JP2010254503A - Fine powder cement - Google Patents

Fine powder cement Download PDF

Info

Publication number
JP2010254503A
JP2010254503A JP2009104664A JP2009104664A JP2010254503A JP 2010254503 A JP2010254503 A JP 2010254503A JP 2009104664 A JP2009104664 A JP 2009104664A JP 2009104664 A JP2009104664 A JP 2009104664A JP 2010254503 A JP2010254503 A JP 2010254503A
Authority
JP
Japan
Prior art keywords
fine powder
cement
waste concrete
concrete
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009104664A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kuroda
泰弘 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2009104664A priority Critical patent/JP2010254503A/en
Publication of JP2010254503A publication Critical patent/JP2010254503A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To recycle fine powder by-produced when regenerated aggregate is produced from waste concrete as a part of a cement raw material. <P>SOLUTION: A trace amount of waste concrete fine powder which hardly comprises calcium hydroxide is added to cement clinker. At this time, the waste concrete fine powder is preferably the one in which carbonation is progressed. Further, regarding the addition ratio of the waste concrete fine powder, preferably, it is added by ≤5% in a mass substitution ratio to the cement clinker. In this way, a cement material having performance equal to or above that of normal cement can be provided, thus the recycling of fine powder by-produced from waste concrete can be extended. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は微粉末セメントに係り、コンクリート廃材から再生骨材を製造する際に副次発生する微粉末を、セメント原料の一部として混合してリサイクル使用し、フレッシュコンクリートの性状向上、強度増加を図ることができる微粉末セメントに関する。   The present invention relates to finely powdered cement, and the fine powder generated as a secondary material when producing recycled aggregate from concrete waste is mixed and recycled as part of the cement raw material, improving the properties and increasing the strength of fresh concrete. The present invention relates to a fine powder cement that can be achieved.

従来、解体工事に伴い発生するコンクリート廃材は、その大半が道路用の路盤材や仮設の工事地盤として使用されてきたが、それらの需要は縮減傾向にあるため、将来的には、高度処理により、コンクリート用の再生骨材へ利用することが望まれている。しかしながら、良質の再生骨材を得るためには、コンクリートガラの破砕及び磨砕処理を伴うため、30〜50%の廃コンクリート微粉末(以下、副産微粉末と呼ぶ。)が副次発生する。この副産微粉末は、そのままでは格別の用途がないため、その処分が大きな問題となり、コンクリートのリサイクルを阻害する要因となっており、この微粉末を廃棄処分することなく有効活用することが要請されている。   Conventionally, most of the concrete waste generated by demolition work has been used as roadbed material for roads and temporary construction ground. Therefore, it is desired to use the recycled aggregate for concrete. However, in order to obtain a high-quality recycled aggregate, it is accompanied by crushing and grinding processing of concrete glass, so that 30-50% of waste concrete fine powder (hereinafter referred to as by-product fine powder) is generated as a secondary. . Since this by-product fine powder has no special use as it is, its disposal becomes a major problem and becomes a factor that hinders the recycling of concrete, and it is requested that this fine powder be effectively used without being disposed of. Has been.

副産微粉末の利用用途として、最も期待できるのは、やはりセメント分野と考えられ、クローズドリサイクルの観点からもセメント原料に使うことが望ましいと思われる。ただし、セメントクリンカーに微粉末を混合するほど、セメントの品質が低下することが知られており、コンクリート混和材としての利用価値はないと考えられていた。   The most promising application of by-product fine powder is still in the cement field, and it is desirable to use it as a cement raw material from the viewpoint of closed recycling. However, it is known that the quality of the cement decreases as the fine powder is mixed with the cement clinker, and it was considered that there is no utility value as a concrete admixture.

これらの従来の見解に対して、本願発明者らは加熱すりもみ処理して得られた副産微粉末の再水和メカニズムについての研究をすすめてきた。その結果、発明者らは副産微粉末において実現可能な再水和メカニズムとして、
(1)脱水したアルミネート相の再水和の進行
(2)再合成したビーライトの再水和の進行
(3)炭酸化によって分解して生成したシリカゲルのポゾラン反応
の3つの態様があることを把握している(非特許文献1参照)。
In response to these conventional views, the inventors of the present application have been researching the rehydration mechanism of fine by-product powder obtained by processing with hot grinding. As a result, the inventors have realized a rehydration mechanism that can be realized in the by-product fine powder,
(1) Progress of rehydration of dehydrated aluminate phase
(2) Progress of rehydration of re-synthesized belite
(3) It is understood that there are three modes of the pozzolanic reaction of silica gel produced by decomposition by carbonation (see Non-Patent Document 1).

副産微粉末をセメントに混合する際に、特に考慮すべき点は、副産微粉末を混合したセメントとの相互作用である。すなわち、上述したように、水酸化カルシウムの炭酸化によって生成された炭酸カルシウム、C-S-Hの炭酸化によって生成された炭酸カルシウムとシリカゲル、カルシウムアルミネート水和物の炭酸化によって生成されたアルミナゲルなどの水和が期待できる。たとえば、炭酸カルシウムとセメントとは、その相互作用によって、アルミネート相との反応によるモノサルフェートの生成の減少、モノカーボネートの生成の作用が見込まれ、コンクリート初期強度の向上が期待できる。また、シリカゲルと水酸化カルシウムとは、その再水和反応によってC-S-Hの生成(ポゾラン反応)も期待できる。   When mixing the by-product fine powder into the cement, a particular consideration is the interaction with the cement mixed with the by-product fine powder. That is, as described above, calcium carbonate produced by carbonation of calcium hydroxide, calcium carbonate produced by carbonation of C—S—H, silica gel, and calcium aluminate hydrate were produced. Hydration of alumina gel can be expected. For example, the interaction between calcium carbonate and cement is expected to reduce the production of monosulfate due to the reaction with the aluminate phase and the action of monocarbonate production, and can be expected to improve the initial strength of concrete. Silica gel and calcium hydroxide can also be expected to generate C—S—H (pozzolanic reaction) by rehydration reaction.

このように、副産微粉末は炭酸化を促進することが好ましい。その手法について、すでに出願人は、高濃度の炭酸ガスによる強制炭酸化や排ガスを用いた強制乾湿繰り返し法を提案している(特許文献1参照)。この場合、骨材分が少ない方が、水和に寄与する成分が多くなるため、比重選別を行い、比重の軽いセメント水和物を集めた方が強度特性は向上する。   Thus, the by-product fine powder preferably promotes carbonation. Regarding the technique, the applicant has already proposed a forced carbonation with high-concentration carbon dioxide gas or a forced dry and wet repetition method using exhaust gas (see Patent Document 1). In this case, since the component which contributes to hydration increases when the amount of the aggregate is small, the strength characteristics are improved when the specific gravity is selected and cement hydrate having a low specific gravity is collected.

一方、既往の研究によれば、質量比率5%以下のごく微量の鉱物質微粉末の添加はセメントの硬化性能を向上することが知られている。例えば、石灰石微粉末の添加は強度発現を促進する働きがあり、セメント硬化体の粉末や通常の砕石粉でも質量比率1〜2%の添加であれば、コンクリート強度に貢献する可能性が指摘されている。   On the other hand, according to past studies, it is known that the addition of a very small amount of mineral fine powder having a mass ratio of 5% or less improves the hardening performance of cement. For example, the addition of fine limestone powder has the function of promoting strength development, and it has been pointed out that the addition of a hardened cement powder or ordinary crushed stone powder with a mass ratio of 1-2% may contribute to concrete strength. ing.

特開2009-028581号公報JP 2009-028581 A

黒田泰弘他:再生骨材に伴い発生する副産微粉末の再水和メカニズムに関する研究,Cement Science and Concrete Technology〜No.58,pp.533〜540,2004Yasuhiro Kuroda et al .: Study on rehydration mechanism of fine powder by-product generated with recycled aggregate, Cement Science and Concrete Technology-No.58, pp.533-540,2004

ところが、上述の副産微粉末をごく微量添加して、セメント性能の向上を検討した例はこれまでなかった。出願人は、この点において、種々の実験を行い、副産微粉末をセメントに混ぜた場合の各モルタル試験体の各種性状について検討した。そして、いくつかの性状において、現状の普通ボルトランドセメントと同等、あるいは同等以上の性能が得られるとの知見を得た。この場合、セメントに対してごく微量を添加する場合(質量比率で5%使用)であっても、クリンカ総生産量を考慮すると、国内で約300万トン/年のリサイクルが見込まれる。このように、本発明の目的は上述した従来の技術が有する問題点を解消し、従来の各種セメントに副産微粉末を添加したセメントを用いることで、従来のセメント性状の向上を図るとともに、コンクリート廃材から副次発生する微粉末の再利用を可能にした微粉末セメントを提供することにある。   However, there has been no example in which a very small amount of the above-mentioned by-product fine powder was added to examine improvement of cement performance. In this respect, the applicant conducted various experiments and examined various properties of each mortar specimen when the by-product fine powder was mixed with cement. And in some properties, they obtained knowledge that the same or better performance than the current ordinary boltland cement can be obtained. In this case, even if a very small amount is added to the cement (using 5% by mass ratio), recycling of about 3 million tons / year is expected in Japan considering the total production of clinker. As described above, the object of the present invention is to solve the problems of the conventional techniques described above, and to improve the conventional cement properties by using cement obtained by adding by-product fine powder to various conventional cements. It is an object of the present invention to provide a fine powder cement that enables reuse of fine powders secondary to concrete waste.

上記目的を達成するために、本発明は水酸化カルシウムをほとんど含まない廃コンクリート微粉末を、セメントクリンカーに微量添加したことを特徴とする。   In order to achieve the above object, the present invention is characterized in that a small amount of waste concrete fine powder containing almost no calcium hydroxide is added to a cement clinker.

前記廃コンクリート微粉末は、炭酸化が進行した材料であることを特徴とする。   The waste concrete fine powder is a material that has been carbonized.

前記廃コンクリート微粉末は、前記セメントクリンカーに対する質量置換率を5%以下添加することが好ましい。これにより、普通セメントと同等以上の性能を有するセメント材料を提供することができる。   The waste concrete fine powder is preferably added at a mass substitution rate of 5% or less with respect to the cement clinker. Thereby, the cement material which has the performance equivalent to or better than ordinary cement can be provided.

炭酸化によるケイ酸カルシウム水和物の分解が進行した廃コンクリート微粉末を、セメントクリンカーに微量添加したことを特徴とする。本発明によれば、炭酸化による炭酸カルシウムとシリカゲルとが生成されることにより、それぞれの持つ硬化性反応により、コンクリート強度発現が期待できる。   A feature is that a small amount of waste concrete fine powder in which decomposition of calcium silicate hydrate by carbonation has progressed is added to a cement clinker. According to the present invention, when calcium carbonate and silica gel are produced by carbonation, concrete strength can be expected due to their curable reaction.

骨材成分が少ない炭酸化の進んだコンクリート微粉末を、セメントクリンカーに微量添加したことを特徴とする。本発明によれば、骨材分が少ない分、水和反応に寄与する成分が多くなり強度増進を図ることができる。   It is characterized by adding a small amount of carbonized concrete fine powder with few aggregate components to cement clinker. According to the present invention, since the amount of the aggregate is small, the component contributing to the hydration reaction is increased and the strength can be improved.

以上に述べたように、本発明によれば、従来のセメント性状の向上を図るとともに、コンクリート廃材から副次発生する微粉末の再利用(リサイクル)の用途に寄与することができるという効果を奏する。   As described above, according to the present invention, it is possible to improve the conventional cement properties and to contribute to the reuse (recycling) of the fine powder that is secondary generated from the concrete waste material. .

各種微粉末の置換率とモルタルフロー値との関係を示したグラフ。The graph which showed the relationship between the substitution rate of various fine powder, and the mortar flow value. 各種微粉末の置換率と圧縮強度(材齢28日)との関係を示したグラフ。The graph which showed the relationship between the substitution rate of various fine powder, and compressive strength (age age 28 days).

以下、本発明の微粉末セメントの実施するための形態として、以下の実施例での実験例の結果、以下の知見を得た。その実験について以下、説明する。   Hereinafter, as a mode for carrying out the fine powder cement of the present invention, the following knowledge was obtained as a result of experimental examples in the following examples. The experiment will be described below.

[実験例より明らかにされた本発明の特徴]
本発明の微粉末セメントは、以下で説明する実験例で確認された点を考慮して調製されたものである。
(1) 副産微粉末をセメントクリンカーと質量比率5%程度まで置換しても、粉末度によらず、フレッシュコンクリートの流動性はほとんど低下しない。
(2) 副産微粉末をセメントクリンカーと質量比率5%程度まで置換しても、粉末度によらず、圧縮強度はほとんど低下しない。
(3) 副産微粉末に水酸化カルシウムが多く含有されている場合、強度発現が阻害される傾向にある。以下の実験結果によれば、水酸化カルシウムの好ましい含有比率は、熱分析法(TG−DTA:熱重量/示差熱同時分析)で計測した場合には、1%程度以下で、なるべく少ない方が好ましい。いいかえれば、ほとんど含まないことを特徴とすることができる。
(4) 副産微粉末の炭酸化が進み、セメント水和物が分解していた方が、コンクリートの強度発現が大きくなる。
[Characteristics of the present invention clarified from experimental examples]
The fine powder cement of the present invention is prepared in consideration of the points confirmed in the experimental examples described below.
(1) Even if the by-product fine powder is replaced with cement clinker to a mass ratio of about 5%, the flowability of fresh concrete is hardly lowered regardless of the fineness.
(2) Even if the by-product fine powder is replaced with cement clinker to a mass ratio of about 5%, the compressive strength is hardly lowered regardless of the fineness.
(3) When the by-product fine powder contains a large amount of calcium hydroxide, strength development tends to be inhibited. According to the following experimental results, the preferable content ratio of calcium hydroxide is about 1% or less when measured by a thermal analysis method (TG-DTA: thermogravimetric / differential thermal simultaneous analysis), and should be as small as possible. preferable. In other words, it can be characterized as containing little.
(4) The strength of the concrete increases as the by-product fine powder becomes more carbonated and the cement hydrate is decomposed.

[実験の目的・概要]
本実験では、実際のコンクリート建物を解体した際に発生した廃コンクリート微粉末(以下、廃コン微粉末(副産微粉末と同義))を例に、モルタルによる各種試験を行い、混合材としての性状把握を行った。そのとき、コンクリート製造時に一般に使われている各種混合材(高炉スラグ、フライアッシュ、石灰石微粉末、粉末度の異なる砕石粉・セメントペースト粉等)との性状比較(フレッシュ時性状、圧縮強度)を行った。
1.実験概要
(1)使用微粉末
使用微粉末は、表1に示した種類と材料物性からなる。基準材料と、実際の高品質再生骨材製造時に得られた廃コン微粉末(副産微粉末)と、その他各種の微粉末によるモルタル試験を行った。
[Purpose and outline of the experiment]
In this experiment, waste concrete powder (hereinafter referred to as waste by-product fine powder) generated when demolishing an actual concrete building was used as an example to conduct various tests using mortar. The property was grasped. At that time, comparison of properties (fresh properties, compressive strength) with various mixed materials generally used during concrete production (blast furnace slag, fly ash, fine limestone powder, crushed stone powder and cement paste powder with different fineness) went.
1. Outline of experiment
(1) Fine powder used Fine powder used consists of the types and material properties shown in Table 1. A mortar test was conducted using the reference material, waste concrete fine powder (by-product fine powder) obtained during the production of actual high-quality recycled aggregates, and various other fine powders.

Figure 2010254503
Figure 2010254503

(基準材料)
基準材料としての普通ポルトランドセメントCは、添加材を含まず、化学成分が明らかな、セメント協会が発売する研究用セメントを使用した。
(廃コン微粉末)
廃コン微粉末(副産微粉末)HPは、実際の既存コンクリート建物を解体した際に発生した微粉末を適用した。熱分析では水酸化カルシウムの存在が認められない。粉体としてのブレーン値は、生成状況により1,000〜8,000cm2/gが想定されるが、添加するセメント、他の置換材料の粉末度と同等となるように、3,000〜4,000cm2/g程度まで微粉砕された材料を使用することが好ましい。また、必要に応じて、加熱乾燥させて粉体湿分を3.0%以下とし、湿分を抑えることにより、粉体の風化防止を図ることが好ましい。
(骨材微粉末)
骨材を原材料とした微粉末を模擬したものとして、標準砂(珪砂)を振動ミルで粉砕した3種類の材料、粗粉SL、中粉SM、細粉SHを用いた。細粉SHの粉末度は、以下のセメント混和材の比表面積と同等となるように、ブレーン値がおよそ4,000cm2/g程度まで微粉砕した。
(セメント混和材)
従来のセメントと混合して用いられるセメント混合材として、高炉スラグ微粉末BP、フライアッシュFA、石灰石微粉末LPであり、いずれもブレーン値がおよそ4,000cm2/g程度の公知材料である。
(コンクリート微粉末)
コンクリート微粉末は、今回の実験用に準備したエアセパレータによる分離材料である未加熱処理材CN、150℃加熱処理材C150、300℃加熱処理材C300の3種とした。これらは加熱処理温度の相違以外、成分は同等の材料である。
(セメントペースト微粉末)
セメントペースト微粉末は、普通ポルトランドセメントを用い、W/C=50%のセメントペーストを調製し、20℃水中養生(養生期間:6ヶ月)の後、気中養生(養生期間:30日)し、破砕処理し、微粉砕処理した材料NCPと、破砕処理に1ヶ月促進炭酸化処理を行った後、微粉砕処理した材料CCPからなる。
(2)試験方法
セメント強さ試験(JIS R 5201)に準じ、W/B=0.5、S/C=3.0で調合したモルタルを調製し、規定養生期間後に曲げ強度試験及び圧縮強度試験を行った。同様に、モルタルフロー試験に準拠してモルタルフロー値を測定した。微粉末の種類と設定置換率は、表2のとおりである。
(Reference material)
Ordinary Portland cement C as a reference material was a research cement released by the Cement Association, which does not contain additives and has a clear chemical composition.
(Waste-con fine powder)
Waste concrete fine powder (by-product fine powder) HP applied fine powder generated when demolishing an actual existing concrete building. Thermal analysis shows no presence of calcium hydroxide. The brane value as a powder is assumed to be 1,000 to 8,000 cm 2 / g depending on the production state, but 3,000 to 4 so as to be equal to the fineness of the cement to be added and other replacement materials. It is preferable to use a material pulverized to about 1,000 cm 2 / g. If necessary, it is preferable to prevent the weathering of the powder by heating and drying to reduce the powder moisture to 3.0% or less and to suppress the moisture.
(Aggregate fine powder)
Three types of materials obtained by pulverizing standard sand (silica sand) with a vibration mill, coarse powder SL, medium powder SM, and fine powder SH were used as a simulation of fine powder made of aggregate. The fine powder SH was finely pulverized to a brane value of about 4,000 cm 2 / g so as to be equal to the specific surface area of the following cement admixture.
(Cement admixture)
Blast furnace slag fine powder BP, fly ash FA, and limestone fine powder LP are known cement materials used in combination with conventional cement, and all are known materials having a brain value of about 4,000 cm 2 / g.
(Concrete fine powder)
The concrete fine powder was made into three types, the non-heat-treated material CN, 150 degreeC heat processing material C150, and 300 degreeC heat processing material C300 which are the separation materials by the air separator prepared for this experiment. These are equivalent materials except for the difference in heat treatment temperature.
(Cement paste fine powder)
For cement paste fine powder, normal Portland cement is used, and a W / C = 50% cement paste is prepared. The material NCP is crushed and finely pulverized, and the material CCP is finely pulverized after an accelerated carbonation treatment for one month.
(2) Test method In accordance with the cement strength test (JIS R 5201), mortar prepared with W / B = 0.5 and S / C = 3.0 is prepared, and bending strength test and compressive strength after the specified curing period. A test was conducted. Similarly, the mortar flow value was measured based on the mortar flow test. Table 2 shows the types of fine powders and the set substitution rates.

Figure 2010254503
Figure 2010254503

2.実験結果
(1)モルタルフロー値
微粉末の置換率とモルタルフローとの関係を図1に示す。図1(a)に示したように、廃コン微粉末は、置換率が大きくなるほど、モルタルフロー値が低下した。骨材微粉末の場合、いずれの試料(粗粉、中粉、細粉)でも、流動性は低下せず、モルタルフロー値に影響を与えないことが確認された。セメント混合材の場合(図1(b))、置換率が10%までの置換であれば、いずれの試料(FA,BS,LP)も流動性の向上が確認された。それ以上の置換率では、LP(石灰石微粉末)の場合はやや低下し、BP(高炉スラグ微粉末)ではほぼ一定で、FA(フライアッシュ)では増加傾向を示した。セメントペースト微粉末(図1(c))では、置換率の増加にしたがって流動性が顕著に低下することが確認された。これらの結果より、コンクリート微粉末の置換による流動性の低下は、主にセメントペースト分に寄与すると考えられる。加熱処理温度が異なるコンクリート微粉末を用いた場合の結果(図1(d))は、廃コン微粉末を用いた場合とほぼ同様であった。なお、各試料の比表面積に差があった(約1,000〜1,900cm2/g)が、この比表面積差が流動性に与える影響はほとんど認められなかった。
2. Experimental results
(1) Mortar flow value The relationship between the substitution rate of fine powder and the mortar flow is shown in FIG. As shown in FIG. 1A, the mortar flow value of the waste-con fine powder decreased as the substitution rate increased. In the case of the aggregate fine powder, it was confirmed that any sample (coarse powder, medium powder, fine powder) did not lower the fluidity and did not affect the mortar flow value. In the case of the cement mixed material (FIG. 1 (b)), if the replacement rate was up to 10%, any sample (FA, BS, LP) was confirmed to have improved fluidity. At a higher substitution rate, LP (limestone fine powder) slightly decreased, BP (blast furnace slag fine powder) was almost constant, and FA (fly ash) showed an increasing tendency. In the cement paste fine powder (FIG. 1 (c)), it was confirmed that the fluidity was significantly lowered as the substitution rate increased. From these results, it is considered that the decrease in fluidity due to the replacement of the concrete fine powder mainly contributes to the cement paste content. The results (FIG. 1 (d)) when using concrete fine powders with different heat treatment temperatures were almost the same as when using waste concrete fine powders. In addition, although there was a difference in the specific surface area of each sample (about 1,000 to 1,900 cm 2 / g), the influence of this specific surface area difference on the fluidity was hardly recognized.

(2)圧縮強度
各種微粉末の置換率と材齢28日の圧縮強度との関係を図2各図に示す。骨材微粉末の場合(図2(a))、置換率2.5%以下では、無置換の場合と圧縮強度は同等であったが、置換率5%以上で低下した。粗粉、中粉、細粉間での差(比表面積差)の影響は明確でなかった。なお、廃コン微粉末の置換による強度低下も同様の傾向を示した。セメント混合材の場合(図2(b))、置換率5%以下では、無置換の場合と同等以上の圧縮強度の発現が認められた。特に、LP(石灰石微粉末)の場合、少量の置換の範囲で強度増加に寄与する度合いが大きいことが認められた。一方、BP(高炉スラグ微粉末)の場合、置換率20%までの強度発現は置換しない場合と同等であった。FA(フライアッシュ)については材齢28日時点では強度発現効果は廃コン微粉末と同等であることが確認された。セメントペースト微粉末を置換した場合(図2(c))、炭酸化の有無で強度試験結果は異なった。炭酸化したものを用いた場合の方が強度が高いことが認められた。考察として、未炭酸化セメントペースト微粉末では、水酸化カルシウムがセメント水和反応を阻害し、炭酸化セメントペースト微粉末では、炭酸化によって生成した炭酸カルシウムとシリカゲルが強度発現に寄与することが考えられる。加熱処理温度が異なるコンクリート微粉末を用いた場合の結果(図2(d))でも、置換率2.5%までの置換であれば、無置換の場合と同等強度が得られ、加熱温度の差の影響は認められなかった。
(2) Compressive strength The relationship between the substitution rate of various fine powders and the compressive strength at the age of 28 days is shown in FIG. In the case of the aggregate fine powder (FIG. 2 (a)), when the substitution rate was 2.5% or less, the compressive strength was the same as that without substitution, but decreased when the substitution rate was 5% or more. The influence of the difference (specific surface area difference) between coarse powder, medium powder and fine powder was not clear. In addition, the same tendency was observed in the strength reduction due to the replacement of the waste-con fine powder. In the case of the cement mixed material (FIG. 2 (b)), at a substitution rate of 5% or less, expression of compressive strength equal to or higher than that in the case of no substitution was observed. In particular, in the case of LP (limestone fine powder), it was recognized that the degree of contribution to strength increase was large within a range of a small amount of substitution. On the other hand, in the case of BP (blast furnace slag fine powder), the strength expression up to a replacement rate of 20% was equivalent to that in the case of no replacement. For FA (fly ash), it was confirmed that the strength development effect was equivalent to that of waste kon fine powder at the age of 28 days. When the cement paste fine powder was replaced (FIG. 2 (c)), the strength test results differed depending on the presence or absence of carbonation. It was recognized that the strength was higher when the carbonated one was used. As a consideration, it is considered that calcium hydroxide inhibits the cement hydration reaction in uncarbonated cement paste fine powder, and in carbonated cement paste fine powder, calcium carbonate and silica gel produced by carbonation contribute to strength development. It is done. Even in the case of using concrete fine powders with different heat treatment temperatures (Fig. 2 (d)), if the substitution rate is up to 2.5%, the same strength as in the case of no substitution is obtained, and the heating temperature There was no difference effect.

Claims (5)

水酸化カルシウムをほとんど含まない廃コンクリート微粉末を、セメントクリンカーに微量添加したことを特徴とする微粉末セメント。   Fine powder cement characterized by adding a small amount of waste concrete fine powder containing almost no calcium hydroxide to cement clinker. 前記廃コンクリート微粉末は、炭酸化の進行した材料であることを特徴とする請求項1に記載の微粉末セメント。   The fine powder cement according to claim 1, wherein the waste concrete fine powder is a carbonized material. 前記廃コンクリート微粉末は、前記セメントクリンカーに対する質量置換率が5%以下添加されたことを特徴とする請求項1または請求項2に記載の微粉末セメント。   The fine powder cement according to claim 1 or 2, wherein the waste concrete fine powder has a mass substitution rate of 5% or less with respect to the cement clinker. 炭酸化によるケイ酸カルシウム水和物の分解が進行した廃コンクリート微粉末を、セメントクリンカーに微量添加したことを特徴とする微粉末セメント。   A finely divided cement obtained by adding a small amount of waste concrete fine powder in which decomposition of calcium silicate hydrate by carbonation has progressed to a cement clinker. 骨材成分が少ない炭酸化の進んだコンクリート微粉末を、セメントクリンカーに微量添加したことを特徴とする微粉末セメント。   Fine powder cement characterized by adding a small amount of carbonized concrete fine powder with few aggregate components to cement clinker.
JP2009104664A 2009-04-23 2009-04-23 Fine powder cement Pending JP2010254503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009104664A JP2010254503A (en) 2009-04-23 2009-04-23 Fine powder cement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009104664A JP2010254503A (en) 2009-04-23 2009-04-23 Fine powder cement

Publications (1)

Publication Number Publication Date
JP2010254503A true JP2010254503A (en) 2010-11-11

Family

ID=43315890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009104664A Pending JP2010254503A (en) 2009-04-23 2009-04-23 Fine powder cement

Country Status (1)

Country Link
JP (1) JP2010254503A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014154741A1 (en) * 2013-03-28 2014-10-02 Sika Technology Ag Retrieving aggregates and powdery mineral material from demolition waste
JP2020051117A (en) * 2018-09-27 2020-04-02 株式会社フジタ Structure and method for manufacturing the same
EP4155278A1 (en) * 2021-09-22 2023-03-29 HeidelbergCement AG Improving reactivity of carbonated recycled concrete fines

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014154741A1 (en) * 2013-03-28 2014-10-02 Sika Technology Ag Retrieving aggregates and powdery mineral material from demolition waste
CN105102396A (en) * 2013-03-28 2015-11-25 Sika技术股份公司 Retrieving aggregates and powdery mineral material from demolition waste
US10029951B2 (en) 2013-03-28 2018-07-24 Sika Technology Ag Retrieving aggregates and powdery mineral material from demolition waste
CN109516703A (en) * 2013-03-28 2019-03-26 Sika技术股份公司 Aggregate and epipastic mineral material are withdrawn from waste material is removed
CN109516703B (en) * 2013-03-28 2021-08-17 Sika技术股份公司 Recovery of aggregate and powdery mineral material from demolition waste
JP2020051117A (en) * 2018-09-27 2020-04-02 株式会社フジタ Structure and method for manufacturing the same
JP7164379B2 (en) 2018-09-27 2022-11-01 株式会社フジタ STRUCTURE AND METHOD OF MANUFACTURE THE SAME
EP4155278A1 (en) * 2021-09-22 2023-03-29 HeidelbergCement AG Improving reactivity of carbonated recycled concrete fines
WO2023046498A1 (en) * 2021-09-22 2023-03-30 Heidelbergcement Ag Improving reactivity of carbonated recycled concrete fines

Similar Documents

Publication Publication Date Title
Peng et al. Preparation of autoclaved aerated concrete by using graphite tailings as an alternative silica source
Różycka et al. Effect of perlite waste addition on the properties of autoclaved aerated concrete
Heidari et al. A study of the mechanical properties of ground ceramic powder concrete incorporating nano-SiO2 particles
JP5580306B2 (en) Expandable material and method for producing the same
Roychand et al. Micro and nano engineered high volume ultrafine fly ash cement composite with and without additives
Qian et al. Enhancing the performance of metakaolin blended cement mortar through in-situ production of nano to sub-micro calcium carbonate particles
Billong et al. Improving hydraulic properties of lime–rice husk ash (RHA) binders with metakaolin (MK)
Thapa et al. Gravel wash mud, a quarry waste material as supplementary cementitious material (SCM)
Gu et al. Synergistic effect and mechanism of lithium slag on mechanical properties and microstructure of steel slag-cement system
Cristelo et al. One-part hybrid cements from fly ash and electric arc furnace slag activated by sodium sulphate or sodium chloride
CN110799472B (en) Concrete composition and method for producing same
JP5923104B2 (en) Early mold release material and method for producing concrete product
JP7022959B2 (en) Concrete composition and method for manufacturing concrete composition
Borges et al. The influence of rice husk ash addition on the properties of metakaolin-based geopolymers
WO2010143656A1 (en) Hydraulic cement composition
Khair et al. Evaluating lithium slag for geopolymer concrete: A review of its properties and sustainable construction applications
Kolhe et al. Potential application of thermally treated calcium carbide residue as solid CaO activator for No-cement slag-FGDG composite
Xie et al. Effects of pretreated recycled fine aggregates on the mechanical properties and microstructure of alkali-activated mortar
Li et al. Enhancement in compressive strength of carbide slag activated ground granulated blast furnace slag by introducing CaCl2 and NaCl
JP2010001196A (en) Cement composition
JP2010254503A (en) Fine powder cement
JP7173827B2 (en) Ultra fast-hardening composition, cement composition, concrete composition and spraying method
Luo et al. Performance of hydraulic lime by using carbide slag
JP2016216274A (en) Artificial stone material
Rihan et al. Impact of Alkaline Concentration on the Mechanical Properties of Geopolymer Concrete Made up of Fly Ash and Sugarcane Bagasse Ash