JP2010255090A - High strength cold-rolled steel sheet having excellent balance between elongation and stretch-flangeability, and method for producing the same - Google Patents

High strength cold-rolled steel sheet having excellent balance between elongation and stretch-flangeability, and method for producing the same Download PDF

Info

Publication number
JP2010255090A
JP2010255090A JP2009231680A JP2009231680A JP2010255090A JP 2010255090 A JP2010255090 A JP 2010255090A JP 2009231680 A JP2009231680 A JP 2009231680A JP 2009231680 A JP2009231680 A JP 2009231680A JP 2010255090 A JP2010255090 A JP 2010255090A
Authority
JP
Japan
Prior art keywords
temperature
ferrite
less
elongation
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009231680A
Other languages
Japanese (ja)
Other versions
JP4977184B2 (en
Inventor
Toshio Murakami
俊夫 村上
Akira Ibano
朗 伊庭野
Kenji Saito
賢司 斉藤
Hideo Hatake
英雄 畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009231680A priority Critical patent/JP4977184B2/en
Priority to US13/258,823 priority patent/US8840738B2/en
Priority to EP10758898.0A priority patent/EP2415891A4/en
Priority to CN201080010267.9A priority patent/CN102341518B/en
Priority to PCT/JP2010/056096 priority patent/WO2010114131A1/en
Publication of JP2010255090A publication Critical patent/JP2010255090A/en
Application granted granted Critical
Publication of JP4977184B2 publication Critical patent/JP4977184B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high strength cold-rolled steel sheet having an improved balance between elongation and stretch-flangeability, and better formability, and to provide a method for producing the same. <P>SOLUTION: The cold-rolled steel sheet has a composition containing, by mass, 0.05-0.30% C, ≤3.0% (including 0%) Si, 0.1-5.0% Mn, ≤0.1% (including 0%) P, ≤0.010% (including 0%) S, and 0.001-0.10% Al, and the balance mainly iron, and has a structure comprising 10-80% ferrite, <5% (including 0%) the sum of retained austenite and martensite, by an area rate, and the balance a hard second phase, wherein for a KAM value frequency distribution curve, the relationship between the proportion X<SB>KAM≤0.4°</SB>of sites having a KAM value≤0.4° and the areal ferrite proportion V<SB>α</SB>satisfies X<SB>KAM≤0.4°</SB>/V<SB>α</SB>≥0.8 and the proportion X<SB>KAM=0.6-0.8°</SB>of sites having a KAM value in the range of 0.6-0.8 is 10-20%. In the hard second phase adjoining the ferrite, three or less cementite particles having an equivalent-circle diameter of 0.1 μm or larger are dispersed per μm<SP>2</SP>of the hard second phase. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、自動車部品等に用いられる加工性に優れた高強度鋼板およびその製造方法に関し、詳細には、伸び(全伸び)と伸びフランジ性のバランスが改善された高強度鋼板およびその製造方法に関する。   TECHNICAL FIELD The present invention relates to a high-strength steel sheet excellent in workability used for automobile parts and the like and a method for producing the same, and more specifically, a high-strength steel sheet having an improved balance between elongation (total elongation) and stretch flangeability and a method for producing the same. About.

例えば自動車の骨格部品などに使用される鋼板には、衝突安全性や車体軽量化による燃費軽減などを目的として高強度が求められるとともに、形状の複雑な骨格部品に加工するために優れた成形加工性も要求される。   For example, steel sheets used for automobile frame parts and the like are required to have high strength for the purpose of collision safety and fuel efficiency reduction by reducing the weight of the car body, and excellent forming process for processing into complex frame parts Sex is also required.

このため、引張強度(TS)780MPa級以上の高強度鋼板であって、伸び(全伸び;El)と伸びフランジ性(穴広げ率;λ)のバランスが改善された高強度鋼板の提供が切望されており、例えば、引張強度TSが780MPa以上で、TS×Elが14000MPa・%以上、かつ、TS×El×λが800000MPa・%・%以上(より好ましくは、引張強度TSが780MPa以上で、TS×Elが15000MPa・%以上、かつ、TS×El×λが1000000MPa・%・%以上)のものが要望されている。   For this reason, provision of a high-strength steel sheet having a tensile strength (TS) of 780 MPa or higher and an improved balance between elongation (total elongation; El) and stretch flangeability (hole expansion ratio; λ) is eagerly desired. For example, the tensile strength TS is 780 MPa or more, TS × El is 14000 MPa ·% or more, and TS × El × λ is 800,000 MPa ·% ·% or more (more preferably, the tensile strength TS is 780 MPa or more, TS × El is 15000 MPa ·% or more and TS × El × λ is 1000000 MPa ·% ·% or more).

上記のようなニーズを受けて、種々の組織制御の考え方に基づき、伸びと伸びフランジ性のバランスを改善した高強度鋼板が多数提案されているものの、伸びと伸びフランジ性のバランスが上記要望レベルを満足するように両立させたものはまだ少ないのが現状である。   In response to the above needs, many high-strength steel sheets with improved balance between stretch and stretch flangeability have been proposed based on various structural control concepts, but the balance between stretch and stretch flangeability is at the above desired level. At present, there are only a few things that satisfy both requirements.

例えば、特許文献1には、Mn、CrおよびMoの少なくとも1種を合計で1.6〜2.5質量%含有し、実質的にマルテンサイトの単相組織からなる高張力冷延鋼板が開示されており、引張強度980MPa級の鋼板において、その穴広げ率(伸びフランジ性)λは100%以上が得られているものの、伸びElは10%に達しておらず、上記要望レベルは満足していない(同文献の表6の本発明例参照)。   For example, Patent Document 1 discloses a high-tensile cold-rolled steel sheet that contains at least one of Mn, Cr, and Mo in a total amount of 1.6 to 2.5% by mass and is substantially composed of a single-phase structure of martensite. In a steel sheet with a tensile strength of 980 MPa, the hole expansion ratio (stretch flangeability) λ is 100% or more, but the elongation El does not reach 10%, and the above-mentioned required level is satisfied. (See the invention example in Table 6 of the same document).

また、特許文献2には、フェライトが面積率で65〜85%で残部が焼戻しマルテンサイトの二相組織からなる高張力鋼板が開示されている。   Patent Document 2 discloses a high-tensile steel sheet having a two-phase structure of ferrite with an area ratio of 65 to 85% and the balance being tempered martensite.

また、特許文献3には、フェライトおよびマルテンサイトの平均結晶粒径がともに2μm以下であり、マルテンサイトの体積率が20%以上60%未満の二相組織からなる高張力鋼板が開示されている。   Patent Document 3 discloses a high-tensile steel plate having a two-phase structure in which the average crystal grain sizes of ferrite and martensite are both 2 μm or less and the volume ratio of martensite is 20% or more and less than 60%. .

上記特許文献2および3に開示された高張力鋼板はいずれも、変形能の高いフェライトを多量に混入させることで、10%を超える伸びを確保し、上記要望レベルを満足するものも存在する(特許文献2の表2の発明例、特許文献3の表2の実施例参照)。しかしながら、これらの高張力鋼板に係る発明は、フェライトと硬質第2相の面積比率、さらにはこれら両相の粒径を制御することを特徴とするものの、フェライト中の歪量、硬質第2相の変形能、さらにはフェライトと硬質第2相の界面に存在するセメンタイト粒子の分布状態の制御を特徴とする本願発明とは明らかに技術思想を異にするものである。   All of the high-tensile steel sheets disclosed in Patent Documents 2 and 3 have an elongation exceeding 10% by mixing a large amount of highly deformable ferrite, and there are some that satisfy the above-mentioned required level ( (See the invention examples in Table 2 of Patent Document 2 and the examples in Table 2 of Patent Document 3). However, although the invention relating to these high-tensile steel sheets is characterized by controlling the area ratio between the ferrite and the hard second phase, and further controlling the grain size of these two phases, the strain amount in the ferrite, the hard second phase The present invention clearly differs from the technical idea of the present invention, which is characterized by the control of the deformability and the distribution state of cementite particles present at the interface between the ferrite and the hard second phase.

特開2002−161336号公報JP 2002-161336 A 特開2004−256872号公報JP 2004-256872 A 特開2004−232022号公報JP 2004-232022 A

そこで本発明の目的は、伸びと伸びフランジ性のバランスを改善した、より成形性に優れた高強度冷延鋼板およびその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a high-strength cold-rolled steel sheet with improved formability and a method for producing the same, with an improved balance between elongation and stretch flangeability.

請求項1に記載の発明は、
質量%で(以下、化学成分について同じ。)、
C:0.05〜0.30%、
Si:3.0%以下(0%を含む)、
Mn:0.1〜5.0%、
P:0.1%以下(0%を含む)、
S:0.010%以下(0%を含む)、
Al:0.001〜0.10%
を含み、残部が鉄および不可避的不純物からなる成分組成を有し、
軟質第1相であるフェライトを面積率で10〜80%含むとともに、
残留オーステナイト、マルテンサイト、および、残留オーステナイトとマルテンサイトの混合組織を、面積率の合計で5%未満(0%を含む)含み、
残部が硬質第2相である、焼戻しマルテンサイトおよび/または焼戻しベイナイトからなる組織を有し、
Kernel Average Misorientation値(以下、「KAM値」と略称する。)の頻度分布曲線において、
全頻度に対する、該KAM値が0.4°以下の頻度の比率XKAM≦0.4°(単位:%)と、フェライトの面積率Vα(単位:%)との関係が、XKAM≦0.4°/Vα≧0.8を満たすとともに、
全頻度に対する、前記KAM値が0.6〜0.8の頻度の比率XKAM=0.6〜0.8°が10〜20%であり、かつ、
前記フェライトと界面を接する硬質第2相中に存在する、円相当直径0.1μm以上のセメンタイト粒子の分散状態が、該硬質第2相1μm当たり3個以下である
ことを特徴とする伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板である。
The invention described in claim 1
% By mass (hereinafter the same for chemical components)
C: 0.05 to 0.30%
Si: 3.0% or less (including 0%),
Mn: 0.1 to 5.0%,
P: 0.1% or less (including 0%),
S: 0.010% or less (including 0%),
Al: 0.001 to 0.10%
And the remainder has a component composition consisting of iron and inevitable impurities,
While containing 10-80% of area ratio of ferrite which is a soft first phase,
Including a retained austenite, martensite, and a mixed structure of retained austenite and martensite in a total area ratio of less than 5% (including 0%),
The balance is a hard second phase, and has a structure composed of tempered martensite and / or tempered bainite,
In the frequency distribution curve of the Kernel Average Misoration value (hereinafter abbreviated as “KAM value”),
The relationship between the ratio X KAM ≦ 0.4 ° (unit:%) of the frequency at which the KAM value is 0.4 ° or less to the total frequency and the ferrite area ratio V α (unit:%) is expressed by X KAM ≦ 0.4 ° / V α ≧ 0.8
The ratio X KAM = 0.6-0.8 ° of the frequency with the KAM value of 0.6-0.8 to the total frequency is 10-20%, and
Elongation characterized in that the dispersion state of cementite particles having an equivalent circle diameter of 0.1 μm or more present in the hard second phase in contact with the ferrite is 3 or less per 1 μm 2 of the hard second phase; It is a high-strength cold-rolled steel sheet with an excellent balance of stretch flangeability.

請求項2に記載の発明は、
成分組成が、更に、
Cr:0.01〜1.0%
を含むものである請求項1に記載の伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板である。
The invention described in claim 2
Ingredient composition further
Cr: 0.01 to 1.0%
The high-strength cold-rolled steel sheet having an excellent balance between elongation and stretch flangeability according to claim 1.

請求項3に記載の発明は、
成分組成が、更に、
Mo:0.02〜1.0%
Cu:0.05〜1.0%、
Ni:0.05〜1.0%の1種または2種以上
を含むものである請求項1または2に記載の伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板である。
The invention according to claim 3
Ingredient composition further
Mo: 0.02-1.0%
Cu: 0.05 to 1.0%,
The high-strength cold-rolled steel sheet excellent in the balance between elongation and stretch flangeability according to claim 1 or 2, comprising Ni: 0.05 to 1.0%, or one or more.

請求項4に記載の発明は、
更に、
Ca:0.0005〜0.01%、および/または
Mg:0.0005〜0.01%
を含むものである請求項1〜3のいずれか1項に記載の伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板である。
The invention according to claim 4
Furthermore,
Ca: 0.0005 to 0.01% and / or Mg: 0.0005 to 0.01%
The high-strength cold-rolled steel sheet having an excellent balance between elongation and stretch flangeability according to any one of claims 1 to 3.

請求項5に記載の発明は、
請求項1〜4のいずれか1項に示す成分組成を有する鋼材を、下記(1)〜(4)に示す各条件で、熱間圧延した後、冷間圧延し、その後、焼鈍し、さらに焼戻しすることを特徴とする伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板の製造方法である。
(1) 熱間圧延条件
仕上げ圧延終了温度:Ar点以上
巻取温度:450〜700℃
(2) 冷間圧延条件
冷間圧延率:20〜80%
(3) 焼鈍条件
600〜Ac1℃の温度域を、下記式1および式2をともに満足する昇温パターンで昇温し、焼鈍加熱温度:[(8×Ac1+2×Ac3)/10]〜1000℃にて、焼鈍保持時間:3600s以下保持した後、焼鈍加熱温度から直接Ms点以下の温度まで50℃/s以上の冷却速度で急冷するか、または、焼鈍加熱温度から、焼鈍加熱温度未満で600℃以上の温度(「第1冷却終了温度」という。)まで1℃/s以上50℃/s未満の冷却速度(「第1冷却速度」という。)で徐冷した後、Ms点以下の温度(「第2冷却終了温度」という。)まで50℃/s以下の冷却速度(「第2冷却速度」という。)で急冷する。
(4) 焼戻し条件
上記焼鈍冷却後の温度から焼戻し加熱温度:420℃以上670℃未満までの間を5℃/s超の加熱速度で加熱し、[焼戻し加熱温度−10℃]〜焼戻し加熱温度の間の温度領域に存在する時間(「焼戻し保持時間」という。):30s以下とした後、5℃/s超の冷却速度で冷却する。

Figure 2010255090
The invention described in claim 5
A steel material having the composition shown in any one of claims 1 to 4 is hot-rolled under the conditions shown in the following (1) to (4), then cold-rolled, and then annealed. It is a method for producing a high-strength cold-rolled steel sheet having an excellent balance between elongation and stretch flangeability, characterized by tempering.
(1) Hot rolling conditions Finish rolling end temperature: Ar 3 points or more Winding temperature: 450-700 ° C
(2) Cold rolling conditions Cold rolling rate: 20-80%
(3) Annealing conditions The temperature range of 600 to Ac1 ° C. is raised in a temperature rising pattern that satisfies both the following formulas 1 and 2, and the annealing heating temperature: [(8 × Ac1 + 2 × Ac3) / 10] to 1000 ° C. In the annealing holding time: after holding at 3600 s or less, quench from the annealing heating temperature directly to the temperature below the Ms point at a cooling rate of 50 ° C./s or from the annealing heating temperature to below 600 at the annealing heating temperature. After cooling slowly at a cooling rate (referred to as “first cooling rate”) of 1 ° C./s or more and less than 50 ° C./s until a temperature equal to or higher than 0 ° C. (referred to as “first cooling end temperature”), a temperature below the Ms point (It is referred to as “second cooling end temperature”) and is rapidly cooled at a cooling rate of 50 ° C./s or less (referred to as “second cooling rate”).
(4) Tempering conditions The temperature after the annealing cooling to the tempering heating temperature: between 420 ° C. and less than 670 ° C. is heated at a heating rate of 5 ° C./s, and [tempering heating temperature−10 ° C.] to tempering heating temperature. Time existing in the temperature region between (referred to as “tempering holding time”): 30 seconds or less, and then cooled at a cooling rate of more than 5 ° C./s.
Figure 2010255090

本発明によれば、主として、軟質第1相であるフェライトと、硬質第2相である、焼戻しマルテンサイトおよび/または焼戻しベイナイトからなる複相組織鋼において、フェライト中の歪量を制御するとともに、変形能の高い硬質第2相を適量導入し、さらにフェライトと硬質第2相の界面に存在するセメンタイト粒子の分布状態を制御することで、伸びを確保しつつ、伸びフランジ性を改善することが可能となり、伸びと伸びフランジ性のバランスが高められた、より成形性に優れた高強度鋼板を提供できるようになった。   According to the present invention, in the dual phase structure steel mainly composed of ferrite as a soft first phase and tempered martensite and / or tempered bainite as a hard second phase, the amount of strain in the ferrite is controlled, By introducing an appropriate amount of hard second phase with high deformability and further controlling the distribution of cementite particles present at the interface between ferrite and hard second phase, it is possible to improve stretch flangeability while ensuring elongation. This has made it possible to provide a high-strength steel sheet with a better balance between elongation and stretch-flangeability and with better formability.

KAM値の頻度分布を示すグラフ図である。It is a graph which shows frequency distribution of a KAM value.

本発明者らは、主として、軟質第1相であるフェライトと、硬質第2相である、焼戻しマルテンサイトおよび/または焼戻しベイナイト(以下、「焼戻しマルテンサイト等」ということあり。)からなる複相組織を有する高強度鋼板に着目し、伸びを確保しつつ伸びフランジ性を改善できれば、上記要望レベルを満足しうる高強度鋼板が得られると考え、強度と伸びと伸びフランジ性の間のバランスに及ぼす各種要因の影響を調査するなど鋭意検討を行ってきた。その結果、フェライトの割合のみならず、該フェライト中の歪量を制御するとともに、硬質第2相の変形能を制御し、さらに該フェライトと硬質第2相の界面に析出するセメンタイトを微細化することで、伸びを確保しつつ伸びフランジ性を向上できることを見出し、該知見に基づいて本発明を完成するに至った。   The inventors of the present invention mainly include a composite phase composed of ferrite, which is a soft first phase, and tempered martensite and / or tempered bainite (hereinafter, sometimes referred to as “tempered martensite”) which is a hard second phase. Focusing on the high-strength steel sheet with a structure, if the stretch flangeability can be improved while securing the elongation, it is considered that a high-strength steel sheet that can satisfy the above-mentioned desired level can be obtained, and the balance between strength, elongation and stretch flangeability We have conducted intensive studies such as investigating the effects of various factors. As a result, not only the ratio of ferrite but also the amount of strain in the ferrite is controlled, the deformability of the hard second phase is controlled, and the cementite precipitated at the interface between the ferrite and the hard second phase is further refined. Thus, it has been found that stretch flangeability can be improved while securing elongation, and the present invention has been completed based on this finding.

以下、まず本発明鋼板を特徴づける組織について説明する。   Hereinafter, the structure characterizing the steel sheet of the present invention will be described first.

〔本発明鋼板の組織〕
上述したとおり、本発明鋼板は、上記特許文献2、3と近似の複相組織をベースとするものであるが、特に、フェライト中の歪量を制御するとともに、硬質第2相の変形能を制御し、さらにフェライトと硬質第2相の界面に析出したセメンタイト粒子の分布状態が制御されている点で、上記特許文献2、3の鋼板とは相違している。
[Structure of the steel sheet of the present invention]
As described above, the steel sheet of the present invention is based on a multiphase structure similar to those of Patent Documents 2 and 3 above. In particular, while controlling the amount of strain in ferrite and the deformability of the hard second phase, It is different from the steel sheets of Patent Documents 2 and 3 in that it is controlled and the distribution state of cementite particles precipitated at the interface between the ferrite and the hard second phase is controlled.

<軟質第1相であるフェライト:面積率で10〜80%>
フェライト−焼戻しマルテンサイト等の複相組織鋼では、変形は主として変形能の高いフェライトが受け持つ。そのため、フェライト−焼戻しマルテンサイト等の複相組織鋼の伸びは主としてフェライトの面積率で決定される。
<Ferrite as soft first phase: 10 to 80% in area ratio>
In a multiphase steel such as ferrite-tempered martensite, deformation is mainly handled by ferrite having high deformability. Therefore, the elongation of the duplex steel such as ferrite-tempered martensite is mainly determined by the area ratio of ferrite.

目標とする伸びを確保するためには、フェライトの面積率は10%以上(好ましくは15%以上、さらに好ましくは25%以上)が必要である。ただし、フェライトが過剰になると強度が確保できなくなるので、フェライトの面積率は80%以下(好ましくは70%以下、さらに好ましくは60%以下)とする。   In order to ensure the target elongation, the area ratio of ferrite needs to be 10% or more (preferably 15% or more, more preferably 25% or more). However, since the strength cannot be secured if the ferrite is excessive, the area ratio of the ferrite is 80% or less (preferably 70% or less, more preferably 60% or less).

なお、フェライト−焼戻しマルテンサイト等の複相組織鋼においては、強度と伸びのバランスは、フェライトの面積率だけでなく、フェライトの存在形態にも依存する。すなわち、フェライト粒子同士が連結している状態では、変形能の高いフェライト側に応力が集中し、変形をフェライトのみが担うため、強度と伸びの適切なバランスが得られにくい。一方、フェライト粒子が、硬質第2相である、焼戻しマルテンサイト粒子および/またはベイナイト粒子に囲まれていると、この硬質第2相が強制的に変形させられるため、該硬質第2相も変形を担うようになり、強度と伸びのバランスが改善される。   In a multiphase structure steel such as ferrite-tempered martensite, the balance between strength and elongation depends not only on the area ratio of ferrite but also on the presence form of ferrite. That is, in a state where the ferrite particles are connected to each other, stress concentrates on the ferrite side having high deformability and only the ferrite bears deformation, so that it is difficult to obtain an appropriate balance between strength and elongation. On the other hand, if the ferrite particles are surrounded by tempered martensite particles and / or bainite particles, which are the hard second phase, the hard second phase is forcibly deformed, so the hard second phase is also deformed. The balance between strength and elongation is improved.

フェライトの存在形態は、例えば、面積40000μm以上の領域において、総長1000μmの線分が、フェライト粒界(フェライト粒子同士の界面)またはフェライト−硬質第2相界面と交差する点の数で評価することができる。上記作用を有効に発揮させるための、フェライトの存在形態の好ましい条件は、(「フェライト粒界との交点数」)/(「フェライト粒界との交点数」+「フェライト−硬質第2相界面との交点数」)が0.5以下である。 The existence form of ferrite is evaluated by, for example, the number of points where a line segment having a total length of 1000 μm intersects a ferrite grain boundary (interface between ferrite particles) or a ferrite-hard second phase interface in a region having an area of 40000 μm 2 or more. be able to. In order to effectively exhibit the above action, the preferable condition of the existence form of ferrite is (“number of intersections with ferrite grain boundaries”) / (number of intersections with ferrite grain boundaries) + “ferrite-hard second phase interface” The number of intersections ”) is 0.5 or less.

<残留オーステナイト、マルテンサイト、および、残留オーステナイトとマルテンサイトの混合組織:面積率の合計で5%未満(0%を含む)、
残部:第2相である、焼戻しマルテンサイトおよび/または焼戻しベイナイトからなる組織>
強度を確保しつつ脆化を防止するには、フェライトを除く領域を、主としてマルテンサイトおよび/またはベイナイトが焼戻しされた組織(焼戻しマルテンサイトおよび/または焼戻しベイナイトからなる組織)にすることが有効である。その際、残留オーステナイトや焼戻しされていないマルテンサイト(以下、単に「マルテンサイト」の表記は、焼戻しされていないマルテンサイトを意味するものとする。)が存在すると、その周囲に応力が集中し、破壊に至りやすくなるので、残留オーステナイト、マルテンサイトおよびそれらの混合組織をできるだけ少なくすることで伸びフランジ性の劣化を防止できる。
<Retained austenite, martensite, and mixed structure of retained austenite and martensite: less than 5% (including 0%) in total area ratio,
Remainder: second phase, tempered martensite and / or tempered bainite>
In order to prevent embrittlement while securing strength, it is effective to make the region excluding ferrite mainly a structure tempered with martensite and / or bainite (structure composed of tempered martensite and / or tempered bainite). is there. At that time, if there is residual austenite or tempered martensite (hereinafter, “Martensite” simply means martensite that has not been tempered), stress concentrates around it, Since breakage is likely to occur, deterioration of stretch flangeability can be prevented by reducing residual austenite, martensite, and their mixed structure as much as possible.

上記作用を有効に発揮させるためには、残留オーステナイト、マルテンサイトおよびそれらの混合組織は、それらの合計の面積率で5%未満(好ましくは0%)とし、残部を、第2相である、焼戻しマルテンサイトおよび/または焼戻しベイナイトからなる組織にする。   In order to effectively exhibit the above action, the residual austenite, martensite, and the mixed structure thereof are less than 5% (preferably 0%) in the total area ratio, and the balance is the second phase. The structure is composed of tempered martensite and / or tempered bainite.

<KAM値0.4°以下の比率XKAM≦0.4°と、フェライト面積率Vαとの関係:XKAM≦0.4°/Vα≧0.8、
KAM値0.6〜0.8°の比率XKAM=0.6〜0.8°:10〜20%>
複相組織鋼の強度と伸びのバランスは、一般的にフェライト面積率と硬質第2相の変形能に依存する。一方、フェライト中の歪量は伸びに大きな影響を及ぼし、フェライト面積率が一定の場合、該歪量が大きければ伸びが低下する。
<Relationship between ratio X KAM ≦ 0.4 ° with KAM value of 0.4 ° or less and ferrite area ratio V α : X KAM ≦ 0.4 ° / V α ≧ 0.8,
Ratio of KAM value 0.6 to 0.8 ° X KAM = 0.6 to 0.8 ° : 10 to 20%>
The balance between the strength and elongation of the dual phase structure steel generally depends on the ferrite area ratio and the deformability of the hard second phase. On the other hand, the amount of strain in the ferrite has a large effect on the elongation. When the ferrite area ratio is constant, the elongation decreases if the amount of strain is large.

強度と伸びのバランスだけを考慮した場合には、フェライト中に歪が存在することによる伸びの低下は、フェライト面積率を増加させて伸びを改善し、硬質第2相の焼戻しの度合いを低下させて強度を確保することで、強度と伸びのバランスは確保できる。   When considering only the balance between strength and elongation, the decrease in elongation due to the presence of strain in ferrite improves the elongation by increasing the ferrite area ratio and decreases the degree of tempering of the hard second phase. As a result, the balance between strength and elongation can be secured.

ところが強度と伸びに加えて伸びフランジ性をも考慮した場合には、上記のようにフェライト中に歪が残存することに伴い伸びと強度のバランスを確保するためにフェライト面積率の増加、硬質第2相の強度上昇という処理を行うと、硬質第2相の変形能が低下するため、フェライトと硬質第2相の界面にひずみが集中し、伸びフランジ性が劣化することがわかった。   However, when considering the stretch flangeability in addition to the strength and elongation, as the strain remains in the ferrite as described above, the ferrite area ratio is increased to ensure a balance between the elongation and the strength. It was found that when the treatment of increasing the strength of the two phases is performed, the deformability of the hard second phase is reduced, so that strain concentrates on the interface between the ferrite and the hard second phase, and the stretch flangeability deteriorates.

この知見より、フェライト中の歪量を極力少なくすれば、同じ、強度と伸びのバランスを確保するのに必要なフェライト面積率を減少させて硬質第2相の変形能を高めることができるため、伸びフランジ性を高められ、その結果、強度と伸びと伸びフランジ性のバランスを改善できることがわかった。   From this finding, if the amount of strain in the ferrite is reduced as much as possible, it is possible to increase the deformability of the hard second phase by reducing the ferrite area ratio necessary to secure the same balance between strength and elongation. It has been found that the stretch flangeability can be improved, and as a result, the balance between strength, stretch and stretch flangeability can be improved.

つまり、一定強度を確保しつつ、伸びと伸びフランジ性を確保するには、フェライト中の歪量を小さくすることと、硬質第2相の変形能を高めることが重要なポイントとなる。   That is, in order to ensure elongation and stretch flangeability while ensuring a constant strength, it is important to reduce the amount of strain in ferrite and to increase the deformability of the hard second phase.

フェライト中の歪量と硬質第2相の変形能の評価には、KAM値を用いることが有効である。   It is effective to use the KAM value for evaluating the strain amount in ferrite and the deformability of the hard second phase.

KAM値は、対象となる測定点とその周囲の測定点との間における結晶回転量(結晶方位差)の平均値であり、この値が大きいと結晶中に歪が存在することを示す。図1に、本発明鋼について走査型電子顕微鏡で一定領域を走査して求めたKAM値の頻度分布曲線を例示するが、このようにKAM値の頻度分布曲線は2つのピークを示す。KAM値が0.2°付近の第1のピークは、フェライト中の歪によるものであり、KAM値が0.6°付近の第2のピークは硬質第2相の歪によるものである。各相中の歪が大きくなるとそれぞれのピークが高KAM値側に移動する。一方、例えばフェライトの面積率が増加すると第1のピーク高さが上昇する。これらの現象を勘案し、フェライト中の歪量および硬質第2相の変形能を簡便に表す指標として、XKAM≦0.4°/VαおよびXKAM=0.6〜0.8°をそれぞれ導入した。 The KAM value is an average value of the amount of crystal rotation (crystal orientation difference) between the target measurement point and the surrounding measurement points, and when this value is large, it indicates that strain exists in the crystal. FIG. 1 illustrates a KAM value frequency distribution curve obtained by scanning a certain region with a scanning electron microscope for the steel of the present invention. Thus, the KAM value frequency distribution curve shows two peaks. The first peak with a KAM value near 0.2 ° is due to strain in the ferrite, and the second peak with a KAM value near 0.6 ° is due to strain in the hard second phase. As the strain in each phase increases, each peak moves to the high KAM value side. On the other hand, for example, when the area ratio of ferrite increases, the first peak height increases. Taking these phenomena into consideration, X KAM ≦ 0.4 ° / V α and X KAM = 0.6 to 0.8 ° are used as indices that simply represent the amount of strain in ferrite and the deformability of the hard second phase . Each was introduced.

ここに、XKAM≦0.4°は、全頻度に対する、KAM値が0.4°以下の頻度の比率であり、Vαは、フェライトの面積率であり、XKAM=0.6〜0.8°は、全頻度に対する、KAM値が0.6〜0.8°の頻度の比率である。 Here, X KAM ≦ 0.4 ° is the ratio of the frequency with a KAM value of 0.4 ° or less to the total frequency, V α is the area ratio of ferrite, and X KAM = 0.6 to 0 .8 ° is the ratio of the frequency with a KAM value of 0.6 to 0.8 ° with respect to the total frequency.

KAM≦0.4°、すなわち全頻度に対する、KAM値が0.4°以下の頻度の比率は、上述したことから、フェライト中の歪量およびフェライトの面積率の関数と考えられるので、フェライトの面積率Vαで割ることにより、フェライト中の歪量を表す指標としたものである。フェライト中の歪量が増加すると、第1のピーク位置が高KAM値側に移動し、XKAM≦0.4°/Vαは小さくなる。 X KAM ≦ 0.4 ° , that is, the ratio of the frequency with a KAM value of 0.4 ° or less to the total frequency is considered to be a function of the amount of strain in the ferrite and the area ratio of the ferrite. by dividing by the area ratio V alpha, it is obtained as an index representing the amount of strain in ferrite. As the amount of strain in the ferrite increases, the first peak position moves to the high KAM value side, and X KAM ≦ 0.4 ° / V α decreases.

フェライト中の歪量をできるだけ少なくするため、XKAM≦0.4°/Vαは0.8以上(好ましくは0.9以上、さらに好ましくは1.1以上)とする。つまり、XKAM≦0.4°が30%以上ならば、歪みの小さいフェライトが20%以上存在することを意味する。 In order to minimize the amount of strain in the ferrite, X KAM ≦ 0.4 ° / V α is set to 0.8 or more (preferably 0.9 or more, more preferably 1.1 or more). In other words, if X KAM ≦ 0.4 ° is 30% or more, it means that 20% or more of ferrite with a small strain exists.

また、XKAM=0.6〜0.8°、すなわち全頻度に対する、前記KAM値が0.6〜0.8の頻度の比率は、変形能の高い硬質第2相の量を示しており、この比率が10%以上であれば強度と伸びと伸びフランジ性のバランスを確保できるだけの、硬質第2相の量と変形能を兼ね備えている。一方、前記比率が20%を超えると硬質第2相の量が多くなりすぎるため、伸びが確保できなくなる。 Further, X KAM = 0.6 to 0.8 ° , that is, the ratio of the frequency of the KAM value of 0.6 to 0.8 with respect to the total frequency indicates the amount of the hard second phase having high deformability. If this ratio is 10% or more, the amount of the hard second phase and the deformability are sufficient to ensure a balance between strength, elongation and stretch flangeability. On the other hand, if the ratio exceeds 20%, the amount of the hard second phase becomes too large, so that elongation cannot be secured.

KAM=0.6〜0.8°の好ましい範囲は12〜18%、さらに好ましい範囲は13〜16%である。 A preferable range of X KAM = 0.6 to 0.8 ° is 12 to 18%, and a more preferable range is 13 to 16%.

<前記フェライトと界面を接する硬質第2相中に存在する、円相当直径0.1μm以上のセメンタイト粒子の分散状態:該硬質第2相1μm当たり3個以下>
上記のようにKAM値に関する要件を満足させることでフェライトと硬質第2相の界面での破壊を抑制できた場合、次に破壊の起点になるのは、フェライトと界面を接する硬質第2相中に析出したセメンタイトになる。このセメンタイト粒子が粗大になると変形時の応力集中が過大となり伸びフランジ性が確保できなくなるので、伸びフランジ性を確保するためには、セメンタイト粒子のサイズと存在密度を制御する必要がある。
<Dispersion state of cementite particles having an equivalent circle diameter of 0.1 μm or more present in the hard second phase in contact with the ferrite interface: 3 or less per 1 μm 2 of the hard second phase>
When the fracture at the interface between the ferrite and the hard second phase can be suppressed by satisfying the requirements regarding the KAM value as described above, the next starting point of the fracture is in the hard second phase contacting the ferrite and the interface It becomes cementite deposited on the surface. If the cementite particles become coarse, the stress concentration during deformation becomes excessive and stretch flangeability cannot be secured. Therefore, in order to secure stretch flangeability, it is necessary to control the size and density of the cementite particles.

伸びフランジ性を確保するためには、円相当直径0.1μm以上の粗大なセメンタイト粒子は、硬質第2相1μm当たり3個以下、好ましくは2.5個以下、さらに好ましくは2個以下に制限する。 In order to ensure stretch flangeability, the number of coarse cementite particles having an equivalent circle diameter of 0.1 μm or more is 3 or less, preferably 2.5 or less, more preferably 2 or less, per 1 μm 2 of the hard second phase. Restrict.

以下、各相の面積率、KAM値、セメンタイト粒子のサイズおよびその存在密度、ならびに、フェライトの存在形態の測定方法について説明する。   Hereinafter, a method for measuring the area ratio of each phase, the KAM value, the size and density of cementite particles, and the existence form of ferrite will be described.

〔各相の面積率の測定方法〕
まず、各相の面積率については、各供試鋼板を鏡面研磨し、3%ナイタール液で腐食して金属組織を顕出させた後、概略40μm×30μm領域5視野について倍率2000倍の走査型電子顕微鏡(SEM)像を観察し、点算法で1視野につき100点の測定を行ってフェライトの面積を求めた。また、画像解析によってセメンタイトを含む領域を硬質第2相とし、残りの領域を、残留オーステナイト、マルテンサイト、および、残留オーステナイトとマルテンサイトの混合組織とした。そして、各領域の面積比率より各相の面積率を算出した。
[Measurement method of area ratio of each phase]
First, regarding the area ratio of each phase, each test steel sheet was mirror-polished, corroded with a 3% nital solution to reveal the metal structure, and then a scanning type with a magnification of 2000 times for approximately 5 fields of 40 μm × 30 μm area. An electron microscope (SEM) image was observed and the area of the ferrite was determined by measuring 100 points per field of view by a point calculation method. In addition, a region containing cementite was determined as a hard second phase by image analysis, and the remaining region was retained austenite, martensite, and a mixed structure of retained austenite and martensite. And the area ratio of each phase was computed from the area ratio of each area | region.

〔KAM値の測定方法〕
各供試鋼板を鏡面研磨し、さらに電解研磨した後、走査型電子顕微鏡(Philips社製XL30S−FEG)にて、1step 0.2μmで500μm×500μmの領域の電子線後方散乱回折像を測定し、それを解析ソフト(テクセムラボラトリーズ社製OIMシステム)を用いて、各測定点におけるKAM値を求めた。
[Measurement method of KAM value]
Each test steel sheet was mirror-polished and further electropolished, and then an electron beam backscatter diffraction image in a 500 μm × 500 μm region was measured at 1 step 0.2 μm with a scanning electron microscope (Philips XL30S-FEG). The KAM value at each measurement point was determined using analysis software (Osem system manufactured by Tecsem Laboratories).

〔セメンタイト粒子のサイズおよびその存在密度の測定方法〕
セメンタイト粒子のサイズおよびその存在密度については、各供試鋼板の抽出レプリカサンプルを作成し、2.4μm×1.6μmの領域3視野について倍率50000倍の透過型電子顕微鏡(TEM)像を観察し、画像のコントラストから白い部分をセメンタイト粒子と判別してマーキングし、画像解析ソフトにて、前記マーキングした各セメンタイト粒子の面積Aから円相当直径D(D=2×(A/π)1/2)を算出するとともに、単位面積あたりに存在する所定のサイズのセメンタイト粒子の個数を求めた。なお、複数個のセメンタイト粒子が重なり合う部分は観察対象から除外した。
[Method of measuring the size and density of cementite particles]
About the size of cementite particles and the density of their existence, an extraction replica sample of each test steel plate was prepared, and a transmission electron microscope (TEM) image at a magnification of 50000 times was observed for 3 fields of 2.4 μm × 1.6 μm. From the contrast of the image, the white portion is marked as cementite particles and marked, and the image analysis software calculates the equivalent circle diameter D (D = 2 × (A / π) 1/2 from the area A of each marked cementite particle. ) And the number of cementite particles of a predetermined size present per unit area. A portion where a plurality of cementite particles overlap was excluded from the observation target.

〔フェライトの存在形態の測定方法〕
各供試鋼板を鏡面に研磨し、3%ナイタール液で腐食して金属組織を顕出させた後、80μm×60μm領域10視野中に、それぞれ50μmの線分を20本引き、それらの線分と交わるフェライト粒界の数Nαおよびフェライト−硬質第2相界面の数Nα−TMを測定する。そして、フェライトの存在形態の評価指数として、粒界および界面に占めるフェライト粒界の割合Nα/(Nα+Nα−TM)を求める。Nα/(Nα+Nα−TM)の値が小さいということは、フェライト粒子とフェライト粒子が連続している領域が少ないこと、つまり、フェライト粒子が連続せず、硬質第2相に囲まれていることを示している。
[Method for measuring the presence of ferrite]
Each test steel plate was polished to a mirror surface and corroded with 3% nital solution to reveal the metal structure. Then, 20 lines of 50 μm were drawn in 10 fields of 80 μm × 60 μm region, The number N α of ferrite grain boundaries intersecting with and the number N α-TM of the ferrite-hard second phase interface are measured. Then, the ratio N α / (N α + N α−TM ) of the ferrite grain boundary occupying the grain boundary and the interface is obtained as an evaluation index of the existence form of the ferrite. The small value of N α / (N α + N α-TM ) means that there are few regions where the ferrite particles and ferrite particles are continuous, that is, the ferrite particles are not continuous and are surrounded by the hard second phase. It shows that.

次に、本発明鋼板を構成する成分組成について説明する。以下、化学成分の単位はすべて質量%である。   Next, the component composition which comprises this invention steel plate is demonstrated. Hereinafter, all the units of chemical components are mass%.

〔本発明鋼板の成分組成〕
C:0.05〜0.30%
Cは、硬質第2相の面積率および該硬質第2相中に析出するセメンタイト量に影響し、強度、伸びおよび伸びフランジ性に影響する重要な元素である。0.05%未満では強度が確保できなくなる。一方、0.30%超では焼入れ時に歪みが多量に入ることに加え、セメンタイトの量が多くなり転位が回復しにくくなることから、転位が抜けて変形能が高まった硬質第2相であることを示す評価式であるXKAM=0.6〜0.8°≧10%が得られなくなる。この評価式を満たすように、焼戻し条件を高温ないし長時間化するとセメンタイトが粗大化し、強度や伸びフランジ性が確保できなくなる。
[Component composition of the steel sheet of the present invention]
C: 0.05-0.30%
C is an important element that affects the area ratio of the hard second phase and the amount of cementite precipitated in the hard second phase, and affects the strength, elongation, and stretch flangeability. If it is less than 0.05%, the strength cannot be secured. On the other hand, if it exceeds 0.30%, in addition to a large amount of distortion during quenching, the amount of cementite increases and the dislocations are difficult to recover, so that the dislocation is lost and the hard second phase has improved deformability. X KAM = 0.6 to 0.8 ° ≧ 10%, which is an evaluation formula indicating the above, cannot be obtained. If the tempering conditions are increased to a high temperature or a long time so as to satisfy this evaluation formula, the cementite becomes coarse, and the strength and stretch flangeability cannot be secured.

C含有量の範囲は、好ましくは0.10〜0.25%、さらに好ましくは0.14〜0.20%である。   The range of C content is preferably 0.10 to 0.25%, more preferably 0.14 to 0.20%.

Si:3.0%以下(0%を含む)
Siは、焼戻し時におけるセメンタイト粒子の粗大化を抑制する効果を有し、伸びと伸びフランジ性の両立に寄与する有用な元素である。3.0%超では加熱時におけるオーステナイトの形成を阻害するため、硬質第2相の面積率を確保できず、伸びフランジ性を確保できない。Si含有量の範囲は、好ましくは0.50〜2.5%、さらに好ましくは1.0〜2.2%である。
Si: 3.0% or less (including 0%)
Si has an effect of suppressing the coarsening of cementite particles during tempering, and is a useful element that contributes to both elongation and stretch flangeability. If it exceeds 3.0%, the formation of austenite at the time of heating is inhibited, so that the area ratio of the hard second phase cannot be ensured and stretch flangeability cannot be ensured. The range of Si content becomes like this. Preferably it is 0.50 to 2.5%, More preferably, it is 1.0 to 2.2%.

Mn:0.1〜5.0%
Mnは、上記Siと同様、焼戻し時におけるセメンタイトの粗大化を抑制する効果を有することに加え、硬質第2相の変形能を高めることで、伸びと伸びフランジ性の両立に寄与する。また、焼入れ性を高めることで、硬質第2相が得られる製造条件の範囲を広げる効果もある。0.1%未満では上記効果が十分に発揮されないため、伸びと伸びフランジ性を両立できず、一方、5.0%超とすると逆変態温度が低くなりすぎ、再結晶ができなくなるため、強度と伸びのバランスが確保できなくなる。Mn含有量の範囲は、好ましくは0.50〜2.5%、さらに好ましくは1.2〜2.2%である。
Mn: 0.1 to 5.0%
Mn contributes to both elongation and stretch flangeability by increasing the deformability of the hard second phase, in addition to having the effect of suppressing coarsening of cementite during tempering, similar to Si. Moreover, there exists an effect which expands the range of the manufacturing conditions from which a hard 2nd phase is obtained by improving hardenability. If the content is less than 0.1%, the above effects cannot be sufficiently exhibited, so that it is impossible to achieve both elongation and stretch flangeability. On the other hand, if it exceeds 5.0%, the reverse transformation temperature becomes too low and recrystallization becomes impossible. And the balance of growth cannot be secured. The range of Mn content is preferably 0.50 to 2.5%, more preferably 1.2 to 2.2%.

P:0.1%以下
Pは不純物元素として不可避的に存在し、固溶強化により強度の上昇に寄与するが、 旧オーステナイト粒界に偏析し、粒界を脆化させることで伸びフランジ性を劣化させるので、0.1%以下とする。好ましくは0.05%以下、さらに好ましくは0.03%以下である。
P: 0.1% or less P is inevitably present as an impurity element and contributes to an increase in strength by solid solution strengthening, but segregates at the prior austenite grain boundaries and embrittles the grain boundaries to increase stretch flangeability. Since it deteriorates, it is made 0.1% or less. Preferably it is 0.05% or less, More preferably, it is 0.03% or less.

S:0.005%以下
Sも不純物元素として不可避的に存在し、MnS介在物を形成し、穴拡げ時に亀裂の起点となることで伸びフランジ性を低下させるので、0.005%以下とする。より好ましくは0.003%以下である。
S: 0.005% or less S is also unavoidably present as an impurity element, forms MnS inclusions, and becomes a starting point of cracks when expanding holes, thereby reducing stretch flangeability. . More preferably, it is 0.003% or less.

N:0.01%以下
Nも不純物元素として不可避的に存在し、歪時効により伸びと伸びフランジ性を低下させるので、低い方が好ましく、0.01%以下とする。
N: 0.01% or less N is also unavoidably present as an impurity element and lowers the elongation and stretch flangeability by strain aging, so the lower one is preferable, and the content is made 0.01% or less.

Al:0.001〜0.10%
Alは脱酸元素として添加され、介在物を微細化する効果を有する。また、Nと結合してAlNを形成し、歪時効の発生に寄与する固溶Nを低減させることで伸びや伸びフランジ性の劣化を防止する。0.001%未満では鋼中に固溶Nが残存するため、歪時効が起こり、伸びと伸びフランジ性を確保できず、一方、0.1%超では加熱時におけるオーステナイトの形成を阻害するため、硬質第2相の面積率を確保できず、伸びフランジ性を確保できなくなる。
Al: 0.001 to 0.10%
Al is added as a deoxidizing element and has the effect of making inclusions finer. Moreover, it combines with N to form AlN and reduces the solid solution N that contributes to the occurrence of strain aging, thereby preventing elongation and stretch flangeability from being deteriorated. If it is less than 0.001%, solute N remains in the steel, so strain aging occurs, and elongation and stretch flangeability cannot be secured. On the other hand, if it exceeds 0.1%, the formation of austenite during heating is inhibited. The area ratio of the hard second phase cannot be secured, and the stretch flangeability cannot be secured.

本発明の鋼は上記成分を基本的に含有し、残部が実質的に鉄及び不純物であるが、その他、本発明の作用を損なわない範囲で、以下の許容成分を添加することができる。   The steel of the present invention basically contains the above components, and the balance is substantially iron and impurities. In addition, the following allowable components can be added as long as the effects of the present invention are not impaired.

Cr:0.01〜1.0%
Crは、セメンタイトの成長を抑制することで、伸びフランジ性を改善できる有用な元素である。0.01%未満の添加では上記のような作用を有効に発揮しえず、一方、1.0%を超える添加では粗大なCrが形成されるようになり、伸びフランジ性が劣化してしまう。
Cr: 0.01 to 1.0%
Cr is a useful element that can improve stretch flangeability by suppressing the growth of cementite. If the addition is less than 0.01%, the above-described effects cannot be exhibited effectively. On the other hand, if the addition exceeds 1.0%, coarse Cr 7 C 3 is formed, and the stretch flangeability deteriorates. Resulting in.

Mo:0.02〜1.0%
Cu:0.05〜1.0%、
Ni:0.05〜1.0%の1種または2種以上
これらの元素は、固溶強化により成形性を劣化させずに強度を改善するのに有用な元素である。各元素とも0.05%未満の添加では上記のような作用を有効に発揮しえず、一方、各元素とも1.0%を超える添加ではコストが高くなりすぎる。
Mo: 0.02-1.0%
Cu: 0.05 to 1.0%,
Ni: One or more of 0.05 to 1.0% These elements are useful elements for improving strength without degrading formability by solid solution strengthening. The addition of less than 0.05% for each element cannot effectively exhibit the above-described effect, while the addition of more than 1.0% for each element results in too high a cost.

Ca:0.0005〜0.01%、および/または、Mg:0.0005〜0.01%
これらの元素は、介在物を微細化し、破壊の起点を減少させることで、伸びフランジ性を向上させるのに有用な元素である。各元素とも0.0005%未満の添加では上記のような作用を有効に発揮しえず、一方、各元素とも0.01%を超える添加では逆に介在物が粗大化し、伸びフランジ性が低下する。
Ca: 0.0005 to 0.01% and / or Mg: 0.0005 to 0.01%
These elements are useful elements for improving stretch flangeability by miniaturizing inclusions and reducing the starting point of fracture. If less than 0.0005% of each element is added, the above effect cannot be exhibited effectively. On the other hand, if more than 0.01% of each element is added, inclusions are coarsened and stretch flangeability is lowered. To do.

次に、本発明鋼板を得るための好ましい製造方法を以下に説明する。   Next, the preferable manufacturing method for obtaining this invention steel plate is demonstrated below.

〔本発明鋼板の好ましい製造方法(その1)〕
上記のような冷延鋼板を製造するには、まず、上記成分組成を有する鋼を溶製し、造塊または連続鋳造によりスラブとしてから熱間圧延を行う。熱間圧延条件としては、仕上げ圧延の終了温度をAr点以上に設定し、適宜冷却を行った後、450〜700℃の範囲で巻き取る。熱間圧延終了後は酸洗してから冷間圧延を行うが、冷間圧延率(以下、「冷延率」ともいう。)は30%程度以上とするのがよい。
[Preferred production method of the steel sheet of the present invention (part 1)]
In order to manufacture the cold-rolled steel sheet as described above, first, steel having the above composition is melted and formed into a slab by ingot forming or continuous casting and then hot-rolled. As hot rolling conditions, the finishing temperature of finish rolling is set to Ar 3 point or higher, and after appropriate cooling, winding is performed in a range of 450 to 700 ° C. After hot rolling is finished, pickling is performed and then cold rolling is performed. The cold rolling rate (hereinafter also referred to as “cold rolling rate”) is preferably about 30% or more.

そして、上記冷間圧延後、引き続き、焼鈍、さらには焼戻しを行う。   Then, after the cold rolling, annealing and further tempering are performed.

[焼鈍条件]
焼鈍条件としては、600〜Ac1℃の温度域を(Ac1−600)s以上の滞在時間で昇温し、焼鈍加熱温度:[(8×Ac1+2×Ac3)/10]〜1000℃にて、焼鈍保持時間:3600s以下保持した後、焼鈍加熱温度から直接Ms点以下の温度まで50℃/s以上の冷却速度で急冷するか、または、焼鈍加熱温度から、焼鈍加熱温度未満で600℃以上の温度(第1冷却終了温度)まで1℃/s以上50℃/s未満の冷却速度(第1冷却速度)で徐冷した後、Ms点以下の温度(第2冷却終了温度)まで50℃/s以下の冷却速度(第2冷却速度)で急冷するのがよい。
[Annealing conditions]
As annealing conditions, the temperature range of 600 to Ac1 ° C. was raised with a stay time of (Ac1-600) s or more, and the annealing heating temperature: [(8 × Ac1 + 2 × Ac3) / 10] to 1000 ° C. was annealed. Holding time: After holding for 3600 s or less, quench immediately from the annealing heating temperature to a temperature below the Ms point at a cooling rate of 50 ° C./s or from the annealing heating temperature to a temperature of 600 ° C. or more below the annealing heating temperature. After gradually cooling at a cooling rate (first cooling rate) of 1 ° C./s or more and less than 50 ° C./s to (first cooling end temperature), 50 ° C./s to a temperature below the Ms point (second cooling end temperature) It is preferable to rapidly cool at the following cooling rate (second cooling rate).

<600〜Ac1℃の温度域を(Ac1−600)s以上の滞在時間で昇温>
逆変態前に高温域に長時間滞在させることでフェライトの回復・再結晶を促進させ、 フェライト中のひずみを開放させるためである。
600〜Ac1℃の温度域を200s以上の滞在時間で昇温することが好ましく、1000s以上の滞在時間で昇温することがさらに好ましい。
<Temperature rise in the temperature range of 600 to Ac1 ° C. with a stay time of (Ac1-600) s>
This is to promote the recovery and recrystallization of ferrite by allowing them to stay in a high temperature region for a long time before reverse transformation, thereby releasing the strain in the ferrite.
It is preferable to raise the temperature range of 600 to Ac1 ° C. with a residence time of 200 s or more, and more preferably with a residence time of 1000 s or more.

<焼鈍加熱温度:[(8×Ac1+2×Ac3)/10]〜1000℃にて、焼鈍保持時間:3600s以下保持>
焼鈍加熱時に面積率20%以上の領域をオーステナイトに変態させることにより、その後の冷却時に十分な量の硬質第2相を変態生成させるためである。
<Annealing heating temperature: [(8 × Ac1 + 2 × Ac3) / 10] to 1000 ° C., annealing holding time: 3600 s or less>
This is because a region having an area ratio of 20% or more is transformed into austenite during annealing and thereby a sufficient amount of the hard second phase is transformed during cooling.

焼鈍加熱温度が[(8×Ac1+2×Ac3)/10]℃未満では、焼鈍加熱時においてオーステナイトへの変態量が不足するため、その後の冷却時にオーステナイトから変態生成する硬質第2相の量が確保できなくなり、一方、1000℃を超える加熱は、既存の焼鈍設備では工業的に困難である。   When the annealing heating temperature is less than [(8 × Ac1 + 2 × Ac3) / 10] ° C., the amount of transformation to austenite is insufficient during annealing heating, so that the amount of hard second phase that transforms from austenite during the subsequent cooling is ensured. On the other hand, heating exceeding 1000 ° C. is industrially difficult with existing annealing equipment.

また、焼鈍保持時間が3600sを超えると、生産性が極端に悪化するので好ましくない。   Further, if the annealing holding time exceeds 3600 s, productivity is extremely deteriorated, which is not preferable.

焼鈍加熱温度の好ましい上限は[(1×Ac1+9×Ac3)/10] ℃である。焼鈍加熱段階でフェライトとオーステナイトの混合組織にすると、フェライトがオーステナイトで囲まれた組織になるため、最終組織はフェライトが硬質第2相で囲まれた好ましい組織になる。   A preferable upper limit of the annealing heating temperature is [(1 × Ac1 + 9 × Ac3) / 10] ° C. When a mixed structure of ferrite and austenite is formed in the annealing heating stage, since the ferrite becomes a structure surrounded by austenite, the final structure becomes a preferable structure in which ferrite is surrounded by the hard second phase.

焼鈍加熱保持時間の好ましい下限は60sである。加熱時間を長時間化することでさらにフェライト中の歪を除去することができる。   A preferable lower limit of the annealing heating holding time is 60 s. By increasing the heating time, strain in the ferrite can be further removed.

<Ms点以下の温度まで50℃/s以上の冷却速度で急冷>
冷却中にオーステナイトからフェライトが形成されることを抑制し、硬質第2相を得るためである。
<Rapid cooling at a cooling rate of 50 ° C./s or higher to a temperature below the Ms point>
This is to suppress the formation of ferrite from austenite during cooling and obtain a hard second phase.

Ms点より高い温度で急冷を終了させたり、冷却速度が50℃/s未満になると、ベイナイトが形成されるようになり、鋼板の強度が確保できなくなる。   When the rapid cooling is finished at a temperature higher than the Ms point or when the cooling rate is less than 50 ° C./s, bainite is formed, and the strength of the steel sheet cannot be secured.

<加熱温度未満で600℃以上の温度まで1℃/s以上50℃/s未満の冷却速度で徐冷>
面積率で50%未満のフェライト組織を形成させることにより、伸びフランジ性を確保したまま伸びの改善が図れるためである。
<Slow cooling at a cooling rate of 1 ° C./s or more and less than 50 ° C./s to a temperature of 600 ° C. or more below the heating temperature>
This is because by forming a ferrite structure having an area ratio of less than 50%, the elongation can be improved while the stretch flangeability is secured.

600℃未満の温度または1℃/s未満の冷却速度ではフェライトが過剰に形成され、強度と伸びフランジ性が確保できなくなる。   When the temperature is less than 600 ° C. or the cooling rate is less than 1 ° C./s, ferrite is excessively formed, and the strength and stretch flangeability cannot be secured.

[焼戻し条件]
焼戻し条件としては、上記焼鈍冷却後の温度から焼戻し加熱温度:420℃以上670℃未満までの間を5℃/s超の加熱速度で加熱し、[焼戻し加熱温度−10℃]〜焼戻し加熱温度の間の温度領域に存在する時間(焼戻し保持時間):30s以下とした後、5℃/s超の冷却速度で冷却すればよい。
[Tempering conditions]
As tempering conditions, the temperature after annealing cooling to the tempering heating temperature: between 420 ° C. and less than 670 ° C. is heated at a heating rate of more than 5 ° C./s, and [tempering heating temperature−10 ° C.] to tempering heating temperature. The time existing in the temperature region between (tempering holding time): after 30 seconds or less, it may be cooled at a cooling rate exceeding 5 ° C./s.

フェライトおよび硬質第2相中の歪(転位)の減少速度は温度に強く依存する一方、セメンタイト粒子のサイズは時間に依存する。したがって、歪を開放しながら転位を減少させるためには、焼戻しの温度を高くし、滞在時間を短くすることが有効となる。   The rate of strain (dislocation) reduction in ferrite and hard second phase depends strongly on temperature, while the size of cementite particles depends on time. Therefore, in order to reduce the dislocation while releasing the strain, it is effective to increase the tempering temperature and shorten the staying time.

上記加熱速度ないし冷却速度が5℃/s以下の場合は、加熱ないし冷却中にセメンタイトの核生成・成長が起り、粗大なセメンタイトが形成されるため、伸びフランジ性が確保できなくなる。   When the heating rate or cooling rate is 5 ° C./s or less, nucleation / growth of cementite occurs during heating or cooling, and coarse cementite is formed, so that stretch flangeability cannot be secured.

焼戻し加熱温度が420℃未満では、フェライトないし硬質第2相中の歪が大きく、伸びや伸びフランジ性が確保できなくなる。   If the tempering heating temperature is less than 420 ° C., the strain in the ferrite or hard second phase is large, and it becomes impossible to ensure elongation and stretch flangeability.

一方、焼戻し加熱温度が670℃以上、あるいは、焼戻し保持時間が30sを超えると、硬質第2相の強度が不足し、鋼板の強度が確保できなくなる、もしくはセメンタイトが粗大化し伸びフランジ性が劣化する。   On the other hand, when the tempering heating temperature is 670 ° C. or higher or the tempering holding time exceeds 30 s, the strength of the hard second phase is insufficient, and the strength of the steel sheet cannot be secured, or cementite is coarsened and stretch flangeability deteriorates. .

焼戻し加熱温度の好ましい範囲は450℃以上650℃未満、さらに好ましい範囲は500℃以上600℃未満であり、焼戻し保持時間の好ましい範囲は10s以下、さらに好ましい範囲は5s以下である。   A preferable range of the tempering heating temperature is 450 ° C. or more and less than 650 ° C., a more preferable range is 500 ° C. or more and less than 600 ° C., a preferable range of the tempering holding time is 10 s or less, and a further preferable range is 5 s or less.

〔本発明鋼板の好ましい製造方法(その2)〕
上記〔本発明鋼板の好ましい製造方法(その1)〕ではその[焼鈍条件]において、「600〜Ac1℃の温度域を(Ac1−600)s以上の滞在時間で昇温」すると規定したが、600〜Ac1℃の温度域を、下記式1および式2をともに満足する昇温パターンで昇温するのがより好ましい。なお、その他の製造条件は、上記〔本発明鋼板の好ましい製造方法(その1)〕と同様である(ただし、冷間圧延における冷間圧延率は、上記〔本発明鋼板の好ましい製造方法(その1)〕では「30%以上程度とするのがよい」としたが、本例では、後記初期転位密度との関係を表す式4が成立する範囲である、20〜80%の範囲とする。

Figure 2010255090
[Preferred production method of the steel sheet of the present invention (part 2)]
In the above [Preferred production method of the steel sheet of the present invention (part 1)], the [annealing condition] stipulates that “the temperature range of 600 to Ac1 ° C. is raised in the stay time of (Ac1-600) s”. It is more preferable to raise the temperature in the temperature range of 600 to Ac1 ° C. with a temperature raising pattern that satisfies both the following formulas 1 and 2. The other production conditions are the same as the above [Preferred production method of the steel sheet of the present invention (Part 1)] (however, the cold rolling rate in the cold rolling is the same as that of the preferred production method of the steel sheet of the present invention (part 1). 1)], “it should be about 30% or more”, but in this example, it is in the range of 20 to 80%, which is the range in which Expression 4 representing the relationship with the initial dislocation density described later is satisfied.
Figure 2010255090

すなわち、本発明者らは、上記〔本発明鋼板の好ましい製造方法(その1)〕では焼鈍の際に、逆変態前に高温域に長時間滞在させることでフェライトの回復・再結晶を促進させ、フェライト中のひずみを開放させることを目的として、「600〜Ac1℃の温度域を(Ac1−600)s以上の滞在時間で昇温」することとしていた。   That is, the present inventors promote the recovery and recrystallization of ferrite by annealing for a long time before reverse transformation during annealing in the above-mentioned [Preferred production method of steel sheet of the present invention (part 1)]. For the purpose of releasing the strain in the ferrite, “the temperature range of 600 to Ac1 ° C. was raised with a stay time of (Ac1-600) s or more”.

しかしながら、本発明者らのその後の検討によれば、焼鈍前の鋼板の組織中には、鋼材溶製後の冷却の際や熱間圧延後の冷却の際に析出したセメンタイトが残留することがあり、この鋼板組織中に残留したセメンタイトが焼鈍時の昇温の際に粗大化し、この粗大化したセメンタイトが焼戻し処理後まで持ち込まれ、熱処理後の鋼板の伸びフランジ性を劣化させる可能性があることがわかった。   However, according to the subsequent studies by the present inventors, cementite precipitated during cooling after melting of the steel material or cooling after hot rolling may remain in the structure of the steel sheet before annealing. Yes, the cementite remaining in this steel sheet structure becomes coarse when the temperature rises during annealing, and this coarsened cementite is brought in until after tempering, which may deteriorate the stretch flangeability of the steel sheet after heat treatment. I understood it.

このため、より好ましい焼鈍条件としては、単に、フェライトの回復・再結晶を促進させるだけではなく、焼鈍前の鋼板の組織中に残留するセメンタイトの粗大化を防止しつつ、フェライトの回復・再結晶を促進させるような昇温パターンを採用する必要があると考えた。   For this reason, more preferable annealing conditions are not only to promote the recovery and recrystallization of ferrite, but also to prevent the coarsening of cementite remaining in the structure of the steel sheet before annealing, while recovering and recrystallizing ferrite. We thought that it was necessary to adopt a temperature rising pattern that promoted

そこで、このような昇温パターンを精度良く決定するため、フェライトの回復・再結晶の程度を定量的に表す指標として再結晶率Xと、セメンタイトの粗大化の程度を定量的に表す指標としてセメンタイト粒子半径rを採用し、先ず、これらの指標に及ぼす処理温度および処理時間の影響を調査した。   Therefore, in order to accurately determine such a temperature rising pattern, the recrystallization rate X is used as an index that quantitatively represents the degree of ferrite recovery and recrystallization, and cementite is used as an index that quantitatively represents the degree of cementite coarsening. The particle radius r was adopted, and first, the effects of the treatment temperature and treatment time on these indices were investigated.

ここで、再結晶率Xは、冷延率を変化させることにより初期転位密度ρを変化させた材料を用いて、再結晶温度、時間の影響を検討した結果、下記式1’で表すことができることを見出した。
式1’:X=1−exp[−exp{Aln(DFe)+Aln(ρ)−A}・t](ここに、A、A、A、n:定数)
Here, the recrystallization rate X is expressed by the following formula 1 ′ as a result of examining the effects of the recrystallization temperature and time using a material in which the initial dislocation density ρ 0 is changed by changing the cold rolling rate. I found out that I can.
Formula 1 ′: X = 1−exp [−exp {A 1 ln (D Fe ) + A 2 ln (ρ 0 ) −A 3 } · t n ] (where A 1 , A 2 , A 3 , n: constant)

そして、鉄の自己拡散率DFeは、
式3:DFe=0.0118exp[−281500/{R(T+273)}](m/s) (ここに、T:温度(℃)、R:ガス定数[=8.314kJ/(K・kg−atom)])の関係が成り立つことが知られている(例えば、日本鉄鋼協会編、鉄鋼便覧 第3版、I 基礎、丸善、1981年、p.349参照)。
And the iron self-diffusion rate D Fe is
Formula 3: D Fe = 0.0118exp [-281500 / {R (T + 273)}] (m 2 / s) (where T: temperature (° C.), R: gas constant [= 8.314 kJ / (K · kg-atom)]) is known to hold (see, for example, Japan Iron and Steel Institute, Steel Handbook 3rd Edition, I Fundamentals, Maruzen, 1981, p.349).

また、初期転位密度ρについては、各種鋼材に20〜80%の冷延率で冷延を施した鋼板を用いて初期転位密度ρと冷延率[CR]との相関関係を調査した結果、下記式4で表すことができることがわかった。なお、転位密度の測定は、特開2008−144233に開示した方法を用いた。
式4:ρ=Bln[(−ln{(100−[CR])/100}]+B(B、B:定数)
In addition, for the initial dislocation density ρ 0 , the correlation between the initial dislocation density ρ 0 and the cold rolling rate [CR] was investigated using steel sheets cold-rolled at 20 to 80% on various steel materials. As a result, it turned out that it can represent with the following formula 4. The dislocation density was measured using the method disclosed in Japanese Patent Application Laid-Open No. 2008-144233.
Formula 4: ρ 0 = B 1 ln [(− ln {(100− [CR]) / 100}] + B 2 (B 1 , B 2 : constant)

上記調査結果に基づき、上記式4の定数B、Bの値を決定した結果、冷延率[CR]:20〜80%の範囲において、B=1.54×1015、B=2.51×1014が得られた。 As a result of determining the values of the constants B 1 and B 2 of the above formula 4 based on the above investigation results, B 1 = 1.54 × 10 15 , B 2 in the range of the cold rolling rate [CR]: 20 to 80%. = 2.51 × 10 14 was obtained.

一方、セメンタイト粒子半径rは、rの3乗則で成長することが知られており、下記式2’のように簡便に書き下すことができる(例えば、佐久間健人、日本金属学会会報、第20巻、1981年、p.247参照)。
式2’:r―r =A・exp[−Q/{R(T+273)}]・t(ここに、A、Q:定数)
On the other hand, the cementite particle radius r is known to grow according to the cube law of r, and can be simply written down as in the following equation 2 ′ (for example, Kento Sakuma, The Japan Institute of Metals, No. 1 20 volume, 1981, p.247).
Formula 2 ′: r 3 −r 0 3 = A · exp [−Q / {R (T + 273)}] · t (where A and Q are constants)

そして、上記各関係式中の各定数の値を決定するため、以下の試験を実施した。   And in order to determine the value of each constant in each said relational expression, the following tests were implemented.

本発明の成分組成の範囲内にある、C:0.17%、Si:1.35%、Mn:2.0%を含有し、冷延率36%で冷間圧延されたまま(昇鈍・焼戻し処理前)の実機冷延鋼板(板厚1.6mm)と、この冷延率36%の実機冷延鋼板をさらに冷間圧延して冷延率60%とした冷延鋼板の2種類を供試材とした。   C: 0.17%, Si: 1.35%, Mn: 2.0%, which is within the range of the composition of the present invention, remains cold-rolled at a cold rolling rate of 36% (annealing)・ Two kinds of cold rolled steel sheets (before tempering) and actual cold rolled steel sheets (thickness 1.6 mm) and cold rolled steel sheets with a cold rolling rate of 36% and cold rolled to a cold rolling rate of 60% Was used as a test material.

そして、上記2種類の冷延鋼板を、「急速加熱+一定温度に所定時間保持+急速冷却」のヒートパターンにて、種々の保持温度と保持時間の組み合わせで熱処理し、熱処理前後の鋼板の硬さをそれぞれ測定し、その硬さの変化と再結晶率とは強い相関関係にあると考えられるので、再結晶率=(熱処理前の硬さ−熱処理後の硬さ)/(熱処理前の硬さ−180Hv)の定義式で再結晶率を算出した。ここに、前記定義式中の180Hvは、最も保持温度が高い状態で、保持時間を順次延長して熱処理を行った際に、これ以上軟化しない最低の硬さであり、十分に焼鈍されて再結晶化が完了し完全に軟化された状態の硬さに相当する。   Then, the two types of cold-rolled steel plates are heat-treated with various combinations of holding temperatures and holding times in a heat pattern of “rapid heating + holding at a constant temperature for a predetermined time + rapid cooling” to harden the steel plates before and after the heat treatment. It is considered that there is a strong correlation between the change in hardness and the recrystallization rate, so the recrystallization rate = (hardness before heat treatment−hardness after heat treatment) / (hardness before heat treatment). The recrystallization rate was calculated by the definition formula of (−180Hv). Here, 180Hv in the above definition formula is the lowest hardness that does not soften any more when heat treatment is performed by sequentially extending the holding time in the state where the holding temperature is the highest, and it is sufficiently annealed and re-applied. This corresponds to the hardness of the state where crystallization is completed and completely softened.

このようにして算出した再結晶率Xのデータを、保持温度Tおよび保持時間tとの関係としてアブラミ・プロット(Avrami Plot)することにより、上記式1’中の定数A、A、A、nの値を決定した結果、A=0.8、A=1.8、A=33.7、n=0.58が得られた。 The data of the recrystallization rate X calculated in this way is subjected to an Abrami plot as a relationship between the holding temperature T and the holding time t, whereby constants A 1 , A 2 , A in the above formula 1 ′ are obtained. As a result of determining the values of 3 and n, A 1 = 0.8, A 2 = 1.8, A 3 = 33.7, and n = 0.58 were obtained.

また、上記2種類の冷延鋼板について、種々の保持温度Tと保持時間tの組み合わせで行った熱処理前後の鋼板組織中に存在するセメンタイト粒子の平均半径r、rをそれぞれ測定し、(r―r )/tを1/Tに対してアレニウス・プロット(Arhenius Plot)することにより、式2’中の定数A、Qの値を決定した結果、A=0.5、Q=80220が得られた。 Further, for the two types of cold-rolled steel sheets, the average radii r 0 and r of cementite particles existing in the steel sheet structure before and after the heat treatment performed with various combinations of holding temperature T and holding time t were measured, respectively (r 3 −r 0 3 ) / t is set to 1 / T, and the values of the constants A and Q in the expression 2 ′ are determined by Arrhenius plot (Arhenius Plot). As a result, A = 0.5, Q = 80220 was obtained.

そして、上記式1’および式2’は、Tが一定の場合の式であることから、これらの式を昇温過程に適用できるように、時間tの関数としての温度T(t)に変更し、600〜Ac1℃の間の滞在時間で積分する形に変形することで、式1および式2を導出した。   Since the above formulas 1 ′ and 2 ′ are formulas when T is constant, these formulas are changed to a temperature T (t) as a function of time t so that they can be applied to the temperature raising process. Then, Equation 1 and Equation 2 were derived by transforming into a form that integrates with a residence time between 600 and Ac1 ° C.

そして、種々の焼鈍条件で熱処理された鋼板について、上記のようにして導出した式1および式2を用いて算出した、再結晶率Xおよびセメンタイト粒子半径rと、実際の熱処理後の鋼板の組織観察で確認された再結晶状態とセメンタイトの粗大化の状態との比較を行ったところ、両者に良好な一致が見られたことから、これらの式1および式2による、再結晶率Xおよびセメンタイト粒子半径rの予測精度は十分に高いことが確認できた。   And about the steel plate heat-processed on various annealing conditions, it calculated using the formula 1 and formula 2 which were derived | led-out as mentioned above, and the structure | tissue of the steel plate after the actual heat processing calculated using the recrystallization rate X and the cementite particle radius r When the recrystallized state confirmed by observation was compared with the coarsened state of cementite, good agreement was found between the two, and the recrystallization rate X and cementite according to these formulas 1 and 2 were found. It was confirmed that the prediction accuracy of the particle radius r was sufficiently high.

また、式1および式2を用いて算出した、再結晶率Xおよびセメンタイト粒子半径rと、熱処理(焼鈍+焼戻し)後の鋼板の機械的特性との関係を調査した。その調査結果から、より好ましい焼鈍条件として、熱処理後の鋼板のTS×El×λの値が、上記[背景技術]の項で述べた要望レベル(800000MPa・%・%以上、より好ましくは1000000MPa・%・%以上)をさらに上回る1500000MPa・%・%以上となるXとrの組み合わせを求めた結果、X≧0.8、かつ、r≦0.19が得られた。   In addition, the relationship between the recrystallization ratio X and the cementite particle radius r calculated using the formulas 1 and 2 and the mechanical properties of the steel sheet after the heat treatment (annealing + tempering) was investigated. From the results of the investigation, as a more preferable annealing condition, the value of TS × E1 × λ of the steel sheet after the heat treatment is the desired level (800,000 MPa ·% ·% or more, more preferably 1,000,000 MPa · As a result of obtaining a combination of X and r that is more than 1500,000 MPa ·% ·%, which is higher than (% ·% or more), X ≧ 0.8 and r ≦ 0.19 were obtained.

つまり、X≧0.8、r≦0.19をともに満足するような、焼鈍時の昇温パターンを採用することで、フェライトの回復・再結晶の促進とセメンタイトの粗大化の防止を両立させることが可能となり、さらに機械的特性のバランスに優れた鋼板が得られるようになった。   In other words, by adopting a temperature rising pattern during annealing that satisfies both X ≧ 0.8 and r ≦ 0.19, both the recovery of ferrite and the promotion of recrystallization and the prevention of coarsening of cementite are achieved. In addition, a steel sheet having an excellent balance of mechanical properties can be obtained.

下記表1に示す成分の鋼を溶製し、厚さ120mmのインゴットを作成した。
これを熱間圧延で厚さ25mmにした後、再度、熱間圧延で厚さ3.2mmとした。これを酸洗した後、厚さ1.6mmに冷間圧延して供試材とし、表2および表3に示す条件にて熱処理を施した。
Steels having the components shown in Table 1 below were melted to produce 120 mm thick ingots.
This was hot rolled to a thickness of 25 mm, and then hot rolled again to a thickness of 3.2 mm. After pickling this, it cold-rolled to 1.6 mm in thickness to make a test material, and heat-treated on the conditions shown in Table 2 and Table 3.

ここで、鋼No.1〜32、36は、焼鈍時における600℃からAc1までの間の昇温パターンとして、600℃からT1(℃)(ただし、600℃<T1<Ac1)までを所定の昇温速度で加熱した後、T1で一定時間保持し、その後T1からAc1までを所定の昇温速度で加熱したものである。   Here, Steel No. 1-32, 36 were heated from 600 ° C. to T1 (° C.) (however, 600 ° C. <T1 <Ac1) as a temperature rising pattern from 600 ° C. to Ac1 during annealing at a predetermined temperature rising rate. Thereafter, it is held for a certain time at T1, and thereafter, T1 to Ac1 are heated at a predetermined temperature increase rate.

これに対して、鋼No.33〜35、37は、焼鈍時における600℃からAc1までの間の昇温パターンとして、600℃からT1(℃)(ただし、600℃<T1<Ac1)までを所定の昇温速度で加熱した後、T1℃で温度保持することなく、直ちにT1からAc1までを所定の昇温速度で加熱したものである。   On the other hand, Steel No. Nos. 33 to 35 and 37 were heated from 600 ° C. to T1 (° C.) (however, 600 ° C. <T1 <Ac1) as a temperature rising pattern from 600 ° C. to Ac1 during the annealing. Thereafter, T1 to Ac1 were immediately heated at a predetermined temperature increase rate without holding the temperature at T1 ° C.

なお、表1中のAc1およびAc3は、事前に実験的に測定したものである。その具体的な測定方法としては、φ8mm×12mmLのサンプルを熱処理シミュレータにて5℃/sで連続加熱して膨張曲線(温度と膨張率との関係)を測定し、該膨張曲線の変曲点の温度をAc1およびAc3とした。

Figure 2010255090
Figure 2010255090
Figure 2010255090
In addition, Ac1 and Ac3 in Table 1 are experimentally measured in advance. As a specific measurement method, a sample of φ8 mm × 12 mmL is continuously heated with a heat treatment simulator at 5 ° C./s to measure an expansion curve (relationship between temperature and expansion coefficient), and the inflection point of the expansion curve The temperatures of were set to Ac1 and Ac3.
Figure 2010255090
Figure 2010255090
Figure 2010255090

熱処理後の各鋼板について、上記[発明を実施するための形態]の項で説明した測定方法により、各相の面積率、KAM値、セメンタイト粒子のサイズおよびその存在数、ならびに、フェライトの存在形態を測定した。   About each steel plate after heat treatment, the area ratio of each phase, KAM value, size and number of cementite particles, and the presence form of ferrite by the measurement method described in the above section [Mode for carrying out the invention] Was measured.

また、上記各鋼板について、引張強度TS、伸びEl、および伸びフランジ性λを測定した。なお、引張強度TSと伸びElは、圧延方向と直角方向に長軸をとってJIS Z 2201に記載の5号試験片を作成し、JIS Z 2241に従って測定を行った。また、伸びフランジ性λは、鉄連規格JFST1001に則り、穴拡げ試験を実施して穴拡げ率の測定を行い、これを伸びフランジ性とした。   Moreover, about each said steel plate, tensile strength TS, elongation El, and stretch flangeability (lambda) were measured. The tensile strength TS and elongation El were measured in accordance with JIS Z 2241 by preparing a No. 5 test piece described in JIS Z 2201 with the long axis perpendicular to the rolling direction. Moreover, stretch flangeability (lambda) performed the hole expansion test according to the iron continuous standard JFST1001, and measured the hole expansion rate, and made this the stretch flangeability.

測定結果を表4および表5に示す。   The measurement results are shown in Tables 4 and 5.

これらの表に示すように、発明例である鋼No.1、2、7、11、14、16〜21、24,25、27〜33、35〜37は、いずれも、引張強度TSが780MPa以上で、TS×Elが14000MPa・%以上、かつ、TS×El×λが800000MPa・%・%以上を充足し、上記[背景技術]の項で述べた要望レベルを満足する、伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板が得られた。   As shown in these tables, Steel No. 1, 2, 7, 11, 14, 16-21, 24, 25, 27-33, 35-37, the tensile strength TS is 780 MPa or more, TS × El is 14000 MPa ·% or more, and TS A high-strength cold-rolled steel sheet having an excellent balance between elongation and stretch flangeability satisfying the required level described in the above [Background Technology] satisfying xEl × λ of 800,000 MPa ·% ·% or more was obtained. .

上記発明例のうち、特に鋼No.32、33、36、37は、焼鈍時の昇温パターンが、上記〔本発明の好ましい製造条件(その2)〕の推奨条件である、X≧0.8、r≦0.19をともに満足するので、TS×El×λが上記要望レベルをはるかに超える1500000MPa・%・%以上を充足し、さらに機械的特性のバランスに優れた高強度冷延鋼板が得られた。   Among the above invention examples, in particular, steel No. Nos. 32, 33, 36, and 37 satisfy both X ≧ 0.8 and r ≦ 0.19, which are the recommended conditions of the above-mentioned [Preferred production conditions of the present invention (Part 2)], in the temperature rising pattern during annealing. Therefore, TS × E1 × λ satisfies a level of more than 1500,000 MPa ·% ·%, far exceeding the desired level, and a high-strength cold-rolled steel sheet having an excellent balance of mechanical properties was obtained.

しかしながら、上記発明例のうち、鋼No.35は、焼鈍時の昇温パターンが、X≧0.8を満足するものの、rは0.19を超えるため、λがやや低めになり、TS×El×λは1500000MPa・%・%に達していない。   However, among the above invention examples, the steel No. 35, although the temperature rise pattern during annealing satisfies X ≧ 0.8, r exceeds 0.19, so λ is slightly lower, and TS × El × λ reaches 1500,000 MPa ·% ·%. Not.

これに対して、比較例である鋼No.3〜6、8〜10、12、13、15、22、23、26、34は、TS×ElとTS×El×λの少なくともいずれかが劣っている。 On the other hand, steel No. which is a comparative example. 3 to 6, 8 to 10, 12, 13, 15, 22, 23, 26, and 34 are inferior in at least one of TS × El and TS × El × λ.

例えば、鋼No.3、4、6、8〜10、34は、焼鈍条件または焼戻し条件が推奨範囲を外れていることにより、本発明の組織を規定する要件のうち少なくとも一つを満たさず、TS×El、TS×El×λの少なくともいずれかが劣っている。   For example, steel no. 3, 4, 6, 8 to 10 and 34 do not satisfy at least one of the requirements for defining the structure of the present invention because the annealing condition or tempering condition is out of the recommended range, and TS × El, TS At least one of × E1 × λ is inferior.

また、鋼No.13は、C含有量が低すぎることにより、フェライトの面積率が過大になりすぎるため、TS×Elが劣っている。   Steel No. In No. 13, since the C content is too low, the area ratio of ferrite becomes too large, so TS × El is inferior.

一方、鋼No.15は、C含有量が高すぎることにより、粗大化したセメンタイト粒子が多くなりすぎるため、TS×El×λが劣っている。   On the other hand, Steel No. No. 15 is inferior in TS × E1 × λ because the C content is too high and the amount of coarsened cementite particles increases too much.

また、鋼No.23は、Mn含有量が低すぎることにより、焼戻し時におけるセメンタイト粗大化の抑制効果や、硬質第2相の変形能向上効果が十分に発揮されないため、伸びと伸びフランジ性を両立できず、TS×El×λが劣っている。   Steel No. 23, since the Mn content is too low, the effect of suppressing cementite coarsening during tempering and the effect of improving the deformability of the hard second phase are not sufficiently exhibited. × El × λ is inferior.

また、鋼No.26は、Mn含有量が高すぎることにより、逆変態温度が低くなりすぎ、再結晶ができなくなるため、強度と伸びのバランスが確保できなくなり、TS×El、TS×El×λともに劣っている。

Figure 2010255090
Figure 2010255090
Steel No. In No. 26, since the Mn content is too high, the reverse transformation temperature becomes too low and recrystallization cannot be performed, so the balance between strength and elongation cannot be secured, and both TS × El and TS × El × λ are inferior. .
Figure 2010255090
Figure 2010255090

Claims (5)

質量%で(以下、化学成分について同じ。)、
C:0.05〜0.30%、
Si:3.0%以下(0%を含む)、
Mn:0.1〜5.0%、
P:0.1%以下(0%を含む)、
S:0.010%以下(0%を含む)、
Al:0.001〜0.10%
を含み、残部が鉄および不可避的不純物からなる成分組成を有し、
軟質第1相であるフェライトを面積率で10〜80%含むとともに、
残留オーステナイト、マルテンサイト、および、残留オーステナイトとマルテンサイトの混合組織を、面積率の合計で5%未満(0%を含む)含み、
残部が硬質第2相である、焼戻しマルテンサイトおよび/または焼戻しベイナイトからなる組織を有し、
Kernel Average Misorientation値(以下、「KAM値」と略称する。)の頻度分布曲線において、
全頻度に対する、該KAM値が0.4°以下の頻度の比率XKAM≦0.4°(単位:%)と、フェライトの面積率Vα(単位:%)との関係が、XKAM≦0.4°/Vα≧0.8を満たすとともに、
全頻度に対する、前記KAM値が0.6〜0.8°の頻度の比率XKAM=0.6〜0.8°が10〜20%であり、かつ、
前記フェライトと前記硬質第2相の界面に存在する、円相当直径0.1μm以上のセメンタイト粒子の分散状態が、前記硬質第2相1μm当たり3個以下である
ことを特徴とする伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板。
% By mass (hereinafter the same for chemical components)
C: 0.05 to 0.30%
Si: 3.0% or less (including 0%),
Mn: 0.1 to 5.0%,
P: 0.1% or less (including 0%),
S: 0.010% or less (including 0%),
Al: 0.001 to 0.10%
And the remainder has a component composition consisting of iron and inevitable impurities,
While containing 10-80% of area ratio of ferrite which is a soft first phase,
Including a retained austenite, martensite, and a mixed structure of retained austenite and martensite in a total area ratio of less than 5% (including 0%),
The balance is a hard second phase, and has a structure composed of tempered martensite and / or tempered bainite,
In the frequency distribution curve of the Kernel Average Misoration value (hereinafter abbreviated as “KAM value”),
The relationship between the ratio X KAM ≦ 0.4 ° (unit:%) of the frequency at which the KAM value is 0.4 ° or less to the total frequency and the ferrite area ratio V α (unit:%) is expressed by X KAM ≦ 0.4 ° / V α ≧ 0.8
The ratio X KAM = 0.6-0.8 ° of the frequency with the KAM value of 0.6-0.8 ° relative to the total frequency is 10-20%, and
Elongation and elongation characterized in that the dispersion state of cementite particles having an equivalent circle diameter of 0.1 μm or more present at the interface between the ferrite and the hard second phase is 3 or less per 1 μm 2 of the hard second phase. A high-strength cold-rolled steel plate with an excellent balance of flangeability.
成分組成が、更に、
Cr:0.01〜1.0%
を含むものである請求項1に記載の伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板。
Ingredient composition further
Cr: 0.01 to 1.0%
The high-strength cold-rolled steel sheet having an excellent balance between elongation and stretch flangeability according to claim 1.
成分組成が、更に、
Mo:0.02〜1.0%
Cu:0.05〜1.0%、
Ni:0.05〜1.0%の1種または2種以上
を含むものである請求項1または2に記載の伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板。
Ingredient composition further
Mo: 0.02-1.0%
Cu: 0.05 to 1.0%,
The high-strength cold-rolled steel sheet having an excellent balance between elongation and stretch flangeability according to claim 1 or 2, comprising Ni: 0.05-1.0%.
更に、
Ca:0.0005〜0.01%、および/または
Mg:0.0005〜0.01%
を含むものである請求項1〜3のいずれか1項に記載の伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板。
Furthermore,
Ca: 0.0005 to 0.01% and / or Mg: 0.0005 to 0.01%
The high-strength cold-rolled steel sheet excellent in the balance of elongation and stretch flangeability according to any one of claims 1 to 3.
請求項1〜4のいずれか1項に示す成分組成を有する鋼材を、下記(1)〜(4)に示す各条件で、熱間圧延した後、冷間圧延し、その後、焼鈍し、さらに焼戻しすることを特徴とする伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板の製造方法。
(1) 熱間圧延条件
仕上げ圧延終了温度:Ar点以上
巻取温度:450〜700℃
(2) 冷間圧延条件
冷間圧延率:20〜80%
(3) 焼鈍条件
600〜Ac1℃の温度域を、下記式1および式2をともに満足する昇温パターンで昇温し、焼鈍加熱温度:[(8×Ac1+2×Ac3)/10]〜1000℃にて、焼鈍保持時間:3600s以下保持した後、焼鈍加熱温度から直接Ms点以下の温度まで50℃/s以上の冷却速度で急冷するか、または、焼鈍加熱温度から、焼鈍加熱温度未満で600℃以上の温度(「第1冷却終了温度」という。)まで1℃/s以上50℃/s未満の冷却速度(「第1冷却速度」という。)で徐冷した後、Ms点以下の温度(「第2冷却終了温度」という。)まで50℃/s以下の冷却速度(「第2冷却速度」という。)で急冷する。
(4) 焼戻し条件
上記焼鈍冷却後の温度から焼戻し加熱温度:420℃以上670℃未満までの間を5℃/s超の加熱速度で加熱し、[焼戻し加熱温度−10℃]〜焼戻し加熱温度の間の温度領域に存在する時間(「焼戻し保持時間」という。):30s以下とした後、5℃/s超の冷却速度で冷却する。
Figure 2010255090
A steel material having the composition shown in any one of claims 1 to 4 is hot-rolled under the conditions shown in the following (1) to (4), then cold-rolled, and then annealed. A method for producing a high-strength cold-rolled steel sheet having an excellent balance between elongation and stretch flangeability, characterized by tempering.
(1) Hot rolling conditions Finish rolling end temperature: Ar 3 points or more Winding temperature: 450-700 ° C
(2) Cold rolling conditions Cold rolling rate: 20-80%
(3) Annealing conditions The temperature range of 600 to Ac1 ° C. is raised in a temperature rising pattern that satisfies both the following formulas 1 and 2, and the annealing heating temperature: [(8 × Ac1 + 2 × Ac3) / 10] to 1000 ° C. In the annealing holding time: after holding at 3600 s or less, quench from the annealing heating temperature directly to the temperature below the Ms point at a cooling rate of 50 ° C./s or from the annealing heating temperature to below 600 at the annealing heating temperature. After cooling slowly at a cooling rate (referred to as “first cooling rate”) of 1 ° C./s or more and less than 50 ° C./s until a temperature equal to or higher than 0 ° C. (referred to as “first cooling end temperature”), a temperature below the Ms point (It is referred to as “second cooling end temperature”) and is rapidly cooled at a cooling rate of 50 ° C./s or less (referred to as “second cooling rate”).
(4) Tempering conditions The temperature after the annealing cooling to the tempering heating temperature: between 420 ° C. and less than 670 ° C. is heated at a heating rate of 5 ° C./s, and [tempering heating temperature−10 ° C.] to tempering heating temperature. Time existing in the temperature region between (referred to as “tempering holding time”): 30 seconds or less, and then cooled at a cooling rate of more than 5 ° C./s.
Figure 2010255090
JP2009231680A 2009-04-03 2009-10-05 High-strength cold-rolled steel sheet with excellent balance between elongation and stretch flangeability and method for producing the same Active JP4977184B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009231680A JP4977184B2 (en) 2009-04-03 2009-10-05 High-strength cold-rolled steel sheet with excellent balance between elongation and stretch flangeability and method for producing the same
US13/258,823 US8840738B2 (en) 2009-04-03 2010-04-02 Cold-rolled steel sheet and method for producing the same
EP10758898.0A EP2415891A4 (en) 2009-04-03 2010-04-02 Cold-rolled steel sheet and process for producing same
CN201080010267.9A CN102341518B (en) 2009-04-03 2010-04-02 Cold-rolled steel sheet and method for producing the same
PCT/JP2010/056096 WO2010114131A1 (en) 2009-04-03 2010-04-02 Cold-rolled steel sheet and process for producing same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009091297 2009-04-03
JP2009091297 2009-04-03
JP2009231680A JP4977184B2 (en) 2009-04-03 2009-10-05 High-strength cold-rolled steel sheet with excellent balance between elongation and stretch flangeability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010255090A true JP2010255090A (en) 2010-11-11
JP4977184B2 JP4977184B2 (en) 2012-07-18

Family

ID=43316332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009231680A Active JP4977184B2 (en) 2009-04-03 2009-10-05 High-strength cold-rolled steel sheet with excellent balance between elongation and stretch flangeability and method for producing the same

Country Status (1)

Country Link
JP (1) JP4977184B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093319A1 (en) * 2010-01-26 2011-08-04 新日本製鐵株式会社 High-strength cold-rolled steel sheet, and process for production thereof
WO2012118081A1 (en) * 2011-03-02 2012-09-07 株式会社神戸製鋼所 High-strength steel sheet exerting excellent deep drawability at warm temperatures, and method for warm working same
WO2014136851A1 (en) * 2013-03-07 2014-09-12 株式会社神戸製鋼所 Easily shapeable high-strength hot-dip galvanized steel sheet and manufacturing method therefor
WO2014171427A1 (en) 2013-04-15 2014-10-23 新日鐵住金株式会社 Hot-rolled steel sheet
JP2017008368A (en) * 2015-06-22 2017-01-12 株式会社神戸製鋼所 High strength cold rolled steel sheet excellent in weldability and moldability
KR20170093886A (en) 2015-02-20 2017-08-16 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel sheet
WO2018147400A1 (en) * 2017-02-13 2018-08-16 Jfeスチール株式会社 High-strength steel plate and manufacturing method therefor
US10689737B2 (en) 2015-02-25 2020-06-23 Nippon Steel Corporation Hot-rolled steel sheet
US10752972B2 (en) 2015-02-25 2020-08-25 Nippon Steel Corporation Hot-rolled steel sheet
US10889879B2 (en) 2016-08-05 2021-01-12 Nippon Steel Corporation Steel sheet and plated steel sheet
US10913988B2 (en) 2015-02-20 2021-02-09 Nippon Steel Corporation Hot-rolled steel sheet
CN112626426A (en) * 2020-12-25 2021-04-09 江苏新核合金科技有限公司 Preparation method of high-silicon stainless steel flange material
EP3778970A4 (en) * 2018-04-09 2021-08-25 Nippon Steel Corporation Steel material suitable for use in sour environments
US11236412B2 (en) 2016-08-05 2022-02-01 Nippon Steel Corporation Steel sheet and plated steel sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293121A (en) * 1987-05-25 1988-11-30 Kobe Steel Ltd Production of high-strength cold rolled steel sheet having excellent local ductility
JP2004277858A (en) * 2003-03-18 2004-10-07 Jfe Steel Kk Cold rolled steel sheet having super-fine grained structure and excellent in shock absorbing property, and production method therefor
JP2004359973A (en) * 2003-06-02 2004-12-24 Nippon Steel Corp High strength steel sheet having excellent delayed fracture resistance, and its production method
JP2007302918A (en) * 2006-05-09 2007-11-22 Nippon Steel Corp High strength steel sheet with excellent bore expandability and formability, and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293121A (en) * 1987-05-25 1988-11-30 Kobe Steel Ltd Production of high-strength cold rolled steel sheet having excellent local ductility
JP2004277858A (en) * 2003-03-18 2004-10-07 Jfe Steel Kk Cold rolled steel sheet having super-fine grained structure and excellent in shock absorbing property, and production method therefor
JP2004359973A (en) * 2003-06-02 2004-12-24 Nippon Steel Corp High strength steel sheet having excellent delayed fracture resistance, and its production method
JP2007302918A (en) * 2006-05-09 2007-11-22 Nippon Steel Corp High strength steel sheet with excellent bore expandability and formability, and its manufacturing method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2530179A4 (en) * 2010-01-26 2017-05-24 Nippon Steel & Sumitomo Metal Corporation High-strength cold-rolled steel sheet, and process for production thereof
WO2011093319A1 (en) * 2010-01-26 2011-08-04 新日本製鐵株式会社 High-strength cold-rolled steel sheet, and process for production thereof
US8951366B2 (en) 2010-01-26 2015-02-10 Nippon Steel & Sumitomo Metal Corporation High-strength cold-rolled steel sheet and method of manufacturing thereof
WO2012118081A1 (en) * 2011-03-02 2012-09-07 株式会社神戸製鋼所 High-strength steel sheet exerting excellent deep drawability at warm temperatures, and method for warm working same
JP2012180569A (en) * 2011-03-02 2012-09-20 Kobe Steel Ltd High-strength steel sheet exerting excellent deep drawability at warm temperatures, and method for warm working same
WO2014136851A1 (en) * 2013-03-07 2014-09-12 株式会社神戸製鋼所 Easily shapeable high-strength hot-dip galvanized steel sheet and manufacturing method therefor
JP2014173111A (en) * 2013-03-07 2014-09-22 Kobe Steel Ltd High strength galvanized steel sheet excellent in moldability and its manufacturing method
US10000829B2 (en) 2013-04-15 2018-06-19 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet
WO2014171427A1 (en) 2013-04-15 2014-10-23 新日鐵住金株式会社 Hot-rolled steel sheet
KR20170093886A (en) 2015-02-20 2017-08-16 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel sheet
US11401571B2 (en) 2015-02-20 2022-08-02 Nippon Steel Corporation Hot-rolled steel sheet
US10913988B2 (en) 2015-02-20 2021-02-09 Nippon Steel Corporation Hot-rolled steel sheet
US10689737B2 (en) 2015-02-25 2020-06-23 Nippon Steel Corporation Hot-rolled steel sheet
US10752972B2 (en) 2015-02-25 2020-08-25 Nippon Steel Corporation Hot-rolled steel sheet
JP2017008368A (en) * 2015-06-22 2017-01-12 株式会社神戸製鋼所 High strength cold rolled steel sheet excellent in weldability and moldability
US11236412B2 (en) 2016-08-05 2022-02-01 Nippon Steel Corporation Steel sheet and plated steel sheet
US10889879B2 (en) 2016-08-05 2021-01-12 Nippon Steel Corporation Steel sheet and plated steel sheet
WO2018147400A1 (en) * 2017-02-13 2018-08-16 Jfeスチール株式会社 High-strength steel plate and manufacturing method therefor
JP6384641B1 (en) * 2017-02-13 2018-09-05 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
US11408044B2 (en) 2017-02-13 2022-08-09 Jfe Steel Corporation High-strength steel sheet and method for producing the same
EP3778970A4 (en) * 2018-04-09 2021-08-25 Nippon Steel Corporation Steel material suitable for use in sour environments
US11434554B2 (en) 2018-04-09 2022-09-06 Nippon Steel Corporation Steel material suitable for use in sour environment
CN112626426A (en) * 2020-12-25 2021-04-09 江苏新核合金科技有限公司 Preparation method of high-silicon stainless steel flange material

Also Published As

Publication number Publication date
JP4977184B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP4977184B2 (en) High-strength cold-rolled steel sheet with excellent balance between elongation and stretch flangeability and method for producing the same
JP4977185B2 (en) High-strength cold-rolled steel sheet with excellent balance between elongation and stretch flangeability and method for producing the same
WO2010114131A1 (en) Cold-rolled steel sheet and process for producing same
JP6354916B2 (en) Steel plate and plated steel plate
JP6017341B2 (en) High strength cold-rolled steel sheet with excellent bendability
WO2018026014A1 (en) Steel sheet and plated steel sheet
WO2009110607A1 (en) Cold-rolled steel sheets
KR101598313B1 (en) High-strength cold-rolled steel sheet having small variations in strength and ductility, and method for producing same
KR20150048885A (en) High-strength cold-rolled steel sheet and method for manufacturing same
JP5339765B2 (en) High strength hot rolled steel sheet and method for producing the same
JP5829977B2 (en) High-strength cold-rolled steel sheet excellent in yield strength and formability and method for producing the same
US11401569B2 (en) High-strength cold-rolled steel sheet and method for manufacturing same
JP5860343B2 (en) High strength cold-rolled steel sheet with small variations in strength and ductility and method for producing the same
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JPWO2019187031A1 (en) High strength steel sheet with excellent ductility and hole expandability
JP5466562B2 (en) High-strength cold-rolled steel sheet with excellent elongation and bendability
KR20100076073A (en) Steel sheets and process for manufacturing the same
JP6217455B2 (en) Cold rolled steel sheet
JP5189959B2 (en) High strength cold-rolled steel sheet with excellent elongation and stretch flangeability
JP2009127089A (en) High-strength cold rolled steel sheet with excellent isotropy, elongation and stretch-flangeability
JP6737419B1 (en) Thin steel sheet and method of manufacturing the same
JP2011179050A (en) High strength cold rolled steel sheet having excellent balance in elongation and stretch flange property
JP5530209B2 (en) High-strength cold-rolled steel sheet with excellent balance between elongation and stretch flangeability and method for producing the same
JP2007177293A (en) Ultrahigh-strength steel sheet and manufacturing method therefor
RU2510803C2 (en) High-strength hot-rolled steel plate with excellent fatigue strength and its manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110414

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3