[2]で示される縮合多環化合物に加えてピレン骨格を有する縮合多環化合物が含まれている有機発光素子は、連続駆動時の輝度劣化をさらに低減することが示された。   From the above Table 2, it was shown that the organic light-emitting device containing both the condensed polycyclic compounds represented by the formula [1] and the formula [2] reduces luminance deterioration during continuous driving. In addition to the condensed polycyclic compound represented by the formula [1] and the formula [2], the organic light-emitting device including the condensed polycyclic compound having a pyrene skeleton can further reduce luminance deterioration during continuous driving. Indicated.

1 基板
2 陽極
3 ホール輸送層
4 発光層
5 電子輸送層
6 陰極
10 有機発光素子
DESCRIPTION OF SYMBOLS 1 Board | substrate 2 Anode 3 Hole transport layer 4 Light emitting layer 5 Electron transport layer 6 Cathode 10 Organic light emitting element

Claims (2)

陽極と陰極と、
該陽極と該陰極との間に挟持され少なくとも発光層を有する有機化合物層と、から構成され、
該発光層に下記一般式[1]で示される縮合多環化合物と、下記一般式[2]で示される縮合多環化合物とが含まれることを特徴とする、有機発光素子。
Figure 2010263065
(式[1]において、R1乃至R36は、それぞれ水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアルコキシ基、置換あるいは無置換のアリール基、置換あるいは無置換の複素環基、置換あるいは無置換のアリールオキシ基、置換アミノ基、ハロゲン原子、スルフィド基及びシリル基からなる群より選ばれる置換基であり、同じであっても異なっていてもよい。)
Figure 2010263065
(式[2]において、R1乃至R32は、それぞれ水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアルコキシ基、置換あるいは無置換のアリール基、置換あるいは無置換の複素環基、置換あるいは無置換のアリールオキシ基、置換アミノ基、ハロゲン原子、スルフィド基及びシリル基からなる群より選ばれる置換基であり、同じであっても異なっていてもよい。)
An anode and a cathode;
An organic compound layer sandwiched between the anode and the cathode and having at least a light emitting layer,
An organic light-emitting device, wherein the light emitting layer contains a condensed polycyclic compound represented by the following general formula [1] and a condensed polycyclic compound represented by the following general formula [2].
Figure 2010263065
(In the formula [1], R 1 to R 36 are each a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, respectively. A substituent selected from the group consisting of a substituted or unsubstituted aryloxy group, a substituted amino group, a halogen atom, a sulfide group and a silyl group, which may be the same or different.
Figure 2010263065
(In the formula [2], R 1 to R 32 are each a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, respectively. A substituent selected from the group consisting of a substituted or unsubstituted aryloxy group, a substituted amino group, a halogen atom, a sulfide group and a silyl group, which may be the same or different.
前記発光層にピレン骨格を有する縮合多環化合物がさらに含まれることを特徴とする、請求項1に記載の有機発光素子。   The organic light emitting device according to claim 1, further comprising a condensed polycyclic compound having a pyrene skeleton in the light emitting layer.
JP2009112499A 2009-05-07 2009-05-07 Organic light-emitting element Withdrawn JP2010263065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009112499A JP2010263065A (en) 2009-05-07 2009-05-07 Organic light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009112499A JP2010263065A (en) 2009-05-07 2009-05-07 Organic light-emitting element

Publications (1)

Publication Number Publication Date
JP2010263065A true JP2010263065A (en) 2010-11-18

Family

ID=43360920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009112499A Withdrawn JP2010263065A (en) 2009-05-07 2009-05-07 Organic light-emitting element

Country Status (1)

Country Link
JP (1) JP2010263065A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102030702A (en) * 2010-12-01 2011-04-27 天津市佰斯康科技有限公司 Hole-transporting material and synthesis method thereof
JP2013106000A (en) * 2011-11-16 2013-05-30 Udc Ireland Ltd Organic electroluminescent element, material for organic electroluminescent element, and light emitting device, display device and illumination device each using organic electroluminescent element
US9997717B2 (en) 2014-12-12 2018-06-12 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and electronic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102030702A (en) * 2010-12-01 2011-04-27 天津市佰斯康科技有限公司 Hole-transporting material and synthesis method thereof
JP2013106000A (en) * 2011-11-16 2013-05-30 Udc Ireland Ltd Organic electroluminescent element, material for organic electroluminescent element, and light emitting device, display device and illumination device each using organic electroluminescent element
US9997717B2 (en) 2014-12-12 2018-06-12 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and electronic device

Similar Documents

Publication Publication Date Title
JP4677221B2 (en) Organic light emitting device
KR101124749B1 (en) Indenochrysene derivative and organic light-emitting device using same
JP4455625B2 (en) Organic light emitting device
JP3848306B2 (en) Anthryl derivative-substituted compound and organic light emitting device using the same
JP3848307B2 (en) Aminoanthryl derivative-substituted compound and organic light-emitting device using the same
JP5089235B2 (en) Fused heterocyclic compounds and organic light emitting devices
JP5366505B2 (en) Indenopyrene compound and organic light-emitting device using the same
JP3840235B2 (en) Organic light emitting device
JP4599142B2 (en) Organic light emitting device
JP4035482B2 (en) Substituted anthryl derivative and organic light emitting device using the same
JP4429149B2 (en) Fluorene compound and organic light emitting device
KR101115156B1 (en) Benzofluoranthene compound and organic light-emitting device using the compound
JP2007186449A (en) Compound substituted with aminobisanthryl-derived group and organic light-emitting element by using the same
JP5159164B2 (en) Benzo [ghi] fluoranthene derivative and organic light-emitting device using the same
JP2006219392A (en) Bisanthryl derived group-substituted compound and organic light emitting device
WO2007123256A1 (en) Compound and organic light emitting device
JP2007230951A (en) Silyl compound, luminescent material and organic electroluminescent element using the same
JP2006176493A (en) Aminoanthryl derivative-substituted pyrene compound and organic light-emitting device
JP2007169182A (en) Fluorenylene compound and organic light-emitting element using it
JP4871613B2 (en) Organic light emitting device
JP5031294B2 (en) Amine compounds and organic light emitting devices
US8173275B2 (en) Azaindenochrysene derivative and organic light-emitting device
JP2010263065A (en) Organic light-emitting element
JP5110922B2 (en) Asymmetric fluorene compound and organic light emitting device using the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120807