JP2010258562A - Electret material, manufacturing method thereof, and electrostatic acoustic transducer - Google Patents
Electret material, manufacturing method thereof, and electrostatic acoustic transducer Download PDFInfo
- Publication number
- JP2010258562A JP2010258562A JP2009103859A JP2009103859A JP2010258562A JP 2010258562 A JP2010258562 A JP 2010258562A JP 2009103859 A JP2009103859 A JP 2009103859A JP 2009103859 A JP2009103859 A JP 2009103859A JP 2010258562 A JP2010258562 A JP 2010258562A
- Authority
- JP
- Japan
- Prior art keywords
- electrode plate
- fine particles
- electret material
- electret
- dispersion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
Abstract
Description
本発明は、静電型音響変換器に用いられるエレクトレット材およびその製造方法、ならびにエレクトレット材を備えた静電型音響変換器に関する。 The present invention relates to an electret material used for an electrostatic acoustic transducer, a manufacturing method thereof, and an electrostatic acoustic transducer including the electret material.
従来から、イヤホン、ヘッドホン、マイクロホンなどの静電型音響変換器には、電極板上にエレクトレット層が形成されたエレクトレット材が用いられている。例えば、IC素子を内蔵するエレクトレットコンデンサマイクロホン(ECM)では、エレクトレット材が振動板の表側あるいは裏側に対向して配置される。 Conventionally, electret materials in which an electret layer is formed on an electrode plate have been used in electrostatic acoustic transducers such as earphones, headphones, and microphones. For example, in an electret condenser microphone (ECM) incorporating an IC element, the electret material is disposed facing the front side or the back side of the diaphragm.
エレクトレット材では、エレクトレット層がフッ素樹脂からなり、フッ素樹脂の電気絶縁性と電荷保持性とが利用されている。このようなエレクトレット材は、従来、電極板とフッ素樹脂フィルムとを貼り合わせたり、電極板上にフッ素樹脂塗料を塗布して加熱したりして得た大型シートを、目的とする形状に打ち抜き加工した後に帯電処理することにより得られていた(例えば、特許文献1参照)。 In the electret material, the electret layer is made of a fluororesin, and the electrical insulation and charge retention of the fluororesin are utilized. Such electret materials are conventionally punched into a desired shape by laminating an electrode plate and a fluororesin film, or by applying a fluororesin paint on the electrode plate and heating it. Then, it was obtained by performing a charging process (see, for example, Patent Document 1).
しかしながら、フッ素樹脂は一般に電極板等の他材との接着性に乏しいために、上記のようにして電極板上にフッ素樹脂層を形成した場合には、高速での打ち抜き時にフッ素樹脂層が刃と擦れることによって電極板から剥離してしまい、結果として歩留まりが低下するという問題があった。 However, since the fluororesin generally has poor adhesion to other materials such as an electrode plate, when the fluororesin layer is formed on the electrode plate as described above, the fluororesin layer has a blade when punching at high speed. , And peeled off from the electrode plate, resulting in a problem that the yield decreased.
ここで、フッ素樹脂塗料を電極板に塗布して加熱する方法では、フッ素樹脂層と電極板との接着性を高めるために、予め電極板上に下塗り塗料を塗布しておくことも考えられる。しかしながら、下塗り塗料として一般的なポリアミドイミド樹脂を用いた場合には、ポリアミドイミド樹脂層と電極板との熱膨張率の差から、エレクトレット材の製造中または製造後の加熱時に層間剥離が生じるおそれがある。 Here, in the method in which the fluororesin coating is applied to the electrode plate and heated, it is also conceivable to apply an undercoat coating on the electrode plate in advance in order to improve the adhesion between the fluororesin layer and the electrode plate. However, when a general polyamideimide resin is used as the undercoat paint, delamination may occur during heating of the electret material or during heating after manufacture due to the difference in thermal expansion coefficient between the polyamideimide resin layer and the electrode plate. There is.
静電型音響変換器は、例えば携帯電話等の電子機器へ搭載されることがあるが、この搭載は、オートメーション化の観点からは、予め配置したハンダ等を加熱溶融させたのち凝固させるいわゆるリフロー処理によって行うことが望ましい。しかしながら、上記のように下塗りが行われたエレクトレット材を用いた静電型音響変換器では、加熱時にエレクトレット材の層間剥離が生じるおそれがあるのでリフロー処理を行うことができない。そのため、静電型音響変換器を手作業で電子機器へ固定しなければならず、これが製造コストの増加を招くことになる。 An electrostatic acoustic transducer may be mounted on an electronic device such as a mobile phone, for example. From the viewpoint of automation, this mounting is a so-called reflow that solidifies after heating and melting previously disposed solder or the like. It is desirable to do so by processing. However, in an electrostatic acoustic transducer using an electret material that has been primed as described above, delamination of the electret material may occur during heating, and therefore reflow treatment cannot be performed. Therefore, the electrostatic acoustic transducer must be fixed to the electronic device manually, which leads to an increase in manufacturing cost.
本発明は、このような事情に鑑み、エレクトレット層となる樹脂層と電極板との接着性を向上させることができるエレクトレット材の製造方法およびこの製造方法により製造されるエレクトレット材ならびに静電型音響変換器を提供することを目的とする。 In view of such circumstances, the present invention provides a method for producing an electret material capable of improving the adhesiveness between a resin layer serving as an electret layer and an electrode plate, an electret material produced by this production method, and electrostatic sound. An object is to provide a converter.
本発明の発明者は、上記の課題を解決するために鋭意研究を重ねた結果、PTFE微粒子にPEEK微粒子を混ぜ合わせた分散液を電極上に塗布して樹脂層を形成すれば、樹脂層と電極板との接着性を向上させることができることを見出した。しかし、PEEK微粒子の量が増えすぎると、リフロー処理等で高温に加熱されたときのエレクトレット層の表面電位が大きく低下することになる。本発明は、このような観点からなされたものである。 The inventor of the present invention has conducted extensive research to solve the above problems, and as a result, a resin layer is formed by applying a dispersion obtained by mixing PEFE fine particles to PTFE fine particles on an electrode to form a resin layer. It has been found that the adhesion with the electrode plate can be improved. However, if the amount of PEEK fine particles increases too much, the surface potential of the electret layer when heated to a high temperature by a reflow process or the like is greatly reduced. The present invention has been made from such a viewpoint.
すなわち、本発明は、静電型音響変換器に用いられるエレクトレット材の製造方法であって、ポリテトラフルオロエチレン微粒子を含有しかつポリエーテルエーテルケトン微粒子を前記ポリテトラフルオロエチレン微粒子100重量部に対して10〜300重量部含有する分散液を電極板上に塗布した後に乾燥させ、さらに前記ポリテトラフルオロエチレン微粒子および前記ポリエーテルエーテルケトン微粒子を焼成して、前記電極板上に混合樹脂層を形成する工程と、前記混合樹脂層の表面に帯電処理を施す工程と、を含むエレクトレット材の製造方法を提供する。 That is, the present invention relates to a method for producing an electret material used for an electrostatic acoustic transducer, comprising polytetrafluoroethylene fine particles, and polyether ether ketone fine particles based on 100 parts by weight of the polytetrafluoroethylene fine particles. A dispersion containing 10 to 300 parts by weight is applied on the electrode plate and then dried, and the polytetrafluoroethylene fine particles and the polyether ether ketone fine particles are fired to form a mixed resin layer on the electrode plate. There is provided a method for producing an electret material, including a step of performing a charging process on the surface of the mixed resin layer.
また、本発明は、電極板と、前記電極板上に形成された、ポリテトラフルオロエチレンとポリエーテルエーテルケトンとを100:10〜100:300の重量比で含むエレクトレット層と、を備える、エレクトレット材を提供する。 In addition, the present invention comprises an electrode plate, and an electret layer formed on the electrode plate and containing polytetrafluoroethylene and polyetheretherketone at a weight ratio of 100: 10 to 100: 300. Providing materials.
さらに、本発明は、上記のエレクトレット材と、このエレクトレット材と対向する振動板と、を備える、静電型音響変換器を提供する。 Furthermore, this invention provides an electrostatic acoustic transducer provided with said electret material and the diaphragm facing this electret material.
本発明によれば、ポリテトラフルオロエチレン微粒子とポリエーテルエーテルケトン微粒子とを混ぜ合わせることにより、エレクトレット層となる混合樹脂層と電極板との接着性を向上させることができる。しかも、ポリエーテルエーテルケトン微粒子の量が所定量以下に抑えられているので、高温に加熱されたときのエレクトレット層の表面電位の低下を抑制することができる。 According to the present invention, the adhesion between the mixed resin layer serving as the electret layer and the electrode plate can be improved by mixing the polytetrafluoroethylene fine particles and the polyether ether ketone fine particles. Moreover, since the amount of the polyether ether ketone fine particles is suppressed to a predetermined amount or less, it is possible to suppress a decrease in the surface potential of the electret layer when heated to a high temperature.
本発明の製造方法は、図1に示すような電極板2上に混合樹脂層3が形成されたエレクトレット材1を製造するためのものであり、その一例としては、準備工程と、形成工程と、帯電工程とを含む。
The manufacturing method of the present invention is for manufacturing an
(準備工程)
準備工程では、ポリテトラフルオロエチレン(以下「PTFE」という。)微粒子とポリエーテルエーテルケトン(以下「PEEK」という。)微粒子を含有する分散液を準備する。
(Preparation process)
In the preparation step, a dispersion containing polytetrafluoroethylene (hereinafter referred to as “PTFE”) fine particles and polyether ether ketone (hereinafter referred to as “PEEK”) fine particles is prepared.
PTFE微粒子とPEEK微粒子の混合比は、PTFE微粒子100重量部に対してPEEK微粒子10〜300重量部であることが好ましい。PTFE微粒子の重量G1に対するPEEK微粒子の重量G2の割合G2/G1が10%未満になると、後述する混合樹脂層と電極板との接着性があまり向上せず、割合G2/G1が300%を超えると、エレクトレット材の熱に対する電荷保持性が低下するからである。より好ましい混合比は、PTFE微粒子100重量部に対してPEEK微粒子20〜100重量部である。 The mixing ratio of the PTFE fine particles and the PEEK fine particles is preferably 10 to 300 parts by weight of the PEEK fine particles with respect to 100 parts by weight of the PTFE fine particles. When the ratio G2 / G1 of the weight G2 of the PEEK fine particles to the weight G1 of the PTFE fine particles is less than 10%, the adhesion between the mixed resin layer and the electrode plate described later does not improve so much, and the ratio G2 / G1 exceeds 300%. This is because the charge retention with respect to heat of the electret material is reduced. A more preferable mixing ratio is 20 to 100 parts by weight of PEEK fine particles with respect to 100 parts by weight of PTFE fine particles.
分散液は、例えば、PTFE微粒子を分散媒に分散させた第1分散液とPEEK微粒子を分散媒に分散させた第2分散液を所定の割合で混合することにより、混合液として生成することができる。 For example, the dispersion liquid can be produced as a mixed liquid by mixing a first dispersion liquid in which PTFE fine particles are dispersed in a dispersion medium and a second dispersion liquid in which PEEK fine particles are dispersed in a dispersion medium at a predetermined ratio. it can.
第1分散液の分散媒は、例えば水である。このような分散液としては、乳化重合法により作製された種々の市販品が出回っており、これらを利用することができる。例えば、ダイキン工業社製のポリフロンD−1、旭硝子社製のフルオンAD938L等を使用すればよい。 The dispersion medium of the first dispersion liquid is, for example, water. As such a dispersion, various commercially available products prepared by an emulsion polymerization method are available, and these can be used. For example, Polyflon D-1 manufactured by Daikin Industries, Ltd., Fullon AD938L manufactured by Asahi Glass may be used.
第1分散液の比重は、1.2〜1.6であることが好ましく、1.3〜1.5であることがより好ましい。 The specific gravity of the first dispersion is preferably 1.2 to 1.6, more preferably 1.3 to 1.5.
第2分散液の分散媒は、例えば水である。このような分散液としては、種々の市販品が出回っており、これらを利用することができる。例えばビクトレックス・エムシー社製No.804等を使用すればよい。 The dispersion medium of the second dispersion liquid is, for example, water. As such a dispersion, various commercially available products are available and can be used. For example, No. manufactured by Victrex MC 804 or the like may be used.
第2分散液の比重は、1.1〜1.3であることが好ましく、1.1〜1.2であることがより好ましい。 The specific gravity of the second dispersion is preferably 1.1 to 1.3, and more preferably 1.1 to 1.2.
なお、例えば、PTFE微粒子を分散媒に分散させた第1分散液に、界面活性剤を配合した上でPEEK微粒子を添加することにより、PTFE微粒子とPEEK微粒子を含有する分散液を調製することも可能である。 In addition, for example, a dispersion containing PTFE fine particles and PEEK fine particles may be prepared by adding PEEK fine particles after adding a surfactant to the first dispersion in which PTFE fine particles are dispersed in a dispersion medium. Is possible.
(形成工程)
形成工程では、PTFE微粒子とPEEK微粒子を含有する分散液を用いて電極板上に混合樹脂層を形成する。具体的には、分散液を電極板上に塗布した後に乾燥させ、さらにPTFE微粒子およびPEEK微粒子を焼成する。
(Formation process)
In the forming step, a mixed resin layer is formed on the electrode plate using a dispersion containing PTFE fine particles and PEEK fine particles. Specifically, the dispersion is applied on the electrode plate and then dried, and the PTFE fine particles and the PEEK fine particles are fired.
電極板としては、ステンレス、アルミニウム、鋼、銅、チタン、およびこれらの合金などからなる金属板を用いることができる。あるいは、電極板は、例えば基板に支持された金属箔であってもよい。すなわち、本発明の電極板とは、厚みの薄い金属製のものであればよく、その厚みは特に制限されない。ただし、エレクトレット材の小型化の要請からは、電極板の厚みは100〜300μmであることが好ましい。また、混合樹脂層との接着性を良くするために、電極板は油脂等の付着のないものが好ましい。 As the electrode plate, a metal plate made of stainless steel, aluminum, steel, copper, titanium, and alloys thereof can be used. Alternatively, the electrode plate may be a metal foil supported on a substrate, for example. That is, the electrode plate of the present invention may be made of a thin metal, and the thickness is not particularly limited. However, the thickness of the electrode plate is preferably 100 to 300 μm from the demand for downsizing of the electret material. Moreover, in order to improve the adhesiveness with the mixed resin layer, it is preferable that the electrode plate does not adhere oils and fats.
電極板上への分散液の塗布は、公知の方法を使用可能である。例えば、ディスペンサーを用いて行ってもよいし、スピンコート法や印刷法によって行ってもよい。あるいは、電極板の片面をマスキングして、その電極板を分散液中に浸す(ディッピング)ことにより、電極板上へ分散液を塗布してもよい。 A known method can be used to apply the dispersion liquid on the electrode plate. For example, it may be performed using a dispenser, or may be performed by a spin coating method or a printing method. Alternatively, the dispersion may be applied onto the electrode plate by masking one surface of the electrode plate and immersing the electrode plate in the dispersion (dipping).
分散液を電極板上に塗布した後は、分散液から分散媒を除去して分散液を乾燥させる。乾燥は、例えば、分散液が塗布された電極板をPTFE融点(327℃)未満の温度(例えば、180℃)環境下に所定時間(例えば、10分間)おくことによって行う。 After the dispersion is applied on the electrode plate, the dispersion medium is removed from the dispersion and the dispersion is dried. Drying is performed, for example, by placing the electrode plate coated with the dispersion in a temperature (for example, 180 ° C.) environment lower than the PTFE melting point (327 ° C.) for a predetermined time (for example, 10 minutes).
その後、PTFE微粒子およびPEEK微粒子を焼成する。焼成は、例えば、乾燥した分散液(PTFE微粒子およびPEEK微粒子)を担持する電極板をPEEKの融点(343℃)以上の温度環境下に所定時間(例えば、10分間)おくことによって行う。これにより、電極板上に混合樹脂層が形成される。焼成時の温度は、380℃以上であることが好ましい。焼成後は、電極板を常温まで冷却する。 Thereafter, the PTFE fine particles and the PEEK fine particles are fired. Firing is performed, for example, by placing the electrode plate carrying the dried dispersion (PTFE fine particles and PEEK fine particles) in a temperature environment equal to or higher than the melting point (343 ° C.) of PEEK for a predetermined time (for example, 10 minutes). Thereby, a mixed resin layer is formed on the electrode plate. The temperature during firing is preferably 380 ° C. or higher. After firing, the electrode plate is cooled to room temperature.
なお、形成する混合樹脂層の膜厚は、10〜100μmであることが好ましい。この範囲内であれば、エレクトレット材の特性を維持しつつ、エレクトレット材の薄型化および小型化が図れるからである。より好ましい混合樹脂層の膜厚は、10〜50μmである。 In addition, it is preferable that the film thickness of the mixed resin layer to form is 10-100 micrometers. This is because within this range, the electret material can be reduced in thickness and size while maintaining the characteristics of the electret material. A more preferable thickness of the mixed resin layer is 10 to 50 μm.
以上のようにして、電極板上に混合樹脂層が形成された大型シート(未帯電エレクトレット材)を作製する。この大型シートは、例えば打ち抜き加工により、所定の大きさに切断される。このとき、PEEKの影響により混合樹脂層は電極板に強固に接着しているので、混合樹脂層が電極板から剥離することが抑制される。 As described above, a large sheet (uncharged electret material) having a mixed resin layer formed on an electrode plate is produced. This large sheet is cut into a predetermined size, for example, by punching. At this time, since the mixed resin layer is firmly bonded to the electrode plate due to the influence of PEEK, the mixed resin layer is prevented from peeling from the electrode plate.
(帯電工程)
帯電工程では、所定の大きさに切断された未帯電エレクトレット材における混合樹脂層の表面に帯電処理を施して、混合樹脂層をエレクトレット層とする。帯電処理は、混合樹脂層の表面を例えばコロナ放電等により分極帯電させることによって行う。なお、帯電工程後には、エージング処理が行われてもよい。
(Charging process)
In the charging step, the surface of the mixed resin layer in the uncharged electret material cut to a predetermined size is subjected to a charging process to form the mixed resin layer as an electret layer. The charging process is performed by polarization-charging the surface of the mixed resin layer by, for example, corona discharge. Note that an aging treatment may be performed after the charging step.
以上の工程により、図1に示すようなエレクトレット材1を得ることができる。このエレクトレット材1のエレクトレット層3は、PTFEとPEEKとを100:10〜100:300の重量比で含んでいる。
Through the above steps, the
エレクトレット層をフッ素樹脂のみで構成した場合には、電極板とエレクトレット層との接着性を高めるために、予め電極板に下塗り塗料を塗布しておく方法がある。その場合の下塗り塗料としてはポリアミドイミド樹脂が用いられる。このポリアミドイミド樹脂を用いた場合、電極板とポリアミドイミド樹脂層との熱膨張率の差から、エレクトレット材を加熱した場合に層間剥離が生じ易い。 When the electret layer is composed of only a fluororesin, there is a method in which an undercoat paint is applied to the electrode plate in advance in order to improve the adhesion between the electrode plate and the electret layer. In that case, a polyamide-imide resin is used as the undercoat paint. When this polyamideimide resin is used, delamination tends to occur when the electret material is heated due to the difference in coefficient of thermal expansion between the electrode plate and the polyamideimide resin layer.
これに対し、エレクトレット層をPTFEとPEEKで構成することで、電極板とエレクトレット層との高い接着性を得ることができ、しかも加熱時に層間剥離が生じることはほとんどない。 On the other hand, when the electret layer is made of PTFE and PEEK, high adhesion between the electrode plate and the electret layer can be obtained, and delamination hardly occurs during heating.
また、フッ素樹脂としてPTFEを用いることで、エレクトレット材のフレキシビリティを損なうことなくエレクトレット材の表面に防汚性、耐薬品性、撥水性、耐候性等の優れた機能を付与でき、しかもエレクトレット材の賦形加工なども比較的容易にできる。 Moreover, by using PTFE as the fluororesin, it is possible to impart excellent functions such as antifouling property, chemical resistance, water repellency, weather resistance and the like to the surface of the electret material without impairing the flexibility of the electret material. It is possible to make the forming process relatively easily.
本発明の製造方法により得られたエレクトレット材は、静電型音響変換器に好適に用いられる。その一例として、図2に、エレクトレット材1を用いたECM10を示す。図2に示すECM10は、バックエレクトレット方式のものであり、エレクトレット材1が振動板4の裏面に対向して配置されている。具体的に、ECM10は、シールドケース9内に、下から上に積層された、IC素子75が実装された回路基板7、IC素子75を覆い、エレクトレット材1を支持する背面電極基板6、スペーサ5、振動板4、および支持枠8を有している。
The electret material obtained by the production method of the present invention is suitably used for an electrostatic acoustic transducer. As an example, FIG. 2 shows an
なお、静電型音響変換器には、マイクロホン、イヤホン、ヘッドホンの他にも、補聴器、超音波センサ、加速度センサなどが含まれる。 The electrostatic acoustic transducer includes a hearing aid, an ultrasonic sensor, an acceleration sensor, and the like in addition to a microphone, an earphone, and a headphone.
以下、実施例を挙げて本発明を詳細に説明するが、本発明は、これら実施例に何ら制限されるものではない。 EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not restrict | limited to these Examples at all.
(実施例1)
市販のPTFEディスパージョン(旭硝子社製AD938L(PTFE微粒子濃度60wt%))1.0kgに市販のPEEKディスパージョン(ビクトレックス・エムシー社製No.804(PEEK微粒子濃度30wt%))0.2kgを混合した後に攪拌して、PTFE微粒子100重量部に対してPEEK微粒子が10重量部の分散液(混合液)を生成した。
Example 1
Commercially available PTFE dispersion (Asahi Glass Co., Ltd. AD938L (PTFE fine particle concentration 60 wt%)) 1.0 kg is mixed with 0.2 kg of commercially available PEEK dispersion (Victory MC Co., No. 804 (PEEK fine particle concentration 30 wt%)) 0.2 kg. Then, the mixture was stirred to produce a dispersion (mixed solution) in which 10 parts by weight of PEEK fine particles was added to 100 parts by weight of PTFE fine particles.
電極板として市販の厚さ200μmアルミニウム箔(東洋アルミニウム社製、粗面軟質箔)を用い、この電極板の片面をマスギング粘着テープでマスギングした。この電極板を生成した分散液中にディッピング速度100mm/分で通過させ、電極板の片面に分散液を塗布した。ついで、電極板を80℃の環境下に10分間おいて分散液を乾燥させた後、マスギング粘着テープを剥がした。その後、電極板を380℃の環境下に10分間おいてPTFE微粒子およびPEEK微粒子を焼成した。焼成後は、電極板を常温まで冷却した。これにより、厚さ200μmの電極板上に膜厚25μmの混合樹脂層が形成された未帯電エレクトレット材を得た。 A commercially available aluminum foil having a thickness of 200 μm (made by Toyo Aluminum Co., Ltd., rough surface soft foil) was used as the electrode plate, and one side of this electrode plate was masked with a masking adhesive tape. The electrode plate was passed through the produced dispersion at a dipping rate of 100 mm / min, and the dispersion was applied to one side of the electrode plate. Next, the electrode plate was placed in an 80 ° C. environment for 10 minutes to dry the dispersion, and then the masking adhesive tape was peeled off. Thereafter, the PTFE fine particles and the PEEK fine particles were baked by placing the electrode plate in an environment of 380 ° C. for 10 minutes. After firing, the electrode plate was cooled to room temperature. As a result, an uncharged electret material in which a mixed resin layer having a film thickness of 25 μm was formed on an electrode plate having a thickness of 200 μm was obtained.
(実施例2)
PTFEディスパージョン0.5kgにPEEKディスパージョン1.0kgを混合して、PTFE微粒子100重量部に対してPEEK微粒子が100重量部の分散液を生成した以外は実施例1と同様にして未帯電エレクトレット材を得た。
(Example 2)
Uncharged electret in the same manner as in Example 1 except that 0.5 kg of PTFE dispersion was mixed with 1.0 kg of PEEK dispersion to produce a dispersion having 100 parts by weight of PEEK fine particles per 100 parts by weight of PTFE fine particles. The material was obtained.
(実施例3)
PTFEディスパージョン0.25kgにPEEKディスパージョン1.5kgを混合して、PTFE微粒子100重量部に対してPEEK微粒子が300重量部の分散液を生成した以外は実施例1と同様にして未帯電エレクトレット材を得た。
(Example 3)
Uncharged electret in the same manner as in Example 1 except that 1.5 kg of PEEK dispersion was mixed with 0.25 kg of PTFE dispersion to produce a dispersion having 300 parts by weight of PEEK fine particles per 100 parts by weight of PTFE fine particles. The material was obtained.
(比較例1)
電極板として市販の厚さ200μmアルミニウム箔(東洋アルミニウム社製、粗面軟質箔)を用い、この電極板の片面をマスギング粘着テープでマスギングした。この電極板を市販のPTFEディスパージョン(旭硝子社製AD938L)中にディッピング速度100mm/分で通過させ、電極板の片面にPTFEディスパージョンを塗布した。ついで、電極板を80℃の環境下に10分間おいて分散液を乾燥させた後、マスギング粘着テープを剥がした。その後、電極板を380℃の環境下に10分間おいてPTFE微粒子を焼成した。焼成後は、電極板を常温まで冷却した。これにより、厚さ200μmの電極板上に膜厚25μmのPTFE層が形成された未帯電エレクトレット材を得た。
(Comparative Example 1)
A commercially available aluminum foil having a thickness of 200 μm (made by Toyo Aluminum Co., Ltd., rough surface soft foil) was used as the electrode plate, and one side of this electrode plate was masked with a masking adhesive tape. This electrode plate was passed through a commercially available PTFE dispersion (AD938L manufactured by Asahi Glass Co., Ltd.) at a dipping speed of 100 mm / min, and the PTFE dispersion was applied to one side of the electrode plate. Next, the electrode plate was placed in an 80 ° C. environment for 10 minutes to dry the dispersion, and then the masking adhesive tape was peeled off. Thereafter, the PTFE fine particles were fired by placing the electrode plate in an environment of 380 ° C. for 10 minutes. After firing, the electrode plate was cooled to room temperature. As a result, an uncharged electret material in which a PTFE layer having a thickness of 25 μm was formed on an electrode plate having a thickness of 200 μm was obtained.
(比較例2)
PTFEディスパージョン0.1kgにPEEKディスパージョン1.0kgを混合して、PTFE微粒子100重量部に対してPEEK微粒子が500重量部の分散液を生成した以外は実施例1と同様にして未帯電エレクトレット材を得た。
(Comparative Example 2)
Uncharged electret in the same manner as in Example 1 except that 0.1 kg of PTFE dispersion was mixed with 1.0 kg of PEEK dispersion to produce a dispersion having 500 parts by weight of PEEK fine particles with respect to 100 parts by weight of PTFE fine particles. The material was obtained.
(比較例3)
PTFEディスパージョン1.0kgにPEEKディスパージョン0.1kgを混合して、PTFE微粒子100重量部に対してPEEK微粒子が5重量部の分散液を生成した以外は実施例1と同様にして未帯電エレクトレット材を得た。
(Comparative Example 3)
Uncharged electret in the same manner as in Example 1, except that 0.1 kg of PEEK dispersion was mixed with 1.0 kg of PTFE dispersion to produce a dispersion having 5 parts by weight of PEEK fine particles with respect to 100 parts by weight of PTFE fine particles. The material was obtained.
(試験)
実施例および比較例の未帯電エレクトレット材について、次のような試験を行った。
(test)
The following tests were conducted on the uncharged electret materials of Examples and Comparative Examples.
まず、未帯電エレクトレット材における樹脂層の表面を、25℃でマイナスのコロナ放電により分極帯電させることにより、それらの層をエレクトレット層とした(エレクトレット材を製造した)。その後、エレクトレット層の表面電位残存率を次のようにして測定した。 First, the surface of the resin layer in the uncharged electret material was polarized and charged by negative corona discharge at 25 ° C., and these layers were made into electret layers (an electret material was produced). Thereafter, the surface potential residual rate of the electret layer was measured as follows.
帯電処理直後のエレクトレット層の表面電位を表面電位計(MONROE ELECTRONICS社製Model244)で測定した。ついで、エレクトレット材を210℃の環境下に30分間おき(負荷試験)、その後のエレクトレット材の表面電位を同様にして測定した。この操作を3回繰り返した。そして、帯電処理直後のエレクトレット材の表面電位を基準(100%)としたときの1〜3回目の負荷試験後の表面電位の割合を表面電位残存率(%)として算出した。 The surface potential of the electret layer immediately after the charging treatment was measured with a surface potential meter (Model 244 manufactured by MONORO ELECTRONICS). Next, the electret material was placed in an environment of 210 ° C. for 30 minutes (load test), and the surface potential of the electret material thereafter was measured in the same manner. This operation was repeated three times. Then, the ratio of the surface potential after the first to third load tests with the surface potential of the electret material immediately after the charging treatment as a reference (100%) was calculated as the surface potential remaining rate (%).
また、実施例および比較例の未帯電エレクトレット材について、碁盤目試験を行った。碁盤目試験は、JIS K5600−5−6に従い、樹脂層を貫通して電極板表面に達する切り傷を碁盤目状に付けた後に、樹脂層の上に粘着テープを貼り、剥がした後の樹脂層の付着状態を目視により観察した。碁盤目により形成される升の数は100個とし、例えば、テープを剥がした後に50個の升に樹脂層が残ったときは50/100と評価した。 Further, a cross-cut test was performed on the uncharged electret materials of the examples and comparative examples. The cross cut test is a resin layer after the adhesive layer is applied and peeled off on the resin layer after making cuts reaching the electrode plate surface through the resin layer according to JIS K5600-5-6 The adhesion state of was visually observed. The number of wrinkles formed by the grids was 100. For example, when the resin layer remained on 50 wrinkles after the tape was peeled off, it was evaluated as 50/100.
上記の試験の結果を表1に示す。なお、表1中には、分散液中のPTFE微粒子の重量G1に対するPEEK微粒子の重量G2の割合G2/G1を%で記載した。 The results of the above test are shown in Table 1. In Table 1, the ratio G2 / G1 of the weight G2 of the PEEK fine particles to the weight G1 of the PTFE fine particles in the dispersion is shown in%.
PTFEディスパージョンを電極板上に塗布した比較例1では、碁盤目試験によりPTFE層が電極板から剥離することが確認された。PTFE微粒子とPEEK微粒子を含有する分散液を用いた比較例2では、碁盤目試験の結果は良好であったが、PEEK微粒子の量が多すぎるために負荷試験後のエレクトレット層の表面電位残存率が大きく低下した。また、PTFE微粒子とPEEK微粒子を含有する分散液を用いたがPEEK微粒子の量が少なすぎる比較例3では、碁盤目試験により混合樹脂層が電極板から剥離することが確認された。 In Comparative Example 1 in which the PTFE dispersion was applied on the electrode plate, it was confirmed by a cross-cut test that the PTFE layer was peeled off from the electrode plate. In Comparative Example 2 using a dispersion containing PTFE fine particles and PEEK fine particles, the cross-cut test result was good, but the surface potential residual rate of the electret layer after the load test because the amount of PEEK fine particles was too large. Decreased significantly. In Comparative Example 3 in which a dispersion containing PTFE fine particles and PEEK fine particles was used, but the amount of PEEK fine particles was too small, it was confirmed that the mixed resin layer was peeled off from the electrode plate by a cross-cut test.
これに対し、PTFE微粒子と適量のPEEK微粒子を含有する分散液を用いた実施例1〜3では、碁盤目試験の結果が良好であるとともに、負荷試験後のエレクトレット層の表面電位残存率の低下もある程度に抑えることができた。 On the other hand, in Examples 1 to 3 using the dispersion containing PTFE fine particles and an appropriate amount of PEEK fine particles, the cross-cut test results are good and the surface potential residual rate of the electret layer after the load test is reduced. Was able to be suppressed to some extent.
1 エレクトレット材
2 電極板
3 エレクトレット層
10 ECM(静電型音響変換器)
DESCRIPTION OF
Claims (6)
ポリテトラフルオロエチレン微粒子を含有しかつポリエーテルエーテルケトン微粒子を前記ポリテトラフルオロエチレン微粒子100重量部に対して10〜300重量部含有する分散液を電極板上に塗布した後に乾燥させ、さらに前記ポリテトラフルオロエチレン微粒子および前記ポリエーテルエーテルケトン微粒子を焼成して、前記電極板上に混合樹脂層を形成する工程と、
前記混合樹脂層の表面に帯電処理を施す工程と、
を含むエレクトレット材の製造方法。 A method for producing an electret material used in an electrostatic acoustic transducer,
A dispersion containing 10 to 300 parts by weight of polytetrafluoroethylene fine particles and polyether ether ketone fine particles with respect to 100 parts by weight of the polytetrafluoroethylene fine particles is applied on an electrode plate and then dried. Firing the tetrafluoroethylene fine particles and the polyether ether ketone fine particles to form a mixed resin layer on the electrode plate;
Applying a charging treatment to the surface of the mixed resin layer;
The manufacturing method of the electret material containing this.
前記電極板上に形成された、ポリテトラフルオロエチレンとポリエーテルエーテルケトンとを100:10〜100:300の重量比で含むエレクトレット層と、
を備える、エレクトレット材。 An electrode plate;
An electret layer comprising polytetrafluoroethylene and polyetheretherketone formed on the electrode plate in a weight ratio of 100: 10 to 100: 300;
An electret material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009103859A JP2010258562A (en) | 2009-04-22 | 2009-04-22 | Electret material, manufacturing method thereof, and electrostatic acoustic transducer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009103859A JP2010258562A (en) | 2009-04-22 | 2009-04-22 | Electret material, manufacturing method thereof, and electrostatic acoustic transducer |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010258562A true JP2010258562A (en) | 2010-11-11 |
Family
ID=43319030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009103859A Pending JP2010258562A (en) | 2009-04-22 | 2009-04-22 | Electret material, manufacturing method thereof, and electrostatic acoustic transducer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010258562A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015067645A (en) * | 2013-09-26 | 2015-04-13 | 住友電工ファインポリマー株式会社 | Mixed resin composition, mixed resin molding, and mixed resin coated material |
-
2009
- 2009-04-22 JP JP2009103859A patent/JP2010258562A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015067645A (en) * | 2013-09-26 | 2015-04-13 | 住友電工ファインポリマー株式会社 | Mixed resin composition, mixed resin molding, and mixed resin coated material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5705454B2 (en) | Electret material and electrostatic acoustic transducer | |
US20120014543A1 (en) | Electrostatic speaker and manufacturing method thereof and conductive backplate of the speaker | |
CN106162450B (en) | Vibrating diaphragm and preparation method thereof | |
JP2007295308A (en) | Method of manufacturing electret capaciter microphone | |
JP3644947B2 (en) | Heat-resistant electret material, heat-resistant electret using the same, method for producing the same, and electrostatic acoustic sensor | |
JP5700949B2 (en) | Manufacturing method of electret material | |
CN102774079A (en) | Flexible copper clad plate and method for producing same | |
JP3621700B1 (en) | Heat-resistant electret material, heat-resistant electret using the same, method for producing the same, and electrostatic acoustic sensor | |
CN110035360B (en) | Acoustic vibrating diaphragm, acoustic equipment and preparation method of acoustic vibrating diaphragm | |
JP2009267649A (en) | Method of manufacturing heat-resistance electret material for electrostatic sound transducer | |
JP2010258562A (en) | Electret material, manufacturing method thereof, and electrostatic acoustic transducer | |
WO2005009076A1 (en) | Material for heat-resistant electret and heat-resistant electret | |
JP2005191467A (en) | Manufacturing method of laminated plate for electret-fixing electrode | |
JP3644952B1 (en) | Heat-resistant electret, method for producing the same, and electrostatic acoustic sensor | |
JP2005262497A (en) | Laminated sheet for electret fixing electrode | |
JP2013042484A (en) | Heat-resistant electret material and capacitor type microphone | |
CN108810754A (en) | A kind of vibrating diaphragm and preparation method thereof | |
JP2002125297A (en) | Laminated sheet for electret | |
JP2017100324A (en) | Laminate structure and method for producing the same | |
WO2004006622A1 (en) | Process for producing heat-resistant electret material and electrostatic acoustic sensor comprising the material | |
JP6171840B2 (en) | Catalyst layer transfer member and manufacturing method thereof | |
JP2009088100A (en) | Material for electret, and electret component using the same | |
JP2007129536A (en) | Diaphragm for electroacoustic transducer, method of manufacturing same, and electroacoustic transducer | |
JP2000043189A (en) | Silicone resin coated metal composite and production thereof |