JP2010257675A - Electron beam device having line analysis function - Google Patents

Electron beam device having line analysis function Download PDF

Info

Publication number
JP2010257675A
JP2010257675A JP2009104870A JP2009104870A JP2010257675A JP 2010257675 A JP2010257675 A JP 2010257675A JP 2009104870 A JP2009104870 A JP 2009104870A JP 2009104870 A JP2009104870 A JP 2009104870A JP 2010257675 A JP2010257675 A JP 2010257675A
Authority
JP
Japan
Prior art keywords
electron beam
analysis
points
information carrier
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009104870A
Other languages
Japanese (ja)
Other versions
JP5491763B2 (en
Inventor
Satoshi Yasuhara
聡 安原
Takaki Ishikawa
貴己 石川
Wataru Inami
渉 居波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2009104870A priority Critical patent/JP5491763B2/en
Publication of JP2010257675A publication Critical patent/JP2010257675A/en
Application granted granted Critical
Publication of JP5491763B2 publication Critical patent/JP5491763B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of easily setting analysis points at arbitrary intervals and arbitrary points on the same line segment when performing line analysis by irradiating an electron beam to a sample. <P>SOLUTION: A line analysis position on an HAADF image is specified by using a pointing device such as a mouse. For example, a starting point P1 and a finished point P6 of the line analysis are specified so as to become a right angle to a crystal grain boundary, and the number of analysis points (sample) 6 are specified with a key board. For example, X-ray intensity of an attention element on a line segment orthogonal to the grain boundary is measured by an X-ray detector 13, and the analysis results are displayed with a graph. Analysis points S1 to S6 which are further subdivided rather than a preset interval are automatically specified on a line centralizing attention points with high X-ray intensity. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、細く絞った電子線を試料に照射して、該試料から発生する情報担体を検出し該試料の分析を行なう透過電子顕微鏡(TEM)や走査電子顕微鏡(SEM)等の電子線装置の分析方法に係わり、詳しくは試料を線状に分析するときの線分析位置を指定する方法の改良に関する。   The present invention relates to an electron beam apparatus such as a transmission electron microscope (TEM) or a scanning electron microscope (SEM) that irradiates a sample with a finely focused electron beam, detects an information carrier generated from the sample, and analyzes the sample More specifically, the present invention relates to an improvement in a method for designating a line analysis position when a sample is analyzed in a linear shape.

例えば走査電子顕微鏡(SEM)や走査透過型電子顕微鏡(STEM)にエネルギー分散型X線分析装置(EDS)等の分析装置を取り付け、試料に細く絞った電子線を照射して発生するX線等を検出することにより結晶粒界などの分析を行なう方法がある。   For example, X-rays generated by attaching an analysis device such as an energy dispersive X-ray analyzer (EDS) to a scanning electron microscope (SEM) or scanning transmission electron microscope (STEM) and irradiating a sample with a finely focused electron beam There is a method of analyzing a grain boundary or the like by detecting.

図2は、結晶粒界を含む領域の走査透過電子像を取り込み、画像上で結晶粒界に直角な線分上に多点の分析位置を設定する方法を模式的に示した図である。それぞれの分析点は線分上で等間隔に設定されている。   FIG. 2 is a diagram schematically showing a method of taking a scanning transmission electron image of a region including a crystal grain boundary and setting multi-point analysis positions on a line segment perpendicular to the crystal grain boundary on the image. Each analysis point is set at equal intervals on the line segment.

特許文献1の特公平4−50698号公報には、試料上の分析始点,分析終点,分析点数を指定し、分析始点と分析終点とを結ぶ線分上に位置する分析点を自動的に設定して、設定された分析点に電子線を自動的に順次移動させる技術が開示されている。   In Japanese Patent Publication No. 4-50698 of Patent Document 1, an analysis start point, an analysis end point, and the number of analysis points on a sample are designated, and an analysis point located on a line segment connecting the analysis start point and the analysis end point is automatically set. A technique for automatically and sequentially moving an electron beam to a set analysis point is disclosed.

また、特許文献2の特開平5−296754号公報には、半導体に微細なパターンを測定する荷電粒子ビーム測長装置を用いてパターンのエッジを検出するとき、2次電子信号の微分信号値が負から正へ変化する区間内でその微分信号値が零となる位置をエッジとして検出する技術が開示されている。   Japanese Patent Application Laid-Open No. 5-296754 discloses a differential signal value of a secondary electron signal when a pattern edge is detected using a charged particle beam length measuring device that measures a fine pattern on a semiconductor. There is disclosed a technique for detecting, as an edge, a position where the differential signal value becomes zero within an interval in which the negative value changes to a positive value.

特公平4−50698号公報Japanese Patent Publication No. 4-50698 特開平5−296754号公報JP-A-5-296754

試料中の析出物の分析を行なうような場合は、特許文献1の特公平4−50698号公報に開示されている方法のように線分上に分析点を等間隔に並べても不都合は無い。しかし、例えば結晶粒界のように、周辺に比べて狭い範囲で急激に元素分布状態が変化する可能性がある場合、結晶粒界近傍では小さな間隔で分析点数を多くして測定を行ないたいことがある。この場合、広い範囲は比較的大きな間隔で分析行なわないと全体の分析時間が長くなりすぎてしまう。そのため、同じ線分上で、任意の間隔、任意の点数で分析位置を簡単に決める方法が必要とされる。   When analyzing precipitates in a sample, there is no inconvenience even if analysis points are arranged on a line segment at regular intervals as in the method disclosed in Japanese Patent Publication No. 4-50698 of Patent Document 1. However, when there is a possibility that the element distribution state changes suddenly in a narrow range compared to the surrounding area, such as a grain boundary, it is necessary to increase the number of analysis points at small intervals near the grain boundary. There is. In this case, if the wide range is not analyzed at a relatively large interval, the entire analysis time becomes too long. Therefore, a method for easily determining the analysis position at an arbitrary interval and an arbitrary number of points on the same line segment is required.

また、試料上の微少な領域で分析位置を決める場合、電子線照射による試料損傷や汚染を軽減するため、分析前に試料に電子線を照射する時間を短くする必要がある。そのため、結晶粒界のような特異点を指定された線分上で自動的に決める方法が求められている。   Further, when the analysis position is determined in a minute region on the sample, it is necessary to shorten the time for irradiating the sample with the electron beam before the analysis in order to reduce sample damage and contamination due to the electron beam irradiation. Therefore, a method for automatically determining a singular point such as a grain boundary on a specified line segment is required.

本発明は上記した問題を解決するためになされたものであって、その目的は、
試料に電子線を照射して線分析を行なうとき、同じ線分上で任意の間隔と任意の点数で分析点を簡易に設定する方法を提供することである。また本発明のもうひとつの目的は、指定され線分上で結晶粒界のような特異点を自動的に検出し、検出した特異点の近傍に自動的に非等間隔に分析点を決める方法を提供することである。
The present invention has been made to solve the above-described problems, and its purpose is as follows.
To perform a line analysis by irradiating a sample with an electron beam, to provide a method for easily setting analysis points at an arbitrary interval and an arbitrary number of points on the same line segment. Another object of the present invention is to automatically detect a singular point such as a grain boundary on a specified line segment and automatically determine analysis points at irregular intervals in the vicinity of the detected singular point. Is to provide.

上記の問題を解決するために、
(1)請求項1に記載の発明は、電子線を発生する電子源と、
該電子線を試料に照射し、二次元的に走査する走査手段と、
前記電子線と前記試料との相互作用により発生する情報担体を前記走査手段に同期して検出する検出手段と、
前記検出手段によって検出した前記情報担体を信号強度に変換する信号処理手段と、
前記信号処理手段によって得られた信号強度変化を二次元画像として表示する表示手段と、
前記二次元画像上に線分析位置を指定する指定手段と
前記指定手段によって指定された前記線分析位置の中の分析点を非等間隔に設定する設定手段とを備えることを特徴とする。
To solve the above problem,
(1) The invention according to claim 1 is an electron source that generates an electron beam;
Scanning means for irradiating the sample with the electron beam and scanning two-dimensionally;
Detection means for detecting information carrier generated by the interaction between the electron beam and the sample in synchronization with the scanning means;
Signal processing means for converting the information carrier detected by the detection means into signal intensity;
Display means for displaying the signal intensity change obtained by the signal processing means as a two-dimensional image;
The image processing apparatus includes: designation means for designating a line analysis position on the two-dimensional image; and setting means for setting analysis points in the line analysis position designated by the designation means at unequal intervals.

(2)請求項2に記載の発明は、前記情報担体は、二次電子、反射電子、透過電子、特性X線、カソードルミネッセンスのうちの少なくとも1つを含むことを特徴とする。   (2) The invention according to claim 2 is characterized in that the information carrier includes at least one of secondary electrons, reflected electrons, transmitted electrons, characteristic X-rays, and cathodoluminescence.

(3)請求項3に記載の発明は、前記設定手段は、前記線分析位置の中の特異点近傍における前記情報担体の信号強度変化がガウス分布で近似されると仮定するとき、前記信号強度の変化が略等間隔となるように前記分析点の間隔を非等間隔に設定することを特徴とする。   (3) The invention according to claim 3, wherein the setting means assumes that the signal strength change of the information carrier in the vicinity of a singular point in the line analysis position is approximated by a Gaussian distribution. The intervals between the analysis points are set at non-equal intervals so that the changes in the intervals become substantially equal.

(4)請求項4に記載の発明は、前記指定手段によって指定された前記線分析位置の中から前記特異点を抽出する抽出手段をさらに備えることを特徴とする。   (4) The invention described in claim 4 is characterized by further comprising extraction means for extracting the singular point from the line analysis position designated by the designation means.

(5)請求項5に記載の発明は、前記抽出手段は、前記線分析位置における前記情報担体の強度変化データの微分データを用いて、前記情報担体の強度変化が最も大きい変化を示す分析点を前記特異点として抽出することを特徴とする請求項1乃至4の何れかに記載の電子線装置。
(5) In the invention according to claim 5, the extraction means uses the differential data of the intensity change data of the information carrier at the line analysis position to indicate the analysis point indicating the change with the greatest intensity change of the information carrier. The electron beam apparatus according to claim 1, wherein the singular point is extracted.

本発明によれば、広い線分析範囲の中に結晶粒界等の特異点を含む場合、注目する特異点近傍は細かく分析し、広い範囲は大まかな間隔で分析を行なうように分析点を非等間隔で簡単に設定することができる。また、結晶粒界等の特異点位置を線分上で自動的に検出し、非等間隔で分析点を設定できるので、分析前の電子線照射時間を短縮して、試料損傷や汚染を軽減することができる。
According to the present invention, when a singular point such as a grain boundary is included in a wide line analysis range, the vicinity of the singular point of interest is analyzed finely, and the wide range is not analyzed so that analysis is performed at rough intervals. It can be easily set at regular intervals. In addition, singular point positions such as crystal grain boundaries are automatically detected on the line segment, and analysis points can be set at non-uniform intervals, shortening the electron beam irradiation time before analysis and reducing sample damage and contamination. can do.

本発明を実施する走査透過型電子顕微鏡の概略構成例を示す図である。It is a figure which shows the schematic structural example of the scanning transmission electron microscope which implements this invention. 画像上で結晶粒界に直角な線分上に多点の分析位置を設定する方法を模式的に示した図である。It is the figure which showed typically the method of setting the analysis position of many points on the line segment at right angles to a crystal grain boundary on an image. 分析目的部位を含むHAADF像上の線分析位置指定と測定データの表示例を示す図である。It is a figure which shows the example of a display of the line analysis position designation | designated on a HAADF image containing an analysis target site | part, and measurement data. はじめに設定した間隔をさらに細かく分割する線分析位置指定と測定データの表示例を示す図である。It is a figure which shows the example of a display of the line analysis position designation | designated and measurement data which divide | segment further the space | interval set initially. ガウス分布に基づいて1つの粒界を横切る線上の分析点間隔を割り振る指定方法を説明するための図である。It is a figure for demonstrating the designation | designated method which allocates the analysis point space | interval on the line which crosses one grain boundary based on Gaussian distribution. ガウス分布に基づいて2つの粒内を横切る線上の分析点間隔を割り振る指定方法を説明するための図である。It is a figure for demonstrating the designation | designated method which allocates the analysis point space | interval on the line which crosses in the inside of two grains based on Gaussian distribution. 分析を行なう注目箇所を含む視野のHAADF像と、注目箇所のHAADF信号強度データの表示例を示す図である。It is a figure which shows the example of a display of the HAADF image of the visual field including the attention location which analyzes, and the HAADF signal intensity data of a focus location. 注目箇所のHAADF信号の強度プロファイルから微分プロファイルを作成する手順を説明するための図である。It is a figure for demonstrating the procedure which produces a differential profile from the intensity | strength profile of the HAADF signal of an attention location. 特異点周辺に細かい分割で分析点の間隔を決めた例を示す図である。It is a figure which shows the example which determined the space | interval of the analysis point by fine division | segmentation around the singular point.

以下図面を参照しながら、本発明の実施の形態について説明する。但し、この例示によって本発明の技術範囲が制限されるものでは無い。各図において、同一または類似の動作を行なうものには共通の符号を付し、詳しい説明の重複を避ける。   Embodiments of the present invention will be described below with reference to the drawings. However, the technical scope of the present invention is not limited by this illustration. In each figure, the same reference numerals are given to those performing the same or similar operations, and detailed description is not repeated.

図1は本発明を実施する走査透過電子顕微鏡の概略構成例を示す図である。1は鏡体、2は電子線3を発生する電子銃、4は電子銃2から放射される電子線3を集束するための照射レンズ系、5は試料上の任意の位置に電子線3の照射点を設定可能な偏向器、8は試料6を透過した電子線をCCDカメラ9に投影するための結像レンズ系である。7は試料6を載置する試料ホルダで図示しない試料ステージにより支持されている。10は偏向器5による電子線走査とCCDカメラ9による透過電子信号取り込みを同期させるために共通の偏向制御を行なうための偏向制御装置である。なお、CCDは電荷結合素子(Charge Coupled Devices)の略称である。鏡体1内の電子線3の通路は、図示しない真空排気装置により高真空が保たれている。   FIG. 1 is a diagram showing a schematic configuration example of a scanning transmission electron microscope embodying the present invention. Reference numeral 1 denotes a mirror body, 2 denotes an electron gun that generates an electron beam 3, 4 denotes an irradiation lens system for focusing the electron beam 3 emitted from the electron gun 2, and 5 denotes an electron beam 3 at an arbitrary position on the sample. A deflector 8 capable of setting an irradiation point is an imaging lens system for projecting an electron beam transmitted through the sample 6 onto the CCD camera 9. Reference numeral 7 denotes a sample holder on which the sample 6 is placed and is supported by a sample stage (not shown). Reference numeral 10 denotes a deflection control device for performing common deflection control in order to synchronize the electron beam scanning by the deflector 5 and the transmission electron signal capture by the CCD camera 9. CCD is an abbreviation for Charge Coupled Devices. The passage of the electron beam 3 in the mirror body 1 is maintained at a high vacuum by a vacuum exhaust device (not shown).

11は試料により広角度散乱された電子を検出するための環状検出器、12は電子線3の二次元走査と同期させて環状検出器11から取り込んだ広角度散乱電子信号を処理するための電子信号処理装置である。なお、環状検出器11を用いて得られる走査透過像は高角度環状暗視野(HAADF:High-angle annular dark-field)像と呼ばれる。   11 is an annular detector for detecting electrons scattered at a wide angle by the sample, and 12 is an electron for processing a wide angle scattered electron signal taken from the annular detector 11 in synchronization with the two-dimensional scanning of the electron beam 3. It is a signal processing device. A scanning transmission image obtained by using the annular detector 11 is called a high-angle annular dark-field (HAADF) image.

13は試料から発生する特性X線を検出するためのX線検出器、14はX線検出器13から取り込んだX線信号を処理するためのX線信号処理装置である。X線検出器としては通常EDSが装着される。   Reference numeral 13 denotes an X-ray detector for detecting characteristic X-rays generated from the sample, and reference numeral 14 denotes an X-ray signal processing apparatus for processing the X-ray signal taken from the X-ray detector 13. As the X-ray detector, EDS is usually mounted.

15はパーソナルコンピュータ等の制御演算装置で、電子信号処理装置12及びX線信号処理装置14から取り込んだ信号の画像表示及び偏向制御装置10の制御を行なう装置である。操作者は、制御演算装置15に備えられたマウス、キーボード等の図示しない入力装置及び液晶ディスプレイ等の表示装置を用いて、STEMの制御及び得られたデータの処理と表示を行なうことができる。   Reference numeral 15 denotes a control arithmetic device such as a personal computer, which is a device for displaying an image taken from the electronic signal processing device 12 and the X-ray signal processing device 14 and controlling the deflection control device 10. The operator can control the STEM and process and display the obtained data using an input device (not shown) such as a mouse and a keyboard provided in the control arithmetic device 15 and a display device such as a liquid crystal display.

上記した構成のSTEMにおいて、本発明による線分析点を設定する方法の実施の形態を説明する。   An embodiment of a method for setting a line analysis point according to the present invention in the above-described STEM will be described.

(実施例1)
偏向器5により電子線3を二次元的に走査し、環状検出器11を用いてHAADF像を取り込む。図3(a)はこのようにして得られた結晶粒界(以下、単に「粒界」と略称する)を含む視野を制御演算装置15に表示したHAADF像である。操作者は、マウス等のポインティングデバイスを用いてHAADF像上の線分析位置を指定する。粒界に直角となるように線分析の始点P1と終点P6を指定し、キーボード等により分析点数を6と指定する。粒界に直角な線分上にP1からP6までの6箇所が分析点位置として設定される。
Example 1
The deflector 5 scans the electron beam 3 two-dimensionally, and the HAADF image is captured using the annular detector 11. FIG. 3A is a HAADF image in which the visual field including the crystal grain boundary (hereinafter simply referred to as “grain boundary”) obtained in this way is displayed on the control arithmetic unit 15. The operator designates a line analysis position on the HAADF image using a pointing device such as a mouse. The start point P1 and the end point P6 of the line analysis are designated so as to be perpendicular to the grain boundary, and the number of analysis points is designated as 6 using a keyboard or the like. Six points from P1 to P6 are set as analysis point positions on a line segment perpendicular to the grain boundary.

P1からP6までの6点について、例えばX線検出器13により注目元素のX線強度を測定する。その分析結果をグラフに表したものが図3(b)である。図3(b)において、横軸は線分析位置、縦軸は測定により得られた注目元素の信号強度(又は濃度変換された値)である。分析点P3の信号強度が他の分析点に比較して著しく高くなっていることが分かる。   For six points from P1 to P6, for example, the X-ray detector 13 measures the X-ray intensity of the element of interest. FIG. 3B shows the analysis result in a graph. In FIG. 3B, the horizontal axis represents the line analysis position, and the vertical axis represents the signal intensity (or concentration-converted value) of the element of interest obtained by measurement. It can be seen that the signal intensity at the analysis point P3 is significantly higher than the other analysis points.

そこで、P3を注目点として指定し、注目点を中心とした線上に、例えばはじめに設定した間隔をさらに細かく分割する数(図4の例では4分割)を指定する。そうすると、P2とP3の間にS1からS3の3点、P3とP4の間にS4からS6の3点が自動的に追加され、S1からS6の分析が行なわれる。図4(b)は、P1からP6までとS1からS6までの全ての分析結果をプロットしたデータであるようにして測定データを表示したグラフの例である。以上のようにして、注目点の近傍(例えば粒界近傍)の信号強度の変化をより詳細に知るための分析点の設定を簡単に行なうことができる。   Therefore, P3 is designated as a point of interest, and the number (for example, four divisions in the example of FIG. 4) for further dividing the interval set first is designated on the line centered on the point of interest. Then, three points S1 to S3 are automatically added between P2 and P3, and three points S4 to S6 are automatically added between P3 and P4, and the analysis of S1 to S6 is performed. FIG. 4B is an example of a graph in which measurement data is displayed as data obtained by plotting all analysis results from P1 to P6 and S1 to S6. As described above, it is possible to easily set the analysis point for knowing in more detail the change in signal intensity near the point of interest (for example, near the grain boundary).

(実施例2)
分析する線上の特定の分析点付近で急激な信号強度変化があることが、HAADF像によって予め予想できる場合がある。例えば図5(a)に示すように、粒界を横切って線分析を行なう場合、粒界付近はできるだけ急な変化を詳細に知りたいが、それ以外の広い範囲も分析したいという場合は多い。そのときは、急激な信号強度変化が予想される注目点を中心にして、ガウス分布に基づいて線上の分析点間隔を割り振ることが好ましい。
(Example 2)
In some cases, it is possible to predict in advance from the HAADF image that there is a sudden change in signal intensity near a specific analysis point on the line to be analyzed. For example, as shown in FIG. 5A, when a line analysis is performed across a grain boundary, it is often desired to know in detail the steep change in the vicinity of the grain boundary, but also to analyze a wide range other than that. In that case, it is preferable to allocate the analysis point intervals on the line based on the Gaussian distribution around the attention point where a sudden change in signal intensity is expected.

図5(b)は、粒界である元素濃度が最大になると仮定したとき、最大信号強度を0.9として、ガウス分布で近似される信号強度の変化が0.2〜0.3程度となるように分析点の間隔を決める例を示している。   In FIG. 5 (b), assuming that the element concentration as the grain boundary is maximized, the maximum signal intensity is 0.9, and the change in signal intensity approximated by a Gaussian distribution is about 0.2 to 0.3. An example of determining the interval between analysis points is shown.

もし注目すべき変化が粒界に偏析する元素ではなく、粒内における変化である場合、図6(a)、(b)に示すように、両側の結晶粒の中心にガウス分布の中心が一致するようにして、ガウス分布で近似される信号強度の変化が0.2〜0.3程度となるように分析点の間隔を決めればよい。   If the remarkable change is not an element that segregates at the grain boundary but a change within the grain, as shown in FIGS. 6A and 6B, the centers of the Gaussian distributions coincide with the centers of the crystal grains on both sides. Thus, the interval between the analysis points may be determined so that the change in signal intensity approximated by the Gaussian distribution is about 0.2 to 0.3.

(実施例3)
次に、試料の構造、組織、形態等を観察する走査透過像、反射電子像、二次電子像等を用いて、X線分析、電子エネルギー損失分析等を行なうための分析点を自動的に設定する方法について説明する。
(Example 3)
Next, analysis points for X-ray analysis, electron energy loss analysis, etc. are automatically used using scanning transmission images, reflected electron images, secondary electron images, etc. for observing the structure, structure, morphology, etc. of the sample. A method of setting will be described.

図7(a)は、分析を行なう注目箇所を含む視野のHAADF像である。図7(b)は注目箇所のHAADF信号を強度プロファイルとして表したグラフである。このグラフの横軸は図7(a)のHAADF像の注目箇所の長さ方向距離、縦軸は注目箇所のHAADF信号強度を幅方向に平均した値である。   FIG. 7 (a) is a HAADF image of the visual field including the point of interest to be analyzed. FIG. 7B is a graph showing the HAADF signal at the point of interest as an intensity profile. In this graph, the horizontal axis represents the distance in the length direction of the HAADF image of FIG. 7A, and the vertical axis represents the average value of the HAADF signal intensity at the site of interest in the width direction.

図8は、注目箇所のHAADF信号の強度プロファイルを一次微分して微分プロファイルを作成する手順を示している。得られた微分プロファイルにおいて、プラス側又はマイナス側に大きなピークが出現している場所が特異点である。図9は、この特異点周辺に細かい分割で分析点の間隔を決めた例を示している。   FIG. 8 shows a procedure for creating a differential profile by first differentiating the intensity profile of the HAADF signal at the point of interest. In the obtained differential profile, a singular point is a place where a large peak appears on the plus side or the minus side. FIG. 9 shows an example in which the interval between analysis points is determined by fine division around this singular point.

以上説明したように、本発明によれば、試料に電子線を照射して線分析を行なうとき、同じ線分上で任意の間隔と任意の点数で分析点を簡易に設定することができる。
As described above, according to the present invention, when performing line analysis by irradiating a sample with an electron beam, analysis points can be easily set at an arbitrary interval and an arbitrary number of points on the same line segment.

(同一または類似の動作を行なうものには共通の符号を付す。)
1…鏡体
2…電子銃
3…電子線
4…照射レンズ系
5…偏向器
6…試料
7…試料ホルダ
8…結像レンズ系
9…CCDカメラ
10…偏向制御装置
11…環状検出器
12…電子信号処理装置
13…X線検出器
14…X線信号処理装置
15…制御演算装置
(Common reference numerals are used for the same or similar operations.)
DESCRIPTION OF SYMBOLS 1 ... Mirror body 2 ... Electron gun 3 ... Electron beam 4 ... Irradiation lens system 5 ... Deflector 6 ... Sample 7 ... Sample holder 8 ... Imaging lens system 9 ... CCD camera 10 ... Deflection control device 11 ... Ring detector 12 ... Electronic signal processing device 13 X-ray detector 14 X-ray signal processing device 15 Control arithmetic device

Claims (5)

電子線を発生する電子源と、
該電子線を試料に照射し、二次元的に走査する走査手段と、
前記電子線と前記試料との相互作用により発生する情報担体を前記走査手段に同期して検出する検出手段と、
前記検出手段によって検出した前記情報担体を信号強度に変換する信号処理手段と、
前記信号処理手段によって得られた信号強度変化を二次元画像として表示する表示手段と、
前記二次元画像上に線分析位置を指定する指定手段と
前記指定手段によって指定された前記線分析位置の中の分析点を非等間隔に設定する設定手段と
を備えることを特徴とする電子線装置。
An electron source that generates an electron beam;
Scanning means for irradiating the sample with the electron beam and scanning two-dimensionally;
Detection means for detecting information carrier generated by the interaction between the electron beam and the sample in synchronization with the scanning means;
Signal processing means for converting the information carrier detected by the detection means into signal intensity;
Display means for displaying the signal intensity change obtained by the signal processing means as a two-dimensional image;
An electron beam comprising: designation means for designating a line analysis position on the two-dimensional image; and setting means for setting analysis points in the line analysis position designated by the designation means at unequal intervals. apparatus.
前記情報担体は、二次電子、反射電子、透過電子、特性X線、カソードルミネッセンスのうちの少なくとも1つを含むことを特徴とする請求項1に記載の電子線装置。 2. The electron beam apparatus according to claim 1, wherein the information carrier includes at least one of secondary electrons, reflected electrons, transmitted electrons, characteristic X-rays, and cathodoluminescence. 前記設定手段は、前記線分析位置の中の特異点近傍における前記情報担体の信号強度変化がガウス分布で近似されると仮定するとき、前記信号強度の変化が略等間隔となるように前記分析点の間隔を非等間隔に設定することを特徴とする請求項1乃至2の何れかに記載の電子線装置。 When the setting means assumes that the signal strength change of the information carrier in the vicinity of a singular point in the line analysis position is approximated by a Gaussian distribution, the analysis is performed so that the change of the signal strength is substantially equidistant. 3. The electron beam apparatus according to claim 1, wherein the intervals between the points are set at non-uniform intervals. 前記指定手段によって指定された前記線分析位置の中から前記特異点を抽出する抽出手段をさらに備えることを特徴とする請求項1乃至3の何れかに記載の電子線装置。 4. The electron beam apparatus according to claim 1, further comprising an extracting unit that extracts the singular point from the line analysis position specified by the specifying unit. 前記抽出手段は、前記線分析位置における前記情報担体の強度変化データの微分データを用いて、前記情報担体の強度変化が最も大きい変化を示す分析点を前記特異点として抽出することを特徴とする請求項1乃至4の何れかに記載の電子線装置。 The extraction means uses the differential data of the intensity change data of the information carrier at the line analysis position to extract, as the singular point, an analysis point indicating a change with the greatest intensity change of the information carrier. The electron beam apparatus according to claim 1.
JP2009104870A 2009-04-23 2009-04-23 Electron beam device with line analysis function Active JP5491763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009104870A JP5491763B2 (en) 2009-04-23 2009-04-23 Electron beam device with line analysis function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009104870A JP5491763B2 (en) 2009-04-23 2009-04-23 Electron beam device with line analysis function

Publications (2)

Publication Number Publication Date
JP2010257675A true JP2010257675A (en) 2010-11-11
JP5491763B2 JP5491763B2 (en) 2014-05-14

Family

ID=43318389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009104870A Active JP5491763B2 (en) 2009-04-23 2009-04-23 Electron beam device with line analysis function

Country Status (1)

Country Link
JP (1) JP5491763B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104091745A (en) * 2014-07-18 2014-10-08 王义林 Integrated structure integrating TEM fluorescent screen and STEM detector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0652819A (en) * 1992-07-29 1994-02-25 Hitachi Ltd Automatic analyzing electron microscope
JP2000106121A (en) * 1998-07-29 2000-04-11 Jeol Ltd Electron microscope or analogous equipment thereof
JP2001221625A (en) * 2000-02-09 2001-08-17 Jeol Ltd Method for measuring film thickness of laminated film object
JP2002323463A (en) * 2001-04-26 2002-11-08 Shimadzu Corp Electron beam analyzer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0652819A (en) * 1992-07-29 1994-02-25 Hitachi Ltd Automatic analyzing electron microscope
JP2000106121A (en) * 1998-07-29 2000-04-11 Jeol Ltd Electron microscope or analogous equipment thereof
JP2001221625A (en) * 2000-02-09 2001-08-17 Jeol Ltd Method for measuring film thickness of laminated film object
JP2002323463A (en) * 2001-04-26 2002-11-08 Shimadzu Corp Electron beam analyzer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104091745A (en) * 2014-07-18 2014-10-08 王义林 Integrated structure integrating TEM fluorescent screen and STEM detector

Also Published As

Publication number Publication date
JP5491763B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
JP4851804B2 (en) Focused ion beam processing observation apparatus, focused ion beam processing observation system, and processing observation method
US9129353B2 (en) Charged particle beam device, and image analysis device
JP2004516461A (en) Method and apparatus for inspecting a substrate
JP4974737B2 (en) Charged particle system
US20170038321A1 (en) Analyzing an object using a particle beam apparatus
JP6250294B2 (en) Focused ion beam device, sample cross-section observation method using the same, and computer program for sample cross-section observation using a focused ion beam
JP6822783B2 (en) Adaptive scanning of particle size using directed beam signal analysis
WO2012090670A1 (en) Charged particle beam device and method of manufacture of sample
JP6932004B2 (en) 3D imaging in a charged particle microscope
US8853629B2 (en) Cross-section processing and observation method and cross-section processing and observation apparatus
US9287087B2 (en) Sample observation method, sample preparation method, and charged particle beam apparatus
JPWO2014104191A1 (en) Charged particle beam apparatus and defect analysis method thereof
JP2013200987A (en) Cross-section processing and observation apparatus
WO2012132494A1 (en) Ion beam device and machining method
JP2016191562A (en) Analysis method of crystal orientation and analysis device
US20190323977A1 (en) Apparatus for combined stem and eds tomography
US20150012229A1 (en) Sample analysis apparatus, non-transitory computer-readable recording medium and sample analysis method
JP5491763B2 (en) Electron beam device with line analysis function
JP2010103320A (en) Semiconductor inspection apparatus
WO2010146927A1 (en) Pattern inspection device and pattern inspection method
TW201421016A (en) Semiconductor inspection device, and inspection method using charged particle beam
JP2006210571A (en) Wafer evaluation method and evaluation apparatus
US10838191B2 (en) Method of operating a microscope
JP4874157B2 (en) Atom probe device
JP2006172919A (en) Scanning electron microscope having three-dimensional shape analysis function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140228

R150 Certificate of patent or registration of utility model

Ref document number: 5491763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150