JP2010254669A - Concentrated chlorine dioxide gas supporting material supporting chlorine dioxide gas of high concentration, enabling visual recognition of residual amount of chlorine dioxide gas in use, with beautiful appearance and long-term storage stability and enabling concentration control in use, use thereof and method for storing the same - Google Patents

Concentrated chlorine dioxide gas supporting material supporting chlorine dioxide gas of high concentration, enabling visual recognition of residual amount of chlorine dioxide gas in use, with beautiful appearance and long-term storage stability and enabling concentration control in use, use thereof and method for storing the same Download PDF

Info

Publication number
JP2010254669A
JP2010254669A JP2010061498A JP2010061498A JP2010254669A JP 2010254669 A JP2010254669 A JP 2010254669A JP 2010061498 A JP2010061498 A JP 2010061498A JP 2010061498 A JP2010061498 A JP 2010061498A JP 2010254669 A JP2010254669 A JP 2010254669A
Authority
JP
Japan
Prior art keywords
chlorine dioxide
dioxide gas
silica gel
concentration
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010061498A
Other languages
Japanese (ja)
Inventor
Yoshihiko Okubo
善彦 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CLEANCARE Inc
Original Assignee
CLEANCARE Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CLEANCARE Inc filed Critical CLEANCARE Inc
Priority to JP2010061498A priority Critical patent/JP2010254669A/en
Publication of JP2010254669A publication Critical patent/JP2010254669A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for developing, producing, using and storing a chlorine dioxide gas supporting material which can remove microorganisms, malodor and other chemical substances in a space and has excellent appearance, thereby provides a hitherto absent space-cleaning agent supporting chlorine dioxide gas having high concentration, stores the gas for a long time, releasing an arbitrary amount of the gas in use, and enables visual recognition of the residual amount of the chlorine dioxide gas in use. <P>SOLUTION: The supporting material is produced by impregnating a sodium chlorite solution in a transparent silica gel having a pH of ≤6.0, drying under reduced pressure at ≤35°C, to prepare a silica gel capable of supporting concentrated chlorine dioxide gas, adding ≥1% of silica gel based on the weight of the supporting silica gel, sealing with a chlorine dioxide gas permeable film having one or more fine pores having a diameter of ≥0.3 nm and ≤100,000 nm, putting the product in a bag or a vessel having a carbon dioxide gas permeability of ≤10 mL/(m<SP>2</SP>×day/MPa) and a water vapor permeability of ≤5 g/(m<SP>2</SP>×day), evacuating to ≤100 torr, to heat seal the bag, etc. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、二酸化塩素の有する細菌・カビ・ウイルスなど微生物の殺菌および不活化、ならびに悪臭物質の分解効果、アレルゲンタンパク質の変性効果を利用した生鮮食品の觧度保持剤ならびに消臭剤および空間内の微生物量を減少させ花粉や各種アレルゲンの原因となるタンパク質を変性させる空間浄化剤に関するものである。  The present invention relates to sterilization and inactivation of microorganisms such as bacteria, molds and viruses possessed by chlorine dioxide, decomposition effects of malodorous substances, deodorizing effects of allergen proteins, deodorizing agents and in-space The present invention relates to a space purification agent that denatures proteins that cause pollen and various allergens by reducing the amount of microorganisms.

二酸化塩素は強い酸化剤として、殺菌、ウイルスの不活化、消臭、水の異臭味の除去、除鉄、除マンガン効果が高く、水道水などを含めた水の浄化剤としては50年以上にわたって産業的に利用されてきた。これらの水の処理剤としては二酸化塩素そのものを水に溶解させることにより比較的安全に利用できるため、現在も温浴施設などにおけるレジオネラ菌対策などに利用されている。  Chlorine dioxide is a strong oxidizer, sterilization, virus inactivation, deodorization, removal of off-flavor taste of water, removal of iron and manganese, and a high purification effect for water including tap water for over 50 years. It has been used industrially. Since these water treatment agents can be used relatively safely by dissolving chlorine dioxide itself in water, they are still used for measures against Legionella in warm bath facilities.

しかし、水ではなく空間内に浮遊する微生物の除去、不活化を目的とした場合、二酸化塩素は爆発性を有する危険なガスであり、また、塩素の刺激臭もあるため従来は以下にあげる先行技術文献のように極低濃度の二酸化塩素をゲル状にするか、もしくは固体酸と混合し使用時の空間内の湿度によって微弱な二酸化塩素ガスを放出させる方法しかなく、現在危惧されている、新型インフルエンザなどの微小な飛沫や空気感染によって感染が拡大するような細菌やウイルス禍においては、抑止力あるいは予防力たりえるだけの能力を有するものではなかった。  However, for the purpose of removing and inactivating microorganisms floating in the space instead of water, chlorine dioxide is a dangerous gas with explosive properties, and there is also an irritating odor of chlorine. There is only a method of making very low concentration chlorine dioxide like a gel like technical literature, or mixing it with a solid acid and releasing weak chlorine dioxide gas depending on the humidity in the space at the time of use. Bacteria and virus spiders that spread by microsprays such as new influenza and airborne infections did not have the ability to prevent or prevent.

そのため、これまでの先行技術文献の用途は限定的な鮮度保持剤や消臭剤などに用いるより他なく二酸化塩素の効果を十分に活用としているとはいえなかった。  Therefore, it can be said that the application of the prior art documents so far has not fully utilized the effect of chlorine dioxide more than that used for limited freshness-keeping agents and deodorants.

先行技術文献の詳細を類型化すると、二酸化塩素をガスとして除放させ継続的に空間内のガス濃度を維持する方法としては大きく分けて3種類の方法が提案されている。  If the details of the prior art documents are categorized, three methods are broadly proposed as methods for releasing chlorine dioxide as a gas and maintaining the gas concentration in the space continuously.

第一の方法は、亜塩素酸塩溶液を吸水性の樹脂に吸着させゲル化し、使用時に酸化剤あるいは活性剤などを添加することで二酸化塩素ガスを除放させる方法である。  The first method is a method in which a chlorite solution is adsorbed on a water-absorbing resin to be gelled, and chlorine dioxide gas is released by adding an oxidizing agent or an activator at the time of use.

第二の方法は、特許出願公開平11−27808、特許第4109165号で提案されている方法であり、第一の方法の欠点を改善している。具体的には亜塩素酸塩溶液を吸水性の樹脂に吸着させ、ゲル化する際に粘土質や二酸化塩素ガスを吹き込む方法である。このようにすることで事前に二酸化塩素を含有したゲル剤を作っておく事が可能になり、使用する際に酸化剤や活性剤を添加する手間が必要ないとされている。また、二酸化塩素ガスの除放性の点でも長期にわたり安定したガス濃度の維持が可能であるとされている。  The second method is a method proposed in Japanese Patent Application Laid-Open No. 11-27808 and Japanese Patent No. 4109165, which improves the disadvantages of the first method. Specifically, it is a method in which a chlorite solution is adsorbed on a water-absorbing resin and a clay or chlorine dioxide gas is blown when gelling. By doing so, it becomes possible to make a gel containing chlorine dioxide in advance, and there is no need to add an oxidizing agent or an activator when using it. Further, it is said that a stable gas concentration can be maintained over a long period of time from the viewpoint of the release of chlorine dioxide gas.

第三の方法は、特許出願公開昭60−161307、特許出願公開昭64−71804、特許出願公開平9−202706、特許出願公開2002−370910において提案されている方法であり、具体的には多孔質無機固体酸としての性質を持つ物質に亜塩素酸塩溶液を含浸また、亜塩素酸塩を混和することにより砂状の二酸化塩素ガス担体を形成する。さらに詳しくは固体酸としてシリカアルミナや結晶性シリカゼオライトやシリカゲルに亜塩素酸塩溶液を含浸させ反応抑制剤として炭酸カリウムや無機鉱物を加え反応を抑制させつつ、使用時には周囲の湿度を利用して固体酸と亜塩素酸塩の反応を促し二酸化塩素ガスを放出させる方法である。  The third method is a method proposed in Japanese Patent Application Publication No. 60-161307, Japanese Patent Application Publication No. 64-71804, Japanese Patent Application Publication No. Hei 9-202706, and Japanese Patent Application Publication No. 2002-370910. A sandy chlorine dioxide gas carrier is formed by impregnating a chlorite solution into a substance having a property as a porous inorganic solid acid or admixing chlorite. More specifically, silica alumina, crystalline silica zeolite or silica gel as a solid acid is impregnated with a chlorite solution, and potassium carbonate or an inorganic mineral is added as a reaction inhibitor to suppress the reaction. This method promotes the reaction between solid acid and chlorite and releases chlorine dioxide gas.

特許出願公開昭60−161307Patent application publication 60-161307 特許出願公開昭64−71804Patent Application Publication No. 64-71804 特許出願公開平9−202706Patent Application Publication 9-202706 特許出願公開2002−370910Patent Application Publication 2002-370910 特許出願公開平11−27808Patent Application Publication 11-27808 特許第4109165号Japanese Patent No. 4109165 特許出願公開平6−233985Patent Application Publication No. Hei 6-233985

まず第一の方法の問題点は、使用時に酸化剤あるいは活性剤などを添加するため手間がかかり、また酸化剤、活性剤などの容器などを別途用意する必要があるためコスト的に不利であること、さらに酸化剤、活性剤などを添加直後から数日〜数週間の間濃度高くなりすぎるため、濃度を長期間にわたって均一に保つ事が難しい点にある。また、時間の経過に伴いガスが放出されていくわけであるが、二酸化塩素ガスの放出が停止したタイミングが極めてわかりにくく、そのため効果がすでに失われているにも拘らず、そのまま放置してしまうという欠点がある。  First of all, the problem with the first method is that it takes time to add an oxidizing agent or an activator at the time of use, and it is disadvantageous in terms of cost because it is necessary to prepare a container for the oxidizing agent and the activator separately. Furthermore, since the concentration becomes too high for several days to several weeks immediately after the addition of the oxidizing agent, activator, etc., it is difficult to keep the concentration uniform over a long period of time. In addition, the gas is released over time, but the timing at which the release of chlorine dioxide gas stops is extremely difficult to understand, so it is left as it is even though the effect has already been lost. There is a drawback.

次に第二の方法の問題点は、事前に二酸化塩素ゲルを形成させている点で第一の方法の活性剤添加という手間を省略できる優れた方法であるが、二酸化塩素への反応が徐々に進行していくため、密閉容器内で長期保管時には容器内部の二酸化塩素濃度が高くなり容器の破損や劣化を招くことが極めて多く、かといって濃度を低くすると効果の有効範囲や有効時間の低減を招く。また、ゲル化剤として使用する各種ガムやポリアクリル酸などが二酸化塩素によって劣化し、離水したりゲルを形成できなくなったりしてしまう。しかも水溶性ゲルとして調整した場合、加速試験や過酷試験が難しく長期保存安定性を適切に試験によって確認することができない。また、すでに容器内で二酸化塩素がゲル状で密閉保存されている場合、使用開封時に一度に放出されてしまうため、使用直後においてはやはり第一の方法と同様に高濃度になってしまう。
さらに吸水性樹脂などでゲル化した場合、使用時期の後半になるとゲルは白くなってしまい二酸化塩素ガスがまだ放出されているかが視認できないため、交換のタイミングがわからない点は第一の方法と同じである。
その結果市場に流通している製品は、結局活性剤を使用前に添加するという第一の方法と大差ないものになってしまっている。
Next, the problem of the second method is that it is an excellent method that can eliminate the trouble of adding the activator of the first method in that a chlorine dioxide gel is formed in advance, but the reaction to chlorine dioxide gradually increases. Therefore, when stored in a closed container for a long period of time, the chlorine dioxide concentration inside the container will increase, causing damage or deterioration of the container, and if the concentration is lowered, the effective range and effective time will be reduced. Incurs reduction. In addition, various gums and polyacrylic acid used as a gelling agent are deteriorated by chlorine dioxide, resulting in water separation or gel formation. In addition, when prepared as a water-soluble gel, acceleration tests and severe tests are difficult, and long-term storage stability cannot be properly confirmed by tests. Further, when chlorine dioxide is already kept in a gel-like state in a container, it is released at a time when the container is opened for use, so that it becomes a high concentration immediately after use as in the first method.
Furthermore, when gelled with a water-absorbing resin, the gel turns white in the second half of the period of use, and it is not possible to see whether chlorine dioxide gas is still being released, so the timing of replacement is not known. It is.
As a result, the products on the market are not much different from the first method of adding the activator before use.

ところで、二酸化塩素ガスが放出している状態を「オン」の状態として、二酸化塩素ガスが放出されていない状態を「オフ」の状態と呼んだ場合、第一の方法では「オン」と「オフ」の切り替え方法が、「活性剤の添加」という物理的な方法による一方、第二の方法では常に「オン」の状態にあるということを意味する。この第二の方法では確かに「活性剤の添加」という切り替えを行う必要はなくなったが、それはすなわち常時「オン」の状態にしているが故であって、本質的な解決にはなっていない。そのため容器の劣化や破損が副次的に発生し、使用時の初期濃度が高くなるため除法性が得られず、結果、活性剤を使用時に添加するという状態になっているのである。  By the way, when the state in which chlorine dioxide gas is released is referred to as the “on” state, and the state in which chlorine dioxide gas is not released is referred to as the “off” state, in the first method, “on” and “off” Means that the “switching method” is based on the physical method “addition of activator”, while the second method is always in the “on” state. In this second method, there is no need to switch "addition of activator", but that is because it is always in the "on" state and is not an essential solution. . Therefore, deterioration and breakage of the container occur secondary, and the initial concentration at the time of use becomes high, so that the resolvability cannot be obtained, and as a result, the activator is added at the time of use.

最後に第三の方法の問題点は、シリカアルミナや結晶性シリカゼオライトと亜塩素酸塩を混和する方法の場合、外観は砂と同様の状態になるため、やはり効果の終了時期が視認できない。  Finally, the third problem is that in the case of mixing silica alumina or crystalline silica zeolite with chlorite, the appearance is similar to that of sand, so the end time of the effect cannot be visually recognized.

また、「特許出願公開昭60−161307」にあるシリカアルミナによる亜塩素酸塩溶液を含浸する方法ではシリカアルミナの酸強度について説明がないが、仮に二酸化塩素が十分に発生しうる固体酸としての酸強度があるとすると、高温の50℃での減圧乾燥という方法で乾燥させた場合、このような高い温度下では二酸化塩素ガスがシリカアルミナから放散されすぎるため大量生産時には多大な危険性を伴うため実用化は難しい。逆に十分な酸強度のないシリカアルミナを選択した場合、使用時に二酸化塩素ガスが十分に発生しない。  Further, in the method of impregnating a chlorite solution with silica alumina described in “Patent Application Publication No. 60-161307”, there is no explanation about the acid strength of silica alumina, but as a solid acid that can sufficiently generate chlorine dioxide. Assuming that there is acid strength, when dried by a method of reduced pressure drying at a high temperature of 50 ° C., chlorine dioxide gas is excessively released from silica alumina at such a high temperature, which is accompanied with great danger in mass production. Therefore, practical application is difficult. Conversely, when silica alumina without sufficient acid strength is selected, chlorine dioxide gas is not sufficiently generated during use.

さらに、結晶性シリカゼオライトと混和する方法では二酸化塩素ガスの発生量を抑制するためにpH6.5〜9.0にする方法が提案されているが、これらの固体酸に亜塩素酸塩を含浸させ二酸化塩素ガスを発生させる方法は、使用時の周囲の環境における湿度に応じて二酸化塩素が生成されることを利用した方法であり、高濃度の二酸化塩素ガスを放散させることはできず、また、濃度を任意に管理することもできず周囲の環境にただ任せるしかない、つまり「オン」と「オフ」の関係でいえば、周囲の環境によって緩やかに「オン」の状態に以降していくという方法であり主体的に切り替えることができない点が問題であった。  Furthermore, in order to suppress the generation amount of chlorine dioxide gas as a method of mixing with crystalline silica zeolite, a method of adjusting the pH to 6.5 to 9.0 has been proposed, but these solid acids are impregnated with chlorite. The method of generating chlorine dioxide gas is a method utilizing the fact that chlorine dioxide is generated according to the humidity in the surrounding environment at the time of use, and high concentration chlorine dioxide gas cannot be diffused. , The concentration cannot be controlled arbitrarily, it can only be left to the surrounding environment, that is, in the relationship of “on” and “off”, it gradually changes to the “on” state depending on the surrounding environment. The problem is that it cannot be switched independently.

また、この文献によればpHを6.0以下にした場合は二酸化塩素ガスが発生しすぎるとされている。このようにこの方法では濃度を任意に制御することができないため、低濃度の反応になるようにpHを制御せねばならなかった。  Further, according to this document, it is said that chlorine dioxide gas is generated too much when the pH is 6.0 or less. Thus, since the concentration cannot be arbitrarily controlled by this method, the pH has to be controlled so as to achieve a low concentration reaction.

一方で前述の「オン」と「オフ」の制御に関しては、この第三の方法の場合、乾燥させることによって、制御を行っているわけであるが、亜塩素酸塩が持つ潮解性のために、pHに拘らず乾燥工程を厳密にしない限り、またしたとしても、潮解性によって単純に混和しただけでは、保存期間が長くなるに従って二酸化塩素ガスが発生してしまう。すなわちこの方法においても「オフ」の状態が亜塩素酸塩が持つ潮解性のために曖昧になり第二の方法が有した問題点を本質において解決できていない。  On the other hand, regarding the above-mentioned “on” and “off” control, in the case of this third method, the control is performed by drying, but due to the deliquescent nature of chlorite. As long as the drying process is not strict regardless of pH, chlorine dioxide gas is generated as the storage period becomes longer if the drying process is simply mixed by deliquescence. That is, even in this method, the problem of the second method cannot be solved in essence because the “off” state is vague due to the deliquescence of chlorite.

シリカゲルに亜塩素酸塩溶液を含浸させる方法では、反応を抑制するために炭酸ナトリウム過酸化水素付加物を加えているが、そもそもこの文献においては多孔質物質の選択肢がセラミックス、珪藻土、シリカゲル、活性アルミナなど多岐にわたり、これらはその物性が各々異なるため、単一安定した製品にはなりえない。また、シリカゲルにおいてもそのpHを含め物性が異なるためこの文献からは二酸化塩素の安定した放出がありえるかがわからない。
仮にpHが中性からアルカリ性の領域下にあるとすると、亜塩素酸塩を含浸させただけでは十分な二酸化塩素ガスの放出は期待できない。また、pHが酸性下にあるシリカゲルを用いた場合は、含浸させただけでは二酸化塩素ガスが多量に発生し、量産させることは極めて難しい。
さらにこれらのシリカゲルを利用した提案においても、反応を抑制させ濃度の長期間にわたる維持のために、最終的に他の炭酸ナトリウム過酸化水素付加物や石膏などの物質と混和し錠剤などに成型するため、やはり使用終了のタイミングがわからない。
このシリカゲルを用いた内容は、単に亜塩素酸塩溶液の吸着を行う素材としてシリカゲルを利用し、反応を抑制させるために工夫を行った内容であるため、シリカアルミナや結晶性シリカゼオライトを用いた方法と本質的に同じであり、その問題点も共有している。
また、これらの方法は基本的に亜塩素酸を担体に担持させる際に周囲の湿度でもって反応が起こり、継続していく機序であるため、一度反応が開始した後は容易に反応を停止させることができない点も問題である。
In the method of impregnating silica gel with a chlorite solution, sodium carbonate hydrogen peroxide adduct is added to suppress the reaction, but in this document, the choice of porous materials is ceramics, diatomaceous earth, silica gel, active A wide variety of materials, such as alumina, have different physical properties, and cannot be a single stable product. Further, since the physical properties of silica gel, including its pH, are different, it is not known from this document whether chlorine dioxide can be released stably.
If the pH is in the neutral to alkaline range, sufficient chlorine dioxide gas release cannot be expected by simply impregnating with chlorite. When silica gel having an acidic pH is used, a large amount of chlorine dioxide gas is generated only by impregnation, and it is extremely difficult to mass-produce.
Furthermore, in the proposal using these silica gels, in order to suppress the reaction and maintain the concentration over a long period of time, it is finally mixed with other substances such as sodium carbonate hydrogen peroxide adduct and gypsum and formed into tablets. Therefore, the timing of the end of use is still unknown.
The content using this silica gel is a content that was devised to suppress the reaction by simply using silica gel as a material for adsorbing a chlorite solution, so silica alumina or crystalline silica zeolite was used. It is essentially the same as the method and shares its problems.
In addition, these methods are basically mechanisms in which the reaction occurs at ambient humidity when chlorous acid is supported on the carrier and continues, so it is easy to stop the reaction once it has started. It is also a problem that cannot be made.

基本的にこの第三の方法は、亜塩素酸塩と何らかの担体を混合させる際にほとんど反応させないようにするための特許技術であって、そのため使用時の二酸化塩素の放出が使用時の環境に依存し、なりゆきまかせのものになってしまう点が以下に提示する本発明との根本的な相違である。  Basically, this third method is a patented technique for making little reaction when mixing chlorite and some carrier, so that the release of chlorine dioxide during use is not effective in the environment during use. This is a fundamental difference from the present invention that will be described below.

また、「特許出願公開平6−233985」はシリカゲルなど多孔性無機質担体に二酸化塩素ガスを吸着させ、その吸着させた物質に加圧空気を送り込むことで、二酸化塩素ガスを一気に放出させる提案であるが、この方法では製造時に高濃度の二酸化塩素ガスを取り扱わねばならず生産が不安定かつ危険を伴うため実用は極めて難しい。  “Patent Application Publication No. Hei 6-233985” is a proposal to release chlorine dioxide gas at a stretch by adsorbing chlorine dioxide gas to a porous inorganic carrier such as silica gel and sending pressurized air to the adsorbed substance. However, this method is extremely difficult to put to practical use because high concentration chlorine dioxide gas must be handled during production, and production is unstable and dangerous.

すなわち従来の先行技術文献に記載されたすべての方法は、結局以下にあげる3つの問題点が解決または明記されていないのである。  In other words, all the methods described in the conventional prior art documents do not solve or specify the following three problems.

第一の問題点は、製品コンセプトの問題である。生産時に高濃度の二酸化塩素を担持させ安定して大量生産することができないために、従来技術はすべて亜塩素酸塩と酸性物質を混合する際に反応を抑制し、微弱な二酸化塩素しか発生しないように反応を抑えた状態で製造し、使用時に周囲の湿度や活性剤の添加などによって二酸化塩素ガスを放出するという技術であり製品である。
しかし、このような製品では、活性剤を添加する場合には手間がかかり、亜塩素酸塩と酸性担体を混合成型した製品では、使用時の周辺環境に二酸化塩素濃度が依存するため、事前に使用時の濃度を定めることができず、二酸化塩素の発生量が著しく増減し、使用環境の二酸化塩素濃度を制御できないため、殺菌やウイルス対策の用途としては用いることができず、消臭剤としての位置づけしか現実的にはできなかった。
The first problem is the product concept. All of the conventional technologies suppress the reaction when mixing chlorite and acidic substances, and only weak chlorine dioxide is generated because high concentration of chlorine dioxide is not supported during production. This is a product and technology that releases chlorine dioxide gas by using ambient humidity or adding an activator during use.
However, in such products, it takes time to add an activator, and in products in which chlorite and acidic carrier are mixed and molded, the chlorine dioxide concentration depends on the surrounding environment at the time of use. As the concentration at the time of use cannot be determined, the amount of chlorine dioxide generated significantly increases and decreases, and the chlorine dioxide concentration in the environment of use cannot be controlled, so it cannot be used as a sterilization or virus countermeasure, and as a deodorant Only the position of was practically possible.

第二の問題点は、使用時の濃度の問題である。二酸化塩素は高濃度では人体に有害であり、その水準は米国産業衛生専門家会議(ACGIH)が指針を出している。それによれば、短期曝露濃度として0.3ppm、長期曝露濃度として0.1ppmであり、第一の問題で指摘した通り、従来技術の製品はすべて濃度管理ができないため、使用初期にはこの許容濃度を超えることが多く、本来であれば欠陥製品として販売すべきでないものも小屋内ではまだ法整備がなされていないため、市場ではこの点の安全性が明瞭でないものも販売されている。塩素臭として二酸化塩素が知覚できる水準ではすでに高濃度であり、細菌やウイルスなどの微生物や悪臭物質、アレルゲンの分解などに有効な濃度はより低い濃度で可能である。すなわち人間が知覚できない程度の極低濃度で二酸化塩素濃度を維持し、かつ、二酸化塩素濃度がなくなった時点がわかる製品でない限り、空間に浮遊する細菌やウイルスの殺菌・不活化を謳うことは利用者が誤謬を招く可能性があり問題がある。
このように従来の技術に基づく製品は、高濃度の二酸化塩素を安定して何らかの担体に担持させ、使用時には安定した除放ができず、使用者はその効果の終了のタイミングもわからないなど使用時の濃度に関して極めて曖昧な製品しか従来の技術ではできなかった。
The second problem is a concentration problem during use. Chlorine dioxide is harmful to the human body at high concentrations, and its levels are guided by the American Industrial Hygienists Association (ACGIH). According to it, the short-term exposure concentration is 0.3 ppm and the long-term exposure concentration is 0.1 ppm. As pointed out in the first problem, all the products of the prior art cannot control the concentration. There are many cases that should not be sold as defective products, and those that should not be sold as defective products are not yet established in the small indoors. At a level where chlorine dioxide can be perceived as a chlorine odor, the concentration is already high, and a concentration that is effective for the decomposition of microorganisms such as bacteria and viruses, malodorous substances, and allergens is possible at a lower concentration. In other words, unless it is a product that maintains the chlorine dioxide concentration at a very low concentration that humans cannot perceive, and knows when the chlorine dioxide concentration has disappeared, it is necessary to ask for the sterilization and inactivation of bacteria and viruses floating in the space There is a problem that can lead to error.
In this way, products based on the conventional technology stably carry high concentration of chlorine dioxide on some kind of carrier, cannot be stably released during use, and the user does not know when to end the effect. Only products that are very ambiguous with respect to the concentration of can be achieved with the prior art.

第三の問題点は、保存安定性の問題である。一般消費者市場において安定して製品を供給するためには最低1年、通常は3年の保存安定性を担保しなければならないとされている。従来の技術では高濃度の二酸化塩素を安定して保存する方法が確立されていないがために、第一の問題点で指摘した製品コンセプトの問題につながっている。
その上従来技術では、亜塩素酸塩と担体を混合した際に微弱に反応させる製品や吸水性樹脂で二酸化塩素をゲル化した製品では高温、高湿度下で保存安定性が得られず、また、過度に反応を抑制しゲル化など1剤にした製品の場合、使用時に二酸化塩素がほとんど放出せず本来の二酸化塩素ガスの効果が得られない。その結果、活性剤を添加するタイプの製品以外は市場から実質的に消えている。
The third problem is storage stability. In order to supply products stably in the general consumer market, the storage stability must be guaranteed for at least one year, usually three years. The conventional technique has not established a method for stably storing high-concentration chlorine dioxide, which leads to the product concept pointed out in the first problem.
In addition, in the prior art, products that react weakly when chlorite and a carrier are mixed or products in which chlorine dioxide is gelled with a water-absorbing resin cannot obtain storage stability at high temperatures and high humidity. In the case of a product in which the reaction is excessively suppressed and made into one agent such as gelling, the chlorine dioxide is hardly released at the time of use and the effect of the original chlorine dioxide gas cannot be obtained. As a result, products other than those of the type that add the activator have virtually disappeared from the market.

本発明者は上記の三つの問題点を解決する手段として、鋭意検討を重ねた結果従来技術とはまったく逆のアプローチを取ることによって本発明に至った。まず第一の問題点の解決方法として高濃度の二酸化塩素ガスを安定して大量に生産する方法を確立する方法を発明した。 従来の技術では高濃度の二酸化塩素を含有したガス組成体は安定した製造方法が確立されていなかったわけであるが、 本発明者は透明なpH6.0以下のシリカゲルに亜塩素酸塩水溶液を含浸させた際の反応熱を制御し温度を35℃以下に保ち、減圧乾燥させることによって高濃度の二酸化塩素ガスを発生させ吸着させることを可能にしたことを第一の特徴とする。  As a means for solving the above three problems, the present inventor has intensively studied and as a result, has taken the approach completely opposite to that of the prior art, and has reached the present invention. First, as a solution to the first problem, a method for inventing a method for stably producing a large amount of chlorine dioxide gas at a high concentration was invented. In the prior art, a stable production method has not been established for a gas composition containing high concentration of chlorine dioxide, but the present inventors impregnated a transparent silica gel having a pH of 6.0 or less with a chlorite aqueous solution. The first feature is that a high concentration of chlorine dioxide gas can be generated and adsorbed by controlling the heat of reaction at the time of heating and maintaining the temperature at 35 ° C. or lower and drying under reduced pressure.

第二の問題点の解決方法は、透明なシリカゲルに高濃度の二酸化塩素ガスを担持させ、二酸化塩素本来の黄褐色の色調の濃淡をもってガスの担持、除放状況が視認できるようにし、かつ短時間に担持させた二酸化塩素ガスが放出されないように高濃度二酸化塩素担持シリカゲルを二酸化塩素ガスを任意の期間一定の濃度で除放するために0.3nm以上100000nm以下の微細孔を1つ以上有した袋に内包し使用することを第二の特徴とする。  The solution to the second problem is that a high concentration of chlorine dioxide gas is supported on transparent silica gel so that the gas loading and release status can be visually recognized with the light and dark shades of chlorine dioxide. In order to release chlorine dioxide gas at a constant concentration for an arbitrary period of time, the silica gel supporting high concentration chlorine dioxide has one or more fine pores of 0.3 nm or more and 100,000 nm or less so that the chlorine dioxide gas supported on time is not released. The second feature is that it is used in a sealed bag.

第三の問題点の解決方法は、高濃度の二酸化塩素ガスを担持させたシリカゲルを長期にわたって保存させるために、炭酸ガス透過性を10ml/m・day/MPa以下かつ透湿度を5g/m・day以下の素材を任意に積層した袋、または容器を任意に選択し、作成された高濃度の二酸化塩素ガスを担持したシリカゲルの重量に対して相対湿度20%以下においてガス吸着率が8以上になるシリカゲルを1%以上のぞましくは20%〜25%を混和し、さらに100torr以下に減圧した上で密封する方法によって、密閉された袋または容器内で平衡な二酸化塩素ガスの担持状態を維持できることを見いだした。これにより従来の先行技術における問題点であった保存性の問題が解決され、長期保存安定性が担保された。The solution to the third problem is that the carbon dioxide permeability is 10 ml / m 2 · day / MPa or less and the moisture permeability is 5 g / m in order to preserve the silica gel carrying a high concentration of chlorine dioxide gas over a long period of time. The gas adsorption rate is 8 at a relative humidity of 20% or less with respect to the weight of the silica gel carrying the high-concentration chlorine dioxide gas. The above-mentioned silica gel is mixed in an amount of 1% or more, preferably 20% to 25%, and further reduced in pressure to 100 torr or less, and then sealed, so that the chlorine dioxide gas is equilibrated in a sealed bag or container. I found that I could maintain the state. As a result, the problem of storage stability, which was a problem in the prior art, was solved, and long-term storage stability was ensured.

本発明による高濃度二酸化塩素ガス担持シリカゲルは、黄褐色の色をした硬質なビーズ状に生成される。保存は長期間にわたり二酸化塩素ガスの吸脱着が袋または容器内で平衡状態を保つため、使用直前まで劣化が少なく、さらに使用後は周囲の湿度に左右されることなく、使用時の袋あるいは容器のガス透過性に正の相関でもってガスの放出量が制御される。
その結果、効果の終了時には透明なビーズ状に変化し、その交換タイミングが一目にして瞭然となり、しかも内包する袋または容器の二酸化塩素ガス透過性を制御することによって、担持させた二酸化塩素ガスを用途に応じて任意の濃度で放出させることが可能となり、空間の殺菌、ウイルスの不活化、悪臭物質の消臭、アレルゲンの分解、鮮度保持が極めて簡便に行えるようになった。
The high-concentration chlorine dioxide gas-supported silica gel according to the present invention is produced in the form of hard beads having a yellowish brown color. Since storage and adsorption / desorption of chlorine dioxide gas is maintained in the bag or container for a long period of time, there is little deterioration until immediately before use, and after use, the bag or container is not affected by ambient humidity. The amount of gas released is controlled with a positive correlation with the gas permeability.
As a result, at the end of the effect, it changes into a transparent bead shape, the replacement timing becomes obvious at a glance, and the carried chlorine dioxide gas is controlled by controlling the permeability of the contained bag or container. Depending on the application, it can be released at any concentration, and it has become possible to sterilize spaces, inactivate viruses, deodorize malodorous substances, decompose allergens, and maintain freshness very easily.

本発明において使用される亜塩素酸塩としては、亜塩素酸ナトリウム、亜塩素酸カリウム、亜塩素酸リチウムのような亜塩素酸アルカリ金属塩、亜塩素酸カルシウムなどの亜塩素酸アルカリ土類金属塩があげられるが、亜塩素酸ナトリウムがもっとも入手しやすく使用上もコストの面でも問題なく利用できる。亜塩素酸塩溶液としては市販の亜塩素酸ナトリウムの固形物を精製水に溶解させ25%に調整したものも使用可能であるし、30%に調整した物でも使用可能である。さらにはすでに溶液として市販されている32%あるいは25%として調整されている亜塩素酸ナトリウム溶液をそのまま用いても問題ないがより高濃度の亜塩素酸塩溶液を用いることで、必然的により高濃度の二酸化塩ガス担持シリカゲルを製造することができる。この時亜塩素酸塩の濃度は20%未満では濃度が低く効率が悪くなるため、25%〜35%に調製することが望ましい。  The chlorite used in the present invention includes alkali metal chlorites such as sodium chlorite, potassium chlorite and lithium chlorite, and alkaline earth metals chlorite such as calcium chlorite. Salts can be mentioned, but sodium chlorite is the most readily available and can be used without problems in terms of use and cost. As the chlorite solution, a commercially available sodium chlorite solid dissolved in purified water and adjusted to 25% can be used, or a solution adjusted to 30% can also be used. Further, there is no problem even if the sodium chlorite solution already adjusted as 32% or 25% which is already marketed as a solution is used as it is, but by using a higher concentration chlorite solution, it is inevitably higher. Silica dioxide gas-supported silica gel having a concentration can be produced. At this time, if the concentration of chlorite is less than 20%, the concentration is low and the efficiency becomes poor. Therefore, it is desirable to adjust it to 25% to 35%.

亜塩素酸塩を吸着反応させるシリカゲルとしてはpHが6.0以下に調整された物で相対湿度20%以下での吸着率が8以上であればどのようなものでも使用が可能であるが、外観上割れを防止するという点からは耐水性の高いシリカゲルを用いることが望ましい。  As silica gel for adsorption reaction of chlorite, any substance can be used as long as the pH is adjusted to 6.0 or less and the adsorption rate at relative humidity 20% or less is 8 or more. From the viewpoint of preventing cracks in appearance, it is desirable to use silica gel with high water resistance.

減圧乾燥においては、市販されている一般的な真空乾燥機または凍結真空乾燥機を用いることができる。周知の通り減圧下においてはその度合いに応じて、沸点が降下する。さらに通常の温風乾燥ではシリカゲルのような多孔質体の乾燥においては、表面に水がにじみ出てから蒸発させねばならず、二酸化塩素が溶液として漏出してしまうため効率が良くない。減圧乾燥法であればこの点、より短時間で不要な水分を昇華させることができる。
また、亜塩素酸ナトリウム溶液をシリカゲルに含浸させることによる反応熱を利用し、水分の昇華にともなう温度低下を防ぐことができる。この時、温度が35℃を超えると二酸化塩素ガスの脱離が激しくなり作業効率が低下するため、温度は35℃以下で行うことが望ましい。
In the vacuum drying, a commercially available general vacuum dryer or freeze vacuum dryer can be used. As is well known, the boiling point drops under reduced pressure depending on the degree. Further, in normal hot air drying, in drying a porous body such as silica gel, water must ooze out from the surface and evaporate, and chlorine dioxide leaks out as a solution, which is not efficient. In this respect, if it is a vacuum drying method, unnecessary moisture can be sublimated in a shorter time.
In addition, the heat of reaction caused by impregnating silica gel with a sodium chlorite solution can be used to prevent temperature drop due to moisture sublimation. At this time, if the temperature exceeds 35 ° C., desorption of chlorine dioxide gas becomes severe and the working efficiency is lowered. Therefore, the temperature is preferably 35 ° C. or less.

本発明において減圧乾燥は反応を抑制するためではなく、反応を促進させ、より高濃度の二酸化塩素を生成させるためであり、かつ温度を制御することによって高濃度に生成した二酸化塩素を高濃度にシリカゲルに担持させることができる。この時減圧させる程度は、乾燥を十全に行える程度であればよく、ー5℃〜25℃の範囲で沸点降下に応じた減圧を行えばよい。添加する亜塩素酸塩溶液はシリカゲル重量に対して10%以上60%以下で任意に選択することができるが、製造効率と二酸化塩素の生成及び担持の効率において25%以上35%以下の範囲の亜塩素酸塩濃度の溶液をシリカゲル重量に対して35%以上50%以下添加することが望ましい。  In the present invention, the drying under reduced pressure is not for suppressing the reaction but for promoting the reaction and generating a higher concentration of chlorine dioxide, and controlling the temperature to increase the concentration of chlorine dioxide generated at a high concentration. It can be supported on silica gel. At this time, the pressure may be reduced as long as the drying can be sufficiently performed, and the pressure may be reduced according to the boiling point drop in the range of -5 ° C to 25 ° C. The chlorite solution to be added can be arbitrarily selected from 10% to 60% with respect to the weight of the silica gel, but in the range of 25% to 35% in terms of production efficiency and chlorine dioxide production and loading efficiency. It is desirable to add a solution having a concentration of chlorite of 35% or more and 50% or less based on the weight of the silica gel.

装置におけるコスト的機能的な制約がなければ、もっとも効率の良い方法は凍結真空乾燥機を用いる方法である。この方法によれば高濃度の二酸化塩素ガス担持シリカゲルを生成しつつ脱離を最小限に抑えた最も効率の良い製造を行うことが可能である。  If there is no cost functional restriction in the apparatus, the most efficient method is a method using a freeze vacuum dryer. According to this method, it is possible to carry out the most efficient production with minimal desorption while producing a high concentration chlorine dioxide gas-supporting silica gel.

保存においては、まず、前述の方法によって作成した高濃度の二酸化塩素ガスを担持した直後のシリカゲルは二酸化塩素ガスが急速に離脱し放出しやすいため、二酸化塩素の脱離を抑制するために、シリカゲルを追加で添加する。添加する量は放出量と吸着量が平衡に保たれる量がよく、望ましい添加量はシリカゲルの吸着能力にも左右されるが最低1%以上必要であり、望ましくは10%以上、さらに望ましくは18%から23%を添加する。この時乾燥工程を経ているため、相対湿度は充分に低下している。このような相対湿度が低い環境下においてはシリカゲルの種類による性能の変化はわずかであるので、この時追加で加えるシリカゲルは任意のものを用いることができる。  In storage, the silica gel immediately after supporting the high concentration chlorine dioxide gas prepared by the above-described method tends to release and release chlorine dioxide gas rapidly. Add additional. The amount added should be such that the released amount and the adsorbed amount are kept in equilibrium, and the desired added amount depends on the adsorption capacity of the silica gel, but at least 1% is required, preferably 10% or more, more preferably Add 18% to 23%. At this time, since the drying process is performed, the relative humidity is sufficiently reduced. In such an environment where the relative humidity is low, the change in performance due to the type of silica gel is slight, so that any additional silica gel can be added at this time.

高濃度二酸化塩素ガス担持シリカゲルは、そのまま開放系において静置した場合、数日ですべての二酸化塩素ガスを放出してしまう。そこで、本発明においては製造した高濃度二酸化塩素ガス担持シリカゲルを二酸化塩素の分子よりも大きく、かつ、霧雨などの水滴の大きさよりも小さい微細孔、すなわち0.3nm以上かつ100000nm以下の微細孔を有する防水透湿性素材の袋に密封する。
この時上記範囲内の微細孔の大きさと数を増減させることによって、高濃度二酸化塩素ガス担持シリカゲルから除放される二酸化塩素ガスの量を制御し、任意の期間低濃度の二酸化塩素ガスで対象となる空間の衛生管理を行うことができる。このような性質を有する袋としては、食品の鮮度保持用の袋やおむつなどに使用される防水透湿性素材を広く利用できる。
When silica gel loaded with high-concentration chlorine dioxide gas is left as it is in an open system, all chlorine dioxide gas is released within a few days. Therefore, in the present invention, the produced high-concentration chlorine dioxide gas-supported silica gel has fine pores larger than chlorine dioxide molecules and smaller than the size of water droplets such as drizzle, that is, fine pores of 0.3 nm or more and 100,000 nm or less. Seal in a bag of waterproof and breathable material.
At this time, by controlling the amount of chlorine dioxide gas released from the silica gel carrying high-concentration chlorine dioxide gas by increasing or decreasing the size and number of micropores within the above range, the target can be controlled with low-concentration chlorine dioxide gas for any period of time. The hygiene management of the space can be performed. As a bag having such properties, waterproof and moisture-permeable materials used for bags for keeping food fresh and diapers can be widely used.

通気流量が5000cc/min以上のものを使用した場合、約3日〜1週間程度の二酸化塩素ガス除放性が得られる。より長期間の除放性を得たい場合は、20〜200cc/minの袋を使用することで実現することができる。  When one having an aeration flow rate of 5000 cc / min or more is used, a chlorine dioxide gas release property of about 3 days to 1 week can be obtained. When it is desired to obtain longer-term release properties, it can be realized by using a bag of 20 to 200 cc / min.

二酸化塩素ガスを担持させたシリカゲルと追加したシリカゲルを単純に混和した上で、透湿度が5g/m・day以下の袋または容器に入れ、100torr以下に真空密封シーリングを行うことで、密閉された袋の内部に外部から水蒸気が入る量は包装体の透湿度に依存する。その結果内部の相対湿度はほとんど上昇せず、二酸化塩素ガスを担持させたシリカゲルから脱離する二酸化塩素ガスについては、追加で添加するシリカゲルによって吸着されシリカゲル全体の二酸化塩素濃度を均一に保ち、保存時においてシリカゲルからの二酸化塩素ガスの吸脱着を平衡状態に保つことができる。また、炭酸ガス透過性が10ml/m・day/MPa以下であれば、袋内から外部への二酸化塩素ガスの脱離をほとんど抑制できるため袋内部の吸脱着によって長期間の保存安定性を持たせることが可能である。透湿度および炭酸ガス透過性については、その値が少なければ少ないほどより長期間の保存安定性が得られるため、上記値は最低限の長期保存安定性を担保する値であって、その値に拘泥するのではなく入手しうるもっとも優れたガスバリア性のフィルムを使用することが望ましいのは言うまでもない。The silica gel carrying chlorine dioxide gas and the additional silica gel are simply mixed, put in a bag or container with a moisture permeability of 5 g / m 2 · day or less, and sealed by vacuum sealing to 100 torr or less. The amount of water vapor entering the inside of the bag depends on the moisture permeability of the package. As a result, the internal relative humidity hardly increases, and the chlorine dioxide gas desorbed from the silica gel carrying the chlorine dioxide gas is adsorbed by the additional silica gel to keep the chlorine dioxide concentration in the entire silica gel uniform and preserved. Sometimes adsorption and desorption of chlorine dioxide gas from silica gel can be kept in equilibrium. In addition, if the carbon dioxide permeability is 10 ml / m 2 · day / MPa or less, desorption of chlorine dioxide gas from the inside of the bag to the outside can be almost suppressed, so that long-term storage stability can be achieved by adsorption / desorption inside the bag. It is possible to have it. For moisture permeability and carbon dioxide permeability, the smaller the value, the longer the storage stability can be obtained, so the above values are the values that guarantee the minimum long-term storage stability, It goes without saying that it is desirable to use the best gas barrier film available rather than being bound.

上記のような袋ないし容器としてはもっとも簡便なものとして生鮮食品の真空パックなどに用いるフィルム素材であり、EVOHあるいはシリカ蒸着によってガスバリア性を付与したフィルムであれば様々な企業が出しているガスバリア性フィルムで問題なく使用できる。以下に示す例では三菱樹脂製テックバリアHXを使用した。  As a bag or container as described above, it is a film material used for a fresh food vacuum pack, etc. as the simplest one, and a gas barrier property provided by various companies as long as it is a film provided with a gas barrier property by EVOH or silica deposition. Can be used without problems with film. In the example shown below, Tech Barrier HX made by Mitsubishi Plastics was used.

上記のような方法で作成する高濃度二酸化塩素ガス担持シリカゲルは、亜塩素酸ナトリウム(日本カーリット製)25gを精製水75gに溶解させ、出来た亜塩素酸ナトリウム25%溶液100gを300gのRD形シリカゲルに加える。シリカゲルの温度が約30℃程度であることを確認し、真空乾燥機によって減圧乾燥させる。得られた高濃度二酸化塩素ガス担持シリカゲルにRD形のシリカゲルを100g加え混和した上で、真空パックに用いるSivmPET12/ON15/LLDPE50でフィルムが構成された袋に再度100torrに減圧した上でヒートシーリングすることによって得られる。  The silica gel carrying high-concentration chlorine dioxide gas prepared by the method as described above is prepared by dissolving 25 g of sodium chlorite (manufactured by Nippon Carlit) in 75 g of purified water, and 100 g of the resulting 25% sodium chlorite solution is 300 g of RD type. Add to silica gel. After confirming that the temperature of the silica gel is about 30 ° C., it is dried under reduced pressure by a vacuum dryer. 100 g of RD-type silica gel is added to and mixed with the high-concentration chlorine dioxide gas-supported silica gel, and then heat sealed after reducing the pressure to 100 torr again in a bag made of SivmPET12 / ON15 / LLDPE50 used in a vacuum pack. Can be obtained.

次に実施例、ならびに比較例によって本発明の効果を説明する。  Next, the effects of the present invention will be described with reference to examples and comparative examples.

表1は、実施例1、比較例1、比較例2の各方法によって製造した二酸化塩素ガス担持シリカゲルが保持している二酸化塩素量を比較したものである。各方法によって製造したガス担持体から100gを粉砕し1Lの水に分散し1時間後DPDグリシン法によって二酸化塩素濃度を測定した。  Table 1 compares the amount of chlorine dioxide retained by the chlorine dioxide gas-carrying silica gel produced by each method of Example 1, Comparative Example 1, and Comparative Example 2. 100 g of the gas carrier produced by each method was pulverized and dispersed in 1 L of water, and after 1 hour, the chlorine dioxide concentration was measured by the DPD glycine method.

表2は、実施例2、比較例3、比較例4の各方法によって製造したガス担持体に関する外観上の経時変化とガスの保持量を比較した。  Table 2 compares the appearance change with time and the amount of gas retained for the gas carriers produced by the methods of Example 2, Comparative Example 3, and Comparative Example 4.

表3は、実施例3、比較例5、比較例6、比較例7の各方法によって製造した二酸化塩素ガス担持シリカゲルを40℃、相対湿度85%以上に1ヶ月保存した後の各二酸化塩素ガス担持シリカゲルが保持している二酸化塩素ガス量の減少率を比較した。  Table 3 shows each chlorine dioxide gas after the chlorine dioxide gas-supported silica gel produced by each method of Example 3, Comparative Example 5, Comparative Example 6, and Comparative Example 7 was stored at 40 ° C. and relative humidity of 85% or more for one month. The reduction rate of the amount of chlorine dioxide gas retained by the supported silica gel was compared.

表4は、実施例4、比較例8、比較例9の各試料を1mの実験設備に入れ、内部の二酸化塩素ガス濃度を経時的に測定した。測定にあたってはガステック社の二酸化塩素ガス検知管23Mおよび23Lを使用した。In Table 4, each sample of Example 4, Comparative Example 8, and Comparative Example 9 was put in a 1 m 3 experimental facility, and the internal chlorine dioxide gas concentration was measured over time. For the measurement, chlorine dioxide gas detection tubes 23M and 23L manufactured by Gastec Corporation were used.

表5は、実施例5と不織布マスクを日本食品分析センターに送り、不織布マスクを滅菌後、芽胞菌、大腸菌、サルモネラ菌の菌液を添加し、実施例5と同じ容器内に設置した際の菌数の変化を測定した。  Table 5 shows the bacteria when Example 5 and the non-woven mask were sent to the Japan Food Analysis Center, and the non-woven mask was sterilized, and then the bacterial solution of spore bacteria, Escherichia coli, and Salmonella was added and installed in the same container as Example 5. The change in number was measured.

亜塩素酸ナトリウム(日本カーリット製)25gを精製水75gに溶解し、比表面積720m/g、細孔径2.2nmのRD形シリカゲル(富士シリシア化学製)300gに含浸させ、35℃に達した時点で100torrに減圧乾燥させたもの。25 g of sodium chlorite (manufactured by Nippon Carlit) was dissolved in 75 g of purified water, impregnated in 300 g of RD type silica gel (manufactured by Fuji Silysia Chemical) having a specific surface area of 720 m 3 / g and a pore diameter of 2.2 nm, and reached 35 ° C. What was dried under reduced pressure to 100 torr at the time.

比較例1Comparative Example 1

実施例1と同様に含浸させた上で、50℃で温風乾燥させたもの。  What was impregnated in the same manner as in Example 1 and dried with hot air at 50 ° C.

比較例2Comparative Example 2

実施例1と同様に含浸させた上で、真空乾燥させなかったもの。  What was impregnated in the same manner as in Example 1 and was not vacuum-dried.

Figure 2010254669
Figure 2010254669

実施例1の方法で製造した二酸化塩素ガス担持シリカゲルをガラス容器に100gを入れ、シリコン性通気栓で閉じたもの。  100 g of chlorine dioxide gas-supported silica gel produced by the method of Example 1 was placed in a glass container and closed with a silicon vent plug.

比較例3Comparative Example 3

シリカアルミナ300gに亜塩素酸ナトリウム25gを加え均一に混合させたものを実施例2と同様のガラス容器に100gを入れ、シリコン性通気栓で閉じたもの。  100 g of silica alumina added with 25 g of sodium chlorite and mixed uniformly, 100 g in a glass container similar to that of Example 2, and closed with a silicon vent plug.

比較例4Comparative Example 4

亜塩素酸ナトリウム25gを精製水75gに入れ、二酸化塩素ガスを溶解させた後、吸水性樹脂に膨潤ゲル化させたものを実施例2と同様のガラス容器に100gを入れ、シリコン性通気栓で閉じたもの。  25 g of sodium chlorite was put in 75 g of purified water, dissolved in chlorine dioxide gas, and then swollen and gelled in a water-absorbent resin, 100 g was put in the same glass container as in Example 2, and the silicone vent plug was used. Closed one.

Figure 2010254669
Figure 2010254669

実施例1の方法で製造した高濃度二酸化塩素ガス担持シリカゲル75gにRD形シリカゲル25gを加え混合した後、SivmPET12/ON15/LLDPE50の3層で積層されたフィルムに入れ100torrに減圧しヒートシールによって密閉したもの。  25 g of RD type silica gel was added to and mixed with 75 g of silica gel carrying high-concentration chlorine dioxide gas produced by the method of Example 1, and then placed in a film laminated with three layers of SivmPET12 / ON15 / LLDPE50, and the pressure was reduced to 100 torr and sealed by heat sealing. What you did.

比較例5Comparative Example 5

実施例3と同様に製造後、OPP袋に密閉したもの。  What was sealed in an OPP bag after production in the same manner as in Example 3.

比較例6Comparative Example 6

比較例4と同様にして製造したゲルをPE製容器に密閉したもの。  A gel produced in the same manner as in Comparative Example 4 and sealed in a PE container.

比較例7Comparative Example 7

実施例3と同様の方法で製造した後にRD形シリカゲルを添加しないまま密閉したもの。  What was sealed without adding RD type silica gel after manufacturing by the same method as Example 3.

Figure 2010254669
Figure 2010254669

実施例1の方法で製造した高濃度二酸化塩素ガス担持シリカゲル75gにRD型シリカゲル25gを加え混合した後、微細孔を有し通気量50cc/minの防水透湿性袋に密封たもの。  A mixture of 75 g of high-concentration chlorine dioxide gas-supported silica gel produced by the method of Example 1 and mixed with 25 g of RD-type silica gel and sealed in a waterproof and moisture-permeable bag having fine pores and an air flow rate of 50 cc / min.

比較例8Comparative Example 8

亜塩素酸ナトリウム25%溶液50gにゲル化剤として吸水性樹脂10gおよびクエン酸5gを添加しゲル化させたもの。  Gelatinized by adding 10 g of water-absorbing resin and 5 g of citric acid as a gelling agent to 50 g of 25% sodium chlorite solution.

比較例9Comparative Example 9

市販されている安定化二酸化塩素ゲル100gを使用。

Figure 2010254669
※1:ガス検知管による検出上限値以上
※2:ガス検知管による検出下限値未満Use 100 g of commercially available stabilized chlorine dioxide gel.
Figure 2010254669
* 1: More than upper limit of detection by gas detector tube * 2: Less than lower limit of detection by gas detector tube

実施例1の方法で製造した高濃度二酸化塩素ガス担持シリカゲル75gにRD型シリカゲル25gを加え混合した後、20gを計量し、微細孔を有し通気量20cc/minの防水透湿性袋に密封したもの。

Figure 2010254669
※1:検出限界未満After adding 25 g of RD type silica gel to 75 g of high concentration chlorine dioxide gas-supporting silica gel produced by the method of Example 1, 20 g was weighed and sealed in a waterproof and moisture-permeable bag having fine pores and a ventilation rate of 20 cc / min. thing.
Figure 2010254669
* 1: Below detection limit

表1から明らかな通り、本発明によって製造した実施例1の二酸化塩素ガス担持シリカゲルは他の比較例1および比較例2や3と比べて数倍以上のガスを担持させている。また、比較例1の方法で製造したものは製造時に極めて高濃度の二酸化塩素ガスがシリカゲルから脱離したため製造自体が困難であった。  As is clear from Table 1, the chlorine dioxide gas-carrying silica gel of Example 1 produced according to the present invention carries several times more gas than other Comparative Examples 1 and 2 and 3. Further, the product manufactured by the method of Comparative Example 1 was difficult to manufacture because a very high concentration of chlorine dioxide gas was desorbed from the silica gel at the time of manufacture.

表2から本発明によって製造した二酸化塩素ガス担持シリカゲルは、二酸化塩素ガスの脱離に従って、シリカゲルの色が濃い黄褐色から透明へと変化した一方で、他の比較例3では外観の変化はなく、比較例4では1週間ほどでゲルが白く変化し、使用終了のタイミングがわからなくなった。  From Table 2, the silica gel carrying the chlorine dioxide gas produced according to the present invention changed the color of the silica gel from dark tan to transparent according to the desorption of the chlorine dioxide gas, while the other Comparative Example 3 had no change in appearance. In Comparative Example 4, the gel turned white in about one week, and the timing of the end of use was not known.

表3から本発明による実施例3の方法で保存したものは、過酷な環境下においても高い安定性を維持していた一方、比較例5は40%ほど二酸化塩素濃度が低下し、比較例6の方法にいたっては容器が劣化し軽く力を入れただけで破損した。  From Table 3, what was preserved by the method of Example 3 according to the present invention maintained high stability even in a harsh environment, while Comparative Example 5 had a chlorine dioxide concentration decreased by about 40%. In this method, the container deteriorated and it was damaged only by applying light force.

表4から本発明による実施例4の方法で使用したものは、長期間にわたって対象となる空間について濃度変化が緩やかに推移した。測定に使用した検知管の測定範囲に基づいて対象空間を1mとしたが、約10畳(1.62m×10)天井高2.6mとして濃度を希釈した場合、従来技術の比較例8では初期にはACGIHに定める長期曝露濃度、短期曝露濃度をともに超える値を示した。一方、実施例4では常にACGIHの基準を上回ることなく緩やかに濃度が推移し、実用性の高さが確認できた。比較例9は保存性の問題を改善するために安定化二酸化塩素をゲル化することで、消臭効果を謳った市販されている製品であるが、表4に示す通りまったく二酸化塩素ガス濃度が検出できず、実用的な効果は得られない可能性が示唆された。As shown in Table 4, the concentration change of the sample used in the method of Example 4 according to the present invention gradually changed over a long period of time. Although the target space was set to 1 m 3 based on the measurement range of the detector tube used for the measurement, when the concentration was diluted to about 10 tatami mat (1.62 m 2 × 10) ceiling height 2.6 m, the comparative example 8 of the prior art In the initial stage, the values exceeded both the long-term exposure concentration and the short-term exposure concentration stipulated in ACGIH. On the other hand, in Example 4, the concentration gradually changed without always exceeding the ACGIH standard, and high practicality was confirmed. Comparative Example 9 is a commercially available product that exhibits a deodorizing effect by gelling stabilized chlorine dioxide to improve the storage stability problem. However, as shown in Table 4, the chlorine dioxide gas concentration is quite high. It could not be detected, suggesting the possibility that a practical effect cannot be obtained.

表5から本発明によって実施例5の試料を用いることで、もっとも殺菌剤に耐性のある芽胞菌でさえ6時間後には99.998%以上の殺菌効果を得られた。他の大腸菌、サルモネラなどに関しては1時間後の時点で大腸菌において検出限界以下まで、サルモネラについても99.99%以上の殺菌効果が得られており、N95マスクなど高価なマスクを使い捨てにせず使用できることが示唆された。  By using the sample of Example 5 according to the present invention from Table 5, a sterilizing effect of 99.998% or more was obtained even after 6 hours even with the most resistant spore fungus. For other Escherichia coli, Salmonella, etc., the bactericidal effect of Salmonella is 99.99% or more up to the detection limit in E. coli after 1 hour, and an expensive mask such as N95 mask can be used without being disposable. Was suggested.

本発明によって得られた高濃度二酸化塩素担持シリカゲルは従来の二酸化塩素除放性を標榜する製品とは根本的に異なり、対象空間に対する濃度管理が完璧であり、さらにその使用期限も視認して把握することが可能であることから、消臭のように効果を知覚できる用途に限らず、空間の衛生管理に広く用いることが可能となる。具体的には、不特定多数の利用者が集まりかつ閉鎖された空間である、駅、地下街、各種商業施設、図書館、社会福祉施設、学校などの空間のインフルエンザ予防などに使用可能であり、さらには従来使い捨てすることが前提であったマスクなども極めて低いコストで簡便に滅菌水準の消毒が行えることから、再利用することも可能である。
このように優れた効果を得られるものでありながら、黄色の透明硬質なビーズは美観にも優れ陳腐な消臭剤などを設置しがたい施設でも広く利用することができる。
The silica gel loaded with high-concentration chlorine dioxide obtained by the present invention is fundamentally different from the conventional products that admit the release of chlorine dioxide, the concentration control for the target space is perfect, and the expiration date is also visually confirmed and grasped. Therefore, the present invention is not limited to applications that can perceive the effect, such as deodorization, and can be widely used for hygiene management of spaces. Specifically, it can be used for the prevention of influenza in spaces such as stations, underground malls, various commercial facilities, libraries, social welfare facilities, and schools where unspecified number of users gather and are closed. Since masks that were previously assumed to be disposable can be easily sterilized at a very low cost and can be reused.
While being able to obtain such an excellent effect, the yellow transparent hard beads can be widely used in facilities that are excellent in aesthetics and in which it is difficult to install an antiseptic deodorant.

Claims (3)

pH6以下に調整された多孔質ケイ酸塩に亜塩素酸塩水溶液を含浸させ、35℃以下に温度を制御した状態で減圧乾燥下で反応させることを特徴とする高濃度二酸化塩素ガス担持シリカゲル  A high-concentration chlorine dioxide gas-supported silica gel characterized by impregnating a porous silicate adjusted to pH 6 or lower with a chlorite aqueous solution and reacting under reduced pressure drying with the temperature controlled at 35 ° C. or lower 請求項1に記載の高濃度二酸化塩素ガス担持シリカゲルの重量に対して20%(重量比換算)以上のシリカゲルを加え、炭酸ガス透過性10ml/(m・day/MPa)以下かつ水蒸気透過度5g/(m・day)以下の容器または袋に入れ、かつ、100torr以下に減圧密封することによって袋内部の二酸化塩素ガスのシリカゲルからの脱離量と吸着量を平衡状態に保つことを特徴とする保存方法A silica gel of 20% (weight ratio conversion) or more is added to the weight of the silica gel carrying the high-concentration chlorine dioxide gas according to claim 1, carbon dioxide gas permeability is 10 ml / (m 2 · day / MPa) or less, and water vapor permeability It is put in a container or bag of 5 g / (m 2 · day) or less and sealed under reduced pressure to 100 torr or less to keep the desorption amount and adsorption amount of chlorine dioxide gas from the silica gel inside the bag in an equilibrium state. Saving method 請求項1に記載の高濃度二酸化塩素ガス担持シリカゲルの重量に対して1%(重量比換算)以上のシリカゲルを加え、0.3nm以上100000nm以下の微細孔を1以上有する二酸化塩素ガス透過性フィルムに入れ密封し、二酸化塩素ガスを除放させることを特徴とする空間および水の衛生管理用高濃度二酸化塩素ガス担持シリカゲルの使用方法  2. A chlorine dioxide gas-permeable film having 1% (by weight ratio) or more of silica gel added to the weight of the high-concentration chlorine dioxide gas-supporting silica gel according to claim 1 and having one or more micropores of 0.3 nm or more and 100,000 nm or less. Of using silica gel carrying high-concentration chlorine dioxide gas for sanitary management of space and water, which is sealed in a container and releases chlorine dioxide gas
JP2010061498A 2009-03-30 2010-02-25 Concentrated chlorine dioxide gas supporting material supporting chlorine dioxide gas of high concentration, enabling visual recognition of residual amount of chlorine dioxide gas in use, with beautiful appearance and long-term storage stability and enabling concentration control in use, use thereof and method for storing the same Pending JP2010254669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010061498A JP2010254669A (en) 2009-03-30 2010-02-25 Concentrated chlorine dioxide gas supporting material supporting chlorine dioxide gas of high concentration, enabling visual recognition of residual amount of chlorine dioxide gas in use, with beautiful appearance and long-term storage stability and enabling concentration control in use, use thereof and method for storing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009103390 2009-03-30
JP2010061498A JP2010254669A (en) 2009-03-30 2010-02-25 Concentrated chlorine dioxide gas supporting material supporting chlorine dioxide gas of high concentration, enabling visual recognition of residual amount of chlorine dioxide gas in use, with beautiful appearance and long-term storage stability and enabling concentration control in use, use thereof and method for storing the same

Publications (1)

Publication Number Publication Date
JP2010254669A true JP2010254669A (en) 2010-11-11

Family

ID=43316017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010061498A Pending JP2010254669A (en) 2009-03-30 2010-02-25 Concentrated chlorine dioxide gas supporting material supporting chlorine dioxide gas of high concentration, enabling visual recognition of residual amount of chlorine dioxide gas in use, with beautiful appearance and long-term storage stability and enabling concentration control in use, use thereof and method for storing the same

Country Status (1)

Country Link
JP (1) JP2010254669A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103583514A (en) * 2013-11-20 2014-02-19 昆山威胜干燥剂研发中心有限公司 Sterilizing and deodorizing mildewproof agent and preparation method thereof
JP2015101497A (en) * 2013-11-22 2015-06-04 高砂熱学工業株式会社 Generation stop method of chlorine dioxide gas
JP2015205234A (en) * 2014-04-18 2015-11-19 有限会社クリーンケア Vomit treatment agent
CN108499337A (en) * 2018-03-18 2018-09-07 国润生物科技(深圳)有限公司 One kind efficiently removing nitrogenous contamination gas build air purifying preparation composition
CN111387205A (en) * 2020-04-20 2020-07-10 健康源(广州)投资合伙企业(有限合伙) Long-acting chlorine dioxide slow-release composite material and preparation method thereof
JP2021167299A (en) * 2020-04-10 2021-10-21 アールエンビズ Release kit including carrier capable of adsorbing high-capacity chlorine dioxide gas and preparation apparatus capable of preparing carrier
US11224219B2 (en) 2018-11-13 2022-01-18 Csp Technologies, Inc. Antimicrobial gas releasing agents and systems and methods for using the same
CN115581252A (en) * 2022-10-20 2023-01-10 海南省农业科学院农产品加工设计研究所 Visual ClO 2 Slow-release preservative and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103583514A (en) * 2013-11-20 2014-02-19 昆山威胜干燥剂研发中心有限公司 Sterilizing and deodorizing mildewproof agent and preparation method thereof
JP2015101497A (en) * 2013-11-22 2015-06-04 高砂熱学工業株式会社 Generation stop method of chlorine dioxide gas
JP2015205234A (en) * 2014-04-18 2015-11-19 有限会社クリーンケア Vomit treatment agent
CN108499337A (en) * 2018-03-18 2018-09-07 国润生物科技(深圳)有限公司 One kind efficiently removing nitrogenous contamination gas build air purifying preparation composition
US11224219B2 (en) 2018-11-13 2022-01-18 Csp Technologies, Inc. Antimicrobial gas releasing agents and systems and methods for using the same
JP2021167299A (en) * 2020-04-10 2021-10-21 アールエンビズ Release kit including carrier capable of adsorbing high-capacity chlorine dioxide gas and preparation apparatus capable of preparing carrier
JP7188803B2 (en) 2020-04-10 2022-12-13 アールエンビズ A release kit containing a carrier capable of adsorbing high-capacity chlorine dioxide gas, and a manufacturing apparatus capable of producing the carrier
CN111387205A (en) * 2020-04-20 2020-07-10 健康源(广州)投资合伙企业(有限合伙) Long-acting chlorine dioxide slow-release composite material and preparation method thereof
CN115581252A (en) * 2022-10-20 2023-01-10 海南省农业科学院农产品加工设计研究所 Visual ClO 2 Slow-release preservative and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2010254669A (en) Concentrated chlorine dioxide gas supporting material supporting chlorine dioxide gas of high concentration, enabling visual recognition of residual amount of chlorine dioxide gas in use, with beautiful appearance and long-term storage stability and enabling concentration control in use, use thereof and method for storing the same
US9738520B2 (en) Chlorine dioxide gas generating agent pack, and manufacturing method and storage method therefor
JP5928458B2 (en) Chlorine dioxide agent and method for generating chlorine dioxide
CN111296427A (en) Immobilized chlorine dioxide slow-release gel
JP5662244B2 (en) Chlorine dioxide gas generator pack and method for producing and storing the same
US9382116B2 (en) Mixtures for producing chlorine dioxide gas in enclosures and methods of making the same
JP5605744B2 (en) Stabilized chlorine dioxide agent and stable generation method of chlorine dioxide
JP2012036072A (en) Product shape and component composition of chlorine dioxide generator at using time
CN101861890A (en) Slow-release solid chlorine dioxide preservative
CN110384105A (en) A kind of controllable sustained-release disinfection and sterilization scavenging material
CN111097281A (en) Air purifying agent, air purifying bag and preparation method and application thereof
JP2012111673A (en) Composition of visible light responsive chlorine dioxide generator and chlorine dioxide releasing product based on the composition
CN111097270A (en) Air purification gel box and use method and application thereof
CN113662004A (en) Slow-release chlorine dioxide disinfection card using zeolite as carrier
CN101143225B (en) Air purifying agent and its preparing process
JPH0761480A (en) Deodorant/desiccant
JPH06233985A (en) Bactericidal disinfectant and its use
JP7188803B2 (en) A release kit containing a carrier capable of adsorbing high-capacity chlorine dioxide gas, and a manufacturing apparatus capable of producing the carrier
CN114557364A (en) Chlorine dioxide slow-release air freshener
KR102478400B1 (en) Solid type composition for releasing chlorine dioxide gas and sterilizer/deodorant using the same
US20100147709A1 (en) Release agent for scented additives
JPS6324963B2 (en)
KR20100126606A (en) Deodorizing, antibiotic and air purifying material
TWM622630U (en) Air purifier and air purifying device thereof
KR20110034122A (en) Far infrared ray-radiating, deodorizing, antibiotic and air purifying material