JP2010260019A - Pulse jet type dust collector - Google Patents

Pulse jet type dust collector Download PDF

Info

Publication number
JP2010260019A
JP2010260019A JP2009114166A JP2009114166A JP2010260019A JP 2010260019 A JP2010260019 A JP 2010260019A JP 2009114166 A JP2009114166 A JP 2009114166A JP 2009114166 A JP2009114166 A JP 2009114166A JP 2010260019 A JP2010260019 A JP 2010260019A
Authority
JP
Japan
Prior art keywords
bag filter
dust
compressed air
dust collector
nozzle opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009114166A
Other languages
Japanese (ja)
Inventor
Ichiro Asada
一郎 浅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009114166A priority Critical patent/JP2010260019A/en
Publication of JP2010260019A publication Critical patent/JP2010260019A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an energy saving type dust collector which suppresses power consumption during filtration of dust by eliminating the pressure loss due to a venturi pipe and prompting dust brush-off effect of the whole bag filter including the vicinity of a bag filter opening to improve the pressure loss. <P>SOLUTION: For being arranged in a high pressure air pipe 2, an air current control means 1 is easily and precisely made to match the center of a nozzle opening hole 2a. The shaft part 1a of the air current control means 1 is controlled to have an outer diameter size (d) smaller than the inner diameter of the nozzle opening hole 2a to form a slit W constant around the complete periphery and compressed air is jetted from the slit W. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、バグフィルタを備えるパルスジェット式集塵機のダスト払い落とし装置に関する。 The present invention relates to a dust wiping device for a pulse jet dust collector including a bag filter.

従来のパルスジェット式集塵機の主要部分は、含塵室内に配設された複数の有底筒状バグフィルタと清浄室内に設けられたパルスジェット式のダスト払い落とし装置から構成されている。清浄室をブロワで負圧に保つことによって含塵室側から清浄室側への気流が発生し、含塵室側面のダクトから集塵室に取り込まれた含塵気体は、バグフィルタ外面でダストが濾過されて清浄気体となり、バグフィルタ筒内を通ってバグフィルタ開口部から清浄室に入り、清浄室側面の出口からブロワを通過して集塵機外に放出される。一方、捕集したダストはバグフィルタの外面から内面に通じる微細な気流の流路を塞いで、次第にバグフィルタの圧力損失を増して清浄室内の負圧を上昇させるが、パルスジェット式の払い落とし装置によって一定時間毎あるいは清浄室の負圧が所定の圧力に到達した時に払い落とされて含塵室底部に堆積し、集塵機外部に排出される。 A main part of a conventional pulse jet dust collector is composed of a plurality of bottomed cylindrical bag filters disposed in a dust-containing chamber and a pulse jet dust removing device provided in a clean chamber. By maintaining the clean chamber at a negative pressure with a blower, an air flow from the dust chamber side to the clean chamber side is generated, and the dust-containing gas taken into the dust collection chamber from the duct on the side of the dust chamber is collected on the outer surface of the bag filter. Is filtered into clean gas, passes through the bag filter cylinder, enters the clean chamber from the bag filter opening, passes through the blower from the outlet of the clean chamber side, and is discharged outside the dust collector. On the other hand, the collected dust blocks the fine air flow path from the outer surface to the inner surface of the bag filter, and gradually increases the pressure loss of the bag filter to increase the negative pressure in the clean room. Depending on the device, it is wiped off at regular intervals or when the negative pressure in the clean chamber reaches a predetermined pressure, accumulates at the bottom of the dust chamber, and is discharged outside the dust collector.

該パルスジェット式のダスト払い落とし装置は、圧縮空気(0.3〜0.6MPa)をバグフィルタ内に噴出させるための複数のノズル開口穴を備えた高圧エア配管が、所定の間隔で一列ごとに配列されたバグフィルタと同等の間隔でバグフィルタの開口部上方に配設されている。前記ノズル開口穴からバグフィルタ内部に圧縮空気を瞬時(略0.2秒間)に噴射させ、バグフィルタ表面に脈動を伝播させてダストを払い落とす。また、大多数の集塵機において各バグフィルタの開口部に連通する位置にベンチュリー管等の気流制御手段を配設している。このベンチュリー管のエゼクタ効果により、前記ノズル開口穴から噴射される圧縮空気量の数倍の2次気体をベンチュリー管周辺から誘引するため、バグフィルタ表面が瞬時に膨張し最大のふくらみに到達停止した際に発生する衝撃およびバグフィルタ内部からバグフィルタ外部に逆流する気流によってダストの払い落とし効果をさらに高めることができる。 The pulse jet type dust removing apparatus is configured such that high-pressure air pipes having a plurality of nozzle opening holes for ejecting compressed air (0.3 to 0.6 MPa) into a bag filter are arranged in a row at predetermined intervals. Are arranged above the opening of the bag filter at the same interval as the bag filters arranged in the above. Compressed air is injected instantaneously (approximately 0.2 seconds) into the bag filter from the nozzle opening hole, and pulsation is propagated to the bag filter surface to remove dust. In most of the dust collectors, air flow control means such as a venturi tube is disposed at a position communicating with the opening of each bag filter. Due to the ejector effect of the venturi tube, the bag filter surface instantaneously expands to reach the maximum bulge and stops because a secondary gas several times the amount of compressed air injected from the nozzle opening hole is attracted from the venturi periphery. The dust removal effect can be further enhanced by the impact generated at the time and the airflow flowing back from the inside of the bag filter to the outside of the bag filter.

ところで集塵機の清浄室をブロワで負圧に保つ際に含塵気体と清浄気体が通過する流路の圧力損失が大きいと、ブロワで必要とする動力も大きくなる。圧力損失の主たる要因はバグフィルタへのダスト付着であるが、その他の要因としてベンチュリー管の圧力損失があげられる。従来のパルスジェット式集塵機では、前記ベンチュリー管が前記バグフィルタ開口部を塞ぐようにリテーナと一体に形成されている。清浄気体が通過するリテーナの内径とベンチュリー管の内径の比は通常2〜3分の1程度であるから、仮に2分の1と仮定しても濾過時にベンチュリー管を通過する清浄気体の流速はリテーナ内部の流速の4倍に比例し、圧力損失は略16倍に比例する。従ってダスト払い落とし装置でバグフィルタの圧力損失を回復した直後であっても、ベンチュリー管の無い集塵機に比べると本来必要のない無駄なブロワの電力を常時消費していることになる。このため首振り可能にしたベンチュリー管で、通常のバグフィルタ濾過時にはベンチュリー管を流路から退避させて圧力損失を生じない特許文献1のような集塵機が考案されている。 By the way, when the pressure loss of the flow path through which the dust-containing gas and the clean gas pass is large when maintaining the clean chamber of the dust collector at the negative pressure with the blower, the power required for the blower also increases. The main factor of pressure loss is dust adhesion to the bag filter, but the other factor is the pressure loss of the Venturi tube. In a conventional pulse jet dust collector, the venturi tube is formed integrally with a retainer so as to close the bag filter opening. Since the ratio of the inner diameter of the retainer through which the clean gas passes and the inner diameter of the venturi pipe is usually about one-third, the flow rate of the clean gas passing through the venturi pipe during filtration is The pressure loss is proportional to 4 times the flow velocity inside the retainer, and the pressure loss is approximately 16 times. Therefore, even immediately after recovering the pressure loss of the bag filter with the dust wiping device, wasteful blower power, which is essentially unnecessary, is always consumed as compared with a dust collector without a venturi tube. For this reason, a dust collector as in Patent Document 1 has been devised which is a venturi tube which can be swung, and does not cause pressure loss by retracting the venturi tube from the flow path during normal bag filter filtration.

近年バグフィルタは集塵機の限られた設置面積での高効率化のため長尺化の傾向にあり、リテーナの直径150ミリメートルに対して長さが9メートル前後のものもある。従来のパルスジェット式のダスト払い落とし装置では、流速略90m/秒の圧縮空気の場合、バグフィルタ底部に到達するまでに要する時間は9mのバグフィルタでは約0.1秒であり、圧縮空気の噴射時間0.2秒のうちの半分が消費されてしまう。バグフィルタ底部に到達して逃げ場を無くした圧縮空気によってバグフィルタは正圧となり外周方向に拡張するが、ダストを払い落とすには出来るだけ長時間バグフィルタ内を正圧に保つことが好ましい。しかしながら集塵機の大型化に伴いバグフィルタの数量が増えて現状では清浄室の雰囲気が負圧のまま圧縮空気を噴射するため、本来ならベンチュリー管のエゼクタ効果によってベンチュリー管周辺を負圧にして2次空気をバグフィルタ内部に誘引するはずの機能が十分に作用せず、特にバグフィルタ開口部付近の正圧は瞬時に低下して圧力損失を回復させることができない部分が残される。このためバグフィルタ開口部付近のリテーナに上下方向に一対のコーンを装着する特許文献2のような装置が考案されている。特許文献2によると「リテーナ用コーンの長手方向の上端部に上端に向かって収縮して形成された上端収縮部を有するので、濾布の逆洗時にバグフィルタ用リテーナの上部に配設されたノズルから圧縮空気を噴射した際に、その圧縮空気の一部を上端収縮部の傾斜面で反射させる」ものである。また「リテーナ用コーンの上端収縮部の頂部の角度が65度より小さくなるにつれ、逆洗時に噴射される圧縮空気がリテーナ用コーンの外周側に分散し難くなり、負圧低減効果が低下し易くなって、リテーナ本体の上端部での粉塵の払い落としが不十分になる傾向が見られ」るものである。この現象は上端収縮部の下方に胴部や下端収縮部を設けたことにより上端収縮部表面の気流がコアンダ効果によって胴部方向に進みコーンの外周方向に分散し難くなることが実験から確認された。「(コーンの)固定部材としては・・(一部省略)流路となるリテーナ本体とリテーナ用コーンとの間の気流の流れに対して障害とならないような構造と配置が好ましい。具体的には、・・(一部省略)、リテーナ用コーンの外周にリテーナ本体の半径方向に放射状に金属線などの棒状部材を配設し、その先端をリテーナ本体の固定リングや縦線材に溶接などによって固定する」ものであり、実施例ではリテーナ用コーンの外周に配設する固定部材が気流の流れを一部遮断するもので気流の流れに対して障害になっている。ノズル開口穴を形成する高圧エア配管はバグフィルタやリテーナを交換する際には取り外さなければならないが、エア配管は通常フランジで接続されるものであり回転方向に遊びがあるため正確な位置再現性はない。特許文献2の実施例ではコーンとノズル開口穴の距離は離れており、コーンの頂点と噴射する圧縮空気の気流の中心が合致しているかどうか目視して確認することは困難である。
特開平5−329317 特開2008−49341
In recent years, bag filters tend to be long for high efficiency in a limited installation area of a dust collector, and there are some having a length of about 9 meters for a retainer diameter of 150 millimeters. In the conventional pulse jet type dust wiping device, in the case of compressed air with a flow velocity of about 90 m / sec, the time required to reach the bottom of the bag filter is about 0.1 seconds in the 9 m bag filter. Half of the injection time of 0.2 seconds is consumed. The compressed air that has reached the bottom of the bag filter and has lost its escape space causes the bag filter to have a positive pressure and expand in the outer circumferential direction. However, it is preferable to keep the bag filter at a positive pressure for as long as possible in order to remove dust. However, as the size of the dust collector increases, the number of bag filters increases. At present, compressed air is injected while the atmosphere in the clean room remains negative. Therefore, the venturi tube ejector effect is used to create a negative pressure around the Venturi tube and perform secondary operation. The function that should attract air into the bag filter does not work sufficiently, and in particular, the positive pressure in the vicinity of the bag filter opening is instantaneously reduced, leaving a portion where pressure loss cannot be recovered. For this reason, an apparatus as in Patent Document 2 has been devised in which a pair of cones are mounted in the vertical direction on a retainer near the bag filter opening. According to Patent Document 2, “the upper end portion of the retainer cone in the longitudinal direction has an upper end contracted portion formed by contracting toward the upper end, so that the filter cloth is disposed on the upper portion of the bag filter retainer during backwashing. When the compressed air is ejected from the nozzle, a part of the compressed air is reflected by the inclined surface of the top contraction portion. In addition, as the angle of the top of the upper end contraction portion of the retainer cone becomes smaller than 65 degrees, the compressed air injected at the time of backwashing becomes difficult to disperse to the outer peripheral side of the retainer cone, and the negative pressure reduction effect tends to be reduced. In other words, there is a tendency that dust is not sufficiently removed at the upper end of the retainer body. This phenomenon has been confirmed from experiments that the body part and the lower end contraction part are provided below the upper end contraction part, so that the airflow on the surface of the upper end contraction part advances toward the trunk part due to the Coanda effect and is difficult to disperse in the outer peripheral direction of the cone. It was. “The (cone) fixing member is preferably a structure and arrangement that does not obstruct the flow of airflow between the retainer main body and the retainer cone, which are (partially omitted) flow paths. (Partially omitted) A rod-shaped member such as a metal wire is arranged radially in the radial direction of the retainer body on the outer periphery of the retainer cone, and the tip thereof is welded to the fixing ring or vertical wire of the retainer body. In the embodiment, the fixing member disposed on the outer periphery of the retainer cone partially blocks the flow of the air current, which is an obstacle to the air flow. The high-pressure air piping that forms the nozzle opening hole must be removed when replacing the bag filter or retainer. However, the air piping is usually connected with a flange, and there is play in the rotation direction, so accurate position repeatability is possible. There is no. In the example of Patent Document 2, the distance between the cone and the nozzle opening hole is long, and it is difficult to visually confirm whether the apex of the cone and the center of the airflow of the compressed air to be injected match.
JP-A-5-329317 JP2008-49341A

上記の従来技術から以下の課題が明らかとなった。
(1)従来、ベンチュリー管やコーンなどの気流制御手段はリテーナと一体化して製造されているが、リテーナの主要構成部材である鋼線と気流制御手段の構成部材である鋼板とでは強度も耐久性も異なる。圧縮空気を噴射するたびにバグフィルタはリテーナに衝撃的に衝突を繰り返して痛みやすく、一方気流が通過するだけのベンチュリー管は傷みにくく、それぞれの交換時期は本来異なるものであるにもかかわらず、いずれか一方に瑕疵が生じるとリテーナ全体を交換しなければならなかった。
(2)特許文献1の考案では首振り可能にしたベンチュリー管がリテーナから退避するため、流路の圧力損失は減るものの、圧縮空気を噴射するつどアクチュエータでベンチュリー管を首振り退避させなければならず、高圧エア配管の各配列に前記アクチュエータを設けて制御する必要が生じる。集塵機全体の構造が複雑で高価になるだけでなく、例えばメンテナンスの際に個々のリテーナを交換なければならないとき、首振り機構部品全体を除去しないと取り出すことができなくなるなど、メンテナンス性に課題を生じる。
(3)特許文献2の場合、長尺バグフィルタの払い落とし効果を高めるには、バグフィルタ表面に脈動を生成するうえで「圧縮空気の一部」ではなく「すべての圧縮空気」を外周側に分散し、脈動に転化することがエネルギー効率上好ましい。頂部の角度が65度より小さいほうが圧縮空気をバグフィルタ底部側に送り込む進行方向エネルギーを大きくするうえで好ましい。またコーンの固定部材で気流を妨げない構造が好ましい。
(4)特許文献2の場合、コーンとノズル開口穴の中心が合致していない場合には圧縮空気がバグフィルタの円筒軸に対し平面視して一部の外周方向に偏って放射される。偏って噴射された圧縮空気ではダストの払い落としがバグフィルタ円周の一部の方向に偏るだけでなく、バグフィルタの円周全体に生成すべき脈動現象が一部に偏り、特に長尺バグフィルタの場合脈動が全体に派生せず払い落とし効果が低下する可能性がある。
(5)バグフィルタは圧縮空気を噴射するたびにリテーナに衝撃的に衝突を繰り返して痛みやすく、ついには穴があいて漏洩を生じる場合がある。含塵室内部に吊下げたバグフィルタのうちどれが傷んで漏洩を生じているかを直ちに識別することは不可能であり、集塵機に区画ごとにもうけられる蓋の一つをはずしては個々のバグフィルタを目視点検して損傷フィルタを特定する作業に膨大な時間を費やしている。
The following problems have been clarified from the above prior art.
(1) Conventionally, air flow control means such as a venturi tube and a cone have been manufactured integrally with the retainer, but the strength is durable with the steel wire as the main constituent member of the retainer and the steel plate as the constituent member of the air flow control means. Sex is also different. Each time compressed air is injected, the bag filter repeatedly impacts the retainer and is easily painful, while the venturi tubes that only allow airflow to pass through are less likely to be damaged and their replacement times are inherently different. If a flaw occurred on either side, the entire retainer had to be replaced.
(2) In the device of Patent Document 1, since the venturi tube that can be swung is retracted from the retainer, the pressure loss in the flow path is reduced, but the venturi tube must be swung and retracted by an actuator each time compressed air is injected. Therefore, it is necessary to provide and control the actuator in each array of high-pressure air pipes. Not only is the overall structure of the dust collector complicated and expensive, but there is a problem in maintainability, for example, when individual retainers must be replaced during maintenance, they cannot be removed without removing the entire swing mechanism parts. Arise.
(3) In the case of Patent Document 2, in order to enhance the effect of removing the long bag filter, in order to generate pulsation on the surface of the bag filter, not “a part of the compressed air” but “all the compressed air” is provided on the outer peripheral side. It is preferable from the viewpoint of energy efficiency that it is dispersed into pulsation and converted into pulsation. It is preferable that the angle at the top is smaller than 65 degrees in order to increase the traveling direction energy for sending compressed air to the bottom side of the bag filter. Moreover, the structure which does not obstruct airflow with the fixing member of a cone is preferable.
(4) In the case of Patent Document 2, when the cone and the center of the nozzle opening hole do not coincide with each other, the compressed air is radiated in a partly outer peripheral direction in plan view with respect to the cylindrical axis of the bag filter. In the case of compressed air that is injected in a biased manner, not only the dust dust is biased in a part of the bag filter circumference, but also the pulsation phenomenon that should be generated in the entire circumference of the bag filter is partly biased. In the case of a filter, the pulsation is not derived to the whole, and there is a possibility that the wiping off effect is reduced.
(5) Each time the bag filter injects compressed air, it repeatedly collides with the retainer shockingly and is easily painful. It is impossible to immediately identify which one of the bug filters suspended in the dust chamber is damaged and leaking, and it is not possible to identify individual bugs by removing one of the lids provided for each compartment in the dust collector. An enormous amount of time is spent on visually checking the filter to identify the damaged filter.

本発明はこのような事情に鑑みてなされたもので、
(1)リテーナとベンチュリー管またはコーン等の気流制御手段を分割配設することによって部品コストの低減と、部品交換に要する作業時間を軽減し、
(2)含塵気体濾過時にベンチュリー管同様のエゼクタ効果による2次空気を誘引することができて、ベンチュリー管のような流路の圧力損失をなくし、
(3)圧縮空気のバグフィルタ内周への衝突角度を少なくしてバグフィルタ底部側に送り込む進行方向エネルギーを大きくし、かつ噴射する圧縮空気のすべてを外周方向に拡散して脈動の生成エネルギーに転化して、長尺バグフィルタの開口部から底部まで広い範囲で払い落とし効果が増し、
(4)気流制御手段とノズル開口穴との心ずれでバグフィルタ内に偏った圧縮空気を噴射する心配が無く、固定部材で気流を遮断すること無く開口部付近に均等な気流膜を形成して圧縮空気の正圧を維持する効果を増し、
(5)バグフィルタに漏洩が発生すると直ちに漏洩バグフィルタを検知して、
ブロワの消費電力を抑制する省エネタイプの集塵機を提供することを目的とする。
The present invention has been made in view of such circumstances,
(1) Reducing the cost of parts and reducing the work time required for parts replacement by separately arranging the air flow control means such as the retainer and the venturi tube or cone,
(2) At the time of filtration of dust-containing gas, secondary air can be attracted by the ejector effect similar to the venturi tube, eliminating the pressure loss of the flow path like the venturi tube,
(3) Reduce the collision angle of the compressed air to the inner periphery of the bag filter to increase the traveling direction energy fed to the bottom of the bag filter, and diffuse all the compressed air to be injected in the outer peripheral direction to generate pulsation energy. Conversion, and the effect of removing in a wide range from the opening to the bottom of the long bag filter increases,
(4) There is no fear of injecting compressed air biased into the bag filter due to misalignment between the airflow control means and the nozzle opening hole, and a uniform airflow film is formed in the vicinity of the opening without blocking the airflow with the fixing member. Increase the effect of maintaining the positive pressure of compressed air,
(5) When a leak occurs in the bug filter, the leak bug filter is detected immediately.
It aims at providing the energy-saving type dust collector which suppresses the power consumption of a blower.

上記問題点を解決するために本発明の請求項第1項に記載の発明では、垂直軸円錐部の頂部から延出垂上する均等軸部でホーン状に形成される気流膜形成手段の軸心を、前記ノズル開口穴の軸心に重ねて前記高圧エア配管に係合または接合配設し、前記均等軸部外周と前記ノズル開口穴内周の間に適度な圧縮空気を噴射する隙間を形成し、前記気流膜形成手段の円錐部を前記バグフィルタ開口部の中心に内挿して配設する集塵機とした。気流膜形成手段の配設は実施例のように前記均等軸部を高圧エア配管に接合するほか、前記円錐部を別途接合部材で高圧エア配管に接合することも可能である。 In order to solve the above problems, in the invention described in claim 1 of the present invention, the shaft of the airflow film forming means formed in a horn shape with the uniform shaft portion extending from the top of the vertical shaft cone portion and rising. The core is overlapped with the axis of the nozzle opening hole and engaged or joined to the high-pressure air pipe to form a gap for injecting appropriate compressed air between the outer periphery of the uniform shaft and the inner periphery of the nozzle opening hole. In the dust collector, the conical portion of the airflow film forming means is inserted in the center of the bag filter opening. In addition to joining the uniform shaft portion to the high-pressure air pipe as in the embodiment, the airflow film forming means can be joined to the high-pressure air pipe using a separate joining member.

本発明の請求項第2項に記載の発明では、気流膜形成手段にセンサーを配設する構成の集塵機とした。 In the invention described in claim 2 of the present invention, the dust collector is configured such that a sensor is disposed in the airflow film forming means.

本発明の請求項第1項に記載の発明では、ノズル開口穴と気流膜形成手段の中心のずれがないように高圧エア配管に気流膜形成手段を直接係合または接合配設する。これにより円錐部外周に固定部材等の気流を妨げるものがないので、ノズル開口穴から噴射される圧縮空気は円錐部の表面に衝突し、平面視して軸心から外周方向に拡散しながら切れ目のない円錐形気流膜を形成する。円錐形気流膜は円錐部の下端稜線から離れてバグフィルタ開口部内周に衝突する。衝突した圧縮空気によってバグフィルタ表面が平面視して円形に膨張し、リテーナの縦線の隙間に埋設し収縮している膨張前のバグフィルタとの間に段部すなわち脈動を生成する。脈動はバグフィルタ底部に向かって瞬時(略0.1秒)に移動し、脈動が前記底部に到達した後略0.1秒間ノズル開口穴から圧縮空気が噴射されるため、バグフィルタ内部が正圧で満たされる。脈動がバグフィルタ表面を伝播する際の衝撃およびバグフィルタ内部から外部へ向かう気流の逆流によって、バグフィルタ外周に付着するダストの払い落とし効果が得られる。さらに前記円錐形気流膜がバグフィルタ開口部から上向きに逃げようとする圧縮空気をあたかも蓋で覆うかのように作用して正圧に保つ。均等軸部外周とノズル開口穴内周の間に適度な隙間を形成して圧縮空気を噴射するので、360度むらのない均等な密度で外周方向に拡散して円錐形気流膜が生成される。この円錐形気流膜についてはエゼクタ効果についての以下の重要な発見があった。バグフィルタ内周への気流の入射角度は90度から円錐部陵角の角度を差し引いた残りの角度であるが、実験によると入射角度30度以下になると衝突部付近の2次空気がバグフィルタ内部に誘引されるエゼクタ現象が発見された。陵角65度で入射角25度になるとさらに強力なエゼクタ現象によって、圧縮空気の全体流量が増えてバグフィルタ表面に脈動を生成すると同時にバグフィルタ全体を膨張させる効果が得られる。ベンチュリー管が配設されておらず、含塵気体の濾過時にベンチュリー管による流路断面積の減少による圧力損失が生じることなく、ベンチュリー管同様のエゼクタ効果による払い落とし効果が得られるのである。なお陵角65度(頂部角度50度)の円錐形であっても、円錐部下方にたとえば特許文献2のような胴部を連接するコーンでは、コアンダ効果によって胴部方向に圧縮空気が回り込むため円錐形気流膜が全く形成されないことは特許文献2に「頂部の角度が50度より小さくなると、逆洗時に噴射される圧縮空気をリテーナ用コーンの外周側に分散させることが困難」との記載どおりであることが確認された。圧縮空気によってバグフィルタ表面が平面視して円形に膨張することによりバグフィルタ内部に滑らかな流路が形成されるので、圧縮空気は主としてバグフィルタの内周表面上を流れる気流を形成して長尺のバグフィルタでも効率良く底部方向まで充填される。均等軸部を係合部材と兼ねることにより、量的に最も少ない部材で気流膜形成手段を高圧エア配管に配設し、かつ固定部材で円錐形気流膜の気流を妨げることなく、バグフィルタ開口部に内挿することができる。濾過時に気流膜形成手段が配設される位置での流路の圧力損失は、リテーナ外径寸法と気流膜形成手段の円筒の直径寸法の比を仮に30パーセントとする場合、流路断面積の減少率は略10パーセントになり流速の増加は略20パーセントとなる。よって前記流路部分の圧力損失の増加は44パーセントに比例し、既存のベンチュリー管の略1600パーセントの増加に比べると圧力損失が略36分の1に低下して、従来よりも電力消費の少ない集塵機として稼動することができる。メンテナンス時は従来の手順と同様に清浄室の接続フランジと支柱の図示されていない締結ボルトをゆるめて高圧エア配管を除去すれば、個々のリテーナを清浄室側に取り出すことが可能であり、リテーナの製造コストはベンチュリー管が装着されない分安価になる。 In the invention described in claim 1 of the present invention, the airflow film forming means is directly engaged or joined to the high pressure air pipe so that the center of the nozzle opening hole and the airflow film forming means is not displaced. As a result, there is nothing that obstructs the air flow of the fixing member or the like on the outer periphery of the conical portion, so the compressed air injected from the nozzle opening hole collides with the surface of the conical portion, and breaks while diffusing from the axis toward the outer periphery in plan view. Forms a conical airflow film with no air gap. The conical airflow film collides with the inner periphery of the bag filter opening away from the lower edge of the conical portion. The surface of the bag filter expands in a circular shape in plan view by the impinged compressed air, and a step portion, that is, a pulsation is generated between the bag filter and the unexpanded bag filter embedded and contracted in the gap between the vertical lines of the retainer. The pulsation moves instantaneously (approximately 0.1 seconds) toward the bottom of the bag filter, and after the pulsation reaches the bottom, compressed air is injected from the nozzle opening hole for approximately 0.1 seconds. Filled with. Due to the impact of the pulsation propagating on the bag filter surface and the backflow of the air flow from the inside of the bag filter to the outside, the effect of removing dust attached to the outer periphery of the bag filter can be obtained. Further, the conical airflow film acts as if it is covered with compressed air to escape upward from the bag filter opening, and maintains a positive pressure. Since compressed air is injected while forming an appropriate gap between the outer periphery of the uniform shaft portion and the inner periphery of the nozzle opening hole, a conical airflow film is generated by diffusing in the outer peripheral direction at an even density of 360 degrees. For this conical airflow film, the following important findings were made regarding the ejector effect. The incident angle of airflow on the inner periphery of the bag filter is the remaining angle obtained by subtracting the cone angle from 90 degrees, but according to experiments, when the incident angle is 30 degrees or less, the secondary air near the collision part is The ejector phenomenon attracted to the inside was discovered. When the dip angle is 65 degrees and the incident angle is 25 degrees, an even stronger ejector phenomenon increases the overall flow rate of the compressed air, generating pulsations on the bag filter surface and simultaneously expanding the bag filter. The venturi tube is not provided, and a pressure loss due to the reduction of the cross-sectional area of the venturi tube during filtration of the dust-containing gas does not occur, and the removal effect by the ejector effect similar to the venturi tube can be obtained. Even in the conical shape having a reclined angle of 65 degrees (top angle 50 degrees), the compressed air circulates in the direction of the trunk due to the Coanda effect in the cone connecting the trunk as in Patent Document 2 below the cone. The fact that no conical airflow film is formed is described in Patent Document 2 that "if the top angle is smaller than 50 degrees, it is difficult to disperse the compressed air injected during backwashing to the outer peripheral side of the retainer cone". It was confirmed that Since the bag filter surface expands in a circular shape in plan view due to the compressed air, a smooth flow path is formed inside the bag filter. Therefore, the compressed air mainly forms an air flow that flows on the inner peripheral surface of the bag filter and is long. Even a small bag filter is efficiently filled to the bottom. By using the uniform shaft part as an engaging member, the airflow film forming means is arranged in the high-pressure air pipe with the least amount of members, and the bag filter opening without interfering with the airflow of the conical airflow film with the fixed member. Can be interpolated into the part. The pressure loss of the flow path at the position where the airflow film forming means is disposed at the time of filtration is calculated as follows if the ratio of the retainer outer diameter dimension and the diameter of the cylinder of the airflow film forming means is 30%. The rate of decrease is approximately 10 percent and the increase in flow rate is approximately 20 percent. Therefore, the increase in the pressure loss in the flow passage portion is proportional to 44%, and the pressure loss is reduced to about 1/36 compared to the increase of about 1600% in the existing Venturi tube, and the power consumption is less than that in the conventional case. Can operate as a dust collector. During maintenance, the individual retainers can be taken out to the clean chamber side by loosening the connecting bolts of the clean chamber and the fastening bolts (not shown) of the support column and removing the high-pressure air piping as in the conventional procedure. The manufacturing cost is lower because the Venturi tube is not installed.

本発明の請求項第2項に記載の発明では請求項1の作用に加えて、集塵機に多数配設されるバグフィルタのうちの1個に穴があいて漏洩が発生すると、直ちにどのバグフィルタで漏洩が発生しているかをセンサーで検知することができるので、修復作業等に即座に対応することが可能になる。気流膜形成手段近傍では集塵機の濾過運転中は絶えず清浄気体が上向きに流れているが、もしバグフィルタが損壊して漏洩が発生すると気流の流速が変化して円錐部の表面から熱を奪われるので、他の正常なバグフィルタに配設されたセンサーの温度と異なるため異常が生じていることが識別される。センサーは温度センサー以外に例えば赤外線センサーや音センサー等の応用があり得る。 According to the second aspect of the present invention, in addition to the operation of the first aspect, when one of the many bug filters arranged in the dust collector has a hole and leakage occurs, which bag filter is immediately Since it is possible to detect whether a leak has occurred with the sensor, it is possible to immediately respond to repair work and the like. In the vicinity of the airflow film forming means, clean gas constantly flows upward during the filtration operation of the dust collector, but if the bag filter breaks and leaks, the flow velocity of the airflow changes and heat is taken away from the surface of the cone part Therefore, it is identified that an abnormality has occurred because it differs from the temperature of the sensor disposed in another normal bag filter. In addition to the temperature sensor, the sensor may have applications such as an infrared sensor and a sound sensor.

以下本発明に係るパルスジェット型の集塵機の好ましい実施例について図1〜図3に基づいて説明する。図2に示すように、パルスジェット型の集塵機10は仕切り板3で仕切られる含塵室10c、清浄室10dに区分されている。含塵室10cの側面にはダクト10aが形成され、清浄室10d側面には出口10bが形成されている。また、含塵室10cには円筒なバグフィルタ5が一列あたり複数本(図2の場合は6本)配設されており、平面視して複数列が配設される。コンプレッサ20によって生成する圧縮空気は水平方向に円筒なマニホールド管30に貯えられており、前記複数列配設されるバグフィルタ5の各列に対応する数のダイヤフラム弁40を配設し、マニホールド管30に配管接続している。清浄室10dには先端部が閉塞された高圧エア配管2が前記複数列配設されるバグフィルタ5の円筒軸と直交する位置に配設されており、高圧エア配管2の基端部は接続フランジ2bを介して前記清浄室10dの側面を貫通し、ダイヤフラム弁40に配管接続している。高圧エア配管2の途中にはバグフィルタ5の各開口部Aに内挿して気流膜形成手段1が設けられている。ダクト10aを通過した含塵気体50は含塵室10c内のバグフィルタ5で濾過されて清浄気体60となり、清浄室10dの出口60から排出される。 A preferred embodiment of a pulse jet type dust collector according to the present invention will be described below with reference to FIGS. As shown in FIG. 2, the pulse jet type dust collector 10 is divided into a dust-containing chamber 10 c and a clean chamber 10 d which are partitioned by a partition plate 3. A duct 10a is formed on the side surface of the dust chamber 10c, and an outlet 10b is formed on the side surface of the clean chamber 10d. Further, a plurality of cylindrical bag filters 5 (six in the case of FIG. 2) are arranged in one row in the dust chamber 10c, and a plurality of rows are arranged in a plan view. Compressed air generated by the compressor 20 is stored in a manifold pipe 30 that is cylindrical in the horizontal direction, and a number of diaphragm valves 40 corresponding to each row of the bag filter 5 arranged in the plurality of rows are arranged, and the manifold tube 30 is connected to the pipe. In the clean chamber 10d, a high-pressure air pipe 2 whose front end is closed is arranged at a position orthogonal to the cylindrical axis of the bag filter 5 arranged in a plurality of rows, and the base end of the high-pressure air pipe 2 is connected. The side surface of the clean chamber 10d is passed through the flange 2b and connected to the diaphragm valve 40 by piping. In the middle of the high-pressure air pipe 2, airflow film forming means 1 is provided so as to be inserted into each opening A of the bag filter 5. The dust-containing gas 50 that has passed through the duct 10a is filtered by the bag filter 5 in the dust-containing chamber 10c to become the clean gas 60, and is discharged from the outlet 60 of the clean chamber 10d.

図1は請求項1に記載する第1の実施例であり、図2の断面X−X部の気流膜形成手段1の詳細を示す。バグフィルタ5を円筒状に保持するリテーナ4をバグフィルタ5に挿嵌し、リテーナフランジ口金4bの円筒外周4dに拡縮バンド6で外側から拡縮して互いに係合する。前記バグフィルタ5を仕切り板3に多数形成されるバグフィルタ取り付け穴3aに挿入してリテーナフランジ口金4bをボルト8で固定する。高圧エア配管2のノズル開口穴2aから圧縮空気70が気流膜形成手段1を介してバグフィルタ5の内部に噴射される。高圧エア配管2の断面上部に係合穴2bを形成し、気流膜形成手段1をボルト7で締め付けて係合する。係合穴2b部に嵌合垂下する気流膜形成手段1の均等軸部1aをノズル開口穴2aの内径寸法D1よりも少ない外径寸法dとし、ノズル開口穴2aの中心部を挿通して全周一定の隙間Wを形成する。均等軸部1aはノズル開口穴2aから下方に所定の距離を於いて垂下して円錐部1bを形成する。円錐部1bの稜角θ1を好ましくは65度未満とし、稜線1cの直径はリテーナ4の円筒径が150mmの場合、30%の45mmを目安とする。ノズル開口穴から稜線1cまでの沿面距離Lは好ましくは略100mm程度とする。図4は図2で実際に圧縮空気を噴射するときの気流の詳細を示す。圧縮空気噴射前のバグフィルタ5はDの状態に収縮している。円錐部1bの稜角θ1が65度のとき圧縮空気の入射角度θ2は25になる。前記角度と寸法にて0.36MPaの圧縮空気を噴射すると図4の斜線部に厚さ略10〜15mm程度の明瞭な円錐形気流膜Bを形成し、加えて網掛け部Cでエゼクタ効果による気流の流れを観察することができる。 FIG. 1 shows a first embodiment according to the first aspect of the present invention, and shows details of the airflow film forming means 1 in the section XX in FIG. A retainer 4 that holds the bag filter 5 in a cylindrical shape is inserted into the bag filter 5, and is expanded / contracted from the outside by an expansion / contraction band 6 to the cylindrical outer periphery 4 d of the retainer flange base 4 b to engage with each other. The bag filter 5 is inserted into bag filter mounting holes 3 a formed in a large number on the partition plate 3, and the retainer flange base 4 b is fixed with bolts 8. Compressed air 70 is injected from the nozzle opening hole 2 a of the high-pressure air pipe 2 into the bag filter 5 through the airflow film forming means 1. An engagement hole 2 b is formed in the upper section of the high-pressure air pipe 2, and the airflow film forming means 1 is fastened with a bolt 7 to engage. The uniform shaft 1a of the airflow film forming means 1 fitted and suspended in the engagement hole 2b is set to an outer diameter d which is smaller than the inner diameter D1 of the nozzle opening 2a, and is inserted through the center of the nozzle opening 2a. A constant circumferential gap W is formed. The uniform shaft portion 1a hangs downward from the nozzle opening hole 2a at a predetermined distance to form a conical portion 1b. When the ridge angle θ1 of the conical portion 1b is preferably less than 65 degrees and the diameter of the ridge line 1c is 150 mm when the cylindrical diameter of the retainer 4 is 150 mm, the standard is 30% of 45 mm. The creepage distance L from the nozzle opening hole to the ridge line 1c is preferably about 100 mm. FIG. 4 shows the details of the airflow when the compressed air is actually injected in FIG. The bag filter 5 before compressed air injection is contracted to the state D. When the ridge angle θ1 of the conical portion 1b is 65 degrees, the incident angle θ2 of the compressed air is 25. When compressed air of 0.36 MPa is injected at the angle and size, a clear conical airflow film B having a thickness of about 10 to 15 mm is formed in the hatched portion of FIG. 4, and in addition, the shaded portion C is caused by the ejector effect. The flow of air current can be observed.

図3は図2の断面X−X部の請求項2に記載する第2の実施例であり、気流膜形成手段01の軸心を空洞化して、温度センサー9および配線9aを配設し、配線9aは他の配線9bとともに配線ダクト121に収納する。 FIG. 3 shows a second embodiment according to claim 2 of the section XX of FIG. 2, in which the temperature sensor 9 and the wiring 9a are disposed by hollowing the axis of the airflow film forming means 01, The wiring 9a is housed in the wiring duct 121 together with the other wiring 9b.

本発明はパルスジェット型の集塵機において圧力損失を軽減して集塵機の電力消費を軽減し、工場、ごみ焼却場等のさまざまな性状の排ガス設備に対応可能な集塵機として、またメンテナンスコストを軽減する集塵機として利用できる発明である。 The present invention is a dust collector that reduces pressure loss in a pulse jet type dust collector, reduces the power consumption of the dust collector, can be used for exhaust gas equipment of various properties such as factories and garbage incinerators, and reduces maintenance costs. It can be used as the invention.

請求項1に関わる第2図X−X線の第1の実施例を示す部分拡大断面図である。FIG. 2 is a partial enlarged cross-sectional view showing a first embodiment taken along line XX in FIG. 本発明に関わる集塵機の部分断面図を表す。The fragmentary sectional view of the dust collector concerning this invention is represented. 請求項2に関わる第2図X−X線の第2の実施例を示す部分拡大断面図である。FIG. 2 is a partial enlarged cross-sectional view showing a second embodiment of the XX line in FIG. 第2図の気流形成に関わる部分拡大断面図である。It is a partial expanded sectional view in connection with airflow formation of FIG.

1、11 気流膜形成手段
1a 均等軸部
1b 円錐部
1c 稜線
2、12 高圧エア配管
2a ノズル開口穴
2b 接続フランジ
2c 係合穴
3 仕切り板
3a バグフィルタ取り付け穴
4 リテーナ
4b リテーナフランジ口金
4d 外周
5、15 バグフィルタ
6 拡縮バンド
8 ボルト
10 集塵機
10a ダクト
10b 出口
10c 含塵室
10d 清浄室
20 コンプレッサ
30 マニホールド管
40 ダイヤフラム弁40
50 含塵気体
57 固定部材
60 清浄気体
70 圧縮空気
A バグフィルタ開口部
d 均等軸部の直径寸法
D1 ノズル開口穴の直径寸法
W 隙間
DESCRIPTION OF SYMBOLS 1, 11 Airflow film formation means 1a Uniform shaft part 1b Conical part 1c Edge line 2, 12 High pressure air piping 2a Nozzle opening hole 2b Connection flange 2c Engagement hole 3 Partition plate 3a Bag filter attachment hole 4 Retainer 4b Retainer flange base 4d Outer periphery 5 15 Bag filter 6 Expansion band 8 Bolt 10 Dust collector 10a Duct 10b Outlet 10c Dust containing chamber 10d Clean room 20 Compressor 30 Manifold pipe 40 Diaphragm valve 40
50 Dust-containing gas 57 Fixing member 60 Clean gas 70 Compressed air A Bag filter opening d Uniform shaft diameter D1 Nozzle opening hole diameter W Clearance

Claims (2)

含塵気体をバグフィルタで濾過し、前記バグフィルタの開口部に高圧エア配管に複数配設するノズル開口穴から圧縮空気を定期的に噴射し、前記バグフィルタの外面に付着したダストを払い落とすパルスジェット式集塵機に於いて、垂直な軸心の円錐部頂部から延出垂上する均等軸部でホーン状に形成される気流膜形成手段を、前記ノズル開口穴の軸心に重ねて前記高圧エア配管に係合または接合配設し、前記均等軸部外周と前記ノズル開口穴内周の間に適度な圧縮空気を噴射する隙間を形成し、前記気流膜形成手段の円錐部を前記バグフィルタ開口部の中心に内挿して配設することを特徴とするパルスジェット式集塵機。 Dust-containing gas is filtered through a bag filter, and compressed air is periodically injected from a plurality of nozzle opening holes provided in the high-pressure air pipe to the opening of the bag filter, and dust attached to the outer surface of the bag filter is removed. In the pulse jet type dust collector, an airflow film forming means formed in a horn shape with a uniform shaft portion extending from the top of a conical portion of a vertical shaft center is overlapped on the shaft center of the nozzle opening hole and the high pressure A gap for injecting moderately compressed air is formed between the outer periphery of the uniform shaft portion and the inner periphery of the nozzle opening hole, and the conical portion of the airflow film forming means is formed in the bag filter opening. A pulse jet type dust collector, wherein the dust jet is disposed in the center of the portion. 気流膜形成手段にセンサーを配設することを特徴とする請求項1に記載のパルスジェット式集塵機。 2. The pulse jet dust collector according to claim 1, wherein a sensor is disposed in the airflow film forming means.
JP2009114166A 2009-05-11 2009-05-11 Pulse jet type dust collector Pending JP2010260019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009114166A JP2010260019A (en) 2009-05-11 2009-05-11 Pulse jet type dust collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009114166A JP2010260019A (en) 2009-05-11 2009-05-11 Pulse jet type dust collector

Publications (1)

Publication Number Publication Date
JP2010260019A true JP2010260019A (en) 2010-11-18

Family

ID=43358568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009114166A Pending JP2010260019A (en) 2009-05-11 2009-05-11 Pulse jet type dust collector

Country Status (1)

Country Link
JP (1) JP2010260019A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016525010A (en) * 2013-07-17 2016-08-22 プライメタルズ・テクノロジーズ・オーストリア・ゲーエムベーハー Detection of cleaning processes in plants with filters arranged spatially offset from each other
CN107648952A (en) * 2016-07-26 2018-02-02 上海境业环保能源科技股份有限公司 A kind of venturi injection tube for deduster
CN107789925A (en) * 2017-10-26 2018-03-13 湖州兴远涂装设备有限公司 A kind of integrated lifting with pulse cleaner
CN107970707A (en) * 2017-10-26 2018-05-01 湖州兴远涂装设备有限公司 A kind of pulse cleaner for being used for integrated lifting
CN108295576A (en) * 2018-04-26 2018-07-20 艾尼科环保技术(安徽)有限公司 A kind of injection filter collector nozzle
JP2019135333A (en) * 2018-02-05 2019-08-15 セイコーエプソン株式会社 Collection device, collection method and fiber raw material regenerator
CN111632985A (en) * 2020-06-03 2020-09-08 河北诚昊化工有限公司 Cotton micro-negative-pressure dust non-flying device for reaction kettle
CN114159900A (en) * 2021-12-22 2022-03-11 洛阳博日智能科技有限公司 Industrial portable pulse ash removal device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016525010A (en) * 2013-07-17 2016-08-22 プライメタルズ・テクノロジーズ・オーストリア・ゲーエムベーハー Detection of cleaning processes in plants with filters arranged spatially offset from each other
CN107648952A (en) * 2016-07-26 2018-02-02 上海境业环保能源科技股份有限公司 A kind of venturi injection tube for deduster
CN107648952B (en) * 2016-07-26 2023-09-26 上海境业环保能源科技股份有限公司 Venturi jetting pipe for dust remover
CN107789925A (en) * 2017-10-26 2018-03-13 湖州兴远涂装设备有限公司 A kind of integrated lifting with pulse cleaner
CN107970707A (en) * 2017-10-26 2018-05-01 湖州兴远涂装设备有限公司 A kind of pulse cleaner for being used for integrated lifting
JP2019135333A (en) * 2018-02-05 2019-08-15 セイコーエプソン株式会社 Collection device, collection method and fiber raw material regenerator
US11198087B2 (en) * 2018-02-05 2021-12-14 Seiko Epson Corporation Collection device, collection method, and fibrous feedstock recycling device
CN108295576A (en) * 2018-04-26 2018-07-20 艾尼科环保技术(安徽)有限公司 A kind of injection filter collector nozzle
CN111632985A (en) * 2020-06-03 2020-09-08 河北诚昊化工有限公司 Cotton micro-negative-pressure dust non-flying device for reaction kettle
CN114159900A (en) * 2021-12-22 2022-03-11 洛阳博日智能科技有限公司 Industrial portable pulse ash removal device

Similar Documents

Publication Publication Date Title
JP2010260019A (en) Pulse jet type dust collector
US7195659B2 (en) Reverse-flow cleaning systems and methods
US20110048236A1 (en) Gas turbine inlet filter house cleaning apparatus and method
KR20080086848A (en) Filter cleaning control system and method
JP2006110428A (en) Nozzle and filtration type duct collector
US20100275776A1 (en) Cleaning pressure reduction through blowpipes
JP2007175635A (en) Bag type dust collector
KR101329020B1 (en) Dust collecting device
CN203816398U (en) High-temperature gas dust removal filter bag
JP5574548B2 (en) Coanda injector
CN205516822U (en) Frequency modulation type self -excited oscillation fluidic device
JP2008279405A (en) Bag type dust collector
KR20170021721A (en) Dust Collector Having Improved Structure Blow Pipe
JP2013116451A (en) Dpf cleaning device and cleaning method
JP2017522183A (en) Dust collector bag filter dedusting system with two control valves and compressed air pipes separated from each other
TW201726228A (en) Compressed air injection device
KR101957413B1 (en) Jet ejecter for bag-filter of dust collector
JP2009113014A (en) Bag filter structure
JP2010099582A (en) Bag type dust collector
CN204134403U (en) For filter and the blowing device thereof of gas solid separation
JP6850840B2 (en) Backwash aid for bug filters and retainers for bug filters
CN105833726A (en) SCR catalyst blockage removing device
CN205379747U (en) Low pressure dust removal pulse jetting pipe positioner
CN202179914U (en) Ceramic tube filter and deashing device
CN220443392U (en) Compressed air spraying device of pulse bag filter