JP2010256445A - Projection type display apparatus - Google Patents

Projection type display apparatus Download PDF

Info

Publication number
JP2010256445A
JP2010256445A JP2009103706A JP2009103706A JP2010256445A JP 2010256445 A JP2010256445 A JP 2010256445A JP 2009103706 A JP2009103706 A JP 2009103706A JP 2009103706 A JP2009103706 A JP 2009103706A JP 2010256445 A JP2010256445 A JP 2010256445A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal panel
phase difference
light
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009103706A
Other languages
Japanese (ja)
Inventor
Tadashi Fukuda
直史 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2009103706A priority Critical patent/JP2010256445A/en
Publication of JP2010256445A publication Critical patent/JP2010256445A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To simply determine the thickness of a retardation plate of each liquid crystal panel of a projection type display apparatus. <P>SOLUTION: The projection type display apparatus 100 includes a liquid crystal panel 30G for modulating green light, and a liquid crystal panel 30R for modulating red light. The liquid crystal panel 30G has a retardation plate 64G. The liquid crystal panel 30R has a retardation plate 64R. The wavelength dispersion characteristics F_LC of retardation values of liquid crystal 34 are the same between the liquid crystal panel 30G and the liquid crystal panel 30R. The thickness dR of the retardation plate 64R is set in accordance with the thickness dG of the retardation plate 64G so that relation of a numerical formula (1) including a retardation value Re_LC(650) of the liquid crystal 34 for red light and a retardation value Re_REF(650) of the retardation plate 64G for the red light is formed. (1): dR=dG×(Re_LC(650))/Re_REF(650). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、液晶パネルを利用した投射型表示装置に関する。   The present invention relates to a projection display device using a liquid crystal panel.

液晶を通過した光の位相差を補償する位相差板が液晶パネルに設置される(特許文献1)。液晶パネルを光変調器(ライトバルブ)として利用した投射型表示装置においては、相異なる色(赤色,緑色,青色)に対応する複数の液晶パネルの各々に別個の位相差板が設置される(特許文献2や特許文献3)。   A retardation plate that compensates for the phase difference of light that has passed through the liquid crystal is installed in the liquid crystal panel (Patent Document 1). In a projection display device using a liquid crystal panel as a light modulator (light valve), a separate retardation plate is installed in each of a plurality of liquid crystal panels corresponding to different colors (red, green, blue) ( Patent Document 2 and Patent Document 3).

特開2002−311426号公報JP 2002-31426 A 特開2007−212997号公報JP 2007-212997 A 特開2008−224959号公報JP 2008-224959 A

ところで、液晶パネルの液晶の位相差値には波長分散特性(波長毎に位相差値が相違する性質)が現れる。したがって、投射型表示装置に設置される各液晶パネルの位相差板の特性は液晶パネル毎(入射光の波長毎)に個別に選定されることが望ましい。しかし、位相差板の特性を測定や実験の結果に応じて最適化する煩雑な作業を複数の液晶パネルの各々について個別に実行する必要がある。以上の事情を背景として、本発明は、投射型表示装置の各液晶パネルの位相差板の特性(厚さ)を簡便に決定することを目的とする。   By the way, the chromatic dispersion characteristic (the property that the phase difference value is different for each wavelength) appears in the phase difference value of the liquid crystal of the liquid crystal panel. Therefore, it is desirable that the characteristics of the phase difference plate of each liquid crystal panel installed in the projection display device are individually selected for each liquid crystal panel (for each wavelength of incident light). However, it is necessary to individually perform a complicated operation for optimizing the characteristics of the phase difference plate according to the results of measurement and experiment for each of the plurality of liquid crystal panels. In view of the above circumstances, an object of the present invention is to easily determine the characteristics (thickness) of a retardation plate of each liquid crystal panel of a projection display device.

以上の課題を解決するために、本発明の投射型表示装置は、第1波長の光を変調する第1液晶パネルと、第1波長とは異なる第2波長の光を変調する第2液晶パネルと、第1液晶パネルおよび第2液晶パネルの各々による変調後の光を投射する投射光学系とを具備し、第1液晶パネルは第1位相差板を有し、第2液晶パネルは第2位相差板を有し、第1液晶パネルと第2液晶パネルとは液晶の位相差値の波長分散特性が同等であり、第2波長の光に対する第1液晶パネル(または第2液晶パネル)の液晶の位相差値Re_LC(λ2)と第2波長の光に対する第1位相差板の位相差値Re_REF(λ2)とを含む数式(A)の関係が成立するように第2位相差板の厚さd2が第1位相差板の厚さd1に応じて設定されている。
d2=d1・(Re_LC(λ2)/Re_REF(λ2)) ……(A)
In order to solve the above-described problems, a projection display device according to the present invention includes a first liquid crystal panel that modulates light having a first wavelength and a second liquid crystal panel that modulates light having a second wavelength different from the first wavelength. And a projection optical system for projecting light modulated by each of the first liquid crystal panel and the second liquid crystal panel, the first liquid crystal panel has a first retardation plate, and the second liquid crystal panel is a second liquid crystal panel. The first liquid crystal panel and the second liquid crystal panel have a retardation plate, and the wavelength dispersion characteristics of the phase difference value of the liquid crystal are the same, and the first liquid crystal panel (or the second liquid crystal panel) with respect to the light of the second wavelength The thickness of the second retardation plate so that the relationship of the formula (A) including the retardation value Re_LC (λ2) of the liquid crystal and the retardation value Re_REF (λ2) of the first retardation plate for the second wavelength light is established. The length d2 is set according to the thickness d1 of the first retardation plate.
d2 = d1 (Re_LC (λ2) / Re_REF (λ2)) (A)

以上の態様においては、第1液晶パネルの位相差値Re_LC(λ2)と第2波長の光に対する第1位相差板の位相差値Re_REF(λ2)とに応じて第2液晶パネルの第2位相差板の厚さd2が設定されるから、第2位相差板の位相差値の波長分散特性を測定して厚さを最適化する作業は不要である。したがって、第2位相差板の厚さd2を簡便に決定できるという利点がある。なお、位相差板の厚さとは、光が透過する方向(光軸の方向)における寸法を意味する。   In the above aspect, the second position of the second liquid crystal panel is determined according to the phase difference value Re_LC (λ2) of the first liquid crystal panel and the phase difference value Re_REF (λ2) of the first phase plate with respect to the light of the second wavelength. Since the thickness d2 of the retardation plate is set, it is not necessary to measure the wavelength dispersion characteristic of the retardation value of the second retardation plate to optimize the thickness. Therefore, there is an advantage that the thickness d2 of the second retardation plate can be easily determined. The thickness of the retardation plate means a dimension in a direction in which light is transmitted (direction of the optical axis).

本発明の好適な態様に係る投射型表示装置は、第1波長および第2波長とは異なる第3波長の光を変調する第3液晶パネルを具備し、投射光学系は、第1液晶パネル,第2液晶パネルおよび第3液晶パネルの各々による変調後の光を投射し、第3液晶パネルは、液晶の位相差値の波長分散特性が第1液晶パネルおよび第2液晶パネルと同等であり、第3位相差板を有し、第3波長の光に対する第1液晶パネル(または第2液晶パネルや第3液晶パネル)の液晶の位相差値Re_LC(λ3)と第3波長の光に対する第1位相差板の位相差値Re_REF(λ3)とを含む数式(B)の関係が成立するように第3位相差板の厚さd3が第1位相差板の厚さd1に応じて設定されている
d3=d1・(Re_LC(λ3)/Re_REF(λ3)) ……(B)
A projection display device according to a preferred aspect of the present invention includes a third liquid crystal panel that modulates light having a third wavelength different from the first wavelength and the second wavelength, and the projection optical system includes the first liquid crystal panel, The light modulated by each of the second liquid crystal panel and the third liquid crystal panel is projected, and the third liquid crystal panel has the same wavelength dispersion characteristic of the phase difference value of the liquid crystal as the first liquid crystal panel and the second liquid crystal panel, A third retardation plate is provided, and the phase difference value Re_LC (λ3) of the liquid crystal of the first liquid crystal panel (or the second liquid crystal panel or the third liquid crystal panel) for the light of the third wavelength and the first for the light of the third wavelength. The thickness d3 of the third phase difference plate is set according to the thickness d1 of the first phase difference plate so that the relationship of the formula (B) including the phase difference value Re_REF (λ3) of the phase difference plate is established. D3 = d1 ・ (Re_LC (λ3) / Re_REF (λ3)) …… (B)

以上の態様においては、第2液晶パネルの第2位相差板に加えて第3液晶パネルの第3位相差板についても、位相差値の波長分散特性を測定して厚さを最適化する作業が不要となる。したがって、各位相差板の厚さを簡便に決定できるという効果は格別に顕著である。   In the above aspect, the work of optimizing the thickness of the third retardation plate of the third liquid crystal panel by measuring the wavelength dispersion characteristic of the retardation value in addition to the second retardation plate of the second liquid crystal panel. Is no longer necessary. Therefore, the effect that the thickness of each phase difference plate can be easily determined is particularly remarkable.

さらに好適な態様において、第1波長の光は緑色光であり、第2波長の光は赤色光であり、第3波長の光は青色光である。以上の態様においては、赤色光に対応する第2位相差板の厚さと青色光に対応する第3位相差板の厚さとが数式(A)や数式(B)の演算で設定され、観察者に知覚され易い緑色光に対応する第1位相差板の厚さについては位相差値の波長分散特性を実際に測定した結果に応じて高精度に設定され得る。したがって、位相差補償の不足に起因した表示品位の低下が観察者に知覚され難いという利点がある。   In a more preferred aspect, the first wavelength light is green light, the second wavelength light is red light, and the third wavelength light is blue light. In the above aspect, the thickness of the second retardation plate corresponding to the red light and the thickness of the third retardation plate corresponding to the blue light are set by the calculations of the formulas (A) and (B), and the observer The thickness of the first retardation plate corresponding to the green light that is easily perceived by can be set with high accuracy according to the result of actually measuring the wavelength dispersion characteristic of the retardation value. Therefore, there is an advantage that a display quality deterioration due to insufficient phase difference compensation is hardly perceived by an observer.

なお、各液晶パネルの液晶について「位相差値の波長分散特性が同等である」とは、液晶の位相差値の波長分散特性が各液晶パネルで完全に合致する場合のほか、液晶の位相差値の波長分散特性が各液晶パネルで実質的に合致する場合(略合致する場合)も含む。「位相差値の波長分散特性が実質的に合致する場合」は、液晶の位相差値の波長分散特性が各液晶パネルで合致するように液晶パネルの設計上は意図されているが、製造技術上の制約等に起因した誤差が存在する結果として位相差値の波長分散特性が各液晶パネルで完全にまでは合致しない場合を含む。   Note that “the chromatic dispersion characteristics of the retardation values are the same” for the liquid crystal of each liquid crystal panel means that the chromatic dispersion characteristics of the retardation values of the liquid crystals are completely matched in each liquid crystal panel, as well as the retardation of the liquid crystal. This includes the case where the chromatic dispersion characteristics of the values substantially match (substantially match) in each liquid crystal panel. In the case where the chromatic dispersion characteristics of the phase difference values substantially match, the liquid crystal panel design is intended so that the chromatic dispersion characteristics of the phase difference values of the liquid crystals match each other, but the manufacturing technology This includes a case where the wavelength dispersion characteristics of the phase difference values do not completely match in each liquid crystal panel as a result of the existence of errors due to the above constraints and the like.

「位相差板が厚さdに設定されている」とは、位相差板の厚さが完全に数値dに設定されている場合のほか、位相差板の厚さが実質的に数値dに設定されている場合も含む。「位相差板が実質的に厚さdに形成されている場合」は、位相差板の設計上は厚さdの寸法が意図されているが、位相差板の製造技術上の制約等に起因した誤差が存在する結果として位相差板の厚さが完全には数値dに合致しない場合を含む。すなわち、「位相差板が厚さdに設定されている」とは、位相差板の厚さが数値dを含む誤差範囲内に設定されている、と換言され得る。   “The retardation plate is set to the thickness d” means that the thickness of the retardation plate is substantially set to the numerical value d in addition to the case where the thickness of the retardation plate is completely set to the numerical value d. Including the case where it is set. In the case where “the retardation plate is substantially formed with the thickness d”, the dimension of the thickness “d” is intended in the design of the retardation plate. This includes a case where the thickness of the retardation plate does not completely match the numerical value d as a result of the existence of an error caused by the error. That is, “the retardation plate is set to the thickness d” can be said in other words that the thickness of the retardation plate is set within an error range including the numerical value d.

本発明は、位相差板の特性(厚さ)を決定する方法としても特定される。本発明の方法は、厚さd1の第1位相差板について第2波長の光に対する位相差値Re_REF(λ2)を特定する第1過程(例えば図4のステップS3)と、第2波長の光に対する第1液晶パネルの液晶の位相差値Re_LC(λ2)と第1過程で特定した位相差値Re_REF(λ2)とを含む前述の数式(A)の演算で、第2位相差板の厚さd2を第1位相差板の厚さd1に応じて設定する第2過程(例えば図4のステップS4やステップS5)とを含む。以上の方法によっても本発明の投射型表示装置と同様の効果が実現される。さらに好適な方法は、第1過程に先立って、第1波長の光に対する第1位相差板の位相差値が、第1波長の光に対する第1液晶パネルの液晶の位相差値(例えば図3の位相差値Re_LC(550))に合致するように、第1位相差板の厚さd1を決定する過程(例えば図4のステップS2)を含む。   The present invention is also specified as a method for determining the characteristics (thickness) of a retardation plate. The method of the present invention includes a first process (for example, step S3 in FIG. 4) for specifying a retardation value Re_REF (λ2) for light of the second wavelength for the first retardation plate having a thickness d1, and light of the second wavelength. The thickness of the second retardation plate is calculated by the above formula (A) including the retardation value Re_LC (λ2) of the liquid crystal of the first liquid crystal panel and the retardation value Re_REF (λ2) specified in the first process. a second process (for example, step S4 and step S5 in FIG. 4) in which d2 is set in accordance with the thickness d1 of the first retardation plate. The effect similar to that of the projection display device of the present invention is realized by the above method. In a more preferred method, prior to the first step, the retardation value of the first retardation plate with respect to the light of the first wavelength is such that the retardation value of the liquid crystal of the first liquid crystal panel with respect to the light of the first wavelength (for example, FIG. 3). The phase difference value Re_LC (550)) is determined so as to determine the thickness d1 of the first retardation plate (for example, step S2 in FIG. 4).

本発明の実施形態に係る投射型表示装置の模式図である。It is a schematic diagram of the projection type display apparatus which concerns on embodiment of this invention. 液晶パネルの構造を示す模式図である。It is a schematic diagram which shows the structure of a liquid crystal panel. 液晶パネルおよび位相差板の位相差値を入射光の波長毎に示すグラフである。It is a graph which shows the phase difference value of a liquid crystal panel and a phase difference plate for every wavelength of incident light. 各位相差板の厚さを決定する手順のフローチャートである。It is a flowchart of the procedure which determines the thickness of each phase difference plate.

図1は、本発明のひとつの実施形態に係る投射型表示装置(プロジェクタ)100の模式図である。投射型表示装置100は、表示面(例えばスクリーン)50にカラー画像を投射する表示機器である。図1に示すように、投射型表示装置100は、照明装置10と分離光学系20と3個の液晶パネル30(30R,30G,30B)と投射光学系40とを具備する。   FIG. 1 is a schematic view of a projection display device (projector) 100 according to one embodiment of the present invention. The projection display device 100 is a display device that projects a color image on a display surface (for example, a screen) 50. As shown in FIG. 1, the projection display device 100 includes an illumination device 10, a separation optical system 20, three liquid crystal panels 30 (30R, 30G, 30B), and a projection optical system 40.

照明装置10は、照明光(白色光)を出射する光源である。分離光学系20は、照明光を複数の単色光(赤色光,緑色光,青色光)に分離して各液晶パネル30に照射する。具体的には、照明光のうちの赤色光rは、ダイクロイックミラー21およびミラー22による反射後に液晶パネル30Rに入射する。ダイクロイックミラー21を透過した緑色光gは、ダイクロイックミラー23にて反射されて液晶パネル30Gに入射する。ダイクロイックミラー23を透過した青色光bは、ミラー24およびミラー25による反射後に液晶パネル30Bに入射する。   The illumination device 10 is a light source that emits illumination light (white light). The separation optical system 20 separates the illumination light into a plurality of monochromatic lights (red light, green light, blue light) and irradiates each liquid crystal panel 30. Specifically, the red light r of the illumination light enters the liquid crystal panel 30R after being reflected by the dichroic mirror 21 and the mirror 22. The green light g transmitted through the dichroic mirror 21 is reflected by the dichroic mirror 23 and enters the liquid crystal panel 30G. The blue light b transmitted through the dichroic mirror 23 enters the liquid crystal panel 30B after being reflected by the mirror 24 and the mirror 25.

各液晶パネル30は、入射光を変調して画像を形成する光変調器(ライトバルブ)である。例えば、行列状に配列された複数の画素の透過率が可変に制御される透過型の液晶装置が液晶パネル30として採用される。液晶パネル30Rは、ミラー22から到来する赤色光rを変調して赤色の画像を形成する。同様に、液晶パネル30Gは、ダイクロイックミラー23から到来する緑色光gの変調で緑色の画像を形成し、液晶パネル30Bは、ミラー25から到来する青色光bの変調で青色の画像を形成する。   Each liquid crystal panel 30 is a light modulator (light valve) that modulates incident light to form an image. For example, a transmissive liquid crystal device in which the transmittance of a plurality of pixels arranged in a matrix is variably controlled is employed as the liquid crystal panel 30. The liquid crystal panel 30R modulates the red light r coming from the mirror 22 to form a red image. Similarly, the liquid crystal panel 30G forms a green image by modulating the green light g coming from the dichroic mirror 23, and the liquid crystal panel 30B forms a blue image by modulating the blue light b coming from the mirror 25.

投射光学系40は、各液晶パネル30からの出射光を表示面50に投射する。投射光学系40は、各液晶パネル30からの出射光(赤色光,緑色光,青色光)を合成するダイクロイックプリズム42と、ダイクロイックプリズム42からの出射光を表示面50に投射する投射レンズ44とを含んで構成される。したがって、表示面50にはカラー画像が表示される。   The projection optical system 40 projects the emitted light from each liquid crystal panel 30 onto the display surface 50. The projection optical system 40 includes a dichroic prism 42 that synthesizes light emitted from each liquid crystal panel 30 (red light, green light, and blue light), and a projection lens 44 that projects light emitted from the dichroic prism 42 onto the display surface 50. It is comprised including. Therefore, a color image is displayed on the display surface 50.

図2は、液晶パネル30(30R,30G,30B)の構造を示す模式図である。なお、図2では各要素を便宜的に分離して図示したが、実際には各要素は相互に密着する。図2に示すように、液晶パネル30は、相対向する第1基板31および第2基板32を具備する。第1基板31と第2基板32との間隙内には、例えばTN(Twisted Nematic)型やSTN(Super TN)型の液晶34が封止される。第1基板31は光の入射側(分離光学系20側)に位置し、第2基板32は光の出射側(投射光学系40側)に位置する。第1基板31における液晶34とは反対側の面上には偏光板61が配置され、第2基板32のうち液晶34とは反対側の面上には偏光板62が配置される。   FIG. 2 is a schematic diagram showing the structure of the liquid crystal panel 30 (30R, 30G, 30B). In FIG. 2, each element is illustrated as being separated for convenience, but in actuality, each element is in close contact with each other. As shown in FIG. 2, the liquid crystal panel 30 includes a first substrate 31 and a second substrate 32 that face each other. In the gap between the first substrate 31 and the second substrate 32, for example, a TN (Twisted Nematic) type or STN (Super TN) type liquid crystal 34 is sealed. The first substrate 31 is located on the light incident side (separation optical system 20 side), and the second substrate 32 is located on the light emission side (projection optical system 40 side). A polarizing plate 61 is disposed on the surface of the first substrate 31 opposite to the liquid crystal 34, and a polarizing plate 62 is disposed on the surface of the second substrate 32 opposite to the liquid crystal 34.

第1基板31側から液晶34に入射する光(偏光板61の透過後の直線偏光)は、液晶34の複屈折性に起因した位相差が付加されることで楕円偏光に変換される。液晶34に対して光の出射側(投射光学系40側)には、楕円偏光が直線偏光に変換されるように位相差を補償する位相差板64(位相差補償フィルム)が配置される。具体的には第2基板32と偏光板62との間に位相差板64が介在する。液晶パネル30Rは位相差板64Rを有し、液晶パネル30Gは位相差板64Gを有し、液晶パネル30Bは位相差板64Bを有する。   Light incident on the liquid crystal 34 from the first substrate 31 side (linearly polarized light after passing through the polarizing plate 61) is converted into elliptically polarized light by adding a phase difference due to the birefringence of the liquid crystal 34. A phase difference plate 64 (phase difference compensation film) that compensates for a phase difference is arranged on the light emission side (projection optical system 40 side) with respect to the liquid crystal 34 so that elliptically polarized light is converted into linearly polarized light. Specifically, a phase difference plate 64 is interposed between the second substrate 32 and the polarizing plate 62. The liquid crystal panel 30R has a retardation plate 64R, the liquid crystal panel 30G has a retardation plate 64G, and the liquid crystal panel 30B has a retardation plate 64B.

図3は、液晶パネル30(30R,30G,30B)および位相差板64(64R,64G,64B)の位相差値(面内位相差値)を各々に対する入射光の波長毎に図示したグラフである。液晶34の材料や厚さは3個の液晶パネル30(30R,30G,30B)で共通する。したがって、3個の液晶パネル30(30R,30G,30B)における液晶34の位相差値は同等の波長分散特性(図3の特性F_LC)を示す。すなわち、液晶パネル30に対する入射光の波長が長いほど位相差値は小さい数値となる。図3の位相差値Re_LC(λ)は、波長λ(λ=450,550,650)の光が液晶34を透過したときに付加される位相差を意味する。   FIG. 3 is a graph illustrating the phase difference values (in-plane phase difference values) of the liquid crystal panel 30 (30R, 30G, 30B) and the phase difference plate 64 (64R, 64G, 64B) for each wavelength of incident light. is there. The material and thickness of the liquid crystal 34 are common to the three liquid crystal panels 30 (30R, 30G, 30B). Therefore, the phase difference value of the liquid crystal 34 in the three liquid crystal panels 30 (30R, 30G, 30B) shows an equivalent wavelength dispersion characteristic (characteristic F_LC in FIG. 3). That is, the longer the wavelength of incident light on the liquid crystal panel 30, the smaller the phase difference value. The phase difference value Re_LC (λ) in FIG. 3 means a phase difference added when light having a wavelength λ (λ = 450, 550, 650) is transmitted through the liquid crystal 34.

波長λの光が液晶34を透過したときに発生する位相差を有効に補償するためには、波長λに対する位相差値を液晶34と位相差板64とで近似させる(理想的には合致させる)ことが必要である。しかし、実際の液晶34と位相差板64とでは位相差値の波長分散特性が合致しないから、可視光域内の全波長について液晶34の位相差値と位相差板64の位相差値とを合致させることは困難である。したがって、位相差値の波長分散特性が共通する位相差板64を3個の液晶パネル30(30R,30G,30B)の各々に設置した場合、全部の液晶パネル30において有効に位相差を補償することは困難である。例えば、図3の特性FGの位相差板64を3個の液晶パネル30(30R,30G,30B)に共通に設置した場合、緑色光(波長:約550nm)が入射する液晶パネル30Gの液晶34では位相差は有効に補償されるが、赤色光(波長:約650nm)が入射する液晶パネル30Rや青色光(波長:約450nm)が入射する液晶パネル30Bでは位相差が充分に補償されない。   In order to effectively compensate for the phase difference generated when light of wavelength λ passes through the liquid crystal 34, the phase difference value with respect to the wavelength λ is approximated by the liquid crystal 34 and the phase difference plate 64 (ideally match). )It is necessary. However, since the chromatic dispersion characteristics of the retardation value do not match between the actual liquid crystal 34 and the retardation plate 64, the retardation value of the liquid crystal 34 matches the retardation value of the retardation plate 64 for all wavelengths in the visible light range. It is difficult to make it. Therefore, when the phase difference plate 64 having the same wavelength dispersion characteristic of the phase difference value is installed in each of the three liquid crystal panels 30 (30R, 30G, 30B), the phase difference is effectively compensated in all the liquid crystal panels 30. It is difficult. For example, when the phase difference plate 64 having the characteristic FG in FIG. 3 is installed in common on the three liquid crystal panels 30 (30R, 30G, 30B), the liquid crystal 34 of the liquid crystal panel 30G on which green light (wavelength: about 550 nm) is incident. The phase difference is effectively compensated for, but the phase difference is not sufficiently compensated for in the liquid crystal panel 30R on which red light (wavelength: about 650 nm) is incident and the liquid crystal panel 30B on which blue light (wavelength: about 450 nm) is incident.

各液晶パネル30の位相差が有効に補償されるように、本実施形態においては、位相差板64(64R,64G,64B)の位相差値の波長分散特性が液晶パネル30毎(色毎)に相違する。具体的には、液晶パネル30Rには図3の特性FRの位相差板64Rを設置し、液晶パネル30Gには特性FGの位相差板64Gを設置し、液晶パネル30Bには特性FBの位相差板64Bを設置する。位相差板64Rの特性FRは、赤色光に対する位相差板64Rの位相差値が、赤色光に対する液晶34の位相差値(すなわち、特性F_LCにおいて650nmの波長に対応する位相差値)Re_LC(650)に合致するように選定される。同様に、位相差板64Gの特性FGは、緑色光に対する位相差板64Gの位相差値が、特性F_LCの位相差値Re_LC(550)に合致するように選定される。位相差板64Bの特性FBは、青色光に対する位相差板64Bの位相差値が、特性F_LCの位相差値Re_LC(450)に合致するように選定される。   In the present embodiment, the wavelength dispersion characteristic of the retardation value of the retardation plate 64 (64R, 64G, 64B) is different for each liquid crystal panel 30 (for each color) so that the phase difference of each liquid crystal panel 30 is effectively compensated. Is different. Specifically, the phase difference plate 64R having the characteristic FR shown in FIG. 3 is installed in the liquid crystal panel 30R, the phase difference plate 64G having the characteristic FG is installed in the liquid crystal panel 30G, and the phase difference of the characteristic FB is installed in the liquid crystal panel 30B. A plate 64B is installed. The characteristic FR of the phase difference plate 64R is such that the phase difference value of the phase difference plate 64R with respect to the red light is the phase difference value of the liquid crystal 34 with respect to the red light (that is, the phase difference value corresponding to the wavelength of 650 nm in the characteristic F_LC) Re_LC (650 ) Is selected. Similarly, the characteristic FG of the phase difference plate 64G is selected so that the phase difference value of the phase difference plate 64G with respect to green light matches the phase difference value Re_LC (550) of the characteristic F_LC. The characteristic FB of the phase difference plate 64B is selected so that the phase difference value of the phase difference plate 64B with respect to blue light matches the phase difference value Re_LC (450) of the characteristic F_LC.

本実施形態においては、各位相差板64(64R,64G,64B)の複屈折率(常光屈折率と異常光屈折率との差分)Δnが相等しい場合を想定する。具体的には、各位相差板64(64R,64G,64B)は共通の材料で形成される。位相差板64の位相差値は複屈折率Δnと位相差板64の厚さdとの乗算値(Δn・d)に相当するから、位相差板64の特性(FR,FG,FB)は各位相差板64の厚さ(dR,dG,dB)に依存する。特性FRと特性FGと特性FBとが図3の条件を充足するように各位相差板64の厚さ(dR,dG,dB)を決定する手順を以下に詳述する。   In the present embodiment, it is assumed that the birefringence (difference between ordinary light refractive index and extraordinary light refractive index) Δn of each phase difference plate 64 (64R, 64G, 64B) is equal. Specifically, each phase difference plate 64 (64R, 64G, 64B) is formed of a common material. Since the phase difference value of the phase difference plate 64 corresponds to a product value (Δn · d) of the birefringence Δn and the thickness d of the phase difference plate 64, the characteristics (FR, FG, FB) of the phase difference plate 64 are as follows. It depends on the thickness (dR, dG, dB) of each phase difference plate 64. A procedure for determining the thickness (dR, dG, dB) of each phase difference plate 64 so that the characteristic FR, the characteristic FG, and the characteristic FB satisfy the conditions of FIG. 3 will be described in detail below.

図4は、各位相差板64の厚さ(dR,dG,dB)を決定する手順のフローチャートである。まず、液晶パネル30(3個のうちの何れか)の液晶34について、図3に示すように、赤色光に対する位相差値Re_LC(650)と緑色光に対する位相差値Re_LC(550)と青色光に対する位相差値Re_LC(450)とが測定される(S1)。液晶34の位相差値Re_LC(λ)の測定には公知の技術が任意に採用される。   FIG. 4 is a flowchart of a procedure for determining the thickness (dR, dG, dB) of each phase difference plate 64. First, for the liquid crystal 34 of the liquid crystal panel 30 (any one of the three), as shown in FIG. 3, the phase difference value Re_LC (650) for red light, the phase difference value Re_LC (550) for green light, and blue light A phase difference value Re_LC (450) is measured (S1). A known technique is arbitrarily employed for measuring the phase difference value Re_LC (λ) of the liquid crystal 34.

次に、緑色光に対する位相差板64Gの位相差値(特性FG)が、ステップS1で測定した位相差値Re_LC(550)に合致するように(すなわち、図3における位相差値Re_LC(550)の地点PGを特性FGが通過するように)、位相差板64Gの厚さdGが決定される(S2)。さらに、ステップS2で決定した厚さdGの位相差板64Gについて、図3に示すように、赤色光に対する位相差値Re_REF(650)と青色光に対する位相差値Re_REF(450)とが測定される(S3)。位相差板64Gの位相差値Re_REF(λ)の測定には公知の技術が任意に採用される。   Next, the phase difference value (characteristic FG) of the phase difference plate 64G with respect to green light matches the phase difference value Re_LC (550) measured in step S1 (that is, the phase difference value Re_LC (550) in FIG. 3). The thickness dG of the phase difference plate 64G is determined (so that the characteristic FG passes through the point PG) (S2). Further, as shown in FIG. 3, the phase difference value Re_REF (650) for red light and the phase difference value Re_REF (450) for blue light are measured for the phase difference plate 64G having the thickness dG determined in step S2. (S3). A known technique is arbitrarily employed for measuring the phase difference value Re_REF (λ) of the phase difference plate 64G.

そして、ステップS1およびステップS3にて測定された位相差値(Re_LC(650),Re_REF(650),Re_LC(450),Re_REF(450))とステップS2で決定された位相差板64Gの厚さdGとを利用した演算で、位相差板64Rの厚さdRと位相差板64Bの厚さdBとが決定される(S4,S5)。厚さdRおよび厚さdBの決定について以下に詳述する。   Then, the phase difference values (Re_LC (650), Re_REF (650), Re_LC (450), Re_REF (450)) measured in step S1 and step S3 and the thickness of the phase difference plate 64G determined in step S2. Through calculation using dG, the thickness dR of the phase difference plate 64R and the thickness dB of the phase difference plate 64B are determined (S4, S5). The determination of the thickness dR and the thickness dB will be described in detail below.

まず、赤色光についてステップS1で測定された液晶34の位相差値Re_LC(650)と、赤色光についてステップS3で測定された位相差板64Gの位相差値Re_REF(650)とを含む以下の数式(1)の関係が成立するように、ステップS2で決定した位相差板64Gの厚さdGに応じて位相差板64Rの厚さdRが設定される(S4)。
dR=dG・(Re_LC(650)/Re_REF(650)) ……(1)
First, the following formula including the phase difference value Re_LC (650) of the liquid crystal 34 measured in step S1 for red light and the phase difference value Re_REF (650) of the phase difference plate 64G measured in step S3 for red light. The thickness dR of the phase difference plate 64R is set according to the thickness dG of the phase difference plate 64G determined in step S2 so that the relationship (1) is established (S4).
dR = dG · (Re_LC (650) / Re_REF (650)) (1)

すなわち、位相差板64Rの厚さdRは、位相差板64Gの位相差値Re_REF(650)に対する液晶34の位相差値Re_LC(650)の相対比と位相差板64Gの厚さdGとの乗算値として定義される。数式(1)の内容と位相差値の定義(Δn・d)とから理解されるように、数式(1)で算定される厚さdRの位相差板64Rの特性FR(図3)は、赤色光に対する液晶34の位相差値Re_LC(650)の地点PRを通過するように、位相差板64Gの特性FGを位相差値の軸方向に平行移動した特性に相当する。図3の例示のように液晶34の位相差値Re_LC(650)が位相差板64Gの位相差値Re_REF(650)を下回る場合、位相差板64Rの厚さdRは位相差板64Gの厚さdGを下回る(dR<dG)。   That is, the thickness dR of the retardation plate 64R is multiplied by the relative ratio of the retardation value Re_LC (650) of the liquid crystal 34 to the retardation value Re_REF (650) of the retardation plate 64G and the thickness dG of the retardation plate 64G. Defined as a value. As understood from the contents of the equation (1) and the definition of the retardation value (Δn · d), the characteristic FR (FIG. 3) of the retardation plate 64R having the thickness dR calculated by the equation (1) is: This corresponds to a characteristic obtained by translating the characteristic FG of the phase difference plate 64G in the axial direction of the phase difference value so as to pass the point PR of the phase difference value Re_LC (650) of the liquid crystal 34 with respect to red light. As illustrated in FIG. 3, when the retardation value Re_LC (650) of the liquid crystal 34 is lower than the retardation value Re_REF (650) of the retardation plate 64G, the thickness dR of the retardation plate 64R is the thickness of the retardation plate 64G. Below dG (dR <dG).

位相差板64Bの厚さdBは、位相差板64Rの厚さdRと同様の方法で設定される。すなわち、青色光についてステップS1で測定された液晶34の位相差値Re_LC(450)と、青色光についてステップS3で測定された位相差板64Gの位相差値Re_REF(450)とを含む以下の数式(2)の関係が成立するように、ステップS2で決定した位相差板64Gの厚さdGに応じて位相差板64Bの厚さdBが設定される。
dB=dG・(Re_LC(450)/Re_REF(450)) ……(2)
The thickness dB of the phase difference plate 64B is set by the same method as the thickness dR of the phase difference plate 64R. That is, the following formula including the phase difference value Re_LC (450) of the liquid crystal 34 measured in step S1 for blue light and the phase difference value Re_REF (450) of the phase difference plate 64G measured in step S3 for blue light. The thickness dB of the phase difference plate 64B is set according to the thickness dG of the phase difference plate 64G determined in step S2 so that the relationship (2) is established.
dB = dG (Re_LC (450) / Re_REF (450)) (2)

前述の特性FRの説明と同様に、数式(2)で算定される厚さdBの位相差板64Bの特性FBは、図3に示すように、青色光に対する液晶34の位相差値Re_LC(450)の地点PBを通過するように、位相差板64Gの特性FGを位相差値の軸方向に平行移動した特性に相当する。図3のように液晶34の位相差値Re_LC(450)が位相差板64Gの位相差値Re_REF(450)を上回る場合、位相差板64Bの厚さdBは位相差板64Gの厚さdGを上回る(dB>dG)。   Similar to the description of the characteristic FR described above, the characteristic FB of the retardation plate 64B having the thickness dB calculated by the equation (2) is the retardation value Re_LC (450 of the liquid crystal 34 with respect to the blue light as shown in FIG. This corresponds to a characteristic obtained by translating the characteristic FG of the phase difference plate 64G in the axial direction of the phase difference value so as to pass through the point PB. As shown in FIG. 3, when the retardation value Re_LC (450) of the liquid crystal 34 exceeds the retardation value Re_REF (450) of the retardation plate 64G, the thickness dB of the retardation plate 64B is equal to the thickness dG of the retardation plate 64G. Over (dB> dG).

以上の形態においては、液晶パネル30および位相差板64Gに関する数値(Re_LC(650),Re_REF(650),Re_LC(450),Re_REF(450),dG)に応じて位相差板64Rに必要な厚さdRと位相差板64Bに必要な厚さdBとが設定されるから、位相差板64Rおよび位相差板64Bの各々について位相差値の波長分散特性を測定して厚さ(dR,dB)を最適化する作業(ステップS2の作業)は不要である。すなわち、各液晶パネル30に対する入射光の位相差を有効に補償できる位相差板64(64R,64G,64B)の厚さ(dR,dG,dB)を簡便に決定できるという利点がある。   In the above embodiment, the thickness required for the retardation plate 64R according to the numerical values (Re_LC (650), Re_REF (650), Re_LC (450), Re_REF (450), dG) related to the liquid crystal panel 30 and the retardation plate 64G. Since the thickness dR and the thickness dB required for the phase difference plate 64B are set, the wavelength dispersion characteristic of the phase difference value is measured for each of the phase difference plate 64R and the phase difference plate 64B to obtain the thickness (dR, dB). The work of optimizing (the work of step S2) is unnecessary. That is, there is an advantage that the thickness (dR, dG, dB) of the phase difference plate 64 (64R, 64G, 64B) capable of effectively compensating for the phase difference of incident light with respect to each liquid crystal panel 30 can be easily determined.

ところで、投射光学系40からの投射光においては一般的に緑色光の光量が赤色光や青色光よりも多く、かつ、人間の視覚は緑色光に対する感度が赤色光や青色光に対する感度よりも高い。以上の形態においては、緑色光に対応する位相差板64Gの厚さdGが実際の測定の結果に応じて設定されるから、観察者に知覚され易い緑色光の位相差を高精度に補償することが可能である。したがって、位相差板64Rや位相差板64Bを基準とする構成と比較して、位相差補償の不足に起因した表示品位の低下が観察者に知覚され難いという格別の効果がある。   By the way, in the projection light from the projection optical system 40, the amount of green light is generally larger than that of red light and blue light, and human vision has higher sensitivity to green light than sensitivity to red light and blue light. . In the above embodiment, since the thickness dG of the phase difference plate 64G corresponding to the green light is set according to the actual measurement result, the phase difference of the green light that is easily perceived by the observer is compensated with high accuracy. It is possible. Therefore, as compared with the configuration based on the phase difference plate 64R and the phase difference plate 64B, there is an extraordinary effect that it is difficult for an observer to perceive a deterioration in display quality due to insufficient phase difference compensation.

<変形例>
以上の形態においては位相差板64Gの特性FGに応じて位相差板64Rの厚さdRおよび位相差板64Bの厚さdBの双方を決定したが、1種類の位相差板64のみについてステップS4やステップS5と同様の方法を適用することも可能である。例えば、位相差値の波長分散特性を測定した結果に応じてステップS2と同様に位相差板64Gの厚さdGおよび位相差板64Rの厚さdRが決定される場合、数式(2)の演算で厚さdGから位相差板64Bの厚さdBのみが算定され、位相差板64Rの厚さdRを演算するステップS4は省略される。
<Modification>
In the above embodiment, both the thickness dR of the phase difference plate 64R and the thickness dB of the phase difference plate 64B are determined according to the characteristic FG of the phase difference plate 64G, but step S4 is performed for only one type of phase difference plate 64. It is also possible to apply the same method as in step S5. For example, when the thickness dG of the phase difference plate 64G and the thickness dR of the phase difference plate 64R are determined in the same manner as in step S2 according to the measurement result of the wavelength dispersion characteristic of the phase difference value, the calculation of Equation (2) Thus, only the thickness dB of the phase difference plate 64B is calculated from the thickness dG, and step S4 for calculating the thickness dR of the phase difference plate 64R is omitted.

また、以上の形態においては位相差板64Gの厚さdGから位相差板64Rの厚さdRと位相差板64Bの厚さdBとを算定したが、ステップS4やステップS5の演算の基礎となる厚さdは位相差板64Gの厚さdGに限定されない。例えば、位相差板64Rの厚さdRがステップS2で決定される場合、ステップS4やステップS5では位相差板64Gの厚さdGや位相差板64Bの厚さdBが、ステップS2で決定した厚さdRから演算される。さらに、各液晶パネル30が形成する画像の色の組合せ(色の種類や色数)は以上の例示(赤色,緑色,青色の3色)に限定されない。   In the above embodiment, the thickness dR of the phase difference plate 64R and the thickness dB of the phase difference plate 64B are calculated from the thickness dG of the phase difference plate 64G. This is the basis of the calculation in step S4 and step S5. The thickness d is not limited to the thickness dG of the phase difference plate 64G. For example, when the thickness dR of the phase difference plate 64R is determined in step S2, the thickness dG of the phase difference plate 64G and the thickness dB of the phase difference plate 64B are determined in step S2 in step S4 and step S5. Is calculated from dR. Furthermore, the color combination (color type and number of colors) of the image formed by each liquid crystal panel 30 is not limited to the above examples (three colors of red, green, and blue).

以上の形態においては透過型の液晶パネル30を例示したが、反射型の液晶パネル30を利用した投射型表示装置についても、各位相差板64の特性を決定する以上の方法は同様に適用される。   In the above embodiment, the transmissive liquid crystal panel 30 is exemplified. However, the above-described method for determining the characteristics of each phase difference plate 64 is similarly applied to a projection display device using the reflective liquid crystal panel 30. .

10……照明装置、20……分離光学系、30(30R,30G,30B)……液晶パネル、40……投射光学系、42……ダイクロイックプリズム、44……投射レンズ、31……第1基板、32……第2基板、34……液晶、61,62……偏光板、64(64R,64G,64B)……位相差板。
DESCRIPTION OF SYMBOLS 10 ... Illuminating device, 20 ... Separation optical system, 30 (30R, 30G, 30B) ... Liquid crystal panel, 40 ... Projection optical system, 42 ... Dichroic prism, 44 ... Projection lens, 31 ... 1st Substrate, 32 ... second substrate, 34 ... liquid crystal, 61, 62 ... polarizing plate, 64 (64R, 64G, 64B) ... retardation plate.

Claims (3)

第1波長の光を変調する第1液晶パネルと、
前記第1波長とは異なる第2波長の光を変調する第2液晶パネルと、
前記第1液晶パネルおよび前記第2液晶パネルの各々による変調後の光を投射する投射光学系と
を具備し、
前記第1液晶パネルは、第1位相差板を有し、
前記第2液晶パネルは、第2位相差板を有し、
前記第1液晶パネルと前記第2液晶パネルとは液晶の位相差値の波長分散特性が同等であり、
前記第2波長の光に対する前記第1液晶パネルの液晶の位相差値Re_LC(λ2)と前記第2波長の光に対する前記第1位相差板の位相差値Re_REF(λ2)とを含む数式(A)の関係が成立するように前記第2位相差板の厚さd2が前記第1位相差板の厚さd1に応じて設定されている
d2=d1・(Re_LC(λ2)/Re_REF(λ2)) ……(A)
投射型表示装置。
A first liquid crystal panel that modulates light of a first wavelength;
A second liquid crystal panel that modulates light of a second wavelength different from the first wavelength;
A projection optical system for projecting light modulated by each of the first liquid crystal panel and the second liquid crystal panel;
The first liquid crystal panel has a first retardation plate,
The second liquid crystal panel has a second retardation plate,
The first liquid crystal panel and the second liquid crystal panel have the same wavelength dispersion characteristic of the retardation value of the liquid crystal,
A numerical formula (A) including a retardation value Re_LC (λ2) of the liquid crystal of the first liquid crystal panel with respect to the light of the second wavelength and a retardation value Re_REF (λ2) of the first retardation plate with respect to the light of the second wavelength. ) Is established in accordance with the thickness d1 of the first retardation plate d2 = d1 · (Re_LC (λ2) / Re_REF (λ2) ) (A)
Projection display device.
前記第1波長および前記第2波長とは異なる第3波長の光を変調する第3液晶パネルを具備し、
前記投射光学系は、前記第1液晶パネル,前記第2液晶パネルおよび前記第3液晶パネルの各々による変調後の光を投射し、
前記第3液晶パネルは、液晶の位相差値の波長分散特性が前記第1液晶パネルおよび前記第2液晶パネルと同等であり、第3位相差板を有し、
前記第3波長の光に対する前記第1液晶パネルの液晶の位相差値Re_LC(λ3)と前記第3波長の光に対する前記第1位相差板の位相差値Re_REF(λ3)とを含む数式(B)の関係が成立するように前記第3位相差板の厚さd3が前記第1位相差板の厚さd1に応じて設定されている
d3=d1・(Re_LC(λ3)/Re_REF(λ3)) ……(B)
請求項1の投射型表示装置。
Comprising a third liquid crystal panel that modulates light of a third wavelength different from the first wavelength and the second wavelength;
The projection optical system projects light modulated by each of the first liquid crystal panel, the second liquid crystal panel, and the third liquid crystal panel,
The third liquid crystal panel has a wavelength dispersion characteristic of a retardation value of liquid crystal that is equivalent to that of the first liquid crystal panel and the second liquid crystal panel, and has a third retardation plate,
Formula (B) including a phase difference value Re_LC (λ3) of the liquid crystal of the first liquid crystal panel with respect to the light of the third wavelength and a phase difference value Re_REF (λ3) of the first phase plate with respect to the light of the third wavelength. ) Is set in accordance with the thickness d1 of the first retardation plate d3 = d1 · (Re_LC (λ3) / Re_REF (λ3) ) (B)
The projection display device according to claim 1.
前記第1波長の光は緑色光であり、
前記第2波長の光は赤色光であり、
前記第3波長の光は青色光である
請求項2の投射型表示装置。
The light of the first wavelength is green light;
The light of the second wavelength is red light;
The projection display apparatus according to claim 2, wherein the third wavelength light is blue light.
JP2009103706A 2009-04-22 2009-04-22 Projection type display apparatus Withdrawn JP2010256445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009103706A JP2010256445A (en) 2009-04-22 2009-04-22 Projection type display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009103706A JP2010256445A (en) 2009-04-22 2009-04-22 Projection type display apparatus

Publications (1)

Publication Number Publication Date
JP2010256445A true JP2010256445A (en) 2010-11-11

Family

ID=43317460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009103706A Withdrawn JP2010256445A (en) 2009-04-22 2009-04-22 Projection type display apparatus

Country Status (1)

Country Link
JP (1) JP2010256445A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110476120A (en) * 2017-03-31 2019-11-19 索尼公司 Lighting apparatus and projector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110476120A (en) * 2017-03-31 2019-11-19 索尼公司 Lighting apparatus and projector
CN110476120B (en) * 2017-03-31 2021-06-25 索尼公司 Illumination device and projector

Similar Documents

Publication Publication Date Title
JP3738505B2 (en) Projection display
US7518662B2 (en) Contrast enhancement for liquid crystal based projection systems
JP5071553B2 (en) Projection display
JP4450043B2 (en) Projection type liquid crystal display device
JP2014071402A (en) Projection type display device
JP4798366B2 (en) Reflective liquid crystal display element and projection display device
JP2009229804A (en) Optical component, optical unit and display
KR20120082811A (en) Projector
US8217874B2 (en) Image projection apparatus
JP4337691B2 (en) Image display device
JP2010256445A (en) Projection type display apparatus
US20210165151A1 (en) Optical element, production method thereof, and projection image display device
JP5444641B2 (en) Image display device and adjustment method thereof
JP4856863B2 (en) Projection type image display apparatus and adjustment method used therefor
JP2007304229A (en) Optical element and projection apparatus
JP2003029263A (en) Apparatus for projection display using reflection type lcd
JP2008020570A (en) Screen and projector
WO2020158109A1 (en) Optical compensation device and liquid crystal display device
JPH09258328A (en) Projector
JP2010097184A (en) Projection-type display device
US20220221778A1 (en) Image display apparatus and image display unit
WO2019244302A1 (en) Optical compensation device and liquid crystal display device
JP2552507Y2 (en) Projection display device
WO2019116634A1 (en) Projector and optical member used in projector
JPH01277282A (en) Projection type full-color liquid crystal display device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120703