JP2010262009A - Optical device - Google Patents

Optical device Download PDF

Info

Publication number
JP2010262009A
JP2010262009A JP2009110526A JP2009110526A JP2010262009A JP 2010262009 A JP2010262009 A JP 2010262009A JP 2009110526 A JP2009110526 A JP 2009110526A JP 2009110526 A JP2009110526 A JP 2009110526A JP 2010262009 A JP2010262009 A JP 2010262009A
Authority
JP
Japan
Prior art keywords
optical
optical element
effective region
incident
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009110526A
Other languages
Japanese (ja)
Inventor
Tetsuya Suzuki
哲也 鈴木
Tomokazu Tokunaga
知一 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009110526A priority Critical patent/JP2010262009A/en
Publication of JP2010262009A publication Critical patent/JP2010262009A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To facilitate attaching an optical device thinner than a conventional one, to a lens frame or the like. <P>SOLUTION: The optical device has an optical functional face on an incident face and on an exit face, and includes a rectangular optical effective region in the optical functional face when seen along the direction of the optical axis. A vertex of the optical effective region is located close to the outer circumference of the optical device, a length ratio of the diagonal line in the optical effective region in the incident face side to the diagonal line in the optical effective region in the exit face side is substantially 1. The device includes, in an outer circumference of the optical effective region, a holding unit to hold the optical device or a positioning unit to determine the position of the optical device. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、撮像装置等の光学システムに使用される光学素子に関するものである。   The present invention relates to an optical element used in an optical system such as an imaging apparatus.

従来、光学システム、主に撮像装置に使用される光学素子では、予め研磨(研削)加工やプレス加工などによって光学面が仕上げられたのち、外周部を芯取り加工した形状を有しているものが多い。また、プレス加工時に外周部を規制することで芯取り加工を必要としない形状の光学素子も使用されている。   2. Description of the Related Art Conventionally, optical elements used in optical systems, mainly imaging devices, have a shape in which the outer surface is centered after the optical surface has been finished in advance by polishing (grinding) or pressing. There are many. Further, an optical element having a shape that does not require centering by restricting the outer peripheral portion during press working is also used.

これら光学素子は、レンズ枠へ取り付けられ使用されることが多い。従来、光学素子をレンズ枠へ取り付ける場合は、芯取りや外周規制により形成された側面等を利用している。また、位置決め精度や取り付け容易さの向上、径方向の寸法削減などについて、光学素子の形状を工夫した多くの方法が提案されている。   These optical elements are often attached to a lens frame and used. Conventionally, when an optical element is attached to a lens frame, a side surface formed by centering or outer periphery regulation is used. In addition, many methods have been proposed in which the shape of the optical element is devised for improving positioning accuracy and ease of mounting, reducing the radial dimension, and the like.

例えば、特許文献1には、光学機能面の外側につば部のある光学素子において、光軸から等しい距離に3ヶ所の位置決め部を持つ外周部が自由曲面形状である光学素子の形状が開示されている。   For example, Patent Document 1 discloses a shape of an optical element in which an outer peripheral portion having three positioning portions at an equal distance from the optical axis is a free-form surface shape in an optical element having a flange portion outside the optical function surface. ing.

また、特許文献2には、光学機能面と外周面とを有し、光学機能面の面精度を高く保って保持される光学素子において、その外周側から保持されるべく外周面に、例えば、V溝、U溝またはその外周面に3点以上設けられた係止用突起、または突条によって構成される被保持部を設けたことを特徴とする光学素子の形状が開示されている。   Further, in Patent Document 2, in an optical element that has an optical function surface and an outer peripheral surface, and is held with high surface accuracy of the optical function surface, There is disclosed a shape of an optical element characterized in that a held portion constituted by a locking projection or a protrusion provided at three or more points on a V-groove, U-groove or its outer peripheral surface is provided.

さらに、特許文献3には、光学素子の光学機能面を形成する第1転写部、非光学機能面を形成する第2転写部、及び該第2転写部に設けられた所定の凹部及び/又は凸部を備えた成形型を用いて押圧成形し、光学機能面と、凹部及び/又は凸部に対応したくぼみ及び/又は突起を有する非光学機能面を備えた光学素子を形成する光学素子成形方法が提案されている。   Further, Patent Document 3 discloses a first transfer portion that forms an optical functional surface of an optical element, a second transfer portion that forms a non-optical functional surface, a predetermined recess provided in the second transfer portion, and / or Optical element molding for forming an optical element having an optical functional surface and a non-optical functional surface having depressions and / or protrusions corresponding to the concave portions and / or convex portions by press molding using a molding die having convex portions. A method has been proposed.

さらに、特許文献4には、光学素子を保持する固定部材に当接する保持手段を光線有効領域外に設けた光学素子であって、この保持手段は、光軸方向に1以上の段差のある保持部を有していることを特徴とする光学素子が開示されている。   Further, Patent Document 4 discloses an optical element in which a holding unit that abuts a fixing member that holds the optical element is provided outside the light beam effective area, and the holding unit holds one or more steps in the optical axis direction. An optical element characterized by having a portion is disclosed.

特開平1−183612号公報Japanese Patent Laid-Open No. 1-183612 特開平7−318774号公報JP 7-318774 A 特開2004−256381号公報Japanese Patent Laid-Open No. 2004-256381 特開2003−149518号公報JP 2003-149518 A

ところで、近年の薄型の撮像装置においては、光学素子自体の形状が光学システムの薄型化に大きく影響を及ぼすようになってきている。このため光学素子自体の形状、特に凸レンズや凸メニスカスレンズにおいては、光学素子の中心部や外周部などの光学システムの薄型化に影響を及ぼす厚みをできるかぎり薄くする必要がある。   By the way, in the recent thin imaging apparatus, the shape of the optical element itself has a great influence on the thinning of the optical system. For this reason, in the shape of the optical element itself, particularly in the convex lens and the convex meniscus lens, it is necessary to make the thickness that affects the thinning of the optical system, such as the central part and the outer peripheral part of the optical element as thin as possible.

しかしながら、光学素子を薄くすることで光学素子の側面部も薄くなるので、レンズ枠に保持される領域が小さくなり、レンズ枠へ取り付けにくくなる。このような従来よりも薄い光学素子をレンズ枠へ取り付ける場合、従来の方法や上記特許文献1〜4で提案されている方法などを用いることは困難である。   However, since the side surface portion of the optical element is also thinned by making the optical element thin, the area held by the lens frame becomes small and it is difficult to attach to the lens frame. When attaching such an optical element thinner than the conventional one to the lens frame, it is difficult to use the conventional method or the methods proposed in Patent Documents 1 to 4 above.

本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、従来よりも薄い光学素子をレンズ枠等に容易に取り付けることである。   The present invention has been made in view of this point, and an object of the present invention is to easily attach an optical element thinner than the conventional one to a lens frame or the like.

上記課題を解決する光学素子は、入射面および出射面に光学機能面を有する光学素子であって、光軸方向から見たとき前記光学機能面内に矩形状の光学有効領域を有し、前記光学有効領域の頂点が前記光学素子の外周近傍に位置しており、前記入射面側の前記光学有効領域の対角線と、前記出射面側の前記光学有効領域の対角線との長さの比が、略1であり、前記光学有効領域の外周部に、当該光学素子が保持される保持部、または、当該光学素子の位置を決定する位置決め部のいずれかを有する。   An optical element that solves the above problems is an optical element having an optical functional surface on an incident surface and an output surface, and has a rectangular optical effective region in the optical functional surface when viewed from the optical axis direction, The vertex of the optical effective region is located near the outer periphery of the optical element, and the ratio of the length of the diagonal of the optical effective region on the incident surface side and the diagonal of the optical effective region on the output surface side is: It is substantially 1, and has either a holding part for holding the optical element or a positioning part for determining the position of the optical element on the outer peripheral part of the optical effective area.

上記光学素子によれば、従来よりも薄い光学素子をレンズ枠等に容易に取り付けることが可能となる。   According to the above optical element, it is possible to easily attach an optical element thinner than the conventional one to a lens frame or the like.

(a)実施の形態1に係る光学素子の上面図、(b)実施の形態1に係る光学素子を対角線xx’で切断したときの断面図、(c)実施の形態1に係る光学素子を対角線以外の場所yy’の断面図(A) Top view of the optical element according to the first embodiment, (b) a sectional view when the optical element according to the first embodiment is cut along a diagonal line xx ′, and (c) the optical element according to the first embodiment. Sectional view of a location yy 'other than the diagonal line 実施の形態2に係る光学素子の上面および側面図Top view and side view of optical element according to Embodiment 2 本発明の他の実施形態に係る薄形光学素子の上面図Top view of thin optical element according to another embodiment of the present invention 他の実施形態に係る薄形光学素子の上面および側面図Top and side views of a thin optical element according to another embodiment

以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、実施の形態において同様の動作を行う構成要素に同じ符号を付し、再度の説明を省略する場合がある。また、本明細書における「光学機能面」とは、光学素子に要求される光学特性を生み出すために必要な面のことであり、光線の経路になる面を意味する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the embodiment, components that perform the same operation may be denoted by the same reference numerals and the description thereof may be omitted. In addition, the “optical functional surface” in the present specification is a surface necessary for producing optical characteristics required for an optical element, and means a surface that becomes a path of light rays.

また、本明細書における「光学有効領域」とは、光学機能面内に存在する領域であり、例えば光学素子が撮像装置等に搭載された場合に、光学機能面の中で実際に使用される領域を意味する。   In addition, the “optical effective area” in the present specification is an area existing in the optical function surface, and is actually used in the optical function surface when the optical element is mounted on an imaging device or the like, for example. Means an area.

また、本明細書における「光学有効長」とは、両端点が少なくとも光学機能面上にある線分の長さを意味する。   In addition, the “optical effective length” in the present specification means the length of a line segment in which both end points are at least on the optical functional surface.

(実施の形態1)
図1(a)は、本実施形態に係る光学素子1を入射面側から見たときの概略上面図であり、図1(b)は、図1(a)の光学素子1をx−x'で切断したときの断面図であり、図1(c)は、図1(a)の光学素子をy−y'で切断したときの断面図である。
(Embodiment 1)
Fig.1 (a) is a schematic top view when the optical element 1 which concerns on this embodiment is seen from the entrance plane side, FIG.1 (b) shows the optical element 1 of Fig.1 (a) xx. FIG. 1C is a cross-sectional view when the optical element of FIG. 1A is cut along yy ′.

図1に示すように、光学素子1は、両凸形状の光学素子である。   As shown in FIG. 1, the optical element 1 is a biconvex optical element.

光学素子1は、光が入射する入射面2と、入射した光が出射する出射面3とを有する。この入射面2および出射面3は、ほぼ全面が光学機能を有する光学機能面である。   The optical element 1 has an incident surface 2 on which light is incident and an output surface 3 on which incident light is emitted. The entrance surface 2 and the exit surface 3 are optical functional surfaces that have almost all optical functions.

通常、撮像装置における撮像素子は、矩形状の撮像領域を有している。したがって、撮像装置における光学素子の光学機能面も矩形状になることが多い。   Usually, an image sensor in an imaging apparatus has a rectangular imaging region. Therefore, the optical function surface of the optical element in the imaging apparatus is often rectangular.

そこで、図1(a)に示すように、光学素子1の入射面2は、矩形状の光学有効領域(以下、単に光学有効領域と称する場合もある。)5と、光学有効領域5の外周に設けられた外周面4を有する。外周面4は、外周部の一例である。   Therefore, as shown in FIG. 1A, the incident surface 2 of the optical element 1 has a rectangular optical effective region (hereinafter sometimes simply referred to as an optical effective region) 5 and an outer periphery of the optical effective region 5. The outer peripheral surface 4 is provided. The outer peripheral surface 4 is an example of an outer peripheral part.

なお、図は省略しているが、出射面3も矩形の光学有効領域と、その外周に設けられた外周面を有している。   Although not shown, the exit surface 3 also has a rectangular optically effective region and an outer peripheral surface provided on the outer periphery thereof.

なお、本実施形態に係る光学素子1は、少なくとも矩形の光学有効領域5が光学機能を有する面であればよいので、外周面4は光学機能面でなくてもよい。   In addition, since the optical element 1 which concerns on this embodiment should just be a surface where the rectangular optical effective area | region 5 has an optical function, the outer peripheral surface 4 does not need to be an optical function surface.

光学有効領域5の各頂点は、光学素子1の外周近傍に設けられている。したがって、図1(b)に示すように、光学有効領域5の対角線の長さA(以下、光学有効長Aと称する場合もある。)と、光学素子1の外径Cとが略同一(C≒A)の関係を有する。   Each vertex of the optical effective region 5 is provided in the vicinity of the outer periphery of the optical element 1. Accordingly, as shown in FIG. 1B, the length A of the diagonal line of the optical effective region 5 (hereinafter sometimes referred to as the optical effective length A) and the outer diameter C of the optical element 1 are substantially the same ( C≈A).

また、出射面3も同様に、出射面3の光学有効領域の対角線の長さC(以下、光学有効長A'と称する場合もある。)と、光学素子1の外径Cとが略同一(A'≒C)の関係を有する。   Similarly, the length C of the diagonal line of the optically effective area of the emission surface 3 (hereinafter sometimes referred to as the optically effective length A ′) and the outer diameter C of the optical element 1 are substantially the same for the emission surface 3. (A′≈C).

さらに、入射面2の光学有効長Aと、出射面3の光学有効長A'との比は、略1(A/A'≒1)となる。言い換えると、入射面および出射面の光学有効領域の対角線を含む線(図1(a)のx−x')で切断したときの断面に垂直な方向から見たとき(図1(b))、入射面2に入射する入射光の径と、出射面3から出射する出射光の径とが略同一の径となる。   Further, the ratio between the optical effective length A of the incident surface 2 and the optical effective length A ′ of the output surface 3 is approximately 1 (A / A′≈1). In other words, when viewed from a direction perpendicular to the cross section when cut along a line (xx ′ in FIG. 1A) including the diagonal line of the optically effective area of the entrance surface and the exit surface (FIG. 1B). The diameter of the incident light incident on the incident surface 2 and the diameter of the emitted light emitted from the output surface 3 are substantially the same.

このような構成は、外周近傍に光学有効領域の各頂点を有する光学素子1の外周部分における光軸方向の厚さを薄くすることで実現できる。   Such a configuration can be realized by reducing the thickness in the optical axis direction at the outer peripheral portion of the optical element 1 having each vertex of the optical effective region in the vicinity of the outer periphery.

具体的に説明すると、光学素子1の外周部分が薄くなることで、入射面2の光学有効領域の頂点と出射面3の光学有効領域の頂点とが近くなる。入射面2の光学有効領域の頂点と出射面3の光学有効領域の頂点とが近くなると、入射面2の光学有効領域の頂点から出射面3の光学有効領域の頂点までの光路が短くなる。光路が短いので、入射面2の光学有効領域の頂点に入射した光は、すぐに出射面3の光学有効領域の頂点に到達する。したがって、光軸方向から見たとき、入射面2の光学有効領域の頂点と、出射面3の光学有効領域の頂点とがほぼ同じ位置になる。したがって、入射面2の光学有効長Aと、出射面3の光学有効長A'との比は、略1(A/A'≒1)となる。   More specifically, when the outer peripheral portion of the optical element 1 is thinned, the vertex of the optical effective region of the incident surface 2 and the vertex of the optical effective region of the output surface 3 become closer. When the vertex of the optical effective region of the incident surface 2 and the vertex of the optical effective region of the output surface 3 become close, the optical path from the vertex of the optical effective region of the incident surface 2 to the vertex of the optical effective region of the output surface 3 becomes short. Since the optical path is short, the light incident on the apex of the optical effective area of the incident surface 2 immediately reaches the apex of the optical effective area of the output surface 3. Therefore, when viewed from the optical axis direction, the vertex of the optical effective region of the incident surface 2 and the vertex of the optical effective region of the output surface 3 are substantially at the same position. Therefore, the ratio between the optical effective length A of the incident surface 2 and the optical effective length A ′ of the output surface 3 is approximately 1 (A / A′≈1).

一方、光学有効領域5の対角線以外の線(図1(a)のy−y')で切断したときの断面に垂直な方向から見たとき(図1(c))、入射面2の光学有効長Bに対して、出射面3の光学有効長B’は短い。つまり、対角線以外の光学有効長どうしの比は略1とはならない。このことについて説明する。   On the other hand, when viewed from a direction perpendicular to the cross section when cut by a line other than the diagonal line of the optical effective region 5 (y ′ in FIG. 1A) (FIG. 1C), the optical surface of the incident surface 2 The effective optical length B ′ of the exit surface 3 is shorter than the effective length B. That is, the ratio between the optical effective lengths other than the diagonal line is not approximately 1. This will be described.

上述したように、光学有効領域5の各頂点部分は光学素子10の外周近傍に位置するため、光軸方向の厚さが薄くなっている。しかし、光学有効領域5の各辺における光軸方向の厚さは、光学有効領域5の各頂点における光軸方向の厚さよりも厚い。光軸方向の厚さが厚いので、光路が長くなる。入射面2の光学有効領域5の各辺に入射した光は入射面2で屈折され出射面3に到達するので、光路が長い分、屈折された光は光軸側に寄ることになる。したがって、出射面3の光学有効長BB’は、入射面2の光学有効長Bよりも短くなる。よって、対角線以外の光学有効長どうしの比は略1とはならない(B/B’≠1)。   As described above, each apex portion of the optically effective area 5 is located in the vicinity of the outer periphery of the optical element 10, so that the thickness in the optical axis direction is thin. However, the thickness in the optical axis direction at each side of the optical effective region 5 is thicker than the thickness in the optical axis direction at each vertex of the optical effective region 5. Since the thickness in the optical axis direction is large, the optical path becomes long. Since the light incident on each side of the optically effective area 5 of the incident surface 2 is refracted by the incident surface 2 and reaches the output surface 3, the refracted light is closer to the optical axis side due to the longer optical path. Therefore, the optical effective length BB ′ of the exit surface 3 is shorter than the optical effective length B of the entrance surface 2. Therefore, the ratio between the optical effective lengths other than the diagonal is not approximately 1 (B / B ′ ≠ 1).

従来の光学素子は、矩形の光学有効領域の頂点が光学素子の外周近傍に位置していなかったので、矩形の光学有効領域以外の領域が無駄になっていた。しかし、本実施形態に係る光学素子1は、矩形の光学有効領域の頂点が光学素子の外周近傍に位置しており、入射面側の光学有効領域の対角線と、出射面側の光学有効領域の対角線との長さの比が、略1となるので、入射面および出射面における光学有効領域が占める割合を多くすることができる。したがって、従来の光学素子よりも光学有効領域以外の領域を少なくすることができるので、光学素子自体の小型化、軽量化を実現することができる。   In the conventional optical element, since the vertex of the rectangular optical effective area is not located near the outer periphery of the optical element, the area other than the rectangular optical effective area is wasted. However, in the optical element 1 according to the present embodiment, the vertex of the rectangular optical effective region is located near the outer periphery of the optical element, and the diagonal line of the optical effective region on the incident surface side and the optical effective region on the output surface side are Since the ratio of the length to the diagonal line is approximately 1, it is possible to increase the proportion of the optically effective area in the entrance surface and the exit surface. Accordingly, since the area other than the optical effective area can be reduced as compared with the conventional optical element, the optical element itself can be reduced in size and weight.

また、本実施形態に係る光学素子1は、入射面2の光学有効領域の頂点から出射面3の光学有効領域の頂点までの光路が短いので、従来の光学素子よりも外周部分を薄くすることができる。外周部分が薄くなるのに伴い、光学素子1の中心部も薄くすることができる。したがって、光学素子1全体を薄くすることができる。   Further, the optical element 1 according to the present embodiment has a short optical path from the apex of the optical effective area of the incident surface 2 to the apex of the optical effective area of the output surface 3, and therefore the outer peripheral portion is made thinner than the conventional optical element. Can do. As the outer peripheral portion becomes thinner, the central portion of the optical element 1 can also be made thinner. Therefore, the entire optical element 1 can be thinned.

このような光学素子1を撮像装置等の光学システムに採用することで、光学システムを従来よりも薄型化、小型化することができる。   By adopting such an optical element 1 in an optical system such as an imaging apparatus, the optical system can be made thinner and smaller than before.

このような光学素子1を保持させる場合は、外周面4の領域を光学素子1の保持部として用いることができる。   When holding such an optical element 1, the region of the outer peripheral surface 4 can be used as a holding portion of the optical element 1.

したがって、保持が困難であった従来よりも薄い光学素子であっても、容易に保持することができる。   Therefore, even an optical element thinner than the conventional one that is difficult to hold can be easily held.

(実施の形態2)
図2は、本実施形態に係る光学素子10の上面および断面図である。
(Embodiment 2)
FIG. 2 is a top view and a cross-sectional view of the optical element 10 according to this embodiment.

本実施形態に係る光学素子10は、外周面4の一部がカットされている点が実施の形態1に係る光学素子1と異なっている。   The optical element 10 according to this embodiment is different from the optical element 1 according to Embodiment 1 in that a part of the outer peripheral surface 4 is cut.

図2に示すように、光学素子10は、光学有効領域5の外周にある外周面4の一部がカットされ、側面8が形成されている。側面8は、外周部の一例である。   As shown in FIG. 2, in the optical element 10, a part of the outer peripheral surface 4 on the outer periphery of the optical effective region 5 is cut to form a side surface 8. The side surface 8 is an example of an outer peripheral portion.

光学素子10を保持部材等で保持する場合は、この側面8を光学素子10の保持部として用いることができる。また、この側面8は、光学素子10の位置を決定するための位置決め部としても機能する。   When the optical element 10 is held by a holding member or the like, the side surface 8 can be used as a holding portion of the optical element 10. The side surface 8 also functions as a positioning portion for determining the position of the optical element 10.

したがって、保持および位置決めをすることが困難であった従来よりも薄い光学素子であっても、容易に保持および位置決めをすることができる。   Therefore, even an optical element that is thinner than the conventional one that is difficult to hold and position can be easily held and positioned.

(その他の実施形態)
上記実施形態では、光学素子を両凸レンズとしてあるが、これに限らず、例えば、凸メニスカスレンズであってもよい。
(Other embodiments)
In the above embodiment, the optical element is a biconvex lens.

上記実施形態では、1箇所のみカットして保持および位置決め部としているが、これに限らず、例えば、図3に示すように2箇所もしくはそれ以上の場所で側面9を形成したものであってもよい。このような構成にすることで、光学素子の保持や位置決めがより容易になる。   In the above-described embodiment, the holding and positioning unit is cut at only one place. However, the present invention is not limited to this. For example, the side 9 may be formed at two or more places as shown in FIG. Good. Such a configuration makes it easier to hold and position the optical element.

また、上記実施形態では、外周面をカットすることで側面を形成し、保持および位置決め部としたが、これに限らず、例えば、図4に示すように光学有効領域15の外周にある外周面14に保持および位置決めの穴16等があるものであってもよい。   Moreover, in the said embodiment, although the side surface was formed by cutting the outer peripheral surface, and it was set as the holding | maintenance and positioning part, it is not restricted to this, For example, as shown in FIG. 14 may have a holding and positioning hole 16 or the like.

また上記実施形態は、製作工法に限りはなく、研磨加工、プレス成形、射出成形等、いずれの工法において形成してもよい。   The above embodiment is not limited to the manufacturing method, and may be formed by any method such as polishing, press molding, injection molding, or the like.

また、上記実施形態は、材料に限りはなく、ガラス、プラスチック、セラミックス等、いずれの材料でもよい。   Moreover, the said embodiment is not restricted to material, Any materials, such as glass, a plastics, ceramics, may be sufficient.

本発明は、実施形態に限定されず、その精神又は主要な特徴から逸脱することなく他の色々な形で実施することができる。   The present invention is not limited to the embodiments, and can be implemented in various other forms without departing from the spirit or main features thereof.

上述の実施形態はあらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書には何ら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。   The above-described embodiment is merely an example in all respects and should not be interpreted in a limited manner. The scope of the present invention is defined by the claims, and is not limited by the specification. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

本発明に係る光学素子は、カメラやムービー等の撮像装置に適用できる。   The optical element according to the present invention can be applied to an imaging apparatus such as a camera or a movie.

1、10 光学素子
2 入射面
3 出射面
4 外周面
5、15 光学有効領域
8、9 保持および位置決め用の側面
16 保持および位置決め用の穴
A、A’、B、B’ 光学有効長
C 光学素子の外径
DESCRIPTION OF SYMBOLS 1,10 Optical element 2 Incidence surface 3 Outgoing surface 4 Outer peripheral surface 5, 15 Optical effective area 8, 9 Side surface for holding and positioning 16 Hole for holding and positioning A, A ', B, B' Optical effective length C Optical Element outer diameter

Claims (1)

入射面および出射面に光学機能面を有する光学素子であって、
光軸方向から見たとき前記光学機能面内に矩形状の光学有効領域を有し、
前記光学有効領域の頂点が前記光学素子の外周近傍に位置しており、
前記入射面側の前記光学有効領域の対角線と、前記出射面側の前記光学有効領域の対角線との長さの比が、略1であり、
前記光学有効領域の外周部に、当該光学素子が保持される保持部、または、当該光学素子の位置を決定する位置決め部のいずれかを有する、
光学素子。
An optical element having an optical function surface on an incident surface and an output surface,
When viewed from the optical axis direction, has a rectangular optical effective area in the optical functional surface,
The vertex of the optical effective area is located near the outer periphery of the optical element;
The ratio of the length of the diagonal line of the optical effective region on the incident surface side and the diagonal line of the optical effective region on the output surface side is approximately 1,
In the outer periphery of the optically effective area, it has either a holding unit for holding the optical element or a positioning unit for determining the position of the optical element.
Optical element.
JP2009110526A 2009-04-30 2009-04-30 Optical device Pending JP2010262009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009110526A JP2010262009A (en) 2009-04-30 2009-04-30 Optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009110526A JP2010262009A (en) 2009-04-30 2009-04-30 Optical device

Publications (1)

Publication Number Publication Date
JP2010262009A true JP2010262009A (en) 2010-11-18

Family

ID=43360146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009110526A Pending JP2010262009A (en) 2009-04-30 2009-04-30 Optical device

Country Status (1)

Country Link
JP (1) JP2010262009A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021018310A (en) * 2019-07-19 2021-02-15 パナソニックIpマネジメント株式会社 Square lens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021018310A (en) * 2019-07-19 2021-02-15 パナソニックIpマネジメント株式会社 Square lens

Similar Documents

Publication Publication Date Title
TWI451182B (en) An imaging lens that eliminates stray light
KR101503982B1 (en) Lens module
TW201543100A (en) Dual-shot injection molded optical components
KR101188202B1 (en) Optical System for Projection Display Apparatus
TW201350957A (en) Optical imaging lens and electronic device comprising the same
JP2002062417A (en) Diffractive optical device, optical system and optical appliance having the diffractive optical device, method for manufacturing diffractive optical device and mold for manufacturing diffractive optical device
JP2008122801A (en) Combined lens and camera module
JP2010262009A (en) Optical device
JP2007279136A (en) Optical element, optical element module having the same, optical device equipped with the module, and method for manufacturing optical element
US11445095B2 (en) Image-sensor fixing structure
JP2011022444A (en) Cemented optical element
JP2010262011A (en) Optical device
US20140160447A1 (en) Image display device
JP2010256779A (en) Optical element
US11513340B2 (en) Projector
TWI460488B (en) Lens module and imaging device having same
JP2011022167A (en) Optical lens
JP2010262010A (en) Optical device
JP2018087961A (en) Optical fiber with integrated lens and manufacturing method therefor
JP2005338218A (en) Imaging apparatus
US11402551B2 (en) Optical lens for a photodiode-equipped device
TWI741504B (en) Optical lens and method of manufacturing the same
JPWO2019116469A1 (en) Optical element and parallel light generator
JP4878673B2 (en) Optical element for forming annular light and detection device using the same
WO2015137026A1 (en) Optical lens, lens unit, imaging module, electronic device, and method for producing optical lens