JP2010262825A - High-frequency power source device for dielectric heating - Google Patents

High-frequency power source device for dielectric heating Download PDF

Info

Publication number
JP2010262825A
JP2010262825A JP2009112588A JP2009112588A JP2010262825A JP 2010262825 A JP2010262825 A JP 2010262825A JP 2009112588 A JP2009112588 A JP 2009112588A JP 2009112588 A JP2009112588 A JP 2009112588A JP 2010262825 A JP2010262825 A JP 2010262825A
Authority
JP
Japan
Prior art keywords
frequency
high frequency
unit
output
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009112588A
Other languages
Japanese (ja)
Other versions
JP5053323B2 (en
Inventor
Itsuo Kuraki
逸生 椋木
Akiyoshi Tsuji
章嘉 辻
Kazutoshi Noda
和利 野田
Toshiro Maeno
敏郎 前野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NODA RF TECHNOLOGIES KK
Yamamoto Vinita Co Ltd
Original Assignee
NODA RF TECHNOLOGIES KK
Yamamoto Vinita Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NODA RF TECHNOLOGIES KK, Yamamoto Vinita Co Ltd filed Critical NODA RF TECHNOLOGIES KK
Priority to JP2009112588A priority Critical patent/JP5053323B2/en
Publication of JP2010262825A publication Critical patent/JP2010262825A/en
Application granted granted Critical
Publication of JP5053323B2 publication Critical patent/JP5053323B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-frequency power source device for dielectric heating capable of continuing welding operations, in case breakdown or corona discharge generated during a welding operation temporarily occurs without affecting quality of a heated body. <P>SOLUTION: The high-frequency output portion 10 generates and outputs high frequency having a predetermined frequency. A high-frequency impression portion 20 impresses the high frequency outputted from the high-frequency output portion 10 to a pair of electrodes 61, 62 of a processing portion 60. The processing portion 60 uses the high frequency impressed to the pair of electrodes 61, 62 by the high high-frequency impression portion 20 to process a heated body 63. A breakdown detection portion 30 detects a breakdown phenomenon generated at the processing portion 60. A discharge detection portion 40 detects a discharge phenomenon generated at the processing portion 60. Based on the detected results at the breakdown detection portion 30 and the discharge detection portion 40, an output control portion 50 controls the high-frequency output from the high-frequency output portion 10 through a temporary stoppage or a complete shut down. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、高分子材料等の被加熱体が狭持された一対の電極間に高周波を印加し、材料が有する誘電損失を利用して被加熱体の加熱又は溶着を行う誘電加熱用高周波電源装置に関する。   The present invention relates to a high frequency power supply for dielectric heating in which a high frequency is applied between a pair of electrodes sandwiched by a heated object such as a polymer material, and the heated object is heated or welded using a dielectric loss of the material Relates to the device.

誘電加熱用高周波電源装置とは、ポリ塩化ビニル樹脂やポリプロピレン樹脂等の誘電損失が大きな高分子材料等に、加熱又は溶着等の加工を施す装置である。図8は、この誘電加熱用高周波電源装置の一例を説明する概念図である。図8において、樹脂フイルムが複数重ね合わされた被加熱体63は、一対の電極61及び62で狭持され、その一対の電極61及び62間に高周波電源100から高周波が印加されることによって、複数の樹脂フイルムが溶着される。   The high-frequency power supply device for dielectric heating is a device that performs processing such as heating or welding on a polymer material having a large dielectric loss such as polyvinyl chloride resin or polypropylene resin. FIG. 8 is a conceptual diagram for explaining an example of the high frequency power supply device for dielectric heating. In FIG. 8, a heated body 63 in which a plurality of resin films are stacked is sandwiched between a pair of electrodes 61 and 62, and a plurality of high-frequency power supplies 100 apply a high frequency between the pair of electrodes 61 and 62. The resin film is welded.

一対の電極61及び62間へ高周波を印加する時間は予め定められており、通常であれば溶着作業に問題は生じない。ところが、被加熱体63の材料や形状のばらつき、また作業環境の温度や湿度の変化等の様々な要因が影響して、以下の問題が生じることがある。   The time for applying a high frequency between the pair of electrodes 61 and 62 is determined in advance, and normally there is no problem in the welding operation. However, various factors such as variations in the material and shape of the heated body 63 and changes in the temperature and humidity of the work environment may affect the following problems.

第1に、溶着作業中に被加熱体63が高周波電圧に耐えることができず、被加熱体63の絶縁破壊が発生するという問題である(図9(a))。
第2に、溶着作業中に電極61と電極62との間で絶縁破壊が発生するという問題である(図9(b))。この問題では、絶縁破壊で生じる火花によって、近傍の被加熱体63にも損傷を与えるおそれがある。
第3に、溶着作業中に電極61から空間へコロナ放電が発生するという問題である(図9(c))。この問題は、被加熱体63を急速に加熱し、被加熱体63が電極62と比較して面積が広くかつ厚みがある形状で、上述した2通りの絶縁破壊がいずれも発生し難い場合に生じ易い。
The first problem is that the heated body 63 cannot withstand the high frequency voltage during the welding operation, and the dielectric breakdown of the heated body 63 occurs (FIG. 9A).
Secondly, there is a problem that dielectric breakdown occurs between the electrode 61 and the electrode 62 during the welding operation (FIG. 9B). In this problem, there is a possibility that a nearby heated body 63 may be damaged by a spark generated by dielectric breakdown.
Third, there is a problem that corona discharge is generated from the electrode 61 to the space during the welding operation (FIG. 9C). This problem is caused when the heated body 63 is heated rapidly, the heated body 63 has a larger area than the electrode 62 and has a thick shape, and neither of the above-described two types of dielectric breakdown occurs. It is likely to occur.

これらの問題の対策として、絶縁破壊の状態を検出して高周波の印加を停止させることにより、被加熱体63に損傷を与えないようにする技術が開示されている(特許文献1〜3を参照)。   As a countermeasure against these problems, a technique is disclosed in which the state of dielectric breakdown is detected and the application of high frequency is stopped to prevent damage to the heated body 63 (see Patent Documents 1 to 3). ).

特開平7−249486号公報JP-A-7-249486 特開2002−334775号公報JP 2002-334775 A 特開2006−344535号公報JP 2006-344535 A

上述した特許文献1〜3に開示された技術は、絶縁破壊の状態を検出した場合に、いずれも一対の電極への高周波の印加を停止させる技術である。すなわち、誘電加熱用高周波電源装置の完全停止である。   The techniques disclosed in Patent Documents 1 to 3 described above are techniques for stopping application of a high frequency to a pair of electrodes when a state of dielectric breakdown is detected. That is, the high frequency power supply device for dielectric heating is completely stopped.

しかしながら、上述した被加熱体の絶縁破壊は、溶着作業中の異物混入等が原因で一過的に起こることもあり、数回程度の絶縁破壊では被加熱体の損傷に影響がない場合もある。また、永久絶縁破壊にはならない電極間の絶縁破壊や空間へのコロナ放電は、複数回生じても被加熱体の損傷に影響がない場合も考えられる。このような場合には、溶着作業を継続することが可能であり、上記従来技術のように誘電加熱用高周波電源装置を完全に停止して溶着作業を中断してしまうと、製造歩留まりの悪化や製品の品質低下を招いてしまう。   However, the dielectric breakdown of the heated object described above may occur temporarily due to contamination of foreign matters during the welding operation, and the dielectric breakdown of several times may not affect the heated object. . Further, it is conceivable that dielectric breakdown between electrodes that does not cause permanent dielectric breakdown or corona discharge to the space does not affect the damage of the heated object even if it occurs multiple times. In such a case, it is possible to continue the welding operation, and if the high frequency power supply device for dielectric heating is completely stopped and the welding operation is interrupted as in the above-described prior art, the manufacturing yield may be deteriorated. Product quality will be reduced.

また、上述した特許文献1〜3に開示された技術は、絶縁破壊によって一対の電極間に発生する直流貫通電流を検知する手法をとっているが、この手法では電極から空間へ発生するコロナ放電等を検出することは技術的に不可能である。   Moreover, although the technique disclosed in Patent Documents 1 to 3 described above employs a technique for detecting a DC through current generated between a pair of electrodes due to dielectric breakdown, in this technique, corona discharge generated from the electrodes to the space. It is technically impossible to detect such as.

それ故に、本発明の目的は、溶着作業中に発生する絶縁破壊やコロナ放電が、被加熱体の品質に影響を与えない一時的な場合には、溶着作業を継続することが可能な誘電加熱用高周波電源装置を提供することである。   Therefore, the object of the present invention is to provide dielectric heating that can continue the welding operation when the dielectric breakdown or corona discharge that occurs during the welding operation does not affect the quality of the object to be heated. It is to provide a high frequency power supply apparatus for use.

本発明は、高周波による誘電損失を利用して被加熱体の加熱又は溶着を行う誘電加熱用高周波電源装置に向けられている。そして、上記目的を達成するために、本発明の一態様に係る誘電加熱用高周波電源装置は、高周波出力部、高周波印加部、絶縁破壊検出部、放電検出部、及び出力制御部を備えている。   The present invention is directed to a dielectric heating high frequency power supply apparatus that heats or welds an object to be heated using dielectric loss due to high frequency. In order to achieve the above object, a high-frequency power supply device for dielectric heating according to an aspect of the present invention includes a high-frequency output unit, a high-frequency application unit, a dielectric breakdown detection unit, a discharge detection unit, and an output control unit. .

高周波出力部は、所定の周波数を有する高周波を出力する。高周波印加部は、高周波出力部から出力される高周波を、被加熱体が狭持された一対の電極間に印加する。絶縁破壊検出部は、一対の電極間に生じる電圧の変化を監視し、絶縁破壊現象を検出する。放電検出部は、高周波印加部から一対の電極間へ進行する高周波と、一対の電極間から高周波印加部へ反射する高周波との、間に生じる電圧の変化を監視し、コロナ放電現象を検出する。出力制御部は、絶縁破壊検出部及び放電検出部のいずれかにおいて現象が検出されると、高周波出力部からの高周波出力を予め定めた時間だけ一時的に停止する。   The high frequency output unit outputs a high frequency having a predetermined frequency. The high frequency application unit applies the high frequency output from the high frequency output unit between a pair of electrodes between which the heated object is held. The dielectric breakdown detector monitors a change in voltage generated between the pair of electrodes and detects a dielectric breakdown phenomenon. The discharge detection unit monitors a change in voltage generated between a high frequency traveling between the pair of electrodes from the high frequency application unit and a high frequency reflected from the pair of electrodes to the high frequency application unit, and detects a corona discharge phenomenon. . The output control unit temporarily stops the high-frequency output from the high-frequency output unit for a predetermined time when a phenomenon is detected in either the dielectric breakdown detection unit or the discharge detection unit.

ここで、出力制御部は、絶縁破壊検出部における現象検出の累積回数が第1の所定値を超えるか、又は放電検出部における現象検出の累積回数が第2の所定値を超えると、高周波出力部からの高周波出力を完全に停止するとよい。   Here, when the cumulative number of phenomenon detections in the dielectric breakdown detection unit exceeds a first predetermined value or the cumulative number of phenomenon detections in the discharge detection unit exceeds a second predetermined value, the output control unit outputs a high-frequency output. The high-frequency output from the unit should be stopped completely.

なお、典型的な絶縁破壊検出部は、高周波印加部の出力に接続され、一対の電極間の短絡によって生じる貫通電流に起因して低下する電圧を検出する貫通電流検出部、及び貫通電流検出部で検出された電圧と所定の閾値とを比較して、絶縁破壊現象の発生を判断する絶縁破壊判定部で構成される。   Note that a typical breakdown detection unit is connected to the output of the high-frequency application unit, and detects a voltage that drops due to a through current generated by a short circuit between a pair of electrodes, and a through current detection unit A breakdown determination unit that compares the voltage detected in step 1 with a predetermined threshold value to determine the occurrence of a breakdown phenomenon.

また、典型的な放電検出部は、高周波印加部から一対の電極間へ進行する高周波の電圧と、一対の電極間から高周波印加部へ反射する高周波の電圧とを、抽出する方向性結合器、方向性結合器で抽出された2つの電圧をそれぞれ微分し、当該2つの電圧の変化を検出する微分回路、及び2つの電圧の変化の差分を求め、所定の閾値とを比較して、放電現象の発生を判断する放電判定部で構成される。また、高周波印加部は、被加熱体でコロナ放電現象が発生した時に、高周波印加部から一対の電極間へ進行する高周波の位相と、一対の電極間から高周波印加部へ反射する高周波の位相とが、同相関係となるように位相を調整する位相調整回路を備えることが望ましい。   In addition, a typical discharge detection unit includes a directional coupler that extracts a high-frequency voltage that travels between the pair of electrodes from the high-frequency application unit and a high-frequency voltage that is reflected from the pair of electrodes to the high-frequency application unit, Differentiating each of the two voltages extracted by the directional coupler, a differential circuit for detecting a change in the two voltages, and obtaining a difference between the two voltage changes, comparing with a predetermined threshold, and discharging phenomenon It is comprised by the discharge determination part which determines generation | occurrence | production of. The high-frequency application unit includes a high-frequency phase that travels from the high-frequency application unit to the pair of electrodes and a high-frequency phase that is reflected from the pair of electrodes to the high-frequency application unit when a corona discharge phenomenon occurs in the heated object. However, it is desirable to provide a phase adjustment circuit that adjusts the phase so as to have an in-phase relationship.

さらに、出力制御部は、絶縁破壊検出部及び放電検出部のいずれかにおいて現象が検出されると、所定の時間だけ高周波出力の一時的な停止を指示する制御信号を高周波出力部へ出力するタイマ、タイマが制御信号を出力した回数を、絶縁破壊現象及び放電現象毎に、累積的にカウントするカウンタ、及びカウンタのカウント値が第1又は第2の所定値を超えると、高周波出力の完全な停止を指示する制御信号を高周波出力部へ出力するラッチ回路で構成可能である。   Further, the output control unit outputs a control signal for instructing a temporary stop of the high frequency output to the high frequency output unit for a predetermined time when the phenomenon is detected in either the dielectric breakdown detection unit or the discharge detection unit. A counter that cumulatively counts the number of times the timer outputs a control signal for each dielectric breakdown phenomenon and discharge phenomenon, and when the count value of the counter exceeds the first or second predetermined value, complete high-frequency output It can be configured by a latch circuit that outputs a control signal instructing the stop to the high-frequency output unit.

上記本発明によれば、溶着作業中に発生する絶縁破壊やコロナ放電が、被加熱体の品質に影響を与えない一時的な場合には溶着作業を継続し、被加熱体の品質に影響を与えるような場合であれば溶着作業を停止するため、被加熱体の品質を維持しつつ被加熱体及び電極の損傷による損害を最小限に留めることが可能となる。この効果は、製造プロセスの最終段階で行われる溶着作業において絶大である。   According to the present invention, when the dielectric breakdown or corona discharge that occurs during the welding operation is temporary and does not affect the quality of the heated object, the welding operation is continued and the quality of the heated object is affected. In such a case, since the welding operation is stopped, it is possible to minimize damage caused by damage to the heated body and the electrode while maintaining the quality of the heated body. This effect is significant in welding operations performed at the final stage of the manufacturing process.

本発明の一実施形態に係る誘電加熱用高周波電源装置1の構成を示す機能ブロック図1 is a functional block diagram showing a configuration of a high frequency power supply device 1 for dielectric heating according to an embodiment of the present invention. 切換回路12の具体的な回路の一例を示す図The figure which shows an example of the concrete circuit of the switching circuit 12 整合回路24の具体的な回路の一例を示す図The figure which shows an example of the concrete circuit of the matching circuit 24 絶縁破壊検出部30の具体的な回路の一例を示す図The figure which shows an example of the concrete circuit of the dielectric breakdown detection part 30 放電検出部40の具体的な回路の一例を示す図The figure which shows an example of the concrete circuit of the discharge detection part 40 出力制御部50の具体的な回路の一例を示す図The figure which shows an example of the concrete circuit of the output control part 50 位相調整回路23及び伝送ラインのインピーダンス特性を説明する図The figure explaining the impedance characteristic of the phase adjustment circuit 23 and a transmission line 誘電加熱用高周波電源装置の一例を説明する概念図Conceptual diagram illustrating an example of a high frequency power supply device for dielectric heating 誘電加熱用高周波電源装置で生じる絶縁破壊及びコロナ放電を説明する図The figure explaining the dielectric breakdown and corona discharge which occur in the high frequency power supply device for dielectric heating

以下、図面を参照しながら、本発明の実施の形態について説明を行う。
図1は、本発明の一実施形態に係る誘電加熱用高周波電源装置1の構成を示す機能ブロック図である。図1において、本発明の誘電加熱用高周波電源装置1は、高周波出力部10と、高周波印加部20と、絶縁破壊検出部30と、放電検出部40と、出力制御部50と、加工部60とを備える。加工部60は、加熱や溶着等の加工を施す対象となる被加熱体63を、一対の電極(又は電極を構成する金型)61及び62で狭持する構造である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a functional block diagram showing a configuration of a high frequency power supply device 1 for dielectric heating according to an embodiment of the present invention. In FIG. 1, a high frequency power supply device 1 for dielectric heating according to the present invention includes a high frequency output unit 10, a high frequency application unit 20, a dielectric breakdown detection unit 30, a discharge detection unit 40, an output control unit 50, and a processing unit 60. With. The processing unit 60 has a structure in which a heated body 63 to be subjected to processing such as heating and welding is sandwiched between a pair of electrodes (or dies constituting the electrodes) 61 and 62.

まず、誘電加熱用高周波電源装置1の各構成の概要を説明する。
高周波出力部10は、所定の周波数を有する高周波を生成して出力する。高周波印加部20は、高周波出力部10が出力する高周波を、加工部60の一対の電極61及び62に印加する。加工部60は、高周波印加部20によって一対の電極61及び62に印加される高周波を利用して、被加熱体63を加工する。絶縁破壊検出部30は、加工部60で生じる絶縁破壊現象を検出する。放電検出部40は、加工部60で生じる放電現象を検出する。出力制御部50は、絶縁破壊検出部30及び放電検出部40における検出結果に基づいて、高周波出力部10からの高周波出力を制御する。
First, the outline | summary of each structure of the high frequency power supply device 1 for dielectric heating is demonstrated.
The high frequency output unit 10 generates and outputs a high frequency having a predetermined frequency. The high frequency application unit 20 applies the high frequency output from the high frequency output unit 10 to the pair of electrodes 61 and 62 of the processing unit 60. The processing unit 60 processes the heated object 63 using the high frequency applied to the pair of electrodes 61 and 62 by the high frequency applying unit 20. The dielectric breakdown detector 30 detects a dielectric breakdown phenomenon that occurs in the processing unit 60. The discharge detection unit 40 detects a discharge phenomenon that occurs in the processing unit 60. The output control unit 50 controls the high frequency output from the high frequency output unit 10 based on the detection results in the dielectric breakdown detection unit 30 and the discharge detection unit 40.

次に、誘電加熱用高周波電源装置1の各構成の詳細な構成及び動作を説明する。
高周波出力部10は、発振回路11と、切換回路12とを備える。発振回路11は、誘電加熱処理に適した周波数を有する高周波を生成する回路であり、例えば水晶発振回路、位相制御型発振回路、DDS発振回路、CR発振回路、又はLC発振回路等が用いられる。発振回路11の発振方式は、半導体方式及び電子管(真空管)方式のいずれであってもよい。この発振回路11から出力される高周波は、数mWレベルの小信号である。切換回路12は、出力制御部50から与えられる制御信号に従って、発振回路11で生成された高周波を高周波印加部20へ出力するか否かを切り換える回路であり、例えば入出力端子間の導通状態又は遮断状態を切り換える高周波スイッチ等が用いられる。図2は、切換回路12の具体的な回路の一例を示す図であり、高速ダイオードを用いた回路(図2(a))、トランジスタのベースバイアスをカットオフする回路(図2(b))、2ゲートFETのゲート電圧をスイッチする回路(図2(c))、及びダブルバランス回路(図2(d))を示している。なお、切換回路12が行う出力の切り換えは、1μsec以下の速度で行われることが望ましい。
Next, the detailed configuration and operation of each configuration of the dielectric heating high-frequency power supply device 1 will be described.
The high frequency output unit 10 includes an oscillation circuit 11 and a switching circuit 12. The oscillation circuit 11 is a circuit that generates a high frequency having a frequency suitable for dielectric heat treatment, and for example, a crystal oscillation circuit, a phase control oscillation circuit, a DDS oscillation circuit, a CR oscillation circuit, or an LC oscillation circuit is used. The oscillation method of the oscillation circuit 11 may be either a semiconductor method or an electron tube (vacuum tube) method. The high frequency output from the oscillation circuit 11 is a small signal of several mW level. The switching circuit 12 is a circuit for switching whether or not to output the high frequency generated by the oscillation circuit 11 to the high frequency applying unit 20 in accordance with a control signal supplied from the output control unit 50. A high-frequency switch or the like that switches the cutoff state is used. FIG. 2 is a diagram showing an example of a specific circuit of the switching circuit 12, a circuit using a high speed diode (FIG. 2A), and a circuit for cutting off the base bias of the transistor (FIG. 2B). A circuit for switching the gate voltage of the two-gate FET (FIG. 2C) and a double balance circuit (FIG. 2D) are shown. The output switching performed by the switching circuit 12 is preferably performed at a speed of 1 μsec or less.

高周波印加部20は、励振増幅回路21と、電力増幅回路22と、位相調整回路23と、整合回路24とを備える。励振増幅回路21は、発振回路11から出力される高周波を、電力増幅回路22が動作できるレベルまで増幅する。電力増幅回路22は、励振増幅回路21で増幅された高周波を、誘電加熱処理に必要な電力が得られるまでさらに増幅する。この電力増幅回路22には、例えば電子管や電力用半導体等の増幅素子が用いられる。位相調整回路23は、電力増幅回路22で電力増幅された高周波の位相を調整する。具体的には、電力増幅回路22から整合回路24を見たインピーダンスが、被加熱体63が短絡した時(異常状態)が被加熱体63が短絡していない時(定常状態)に比べて高くなるように調整される。この位相調整回路23には、例えば反射型ハイブリッド回路や同軸ケーブル等が用いられる。整合回路24は、位相調整回路23が出力する高周波を放電検出部40を介して入力し、高周波で生じる電力を効率よく被加熱体63に供給するために、被加熱体63との間でインピーダンスマッチングを行う。この整合回路24としては、例えば図3の構成が考えられる。なお、被加熱体63は、加熱による温度や物理的寸法の変化と同時に複素インピーダンスも変化するため、この変化に自動で追従して常に最適なインピーダンスマッチングを行えるように整合回路24を構成することが望ましい。   The high frequency application unit 20 includes an excitation amplifier circuit 21, a power amplifier circuit 22, a phase adjustment circuit 23, and a matching circuit 24. The excitation amplification circuit 21 amplifies the high frequency output from the oscillation circuit 11 to a level at which the power amplification circuit 22 can operate. The power amplifying circuit 22 further amplifies the high frequency amplified by the excitation amplifying circuit 21 until power necessary for the dielectric heating process is obtained. For the power amplification circuit 22, an amplification element such as an electron tube or a power semiconductor is used. The phase adjustment circuit 23 adjusts the phase of the high frequency power amplified by the power amplification circuit 22. Specifically, the impedance when the matching circuit 24 is viewed from the power amplifier circuit 22 is higher when the heated body 63 is short-circuited (abnormal state) than when the heated body 63 is not short-circuited (steady state). It is adjusted to become. For this phase adjustment circuit 23, for example, a reflective hybrid circuit, a coaxial cable, or the like is used. The matching circuit 24 inputs the high frequency output from the phase adjustment circuit 23 via the discharge detection unit 40, and in order to efficiently supply the electric power generated at the high frequency to the heated body 63, the matching circuit 24 has an impedance with the heated body 63. Perform matching. As the matching circuit 24, for example, the configuration of FIG. Since the object to be heated 63 also changes the complex impedance at the same time as the temperature and physical dimensions change due to heating, the matching circuit 24 is configured so that optimum impedance matching can always be performed by automatically following this change. Is desirable.

一般的に、誘電加熱の作業環境では、高周波印加部20から物理的に距離をおいて加工部60が設けられることがある。この場合、整合回路24を被加熱体63の近傍に配置する方が、電力損失が少なく効率的である。従って、位相調整回路23から整合回路24までの伝送ラインを、同軸線路や平行線路等を用いて構築することが好ましい。なお、この伝送ラインの線路長を適切に設定してやれば、位相調整回路23として機能させることができ、位相調整回路23を省略することも可能である。   Generally, in a dielectric heating work environment, the processing unit 60 may be provided at a physical distance from the high-frequency application unit 20. In this case, it is more efficient to arrange the matching circuit 24 near the heated body 63 with less power loss. Therefore, it is preferable to construct the transmission line from the phase adjustment circuit 23 to the matching circuit 24 using a coaxial line, a parallel line, or the like. If the line length of this transmission line is set appropriately, it can function as the phase adjustment circuit 23, and the phase adjustment circuit 23 can be omitted.

また、電子管方式の発振回路を用いて自励発振させる従来の装置において当業者には周知の問題(説明は省略)であった、被加熱体63における絶縁破壊の発生、これに伴うインピーダンスの低下、この低下による更なる絶縁破壊の拡大、という悪循環を繰り返すという問題に対しては、本発明では以下のように対応している。   In addition, in the conventional device that self-oscillates using an electron tube type oscillation circuit, a problem well-known to those skilled in the art (description is omitted), the occurrence of dielectric breakdown in the heated body 63, and the accompanying impedance reduction. The present invention addresses the problem of repeated vicious circles of further expansion of dielectric breakdown due to this decrease as follows.

すなわち、被加熱体63で絶縁破壊が発生した時に、電力増幅回路22から整合回路24へ進行する高周波(進行波)の位相と、整合回路24から電力増幅回路22へ反射する高周波(反射波)の位相とが、同相関係となるように、位相調整回路23及び/又は伝送ラインを予め設定しておく。これにより、電力増幅回路22から整合回路24を見た反射波の無い定常時のインピーダンスRlに対し、反射波が発生した異常時のインピーダンスRl’は、定常時と比較して高い側に遷移することになる。一方、電力増幅回路22の出力電力Poは、Po=Vdd2/(2・Rl)で近似されるので低下側に遷移する。 That is, when dielectric breakdown occurs in the heated body 63, the phase of the high frequency (traveling wave) traveling from the power amplifier circuit 22 to the matching circuit 24 and the high frequency (reflected wave) reflected from the matching circuit 24 to the power amplifier circuit 22. The phase adjustment circuit 23 and / or the transmission line is set in advance so that the phase of the phase is in-phase. As a result, when the matching circuit 24 is viewed from the power amplifier circuit 22, the abnormal impedance Rl ′ when the reflected wave is generated transitions to a higher side compared to the stationary impedance Rl when the reflected wave is generated. It will be. On the other hand, since the output power Po of the power amplifier circuit 22 is approximated by Po = Vdd 2 / (2 · Rl), the output power Po transitions to the lower side.

このことから、被加熱体63で絶縁破壊が発生しても、絶縁破壊を縮小させる方向に動作し、電極61及び62や被加熱体63での損傷を最小限に留めることができる。例えば、位相調整回路23及び/又は伝送ラインの位相定数をβとし、特性インピーダンスをZoとし、絶縁破壊時の整合回路24の入力インピーダンスをZlとすると、異常時のインピーダンスRl’は一般的に下記式で表せる(図7を参照)。
Rl’=Zo・(Zl+jZo・tanβ)/(Zo+jZl・tanβ)
この式でtanβを適当な値に選ぶとRl<<Rl’となり、電力増幅回路22の出力電力Poが低下することになる。
For this reason, even if dielectric breakdown occurs in the heated body 63, it operates in a direction to reduce the dielectric breakdown, and damage to the electrodes 61 and 62 and the heated body 63 can be minimized. For example, assuming that the phase constant of the phase adjustment circuit 23 and / or the transmission line is β, the characteristic impedance is Zo, and the input impedance of the matching circuit 24 at the time of dielectric breakdown is Zl, the impedance Rl ′ at the time of abnormality is generally It can be expressed by an equation (see FIG. 7).
Rl ′ = Zo · (Zl + jZo · tan β) / (Zo + jZl · tan β)
If tan β is selected to an appropriate value in this equation, Rl << Rl ′ is established, and the output power Po of the power amplifier circuit 22 is reduced.

加工部60は、整合回路24の出力と接続される電極61(ホット側)と、グラウンドと接続される電極62(コールド側)とを、一対で有している。被加熱体63は、ポリ塩化ビニル樹脂フイルムやポリプロピレン樹脂フイルム等の熱可塑性材料、又は木材等であり、この電極61と電極62との間に挟まれる。   The processing unit 60 has a pair of an electrode 61 (hot side) connected to the output of the matching circuit 24 and an electrode 62 (cold side) connected to the ground. The heated body 63 is a thermoplastic material such as a polyvinyl chloride resin film or a polypropylene resin film, or wood, and is sandwiched between the electrode 61 and the electrode 62.

絶縁破壊検出部30は、整合回路24の出力である電極61に接続され、加工部60において生じる被加熱体63の絶縁破壊及び電極61と電極62との間の絶縁破壊を検出する。この絶縁破壊検出部30は、例えば図4に示す構成で実現される。図4に示す絶縁破壊検出部30は、貫通電流検出回路31と、絶縁破壊判定回路32とを備える。   The dielectric breakdown detection unit 30 is connected to the electrode 61 that is an output of the matching circuit 24 and detects dielectric breakdown of the heated body 63 and dielectric breakdown between the electrode 61 and the electrode 62 that occur in the processing unit 60. This dielectric breakdown detection unit 30 is realized, for example, with the configuration shown in FIG. The dielectric breakdown detection unit 30 illustrated in FIG. 4 includes a through current detection circuit 31 and a dielectric breakdown determination circuit 32.

図4において、貫通電流検出回路31は、直列接続された絶縁破壊検知用の抵抗R及び高周波電流抑制用のインダクタLを介して直流電源Vccを電極61に印加し、抵抗RとインダクタLとの接続点aに現れる電圧を取り出す構成である。この構成により、定常状態時には、抵抗R、インダクタL、及び被加熱体63の内部抵抗により直流電源Vccを分圧した電圧Hiが接続点aに現れ、絶縁破壊が生じた異常状態時には、被加熱体63の内部抵抗が短絡して電極61及び62間に貫通電流が流れることになるため、抵抗R及びインダクタLのみで直流電源Vccを分圧した電圧Loが接続点aに現れる。すなわち、定常状態から異常状態に遷移すると、接続点aに現れる電圧が電圧Hiから電圧Loへ低下することになる。   In FIG. 4, the through current detection circuit 31 applies a DC power source Vcc to the electrode 61 via a serially connected resistance R for detecting breakdown and an inductor L for suppressing high-frequency current, and the resistance R and the inductor L are connected to each other. In this configuration, the voltage appearing at the connection point a is extracted. With this configuration, in the steady state, the voltage Hi obtained by dividing the DC power source Vcc by the resistance R, the inductor L, and the internal resistance of the heated body 63 appears at the connection point a, and in the abnormal state in which the dielectric breakdown occurs, Since the internal resistance of the body 63 is short-circuited and a through current flows between the electrodes 61 and 62, a voltage Lo obtained by dividing the DC power source Vcc by only the resistor R and the inductor L appears at the connection point a. That is, when the transition from the steady state to the abnormal state occurs, the voltage appearing at the connection point a decreases from the voltage Hi to the voltage Lo.

絶縁破壊判定回路32は、貫通電流検出回路31の接続点aに現れる電圧を入力し、所定の閾値Vdcと比較して、絶縁破壊が生じているか否かを判定する。具体的には、この閾値Vdcは、電圧Hiから電圧Loまでの間の任意の値に設けられ、絶縁破壊判定回路32は、入力する電圧が閾値Vdc以下になれば、絶縁破壊が生じたことを通知するトリガ信号を出力する。   The dielectric breakdown determination circuit 32 inputs a voltage appearing at the connection point a of the through current detection circuit 31 and compares it with a predetermined threshold value Vdc to determine whether or not dielectric breakdown has occurred. Specifically, the threshold value Vdc is set to an arbitrary value between the voltage Hi and the voltage Lo, and the dielectric breakdown determination circuit 32 indicates that the dielectric breakdown has occurred if the input voltage is equal to or lower than the threshold value Vdc. A trigger signal for notifying is output.

再び図1を参照して、放電検出部40は、高周波印加部20の位相調整回路23と整合回路24との間に設けられ、加工部60において生じる電極61から空間へのコロナ放電を検出する。この放電検出部40は、例えば図5に示す構成で実現される。図5に示す放電検出部40は、方向性結合器41と、検波回路42及び43と、微分回路44及び45と、減算回路46と、コロナ放電判定回路47とを備える。   Referring again to FIG. 1, the discharge detection unit 40 is provided between the phase adjustment circuit 23 and the matching circuit 24 of the high-frequency application unit 20 and detects corona discharge from the electrode 61 generated in the processing unit 60 to the space. . The discharge detection unit 40 is realized by the configuration shown in FIG. 5, for example. The discharge detection unit 40 illustrated in FIG. 5 includes a directional coupler 41, detection circuits 42 and 43, differentiation circuits 44 and 45, a subtraction circuit 46, and a corona discharge determination circuit 47.

図5において、方向性結合器41は、電力増幅回路22から位相調整回路23を介して整合回路24へ進行する高周波(進行波)の電圧を抽出して、検波回路42へ出力する。また、方向性結合器41は、整合回路24から位相調整回路23を介して電力増幅回路22へ反射する高周波(反射波)の電圧を抽出して、検波回路43へ出力する。この抽出は、各高周波を1/1000倍以下で分離することで行われる。検波回路42は、方向性結合器41から出力された進行波の交流電圧を検波して、直流電圧Vfを求める。検波回路43は、方向性結合器41から出力された反射波の交流電圧を検波して、直流電圧Vrを求める。微分回路44は、直流電圧Vfを微分して(dVf/dt)、進行波の変化(加速度)を演算する。微分回路45は、直流電圧Vrを微分して(dVr/dt)、反射波の変化(加速度)を演算する。   In FIG. 5, the directional coupler 41 extracts a high frequency (traveling wave) voltage traveling from the power amplifier circuit 22 to the matching circuit 24 via the phase adjustment circuit 23 and outputs the voltage to the detection circuit 42. Further, the directional coupler 41 extracts a high frequency (reflected wave) voltage reflected from the matching circuit 24 to the power amplifier circuit 22 via the phase adjustment circuit 23 and outputs the voltage to the detection circuit 43. This extraction is performed by separating each high frequency by 1/1000 times or less. The detection circuit 42 detects the traveling-wave AC voltage output from the directional coupler 41 to obtain the DC voltage Vf. The detection circuit 43 detects the AC voltage of the reflected wave output from the directional coupler 41 and obtains the DC voltage Vr. The differentiating circuit 44 differentiates the direct-current voltage Vf (dVf / dt) to calculate a traveling wave change (acceleration). The differentiating circuit 45 differentiates the DC voltage Vr (dVr / dt) and calculates the change (acceleration) of the reflected wave.

周知のように、被加熱体63でコロナ放電等が生じた瞬間では、反射波は増大する方向に変化し、進行波は減少する方向に変化する。この現象を検出するために、減算回路46は、直流電圧Vrの微分値から直流電圧Vfの微分値を減算して、変化の差(=dVr/dt−dVf/dt)を求める。そして、コロナ放電判定回路47は、この変化の差を入力し、所定の閾値Vthと比較して、コロナ放電が生じているか否かを判定する。この閾値Vthは、電極61及び62のサイズや被加熱体63の大きさ及び材質等に基づいて任意に定められ、コロナ放電判定回路47は、入力する変化の差が閾値Vth以上になれば、コロナ放電が生じたことを通知するトリガ信号を出力する。なお、インピーダンス不整合等の原因により、進行波の変化と反射波の変化とが同方向であるような場合には、このトリガ信号は出力されない。   As is well known, at the moment when corona discharge or the like occurs in the heated body 63, the reflected wave changes in the increasing direction and the traveling wave changes in the decreasing direction. In order to detect this phenomenon, the subtraction circuit 46 subtracts the differential value of the DC voltage Vf from the differential value of the DC voltage Vr to obtain a difference in change (= dVr / dt−dVf / dt). Then, the corona discharge determination circuit 47 inputs the difference between the changes and compares it with a predetermined threshold value Vth to determine whether or not corona discharge has occurred. This threshold value Vth is arbitrarily determined based on the size of the electrodes 61 and 62, the size and material of the heated body 63, and the corona discharge determination circuit 47 determines that the difference in the input change is equal to or greater than the threshold value Vth. A trigger signal for notifying that a corona discharge has occurred is output. Note that this trigger signal is not output when the traveling wave changes and the reflected wave changes in the same direction due to impedance mismatching or the like.

再び図1を参照して、出力制御部50は、絶縁破壊検出部30及び放電検出部40に接続され、各々の検出部から出力されるトリガ信号に従って、個別に高周波出力部10の切換回路12を制御する。この出力制御部50は、例えば図6に示す構成で実現される。図6に示す出力制御部50は、第1及び第2のタイマ51及び52と、第1及び第2のカウンタ53及び54と、第1及び第2のラッチ回路55及び56とを備える。   Referring again to FIG. 1, the output control unit 50 is connected to the dielectric breakdown detection unit 30 and the discharge detection unit 40, and individually switches the switching circuit 12 of the high-frequency output unit 10 according to the trigger signal output from each detection unit. To control. The output control unit 50 is realized, for example, with the configuration shown in FIG. The output control unit 50 shown in FIG. 6 includes first and second timers 51 and 52, first and second counters 53 and 54, and first and second latch circuits 55 and 56.

第1のタイマ51は、絶縁破壊検出部30の出力に接続される。そして、第1のタイマ51は、絶縁破壊検出部30の絶縁破壊判定回路32からトリガ信号を入力すると、入力時点から予め定めた時間が経過するまでの間、切換回路12の入出力端子間を遮断させる制御信号を切換回路12へ出力する。典型的な制御信号は、パルス信号である。この制御によって、加工部60で絶縁破壊が生じた場合には、高周波出力部10から加工部60への高周波の印加が、予め定めた時間だけ一時的に停止される。予め定めた時間の経過後は、切換回路12の入出力端子間が導通状態に復帰し、高周波出力部10から加工部60への高周波の印加が自動に再開される。   The first timer 51 is connected to the output of the dielectric breakdown detection unit 30. When the first timer 51 receives a trigger signal from the dielectric breakdown determination circuit 32 of the dielectric breakdown detection unit 30, the first timer 51 is connected between the input and output terminals of the switching circuit 12 until a predetermined time elapses from the input time point. A control signal to be cut off is output to the switching circuit 12. A typical control signal is a pulse signal. By this control, when dielectric breakdown occurs in the processing unit 60, the application of the high frequency from the high frequency output unit 10 to the processing unit 60 is temporarily stopped for a predetermined time. After the elapse of a predetermined time, the input / output terminals of the switching circuit 12 return to the conductive state, and the application of high frequency from the high frequency output unit 10 to the processing unit 60 is automatically resumed.

第1のカウンタ53は、第1のタイマ51が出力する制御信号を入力し、第1のタイマ51が切換回路12に対して行った一時的停止の回数を累積的にカウントする。このカウントは、例えばパルス信号の立ち上がりを検出することで行われる。そして、第1のカウンタ53は、カウントした累積回数が所定値に到達する(カウントアップ)と、第1のラッチ回路55にその旨を通知する。   The first counter 53 receives a control signal output from the first timer 51 and cumulatively counts the number of temporary stops that the first timer 51 has performed on the switching circuit 12. This counting is performed, for example, by detecting the rising edge of the pulse signal. The first counter 53 notifies the first latch circuit 55 when the counted cumulative number reaches a predetermined value (counting up).

第1のラッチ回路55は、通常状態では切換回路12の入出力端子を導通させる信号(又は無信号)を切換回路12へ出力しており、第1のカウンタ53からカウントアップの通知を受けて、切換回路12の入出力端子間を遮断させる制御信号を切換回路12へ出力する。この制御信号の出力は、溶着作業者による手動操作等によって解除されるまで維持される。この制御によって、複数回継続して加工部60で絶縁破壊が生じた場合には、高周波出力部10から加工部60への高周波の印加が、完全に停止される。   In a normal state, the first latch circuit 55 outputs a signal (or no signal) for conducting the input / output terminal of the switching circuit 12 to the switching circuit 12, and receives a count-up notification from the first counter 53. A control signal for shutting off the input / output terminals of the switching circuit 12 is output to the switching circuit 12. The output of this control signal is maintained until it is released by a manual operation by the welding operator. By this control, when dielectric breakdown occurs in the processing unit 60 continuously a plurality of times, the application of the high frequency from the high frequency output unit 10 to the processing unit 60 is completely stopped.

なお、放電検出部40から出力されるトリガ信号に対しては、第2のタイマ52、第2のカウンタ54、及び第2のラッチ回路56を用いて、絶縁破壊検出部30で説明した内容と同様の一時的な停止及び完全停止の処理が行われる。なお、第1のカウンタ53がカウントアップする所定値と、第2のカウンタ54がカウントアップする所定値とが、同じであっても異なっていてもよい。   The trigger signal output from the discharge detection unit 40 is the same as that described in the dielectric breakdown detection unit 30 using the second timer 52, the second counter 54, and the second latch circuit 56. Similar temporary stop and complete stop processing is performed. Note that the predetermined value counted up by the first counter 53 and the predetermined value counted up by the second counter 54 may be the same or different.

以上のように、本発明の一実施形態に係る誘電加熱用高周波電源装置1によれば、絶縁破壊又はコロナ放電の発生回数が所定値以下であれば、高周波の印加を予め定めた時間だけ一時的に停止して、所定値を超えれば完全に停止するようにしている。
これにより、溶着作業中に発生する絶縁破壊やコロナ放電が、被加熱体63の品質に影響を与えない一時的な場合は溶着作業を継続し、被加熱体63の品質に影響を与えるような場合であれば溶着作業を停止できるので、被加熱体63の品質を維持しつつ被加熱体63及び電極62(金型)の損傷による損害を最小限にとどめることが可能となる。
また、発振回路11の出力を切換回路12で制御する構成であるため、高速で高周波出力を停止させることが可能となる。
As described above, according to the high frequency power supply device 1 for dielectric heating according to an embodiment of the present invention, if the number of occurrences of dielectric breakdown or corona discharge is less than or equal to a predetermined value, the application of high frequency is temporarily performed for a predetermined time. If it exceeds a predetermined value, it stops completely.
As a result, if the dielectric breakdown or corona discharge that occurs during the welding operation is temporary and does not affect the quality of the heated body 63, the welding operation is continued and the quality of the heated body 63 is affected. In this case, the welding operation can be stopped, so that it is possible to minimize damage caused by damage to the heated body 63 and the electrode 62 (mold) while maintaining the quality of the heated body 63.
Further, since the output of the oscillation circuit 11 is controlled by the switching circuit 12, the high-frequency output can be stopped at high speed.

なお、上記実施形態で説明した高周波印加部20、絶縁破壊検出部30、放電検出部40、及び出力制御部50の詳細な回路は一例であって、同等の機能を有する回路であれば同様に本発明に適用することが可能である。
また、加工部60の構造も、図1に示したものに限らず、高周波を印加する一対の電極を備えたものであれば他の構造も適用可能である。
Note that the detailed circuits of the high-frequency application unit 20, the dielectric breakdown detection unit 30, the discharge detection unit 40, and the output control unit 50 described in the above embodiment are examples, and the same applies to any circuit having an equivalent function. It is possible to apply to the present invention.
Further, the structure of the processing unit 60 is not limited to that shown in FIG. 1, and any other structure may be applied as long as it includes a pair of electrodes for applying a high frequency.

本発明の装置は、誘電損失が大きな高分子材料等を加工する場合等に利用可能であり、特に溶着作業中に発生する絶縁破壊やコロナ放電が被加熱体の品質に影響を与えない一時的なときには溶着作業を継続したい場合に適している。   The apparatus of the present invention can be used when processing a polymer material or the like having a large dielectric loss. Especially, the dielectric breakdown or corona discharge generated during the welding operation does not affect the quality of the object to be heated. It is suitable when you want to continue welding work.

1 誘電加熱用高周波電源装置
10 高周波出力部
11 発振回路
12 切換回路
20 高周波印加部
21 励振増幅回路
22 電力増幅回路
23 位相調整回路
24 整合回路
30 絶縁破壊検出部
31 貫通電流検出回路
32 絶縁破壊判定回路
40 放電検出部
41 方向性結合器
42、43 検波回路
44、45 微分回路
46 減算回路
47 コロナ放電判定回路
50 出力制御部
51、52 タイマ
53、54 カウンタ
55、56 ラッチ回路
60 加工部
61、62 電極
63 被加熱体
100 高周波電源
DESCRIPTION OF SYMBOLS 1 High frequency power supply device 10 for dielectric heating High frequency output part 11 Oscillation circuit 12 Switching circuit 20 High frequency application part 21 Excitation amplifier circuit 22 Power amplification circuit 23 Phase adjustment circuit 24 Matching circuit 30 Dielectric breakdown detection part 31 Through current detection circuit 32 Dielectric breakdown determination Circuit 40 Discharge detection unit 41 Directional coupler 42, 43 Detection circuit 44, 45 Differentiation circuit 46 Subtraction circuit 47 Corona discharge determination circuit 50 Output control unit 51, 52 Timer 53, 54 Counter 55, 56 Latch circuit 60 Processing unit 61, 62 Electrode 63 Heated object 100 High frequency power supply

Claims (6)

高周波による誘電損失を利用して被加熱体の加熱又は溶着を行う誘電加熱用高周波電源装置であって、
所定の周波数を有する高周波を出力する高周波出力部と、
前記高周波出力部から出力される高周波を、前記被加熱体が狭持された一対の電極間に印加する高周波印加部と、
前記一対の電極間に生じる電圧の変化を監視し、絶縁破壊現象を検出する絶縁破壊検出部と、
前記高周波印加部から前記一対の電極間へ進行する高周波と、前記一対の電極間から前記高周波印加部へ反射する高周波との、間に生じる電圧の変化を監視し、コロナ放電現象を検出する放電検出部と、
前記絶縁破壊検出部及び前記放電検出部のいずれかにおいて現象が検出されると、前記高周波出力部からの高周波出力を予め定めた時間だけ一時的に停止する出力制御部とを備える、誘電加熱用高周波電源装置。
A high-frequency power supply device for dielectric heating that heats or welds an object to be heated using dielectric loss due to high frequency,
A high frequency output section for outputting a high frequency having a predetermined frequency;
A high frequency application unit that applies a high frequency output from the high frequency output unit between a pair of electrodes sandwiched by the heated body;
A dielectric breakdown detector for monitoring a change in voltage generated between the pair of electrodes and detecting a dielectric breakdown phenomenon;
Discharge for monitoring a change in voltage between the high frequency traveling from the high frequency application section to the pair of electrodes and the high frequency reflected from the pair of electrodes to the high frequency application section, and detecting a corona discharge phenomenon. A detection unit;
When a phenomenon is detected in either the dielectric breakdown detection unit or the discharge detection unit, the dielectric heating unit includes an output control unit that temporarily stops the high-frequency output from the high-frequency output unit for a predetermined time. High frequency power supply.
前記出力制御部は、前記絶縁破壊検出部における現象検出の累積回数が第1の所定値を超えるか、又は前記放電検出部における現象検出の累積回数が第2の所定値を超えると、前記高周波出力部からの高周波出力を完全に停止する、請求項1に記載の誘電加熱用高周波電源装置。   When the cumulative number of phenomenon detections in the dielectric breakdown detection unit exceeds a first predetermined value or the cumulative number of phenomenon detections in the discharge detection unit exceeds a second predetermined value, the output control unit The high frequency power supply device for dielectric heating according to claim 1, wherein the high frequency output from the output unit is completely stopped. 前記絶縁破壊検出部は、
前記高周波印加部の出力に接続され、前記一対の電極間の短絡によって生じる貫通電流に起因して低下する電圧を検出する貫通電流検出部と、
前記貫通電流検出部で検出された電圧と所定の閾値とを比較して、絶縁破壊現象の発生を判断する絶縁破壊判定部とを備える、請求項1に記載の誘電加熱用高周波電源装置。
The dielectric breakdown detector
A through current detection unit that is connected to the output of the high frequency application unit and detects a voltage that drops due to a through current caused by a short circuit between the pair of electrodes;
The dielectric heating high-frequency power supply device according to claim 1, further comprising a dielectric breakdown determination unit that compares the voltage detected by the through current detection unit with a predetermined threshold value to determine the occurrence of a dielectric breakdown phenomenon.
前記放電検出部は、
前記高周波印加部から前記一対の電極間へ進行する高周波の電圧と、前記一対の電極間から前記高周波印加部へ反射する高周波の電圧とを、抽出する方向性結合器と、
前記方向性結合器で抽出された2つの電圧をそれぞれ微分し、当該2つの電圧の変化を検出する微分回路と、
前記2つの電圧の変化の差分を求め、所定の閾値とを比較して、放電現象の発生を判断する放電判定部とを備える、請求項1に記載の誘電加熱用高周波電源装置。
The discharge detector is
A directional coupler that extracts a high-frequency voltage traveling between the pair of electrodes from the high-frequency application unit and a high-frequency voltage reflected from the pair of electrodes to the high-frequency application unit;
A differentiating circuit for differentiating each of the two voltages extracted by the directional coupler and detecting a change in the two voltages;
The high frequency power supply apparatus for dielectric heating according to claim 1, further comprising: a discharge determination unit that obtains a difference between the two voltage changes and compares the predetermined voltage with a predetermined threshold value to determine the occurrence of a discharge phenomenon.
前記出力制御部は、
前記絶縁破壊検出部及び前記放電検出部のいずれかにおいて現象が検出されると、前記所定の時間だけ高周波出力の一時的な停止を指示する制御信号を前記高周波出力部へ出力するタイマと、
前記タイマが前記制御信号を出力した回数を、絶縁破壊現象及び放電現象毎に、累積的にカウントするカウンタと、
前記カウンタのカウント値が前記第1又は第2の所定値を超えると、高周波出力の完全な停止を指示する制御信号を前記高周波出力部へ出力するラッチ回路とを備える、請求項2に記載の誘電加熱用高周波電源装置。
The output control unit
When a phenomenon is detected in any one of the dielectric breakdown detection unit and the discharge detection unit, a timer that outputs a control signal instructing a temporary stop of high-frequency output for the predetermined time to the high-frequency output unit;
A counter that cumulatively counts the number of times the timer has output the control signal for each dielectric breakdown phenomenon and discharge phenomenon;
The latch circuit according to claim 2, further comprising: a latch circuit that outputs a control signal instructing complete stop of the high-frequency output to the high-frequency output unit when a count value of the counter exceeds the first or second predetermined value. High frequency power supply for dielectric heating.
前記高周波印加部は、前記被加熱体でコロナ放電現象が発生した時に、前記高周波印加部から前記一対の電極間へ進行する高周波の位相と、前記一対の電極間から前記高周波印加部へ反射する高周波の位相とが、同相関係となるように位相を調整する位相調整回路を備える、請求項4に記載の誘電加熱用高周波電源装置。   When the corona discharge phenomenon occurs in the heated body, the high-frequency applying unit reflects a phase of a high frequency that travels from the high-frequency applying unit to the pair of electrodes, and reflects between the pair of electrodes to the high-frequency applying unit. The high frequency power supply device for dielectric heating according to claim 4, further comprising a phase adjustment circuit that adjusts the phase so that the phase of the high frequency is in phase.
JP2009112588A 2009-05-07 2009-05-07 High frequency power supply for dielectric heating Expired - Fee Related JP5053323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009112588A JP5053323B2 (en) 2009-05-07 2009-05-07 High frequency power supply for dielectric heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009112588A JP5053323B2 (en) 2009-05-07 2009-05-07 High frequency power supply for dielectric heating

Publications (2)

Publication Number Publication Date
JP2010262825A true JP2010262825A (en) 2010-11-18
JP5053323B2 JP5053323B2 (en) 2012-10-17

Family

ID=43360744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009112588A Expired - Fee Related JP5053323B2 (en) 2009-05-07 2009-05-07 High frequency power supply for dielectric heating

Country Status (1)

Country Link
JP (1) JP5053323B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014142266A (en) * 2013-01-24 2014-08-07 Tokyo Electron Ltd Testing device and plasma treatment device
JP2017050216A (en) * 2015-09-03 2017-03-09 株式会社リコー High frequency induction heating device and image forming apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07249486A (en) * 1994-03-09 1995-09-26 Yamamoto Binitaa Kk Spark sensing circuit of high frequency heating device of balanced current feeding type
JPH09162792A (en) * 1995-12-11 1997-06-20 Tokin Corp Diversity receiving antenna
JPH10172748A (en) * 1996-12-17 1998-06-26 Sharp Corp High frequency heating device
WO2005057993A1 (en) * 2003-11-27 2005-06-23 Daihen Corporation High-frequency power supply system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07249486A (en) * 1994-03-09 1995-09-26 Yamamoto Binitaa Kk Spark sensing circuit of high frequency heating device of balanced current feeding type
JPH09162792A (en) * 1995-12-11 1997-06-20 Tokin Corp Diversity receiving antenna
JPH10172748A (en) * 1996-12-17 1998-06-26 Sharp Corp High frequency heating device
WO2005057993A1 (en) * 2003-11-27 2005-06-23 Daihen Corporation High-frequency power supply system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014142266A (en) * 2013-01-24 2014-08-07 Tokyo Electron Ltd Testing device and plasma treatment device
US9673027B2 (en) 2013-01-24 2017-06-06 Tokyo Electron Limited Test apparatus and plasma processing apparatus
JP2017050216A (en) * 2015-09-03 2017-03-09 株式会社リコー High frequency induction heating device and image forming apparatus

Also Published As

Publication number Publication date
JP5053323B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
US11195698B2 (en) RF impedance matching circuit and systems and methods incorporating same
US9887070B2 (en) Plasma processing apparatus and plasma processing method
KR101191103B1 (en) Arc detection and handling in radio frequency power applications
US9170295B2 (en) Method and apparatus for detecting arc in plasma chamber
US7102110B2 (en) Magnetron oscillating apparatus
KR102542039B1 (en) Driving circuit and impedance matching device
JP5282790B2 (en) Electronic equipment
JP5505730B2 (en) Failure information transmission device
JP5053323B2 (en) High frequency power supply for dielectric heating
JP6567943B2 (en) Plasma processing apparatus and plasma processing method
KR20150020128A (en) Detecting glass breakage and arcing using chamber data
JP5333503B2 (en) Motor drive device
JPH08167500A (en) Power source for high frequency plasma generating device
JP4837369B2 (en) Arc detector for plasma processing system
US3238475A (en) Transmission line arc detecting and eliminating system wherein the energy source is continually disabled and enabled
JPH06232089A (en) Detecting method for abnormal discharge and plasma device
JP2004220923A (en) Abnormal discharge detection device and method, and plasma treatment device comprising the abnormal discharge detection device
CN114540774B (en) Power supply and arc processing method
JP4100938B2 (en) Arc interruption circuit, power supply for sputtering and sputtering equipment
EP2873089B1 (en) Device and method for preventing hot electric arcs in a dbd plasma facility
JP2004194420A (en) Power supply, power supply system, power supply for sputtering, and sputtering apparatus
Chae et al. Impedance matching scheme of electrical variable capacitors using SiC MOSFET for 13.56 MHz RF plasma systems
JP2004071269A (en) Microwave power supply system
JP2017061023A (en) Machining power supply of wire electric discharge machine
JP6350820B2 (en) Discharge treatment device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110704

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110825

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120718

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5053323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees