JP2010254482A - Method for manufacturing alkali metal titanate compound, titanate compound or titanium oxide, and electrode active material and power storage device using them - Google Patents

Method for manufacturing alkali metal titanate compound, titanate compound or titanium oxide, and electrode active material and power storage device using them Download PDF

Info

Publication number
JP2010254482A
JP2010254482A JP2009102709A JP2009102709A JP2010254482A JP 2010254482 A JP2010254482 A JP 2010254482A JP 2009102709 A JP2009102709 A JP 2009102709A JP 2009102709 A JP2009102709 A JP 2009102709A JP 2010254482 A JP2010254482 A JP 2010254482A
Authority
JP
Japan
Prior art keywords
compound
alkali metal
titanate compound
metal titanate
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009102709A
Other languages
Japanese (ja)
Other versions
JP5421644B2 (en
Inventor
Masayuki Togawa
公志 外川
Hisashi Fujita
久志 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2009102709A priority Critical patent/JP5421644B2/en
Publication of JP2010254482A publication Critical patent/JP2010254482A/en
Application granted granted Critical
Publication of JP5421644B2 publication Critical patent/JP5421644B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make fine primary particle diameters of an alkali metal titanate compound, a titanate compound and titanium oxide in order to improve battery characteristics, especially rate characteristics, when these are used for an electrode active material. <P>SOLUTION: When a mixture of a titanium compound and an alkali metal compound is fired in the presence of a seed having the same composition as that of a desired alkali metal titanate compound, an alkali metal titanate compound having a fine primary particle diameter is obtained. Moreover, when a titanate compound and titanium oxide are obtained by using the alkali metal titanate compound obtained by the method as a starting material, their primary particle diameters are made fine. The alkali metal titanate compound, the titanate compound and the titanium oxide thus obtained are useful for electrode active materials, and furthermore useful for adsorbents, catalysts or the like. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、微細な一次粒子を有するチタン酸アルカリ金属化合物、チタン酸化合物及び酸化チタンの製造方法に関する。また、前記のチタン酸アルカリ金属化合物、チタン酸化合物、酸化チタンを含む電極活物質、及び、この電極活物質を用いた蓄電デバイスに関する。   The present invention relates to an alkali metal titanate compound having fine primary particles, a titanate compound, and a method for producing titanium oxide. The present invention also relates to an electrode active material containing the alkali metal titanate compound, titanate compound, and titanium oxide, and an electricity storage device using the electrode active material.

リチウム二次電池は、サイクル特性に優れていることから、近年急速に普及している。リチウム二次電池の電極活物質、特に負極活物質には、放電電位が高く、安全性に優れたチタン酸アルカリ金属化合物、チタン酸化合物、酸化チタン等が注目されている。例えば、NaTiで表されるチタン酸ナトリウムや、HTiで表されるチタン酸化合物等を電極活物質に用いる技術(特許文献1)、HTi1225で表されるチタン酸化合物を用いる技術(特許文献2)、チタン酸ブロンズ型の結晶構造を有する二酸化チタンを用いる技術(特許文献3)等が知られている。あるいは、X線回折パターンが(200)面のピークを除いてブロンズ型の二酸化チタンに相当し、(001)面及び(200)面のピーク強度比(I(200)/I(001))が0.2以下であるチタン酸化合物を電極活物質に用いる技術(特許文献4)、X線回折パターンが(003)面及び(−601)面のピークを除いてブロンズ型の二酸化チタンに相当し、(003)面及び(−601)面の面間隔の差(d(003)−d(−601))が0.0040nm以下であるチタン酸化合物を用いる技術(特許文献5)も提案されている。 Lithium secondary batteries have been rapidly spreading in recent years because of their excellent cycle characteristics. As electrode active materials for lithium secondary batteries, particularly negative electrode active materials, alkali metal titanate compounds, titanate compounds, titanium oxides, etc., which have a high discharge potential and are excellent in safety, have attracted attention. For example, a technique using sodium titanate represented by Na 2 Ti 3 O 7 or a titanic acid compound represented by H 2 Ti 3 O 7 as an electrode active material (Patent Document 1), H 2 Ti 12 O 25 A technique using a titanic acid compound represented by (Patent Document 2), a technique using titanium dioxide having a bronze titanate crystal structure (Patent Document 3), and the like are known. Alternatively, the X-ray diffraction pattern corresponds to bronze-type titanium dioxide except for the (200) plane peak, and the peak intensity ratio (I (200) / I (001) ) between the (001) plane and the (200) plane is A technique using a titanic acid compound of 0.2 or less as an electrode active material (Patent Document 4), and the X-ray diffraction pattern corresponds to bronze type titanium dioxide except for the peaks on the (003) plane and the (−601) plane. , A technique using a titanic acid compound in which the difference (d (003) -d (-601) ) between the (003) plane and the (-601) plane is 0.0040 nm or less is proposed (Patent Document 5). Yes.

特開2007−243233号公報JP 2007-243233 A 国際公開WO2008/111465号パンフレットInternational Publication WO2008 / 111465 Pamphlet 特開2008−117625号公報JP 2008-117625 A 出願番号PCT/JP2008/065259Application number PCT / JP2008 / 065259 出願番号PCT/JP2008/065299Application number PCT / JP2008 / 065299

特許文献1の技術では、チタン酸ナトリウムを、チタン化合物とナトリウム化合物との混合物を焼成して得ており、チタン酸化合物は、得られたチタン酸ナトリウムと酸性化合物を反応させて、チタン酸ナトリウムに含まれるナトリウムイオンと水素イオンを置換することで得ている。また、特許文献2〜5の技術では、チタン酸化合物や酸化チタンを、チタン化合物とアルカリ金属化合物との混合物を焼成してアルカリ金属化合物を得、このチタン酸アルカリ金属化合物と酸性化合物を反応させてチタン酸化合物を得た後、更に加熱脱水することで得ている。
本発明では、電極活物質に用いると、更に電池特性が、特にレート特性が優れたチタン酸アルカリ金属化合物、チタン酸化合物及び酸化チタンの製造方法を提供する。
In the technique of Patent Document 1, sodium titanate is obtained by firing a mixture of a titanium compound and a sodium compound, and the titanate compound is obtained by reacting the obtained sodium titanate with an acidic compound to form sodium titanate. It is obtained by substituting sodium ions and hydrogen ions contained in. In the techniques of Patent Documents 2 to 5, a titanic acid compound or titanium oxide is obtained by baking a mixture of a titanium compound and an alkali metal compound to obtain an alkali metal compound, and the alkali metal titanate compound and an acidic compound are reacted. After obtaining the titanic acid compound, it is obtained by further heat dehydration.
The present invention provides a method for producing an alkali metal titanate compound, titanate compound, and titanium oxide, which, when used as an electrode active material, further has excellent battery characteristics, particularly excellent rate characteristics.

本発明者らは、鋭意研究を重ねた結果、チタン酸アルカリ金属化合物の電池特性を向上させるには、その一次粒子を微細化すれば良く、チタン化合物とアルカリ金属化合物の混合物を焼成する従来技術の方法において、所望のチタン酸アルカリ金属化合物と組成が同じチタン酸アルカリ金属化合物をシードとし、このシードの存在下で、前記の混合物を焼成するれば、微細な一次粒子が得られることを見出し、本発明を完成させた。
更に、前記の方法で得られたチタン酸アルカリ金属化合物と酸性化合物とを反応させると、得られるチタン酸化合物の一次粒子も微細になり、優れた電池特性を有していること、及び、このようして得られたチタン酸化合物を、更に加熱脱水したチタン酸化合物や酸化チタンも微細な一次粒子を有しているので、これらも電池特性が優れたものであることを見出して、本発明を完成させた。
As a result of extensive research, the present inventors have improved the battery characteristics of the alkali metal titanate compound by reducing the size of the primary particles, and the prior art for firing a mixture of a titanium compound and an alkali metal compound. In this method, it is found that fine primary particles can be obtained by using an alkali metal titanate compound having the same composition as the desired alkali metal titanate compound as a seed and firing the mixture in the presence of the seed. The present invention has been completed.
Furthermore, when the alkali metal titanate compound obtained by the above-described method is reacted with an acidic compound, the primary particles of the resulting titanate compound become fine and have excellent battery characteristics. Since the titanic acid compound thus obtained and the titanic acid compound and titanium oxide further dehydrated by heating also have fine primary particles, they are found to have excellent battery characteristics, and the present invention. Was completed.

即ち、本発明は、(1)チタン化合物とアルカリ金属化合物との混合物を焼成してチタン酸アルカリ金属化合物を製造する方法であって、得られるチタン酸アルカリ金属化合物と同組成のチタン酸アルカリ金属化合物シードの存在下、前記混合物を焼成する工程を含むチタン酸アルカリ金属化合物の製造方法であり、(2)1項の方法によって得られたチタン酸アルカリ金属化合物を酸性化合物と反応させるチタン酸化合物の製造方法、(3)2項の方法でチタン酸化合物を得た後、更に加熱脱水するチタン酸化合物又は酸化チタンの製造方法である。   That is, the present invention is (1) a method for producing an alkali metal titanate compound by firing a mixture of a titanium compound and an alkali metal compound, and the alkali metal titanate having the same composition as the obtained alkali metal titanate compound. A method for producing an alkali metal titanate compound comprising a step of firing the mixture in the presence of a compound seed, wherein the alkali metal titanate compound obtained by the method of (2) is reacted with an acidic compound (3) A method for producing a titanic acid compound or titanium oxide, wherein the titanic acid compound is obtained by the method of item 2 and then heated and dehydrated.

本発明で得られたチタン酸アルカリ金属化合物、チタン酸化合物及び酸化チタンを、電極活物質に用いると、電池特性に優れた蓄電デバイスが得られる。   When the alkali metal titanate compound, titanate compound and titanium oxide obtained in the present invention are used as an electrode active material, an electricity storage device having excellent battery characteristics can be obtained.

図1は実施例1で得られた試料Aの電子顕微鏡写真である。(倍率5000倍)FIG. 1 is an electron micrograph of Sample A obtained in Example 1. (Magnification 5000 times) 図2は実施例2で得られた試料Bの電子顕微鏡写真である。(倍率5000倍)FIG. 2 is an electron micrograph of Sample B obtained in Example 2. (Magnification 5000 times) 図3は実施例3で得られた試料Cの電子顕微鏡写真である。(倍率5000倍)FIG. 3 is an electron micrograph of Sample C obtained in Example 3. (Magnification 5000 times) 図4は比較例1で得られた試料Fの電子顕微鏡写真である。(倍率5000倍)FIG. 4 is an electron micrograph of Sample F obtained in Comparative Example 1. (Magnification 5000 times) 図5は実施例1で得られた試料AのX線回折チャートである。FIG. 5 is an X-ray diffraction chart of Sample A obtained in Example 1. 図6は比較例1で得られた試料FのX線回折チャートである。FIG. 6 is an X-ray diffraction chart of Sample F obtained in Comparative Example 1.

本発明は、チタン酸アルカリ金属化合物の製造方法であって、チタン化合物とアルカリ金属化合物との混合物を焼成してチタン酸アルカリ金属化合物を製造する方法において、得られるチタン酸アルカリ金属化合物と同組成のチタン酸アルカリ金属化合物シードの存在下、前記混合物を焼成する工程を含むことを特徴とする。本発明では、微細なチタン酸アルカリ金属化合物が得られるが、これは、高温度でチタン化合物とアルカリ金属化合物が反応する過程で、前記シードの一部又は全部が溶融して、生成した粒子の成長を抑制する働きをするためであると考えられる。前記シードは、このように工程中で溶融すると考えられるので、粒子径には特に制限は無いが、後述する公知の方法で得られたものは、0.5〜2.0μmの平均粒子径を有しているので、これを用いるのが好ましい。本発明では、チタン酸アルカリ金属化合物であれば、チタン酸ナトリウム、チタン酸カリウム、チタン酸ルビジウム、チタン酸セシウム等、制限無く製造できるが、中でも、特許文献1に開示される組成式:NaTiで表されるチタン酸ナトリウムは、電池特性が優れているので、本発明を適用すると、電池特性が一層優れたものになるので好ましい。また、このチタン酸ナトリウムは、後述する特許文献1、2に開示されるチタン酸化合物や、特許文献3に開示される二酸化チタンの出発物質としても有用である。あるいは、MTi、MTi、MTi11(Mはいずれもアルカリ金属を表す)等のチタン酸アルカリ金属化合物は、特許文献4に記載のチタン酸化合物の出発物質として、MM'x/3Ti2−x/3(M、M'は同種又は異種のアルカリ金属を表し、xは0.50〜1.0の範囲である)は、特許文献5に記載のチタン酸化合物の出発物質として有用であるので、本発明により製造することもできる。 The present invention relates to a method for producing an alkali metal titanate compound, and a method for producing an alkali metal titanate compound by firing a mixture of a titanium compound and an alkali metal compound. And baking the mixture in the presence of an alkali metal titanate compound seed. In the present invention, a fine alkali metal titanate compound is obtained. In the process of reacting the titanium compound and the alkali metal compound at a high temperature, a part or all of the seed is melted to produce particles. This is thought to be due to the function of suppressing growth. Since the seed is considered to melt in the process as described above, the particle size is not particularly limited, but those obtained by a known method described later have an average particle size of 0.5 to 2.0 μm. Since it has, it is preferable to use this. In the present invention, sodium titanate, potassium titanate, rubidium titanate, cesium titanate and the like can be produced without limitation as long as they are alkali metal titanate compounds. Among these, the composition formula disclosed in Patent Document 1 is Na 2. Since sodium titanate represented by Ti 3 O 7 has excellent battery characteristics, it is preferable to apply the present invention since the battery characteristics are further improved. The sodium titanate is also useful as a starting material for titanate compounds disclosed in Patent Documents 1 and 2 described later and titanium dioxide disclosed in Patent Document 3. Alternatively, an alkali metal titanate compound such as M 2 Ti 3 O 7 , M 2 Ti 4 O 9 , or M 2 Ti 5 O 11 (M represents an alkali metal) is used as the titanate compound described in Patent Document 4. M x M ′ x / 3 Ti 2-x / 3 O 4 (M and M ′ represent the same or different alkali metals, x is in the range of 0.50 to 1.0) Since it is useful as a starting material for the titanate compound described in Patent Document 5, it can also be produced according to the present invention.

本発明では、先ず、チタン化合物とアルカリ金属化合物とを、乾式または湿式で混合して混合物にした後、得られた混合物を焼成して、前記シードを得る。チタン酸化合物とアルカリ金属化合物の混合比は、所望のチタン酸アルカリ金属化合物の組成に応じて調整し、同組成の前記シードが得られるようにする。焼成温度は600〜1000℃の範囲が好ましく、この範囲より低いと反応が進み難く、この範囲より高いと生成物同士の焼結が生じ易い。更に好ましい範囲は、700〜900℃である。得られた前記シードは、焼結の程度に応じて、粉砕を行っても良い。続いて、前記シード、チタン化合物及びアルカリ金属化合を、乾式または湿式で混合し、この混合物を焼成し、目的とするチタン酸アルカリ金属化合物を得る。前記シードの配合量は、用いるTiO換算のチタン化合物に対し、1〜100重量%の範囲が好ましく、5〜50重量%の範囲が更に好ましい。焼成温度は、反応が進み易く、且つ、粒子成長が進み難いように、600〜1000℃の範囲にするのが好ましい。本発明では、比較的低温度の焼成でも、結晶構造が単一相のチタン酸アルカリ金属化合物が得られ易いので、粒子成長の抑制、焼結の防止等の目的で、低い温度で焼成して単一相を得るのであれば、600℃以上800℃未満の範囲とするのが好ましい。チタン酸アルカリ金属化合物を得た後は、適宜、再粉砕を行っても良い。 In the present invention, first, a titanium compound and an alkali metal compound are mixed by dry or wet to form a mixture, and then the obtained mixture is fired to obtain the seed. The mixing ratio of the titanate compound and the alkali metal compound is adjusted according to the composition of the desired alkali metal titanate compound so that the seed having the same composition can be obtained. The firing temperature is preferably in the range of 600 to 1000 ° C. When the temperature is lower than this range, the reaction hardly proceeds. When the temperature is higher than this range, the products are easily sintered. A more preferable range is 700 to 900 ° C. The obtained seed may be pulverized according to the degree of sintering. Subsequently, the seed, titanium compound, and alkali metal compound are mixed in a dry or wet manner, and the mixture is fired to obtain a target alkali metal titanate compound. The blending amount of the seed is preferably in the range of 1 to 100% by weight, more preferably in the range of 5 to 50% by weight with respect to the titanium compound in terms of TiO 2 to be used. The firing temperature is preferably in the range of 600 to 1000 ° C. so that the reaction can proceed easily and the particle growth does not proceed easily. In the present invention, since a single-phase alkali metal titanate compound having a crystal structure is easily obtained even at relatively low temperature firing, it is fired at a low temperature for the purpose of suppressing particle growth and preventing sintering. If a single phase is to be obtained, the temperature is preferably in the range of 600 ° C. or higher and lower than 800 ° C. After obtaining the alkali metal titanate compound, regrind may be performed as appropriate.

チタン化合物には、酸化チタン、チタン酸化合物や、チタン塩化物等の無機チタン塩、及び、チタンアルコキシド等の有機チタン化合物を用いることができ、アルカリ金属化合物には、アルカリ金属の炭酸塩、水酸化物等を用いることができる。中でも、酸化チタン及び/又はチタン酸化合物とアルカリ金属炭酸塩を用いるのが好ましい。具体的には、酸化チタンとしては、例えば、二酸化チタン(TiO)等が、チタン酸化合物としては、メタチタン酸(HTiO)、オルトチタン酸(HTiO)等が挙げられる。また、酸化チタン、チタン酸化合物は、結晶性の化合物であっても、非晶質であってもよく、結晶性の場合は、ルチル型、アナターゼ型、ブルッカイト型等、結晶形にも特に制限を受けない。 The titanium compound can be an inorganic titanium salt such as titanium oxide, titanic acid compound or titanium chloride, and an organic titanium compound such as titanium alkoxide. The alkali metal compound can be an alkali metal carbonate or water. An oxide or the like can be used. Among these, it is preferable to use titanium oxide and / or a titanic acid compound and an alkali metal carbonate. Specifically, examples of titanium oxide include titanium dioxide (TiO 2 ), and examples of titanic acid compounds include metatitanic acid (H 2 TiO 3 ) and orthotitanic acid (H 4 TiO 4 ). Further, the titanium oxide and titanic acid compounds may be crystalline compounds or amorphous, and in the case of crystallinity, particularly limited to crystalline forms such as rutile type, anatase type, brookite type, etc. Not receive.

焼成は、反応を促進し、且つ生成物の焼結を抑制するために、2回以上繰り返して行うこともできる。焼成には、流動炉、静置炉、ロータリーキルン、トンネルキルン等の公知の焼成炉を用いることができる。焼成雰囲気としては、大気中及び非酸化性雰囲気を適宜選択できる。焼成機器は、焼成温度等に応じて適宜選択する。焼成後、焼結の程度に応じて、粉砕を行っても良い。   Calcination can be repeated twice or more in order to promote the reaction and suppress the sintering of the product. For firing, a known firing furnace such as a fluidized furnace, a stationary furnace, a rotary kiln, or a tunnel kiln can be used. As the firing atmosphere, air and a non-oxidizing atmosphere can be appropriately selected. The firing equipment is appropriately selected according to the firing temperature and the like. After firing, pulverization may be performed according to the degree of sintering.

粉砕は、ハンマーミル、ピンミル、遠心粉砕機等の衝撃粉砕機、ローラーミル等の摩砕粉砕機、ロールクラッシャー、ジョークラッシャー等の圧縮粉砕機、ジェットミル等の気流粉砕機等を用いて乾式で行なっても良く、サンドミル、ボールミル、ポットミル等を用いて湿式で行っても良い。   The pulverization is dry using an impact pulverizer such as a hammer mill, a pin mill or a centrifugal pulverizer, a grinding pulverizer such as a roller mill, a compression pulverizer such as a roll crusher or a jaw crusher, or an airflow pulverizer such as a jet mill. It may be carried out by a wet method using a sand mill, a ball mill, a pot mill or the like.

本発明では、更に、チタン酸アルカリ金属化合物の一次粒子を集合させ、二次粒子を得る工程を設けると、流動性、付着性、充填性等の粉体特性が向上し、電極活物質に用いる場合には、電池特性が一層改良されるので好ましい。本発明における二次粒子とは、一次粒子同士が強固に結合した状態にあり、通常の混合、粉砕、濾過、水洗、搬送、秤量、袋詰め、堆積等の工業的操作では容易に崩壊せず、ほとんどが二次粒子として残るものである。その方法としては、例えば、(1)前記シード、チタン化合物及びアルカリ金属化合物の混合物を造粒した後に焼成する、(2)これらの混合物を焼成した後に造粒する、等が挙げられる。造粒には、乾燥造粒、撹拌造粒、圧密造粒等が挙げられ、二次粒子の粒子径や形状を調整し易いので、乾燥造粒が好ましい。乾燥造粒には、(A)前記混合物を含むスラリーを脱水後、乾燥して粉砕する、(B)このスラリーを脱水後、成型して乾燥する、(C)このスラリーを噴霧乾燥する等の方法が挙げられ、中でも(C)の方法が工業的に好ましい。   In the present invention, when a step of obtaining primary particles by aggregating primary particles of the alkali metal titanate compound is further provided, powder characteristics such as fluidity, adhesion, and filling properties are improved and used as an electrode active material. In such a case, the battery characteristics are further improved, which is preferable. The secondary particles in the present invention are in a state in which the primary particles are firmly bonded to each other, and are not easily disintegrated by industrial operations such as normal mixing, pulverization, filtration, washing, transport, weighing, bagging, and deposition. Most of them remain as secondary particles. Examples of the method include (1) granulating a mixture of the seed, titanium compound, and alkali metal compound, followed by firing, and (2) granulating the mixture after firing. Examples of granulation include dry granulation, stirring granulation, compaction granulation, and the like, and dry granulation is preferable because the particle diameter and shape of secondary particles can be easily adjusted. For dry granulation, (A) the slurry containing the mixture is dehydrated, dried and pulverized, (B) the slurry is dehydrated, molded and dried, (C) the slurry is spray dried, etc. Among them, the method (C) is industrially preferable.

噴霧乾燥するのであれば、用いる噴霧乾燥機は、ディスク式、圧力ノズル式、二流体ノズル式、四流体ノズル式など、スラリーの性状や処理能力に応じて適宜選択することができる。二次粒子径の制御は、例えば、スラリー中の固形分濃度を調整したり、あるいは、上記のディスク式ならディスクの回転数を、圧力ノズル式、二流体ノズル式、四流体ノズル式等ならば、噴霧圧やノズル径を調整する等して、噴霧される液滴の大きさを制御することにより行える。乾燥温度としては入り口温度を150〜250℃の範囲、出口温度を70〜120℃の範囲とするのが好ましい。スラリーの粘度が低く、造粒し難い場合や、粒子径の制御を更に容易にするために、有機系バインダーを用いても良い。用いる有機系バインダーとしては、例えば、(1)ビニル系化合物(ポリビニルアルコール、ポリビニルピロリドン等)、(2)セルロース系化合物(ヒドロキシエチルセルロース、カルボキシメチルセルロース、メチルセルロース、エチルセルロース等)、(3)タンパク質系化合物(ゼラチン、アラビアゴム、カゼイン、カゼイン酸ソーダ、カゼイン酸アンモニウム等)、(4)アクリル酸系化合物(ポリアクリル酸ソーダ、ポリアクリル酸アンモニウム等)、(5)天然高分子化合物(デンプン、デキストリン、寒天、アルギン酸ソーダ等)、(6)合成高分子化合物(ポリエチレングリコール等)等が挙げられ、これらから選ばれる少なくとも1種を用いることができる。中でも、ソーダ等の無機成分を含まないものは、加熱処理により分解、揮散し易いので更に好ましい。   If spray drying is performed, the spray dryer to be used can be appropriately selected according to the properties of the slurry and the processing capability, such as a disk type, a pressure nozzle type, a two-fluid nozzle type, and a four-fluid nozzle type. The secondary particle size can be controlled by, for example, adjusting the solid content concentration in the slurry, or if the disk type is the above, the rotational speed of the disk is a pressure nozzle type, two-fluid nozzle type, four-fluid nozzle type, etc. It is possible to control the size of the droplets to be sprayed by adjusting the spray pressure or nozzle diameter. As the drying temperature, the inlet temperature is preferably in the range of 150 to 250 ° C, and the outlet temperature is preferably in the range of 70 to 120 ° C. An organic binder may be used when the slurry has a low viscosity and is difficult to granulate, or for easier control of the particle size. Examples of the organic binder used include (1) vinyl compounds (polyvinyl alcohol, polyvinyl pyrrolidone, etc.), (2) cellulose compounds (hydroxyethyl cellulose, carboxymethyl cellulose, methyl cellulose, ethyl cellulose, etc.), and (3) protein compounds ( Gelatin, gum arabic, casein, sodium caseinate, ammonium caseinate, etc.), (4) acrylic acid compounds (sodium polyacrylate, ammonium polyacrylate, etc.), (5) natural polymer compounds (starch, dextrin, agar) , Sodium alginate, etc.), (6) synthetic polymer compounds (polyethylene glycol, etc.), etc., and at least one selected from these can be used. Especially, what does not contain inorganic components, such as soda, is more preferable because it is easily decomposed and volatilized by heat treatment.

次に、本発明は、チタン酸化合物の製造方法であって、前記の方法によって得られたチタン酸アルカリ金属化合物を酸性化合物とを反応させることを特徴とする。前記の方法では、微細なチタン酸アルカリ金属化合物が得られるので、本発明によって、これを出発物質とし、チタン酸アルカリ金属化合物に含まれるアルカリ金属イオンの全部と水素イオンを置換すれば、微細なチタン酸化合物が得られる。本発明では、目的のチタン酸化合物に応じて、用いるチタン酸アルカリ金属化合物の組成を選択すれば良い。例えば、特許文献1に開示される組成式:HTiで表されるチタン酸化合物は、電池特性が優れているので、これを製造するのであれば、前記方法で得られた組成式:MTi(Mはアルカリ金属を表す)で表されるチタン酸アルカリ金属化合物を用いると、更に電池特性が優れたものになるので好ましい。このチタン酸化合物は、後述の特許文献2に開示されるのチタン酸化合物、特許文献3に開示される二酸化チタン、特許文献4に記載チタン酸化合物等の中間体としても有用である。あるいは、特許文献4に記載のチタン酸化合物の中間体としては、組成式:HTi、HTi11で表されるチタン酸化合物等が有用であり、特許文献5に記載のチタン酸化合物の中間体には、組成式:H4x/3Ti2−x/3(xは0.50〜1.0の範囲である)で表されるものが有用であるので、これらの製造に、本発明を適用しても良い。また、チタン酸化合物の二次粒子を得る場合には、前記方法で造粒したチタン酸アルカリ金属化合物の二次粒子を、出発物質に用いることができる。酸性化合物には、塩酸、硫酸、硝酸、フッ酸等の無機酸を用いると反応が進み易く、塩酸、硫酸であれば工業的に有利に実施できるので好ましい。酸性化合物の量や濃度には特に制限は無いが、チタン酸アルカリ金属化合物含まれるアルカリ金属イオンの反応当量以上で、遊離酸の濃度を2規定以下にするのが好ましい。反応温度に特に制限は無いが、チタン酸アルカリ金属化合物の構造が変化し難い100℃未満の範囲の温度で行なうのが好ましい。チタン酸化合物を得た後、必要に応じて、ろ過、洗浄、乾燥等を行っても良い。 Next, this invention is a manufacturing method of a titanic acid compound, Comprising: An acidic metal compound is made to react with the alkali metal titanate compound obtained by the said method. In the above method, a fine alkali metal titanate compound is obtained, and according to the present invention, if this is used as a starting material and all of the alkali metal ions contained in the alkali metal titanate compound are replaced with hydrogen ions, the fine metal fine titanate compound is obtained. A titanic acid compound is obtained. In the present invention, the composition of the alkali metal titanate compound to be used may be selected according to the target titanate compound. For example, since the titanic acid compound represented by the composition formula: H 2 Ti 3 O 7 disclosed in Patent Document 1 has excellent battery characteristics, the composition obtained by the above method can be used if it is manufactured. It is preferable to use an alkali metal titanate compound represented by the formula: M 2 Ti 3 O 7 (M represents an alkali metal) because the battery characteristics are further improved. This titanic acid compound is also useful as an intermediate for the titanic acid compound disclosed in Patent Document 2 described later, the titanium dioxide disclosed in Patent Document 3, the titanic acid compound described in Patent Document 4, and the like. Alternatively, as an intermediate of the titanic acid compound described in Patent Document 4, titanic acid compounds represented by composition formulas: H 2 Ti 4 O 9 and H 2 Ti 5 O 11 are useful. the intermediates of titanic acid compound according formula: H 4x / 3 Ti 2- x / 3 O 4 (x is a is a range of 0.50 to 1.0) is useful those represented by Therefore, you may apply this invention to these manufacture. Moreover, when obtaining the secondary particle of a titanic acid compound, the secondary particle of the alkali metal titanate compound granulated by the said method can be used for a starting material. As the acidic compound, use of an inorganic acid such as hydrochloric acid, sulfuric acid, nitric acid, or hydrofluoric acid is preferable because the reaction can easily proceed, and hydrochloric acid or sulfuric acid can be advantageously carried out industrially. Although there is no restriction | limiting in particular in the quantity and density | concentration of an acidic compound, It is preferable to make the density | concentration of a free acid 2 N or less above the reaction equivalent of the alkali metal ion contained in the alkali metal titanate compound. Although there is no restriction | limiting in particular in reaction temperature, It is preferable to carry out at the temperature of the range of less than 100 degreeC which the structure of an alkali metal titanate compound does not change easily. After obtaining the titanic acid compound, filtration, washing, drying and the like may be performed as necessary.

チタン酸化合物を得た後、更に、加熱脱水して、チタン酸化合物中に含まれる構造水の含有量を調整して組成の異なるチタン酸化合物を得たり、構造水を全て除去して酸化チタンを得ることもできる。得られるチタン酸化合物又は酸化チタンの組成は特に制限されないが、例えば、特許文献2に開示される組成式:HTi1225で表されるチタン酸化合物、特許文献3に開示されるチタン酸ブロンズ型の結晶構造を有する二酸化チタン、特許文献4及び5に記載されるチタン酸化合物等は、電池特性が優れているので、本発明によって、これらを製造すると、更に電池特性が優れたものになるので好ましい。加熱脱水温度は、目的とする化合物の組成に応じて適宜設定するが、本発明の方法でHTiを得た後、150℃以上280℃未満の範囲の温度で加熱脱水すると、HTi1225が得られ易く、280〜750℃の範囲の温度では、チタン酸ブロンズ型の二酸化チタンが得られ易い。特許文献4のチタン酸化合物であれば、組成式:HTiを200〜330℃の範囲の温度で加熱脱水するか、HTiを250〜650℃の範囲で加熱脱水するか、HTi11を200〜600℃の範囲で加熱脱水して得られる。特許文献5のチタン酸化合物は、H4x/3Ti2−x/3(xは0.50〜1.0の範囲である)を、250〜450℃の範囲の温度で加熱脱水して得られる。チタン酸化合物、酸化チタンの組成は、例えば、示差熱天秤を用いて300〜600℃の温度範囲における加熱減量を測定し、加熱減量が構造水に相当すると仮定して算出することで確認できる。加熱脱水には、公知の機器を用いることができ、加熱雰囲気は、大気中、非酸化性雰囲気等特に制限されない。また、加熱脱水した後には、適宜粉砕を行なっても良い。 After obtaining the titanic acid compound, further heat dehydration, adjusting the content of structural water contained in the titanic acid compound to obtain a titanic acid compound having a different composition, or removing all structural water and titanium oxide You can also get The composition of the titanic acid compound or titanium oxide to be obtained is not particularly limited. For example, the titanic acid compound represented by the composition formula disclosed in Patent Document 2: H 2 Ti 12 O 25 , and the titanium disclosed in Patent Document 3 Titanium dioxide having an acid bronze type crystal structure, titanic acid compounds described in Patent Documents 4 and 5, etc. have excellent battery characteristics. Therefore, when these are produced according to the present invention, the battery characteristics are further excellent. This is preferable. The heat dehydration temperature is appropriately set according to the composition of the target compound. After obtaining H 2 Ti 3 O 7 by the method of the present invention, heat dehydration is performed at a temperature in the range of 150 ° C. or more and less than 280 ° C. H 2 Ti 12 O 25 is easily obtained, and at a temperature in the range of 280 to 750 ° C., titanium titanate-type titanium dioxide is easily obtained. If the titanic acid compound in Patent Document 4, the composition formula: heating or the H 2 Ti 3 O 7 is heated and dehydrated at a temperature in the range of 200-330 ° C., the H 2 Ti 4 O 9 at a range of 250 to 650 ° C. It can be obtained by dehydration or heat dehydration of H 2 Ti 5 O 11 in the range of 200 to 600 ° C. The titanic acid compound of Patent Document 5 is obtained by heating and dehydrating H 4x / 3 Ti 2-x / 3 O 4 (x is in the range of 0.50 to 1.0) at a temperature in the range of 250 to 450 ° C. Obtained. The composition of the titanic acid compound and titanium oxide can be confirmed, for example, by measuring the heating loss in the temperature range of 300 to 600 ° C. using a differential thermobalance and calculating by assuming that the heating loss corresponds to structured water. A known device can be used for the heat dehydration, and the heating atmosphere is not particularly limited in the air, in a non-oxidizing atmosphere or the like. Further, after heat dehydration, pulverization may be performed as appropriate.

本発明で得られたチタン酸アルカリ金属化合物及びチタン酸化合物は、いずれも一次粒子径が0.01〜1.0μmの範囲の微細なものである。また、前記方法で造粒した二次粒子の平均粒子径(レーザー散乱法によるメジアン径)は、1.0〜20μmの範囲にあるのが好ましい。一次粒子や二次粒子の形状は、球状、多面体状等の等方性形状、棒状、板状等の異方性形状、不定形状等特に制限は無い。   The alkali metal titanate compound and titanate compound obtained in the present invention are both fine particles having a primary particle size in the range of 0.01 to 1.0 μm. Moreover, it is preferable that the average particle diameter (median diameter by a laser scattering method) of the secondary particle granulated by the said method exists in the range of 1.0-20 micrometers. The shape of primary particles and secondary particles is not particularly limited, such as isotropic shapes such as spherical and polyhedral shapes, anisotropic shapes such as rod shapes and plate shapes, and irregular shapes.

チタン酸アルカリ金属化合物及びチタン酸化合物の一次粒子あるいは二次粒子の粒子表面には、炭素や、シリカ、アルミナ等の無機化合物、界面活性剤、カップリング剤等の有機化合物から選ばれる少なくとも1種が被覆されていても良い。このような被覆種は、1種を被覆することも、2種以上を積層したり、混合物や複合化物として被覆することもでき、特に、炭素の被覆は電気伝導性が良くなるので、電極活物質として用いる場合には好ましい。炭素の被覆量は、TiO換算のチタン酸アルカリ金属化合物あるいはチタン酸化合物に対し、C換算で0.05〜10重量%の範囲が好ましい。この範囲より少ないと所望の電気伝導性が得られず、多いと却って特性が低下する。より好ましい含有量は、0.1〜5重量%の範囲である。尚、炭素の含有量は、CHN分析法、高周波燃焼法等により分析できる。あるいは、チタン、アルカリ金属、水素以外の異種元素を、前記の結晶形を阻害しない範囲で、その結晶格子中にドープさせるなどして含有させることもできる。 At least one selected from organic compounds such as carbon, inorganic compounds such as silica and alumina, surfactants, coupling agents and the like on the surface of primary particles or secondary particles of alkali metal titanate compounds and titanate compounds. May be coated. Such a coating type can be coated as a single type, or can be laminated as two or more types, or can be coated as a mixture or composite. In particular, since the coating of carbon improves electric conductivity, It is preferable when used as a substance. Coating amount of carbon, the titanium alkali metal compound or titanate compound of terms of TiO 2, 0.05 to 10 wt% is preferable in C terms. If it is less than this range, the desired electrical conductivity cannot be obtained, while if it is more, the characteristics deteriorate. A more preferable content is in the range of 0.1 to 5% by weight. The carbon content can be analyzed by a CHN analysis method, a high frequency combustion method, or the like. Alternatively, a different element other than titanium, alkali metal, and hydrogen can be contained in the crystal lattice by doping, etc., as long as the crystal form is not inhibited.

また、本発明は電極活物質であって、前記の方法で得られたチタン酸アルカリ金属化合あるいはチタン酸化合物物を含むことを特徴とする。更に、本発明は、蓄電デバイスであって、前記電極活物質から選ばれる少なくとも一種を含むことを特徴とする。蓄電デバイスとしては、具体的には、リチウム電池、キャパシタ等が挙げられ、これらは電極、対極及びセパレーターと電解液とからなり、電極は、前記電極活物質にカーボンブラックなどの導電材とフッ素樹脂などのバインダを加え、適宜成形または塗布して得られる。リチウム電池の場合、前記電極活物質を正極に用い、対極として金属リチウム、リチウム合金など、または黒鉛などの炭素系材料などを用いることができる。あるいは、前記電極活物質を負極として用い、正極にリチウム・マンガン複合酸化物、リチウム・コバルト複合酸化物、リチウム・ニッケル複合酸化物、リチウム・バナジン複合酸化物等のリチウム・遷移金属複合酸化物、リチウム・鉄・複合リン酸化合物等のオリビン型化合物等を用いることができる。キャパシタの場合は、前記電極活物質と、黒鉛とを用いた非対称型キャパシタとすることができる。セパレーターには、いずれにも、多孔性ポリエチレンフィルムなどが用いられ、電解液には、プロピレンカーボネート、エチレンカーボネート、1,2−ジメトキシエタンなどの溶媒にLiPF6、LiClO4、LiCF3SO3、LiN(CF3SO22、LiBF4などのリチウム塩を溶解させたものなど常用の材料を用いることができる。 In addition, the present invention is an electrode active material, characterized by containing an alkali metal titanate compound or titanate compound obtained by the above method. Furthermore, this invention is an electrical storage device, Comprising: At least 1 type chosen from the said electrode active material is characterized by the above-mentioned. Specific examples of the electricity storage device include a lithium battery, a capacitor, and the like, which are composed of an electrode, a counter electrode, a separator, and an electrolytic solution. The electrode is composed of a conductive material such as carbon black and a fluororesin as the electrode active material. It can be obtained by adding a binder such as In the case of a lithium battery, the electrode active material can be used for a positive electrode, and metallic lithium, a lithium alloy, or a carbon-based material such as graphite can be used as a counter electrode. Alternatively, the electrode active material is used as a negative electrode, and a lithium / transition metal composite oxide such as a lithium / manganese composite oxide, a lithium / cobalt composite oxide, a lithium / nickel composite oxide, a lithium / vanadine composite oxide, Olivine type compounds such as lithium, iron, and complex phosphate compounds can be used. In the case of a capacitor, an asymmetric capacitor using the electrode active material and graphite can be used. For the separator, a porous polyethylene film or the like is used for each, and for the electrolyte, a solvent such as propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiN Conventional materials such as those in which lithium salts such as (CF 3 SO 2 ) 2 and LiBF 4 are dissolved can be used.

以下に本発明の実施例を示すが、これらは本発明を限定するものではない。   Examples of the present invention are shown below, but these do not limit the present invention.

実施例1
市販のルチル型高純度二酸化チタン(PT−301:石原産業製)300gと、炭酸ナトリウム134gを混合し、電気炉を用い、この混合物を、大気中で800℃の温度で10時間焼成し、平均粒子径が1.5μmの組成式:NaTiで表されるチタン酸ナトリウムシードを得た。続いて、前記シード60g(TiO換算の酸化チタンに対し20重量%に相当)、市販のルチル型高純度二酸化チタン(PT−301:石原産業製)300g、炭酸ナトリウム134gに純水を加えて混合し、合計で3000gのスラリーにした後、このスラリーを、ダイノミル(MULTI LAB型:シンマルエンタープライズ製)で湿式粉砕した。湿式粉砕後のスラリーに、更に純水を加ええて合計で5000gに希釈し、希釈スラリーを噴霧乾燥機(MDL−050C型:藤崎電気製)を用いて、入口温度200℃、出口温度70〜90℃の条件で噴霧乾燥した。得られた噴霧乾燥品を、電気炉を用い、大気中で750℃の温度で10時間焼成し、組成式:NaTiで表されるチタン酸ナトリウムの二次粒子を得た(試料A)。
Example 1
300 g of commercially available rutile type high-purity titanium dioxide (PT-301: manufactured by Ishihara Sangyo) and 134 g of sodium carbonate were mixed, and this mixture was calcined in the atmosphere at a temperature of 800 ° C. for 10 hours. A sodium titanate seed represented by a composition formula: Na 2 Ti 3 O 7 having a particle diameter of 1.5 μm was obtained. Subsequently, pure water was added to 60 g of the seed (corresponding to 20 wt% with respect to titanium oxide in terms of TiO 2 ), 300 g of commercially available rutile type high-purity titanium dioxide (PT-301: manufactured by Ishihara Sangyo), and 134 g of sodium carbonate. After mixing to make a total of 3000 g of slurry, this slurry was wet-pulverized with Dynomill (MULTI LAB type: manufactured by Shinmaru Enterprise). The slurry after wet pulverization is further diluted with pure water to a total of 5000 g. The diluted slurry is sprayed using a spray dryer (MDL-050C type: manufactured by Fujisaki Electric Co., Ltd.), and the inlet temperature is 200 ° C. and the outlet temperature is 70 to 90. Spray drying was performed at a temperature of ° C. The obtained spray-dried product was baked in an atmosphere at a temperature of 750 ° C. for 10 hours using an electric furnace to obtain secondary particles of sodium titanate represented by a composition formula: Na 2 Ti 3 O 7 ( Sample A).

実施例2
実施例1において、噴霧乾燥品の焼成温度を800℃とした以外は、実施例1と同様にして組成式:NaTiで表されるチタン酸ナトリウムの二次粒子を得た(試料B)。
Example 2
In Example 1, secondary particles of sodium titanate represented by the composition formula: Na 2 Ti 3 O 7 were obtained in the same manner as in Example 1 except that the firing temperature of the spray-dried product was 800 ° C. ( Sample B).

実施例3
実施例1において、噴霧乾燥品の焼成温度を850℃とした以外は、実施例1と同様にして組成式:NaTiで表されるチタン酸ナトリウムの二次粒子を得た(試料C)。
Example 3
In Example 1, secondary particles of sodium titanate represented by the composition formula: Na 2 Ti 3 O 7 were obtained in the same manner as in Example 1 except that the firing temperature of the spray-dried product was 850 ° C. ( Sample C).

実施例4
実施例1で得られたチタン酸ナトリウムと硫酸とを反応させた後、ろ過水洗乾燥して乾燥物を得た(試料D)。
試料D中のチタンとナトリウムの含有量を分析し、また、示差熱天秤を用いて300〜600℃の温度範囲における加熱減量を測定した。分析結果と、加熱減量が構造水に相当するとの仮定とから、試料Dは組成式がHTiのチタン酸化合物であることを確認した。
Example 4
The sodium titanate obtained in Example 1 was reacted with sulfuric acid, and then washed with filtered water and dried to obtain a dried product (Sample D).
The contents of titanium and sodium in Sample D were analyzed, and the loss on heating was measured in a temperature range of 300 to 600 ° C. using a differential thermobalance. Sample D was confirmed to be a titanic acid compound having a composition formula of H 2 Ti 3 O 7 from the analysis results and the assumption that the weight loss on heating corresponds to structural water.

実施例5
実施例4で得られたチタン酸化合物(試料D)を、更に、電気炉を用いて、大気中260℃の温度で5時間加熱脱水した(試料E)。
示差熱天秤を用いて300〜600℃の温度範囲における試料Eの加熱減量を測定し、加熱減量が構造水に相当するとの仮定とから、試料Eは組成式がHTi1225のチタン酸化合物であることを確認した。
Example 5
The titanic acid compound (sample D) obtained in Example 4 was further dehydrated by heating at a temperature of 260 ° C. in the atmosphere for 5 hours using an electric furnace (sample E).
Using a differential thermobalance, the heating loss of sample E in the temperature range of 300 to 600 ° C. is measured, and from the assumption that the heating loss corresponds to structural water, sample E is titanium whose composition formula is H 2 Ti 12 O 25 It was confirmed to be an acid compound.

比較例1
市販のルチル型高純度二酸化チタン(PT−301:石原産業製)150g、炭酸ナトリウム67.7gに純水を加えて混合し、合計で1300gのスラリーにした後、このスラリーを、ジュースミキサーを用いて湿式粉砕した。湿式粉砕後のスラリーに、更に純水を加ええて合計で2140gに希釈し、希釈スラリーを、実施例1と同様に噴霧乾燥した。得られた噴霧乾燥品を、電気炉を用い、大気中で750℃の温度で10時間焼成し、組成式:NaTiで表される比較対象のチタン酸ナトリウムの二次粒子を得た(試料F)。
Comparative Example 1
After adding pure water to 150 g of commercially available rutile type high-purity titanium dioxide (PT-301: manufactured by Ishihara Sangyo) and 67.7 g of sodium carbonate and mixing them to make a total of 1300 g of slurry, this slurry was mixed with a juice mixer. And wet pulverized. Pure water was further added to the slurry after wet grinding to dilute to a total of 2140 g, and the diluted slurry was spray-dried in the same manner as in Example 1. The obtained spray-dried product was baked in an atmosphere at a temperature of 750 ° C. for 10 hours using an electric furnace, and secondary particles of sodium titanate for comparison represented by a composition formula: Na 2 Ti 3 O 7 were used. Obtained (sample F).

評価1:一次粒子径の確認
実施例1〜3及び比較例1で得られたチタン酸ナトリウム(試料A〜D、F)の電子顕微鏡写真を図1〜4に示す。本発明で得られたチタン酸ナトリウムは、一次粒子が微細なものであることが判る。
Evaluation 1: Confirmation of primary particle diameter Electron micrographs of sodium titanates (samples A to D and F) obtained in Examples 1 to 3 and Comparative Example 1 are shown in FIGS. It can be seen that the sodium titanate obtained in the present invention has fine primary particles.

評価2:結晶構造の確認
実施例1及び比較例1で得られたチタン酸アルカリ金属化合物(試料A、F)の粉末X線回折(X線:Cu−Kα)を測定した。このX線回折チャートを図5、6に示す。図5は、既知のNaTiのX線回折チャートと良く一致しており、結晶構造が単一相であることが判る。一方、図6は、NaTiとNaTi12の混相であることが判る。
Evaluation 2: Confirmation of Crystal Structure Powder X-ray diffraction (X-ray: Cu—Kα) of the alkali metal titanate compounds (Samples A and F) obtained in Example 1 and Comparative Example 1 was measured. The X-ray diffraction charts are shown in FIGS. FIG. 5 is in good agreement with the known Na 2 Ti 3 O 7 X-ray diffraction chart, showing that the crystal structure is a single phase. On the other hand, FIG. 6 shows that it is a mixed phase of Na 2 Ti 3 O 7 and Na 4 Ti 5 O 12 .

本発明で得られるチタン酸アルカリ金属化合物、チタン酸化合物及び酸化チタンは、電極活物質、吸着剤、触媒等に有用であり、特に電極活物質として有用である。   The alkali metal titanate compound, titanate compound and titanium oxide obtained in the present invention are useful for electrode active materials, adsorbents, catalysts and the like, and are particularly useful as electrode active materials.

Claims (13)

チタン化合物とアルカリ金属化合物との混合物を焼成してチタン酸アルカリ金属化合物を製造する方法であって、得られるチタン酸アルカリ金属化合物と同組成のチタン酸アルカリ金属化合物シードの存在下、前記混合物を焼成する工程を含むチタン酸アルカリ金属化合物の製造方法。 A method for producing an alkali metal titanate compound by firing a mixture of a titanium compound and an alkali metal compound, wherein the mixture is formed in the presence of an alkali metal titanate compound seed having the same composition as the obtained alkali metal titanate compound. The manufacturing method of the alkali metal titanate compound including the process to bake. 組成式:NaTiで表されるチタン酸アルカリ金属化合物を得る請求項1記載のチタン酸アルカリ金属化合物の製造方法。 The method for producing an alkali metal titanate compound according to claim 1, wherein an alkali metal titanate compound represented by a composition formula: Na 2 Ti 3 O 7 is obtained. 焼成温度を600℃以上800℃未満の範囲とし、結晶構造が単一相のチタン酸アルカリ金属化合物を得る請求項1記載のチタン酸アルカリ金属化合物の製造方法。 The method for producing an alkali metal titanate compound according to claim 1, wherein the firing temperature is in the range of 600 ° C or higher and lower than 800 ° C to obtain an alkali metal titanate compound having a single crystal structure. 更に、チタン酸アルカリ金属化合物の二次粒子を得る工程を含む請求項1記載のチタン酸アルカリ金属化合物の製造方法。 Furthermore, the manufacturing method of the alkali metal titanate compound of Claim 1 including the process of obtaining the secondary particle of an alkali metal titanate compound. 二次粒子を得る工程が、(1)前記チタン酸アルカリ金属化合物シード、チタン化合物及びアルカリ金属化合物の混合物を造粒した後、焼成するものであるか、又は(2)前記チタン酸アルカリ金属化合物シード、チタン化合物及びアルカリ金属化合物の混合物を焼成した後、造粒するものである請求項1記載のチタン酸アルカリ金属化合物の製造方法。 The step of obtaining secondary particles is (1) granulating a mixture of the alkali metal titanate compound seed, titanium compound and alkali metal compound, followed by firing, or (2) the alkali metal titanate compound. The method for producing an alkali metal titanate compound according to claim 1, wherein the mixture is granulated after firing a mixture of a seed, a titanium compound and an alkali metal compound. 請求項1記載の方法によって得られたチタン酸アルカリ金属化合物を酸性化合物と反応させるチタン酸化合物の製造方法。 The manufacturing method of the titanic acid compound which makes the alkali metal titanate compound obtained by the method of Claim 1 react with an acidic compound. 組成式:MTi(Mはアルカリ金属)で表されるチタン酸アルカリ金属化合物を得た後、酸性化合物と反応させて組成式:HTiで表されるチタン酸化合物を得る請求項6記載のチタン酸化合物の製造方法。 After obtaining an alkali metal titanate compound represented by composition formula: M 2 Ti 3 O 7 (M is an alkali metal), it is reacted with an acidic compound to form titanate represented by composition formula: H 2 Ti 3 O 7. The manufacturing method of the titanic acid compound of Claim 6 which obtains a compound. チタン酸化合物を得た後、更に加熱脱水する請求項6記載のチタン酸化合物又は酸化チタンの製造方法。 The method for producing a titanate compound or titanium oxide according to claim 6, wherein the titanate compound is further heated and dehydrated after being obtained. 組成式:HTiで表されるチタン酸化合物を得た後、加熱脱水して組成式:HTi1225で表されるチタン酸化合物を得る請求項8記載のチタン酸化合物又は酸化チタンの製造方法。 The titanic acid according to claim 8, wherein a titanic acid compound represented by a composition formula: H 2 Ti 3 O 7 is obtained and then dehydrated by heating to obtain a titanate compound represented by a composition formula: H 2 Ti 12 O 25. A method for producing a compound or titanium oxide. 請求項1記載の製造方法で得られたチタン酸アルカリ金属化合物を含む電極活物質。 The electrode active material containing the alkali metal titanate compound obtained with the manufacturing method of Claim 1. 請求項6記載の製造方法で得られたチタン酸化合物を含む電極活物質。 The electrode active material containing the titanic acid compound obtained by the manufacturing method of Claim 6. 請求項8記載の製造方法で得られたチタン酸化合物又は酸化チタンを含む電極活物質。 An electrode active material containing a titanic acid compound or titanium oxide obtained by the production method according to claim 8. 請求項10、11及び12に記載の電極活物質から選ばれる少なくとも一種を含む蓄電デバイス。 The electrical storage device containing at least 1 type chosen from the electrode active material of Claim 10, 11, and 12.
JP2009102709A 2009-04-21 2009-04-21 Method for producing titanic acid compound or titanium oxide Active JP5421644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009102709A JP5421644B2 (en) 2009-04-21 2009-04-21 Method for producing titanic acid compound or titanium oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009102709A JP5421644B2 (en) 2009-04-21 2009-04-21 Method for producing titanic acid compound or titanium oxide

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013086420A Division JP5718966B2 (en) 2013-04-17 2013-04-17 Method for producing alkali metal titanate compound and method for producing electricity storage device

Publications (2)

Publication Number Publication Date
JP2010254482A true JP2010254482A (en) 2010-11-11
JP5421644B2 JP5421644B2 (en) 2014-02-19

Family

ID=43315869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009102709A Active JP5421644B2 (en) 2009-04-21 2009-04-21 Method for producing titanic acid compound or titanium oxide

Country Status (1)

Country Link
JP (1) JP5421644B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011241100A (en) * 2010-05-14 2011-12-01 Hitachi Chem Co Ltd Titanium dioxide, method of producing the same, lithium ion battery, and electrode for the same
WO2012147854A1 (en) * 2011-04-28 2012-11-01 石原産業株式会社 Process for manufacturing lithium titanium oxides
JP2013157335A (en) * 2013-04-30 2013-08-15 Toshiba Corp Method for producing negative electrode active material for battery
KR20140006902A (en) * 2011-04-28 2014-01-16 이시하라 산교 가부시끼가이샤 Method for producing lithium titanate precursor, method for producing lithium titanate, lithium titanate, electrode active substance, and storage device
JP2014029842A (en) * 2012-06-26 2014-02-13 Kyocera Corp Electrode material and secondary battery using the same
JP2014091654A (en) * 2012-11-05 2014-05-19 Doshisha Method of producing b-type titanium dioxide, and negative electrode active material and nonaqueous electrolyte secondary battery including the titanium dioxide
JP2014523084A (en) * 2011-07-04 2014-09-08 ユニベルシテ・ド・ピカルディ・ジュール・ヴェルヌ Electrode active material for sodium ion battery
CN104269547A (en) * 2014-10-10 2015-01-07 西安中科新能源科技有限公司 Preparation method of carbon-coating vanadium-doped titanic oxide
WO2015025796A1 (en) * 2013-08-19 2015-02-26 独立行政法人産業技術総合研究所 Method for producing titanium oxide using porous titanium compound impregnated with solution
WO2015025795A1 (en) * 2013-08-19 2015-02-26 独立行政法人産業技術総合研究所 Alkali metal titanium oxide having anisotropic structure, titanium oxide, electrode active material containing said oxides, and electricity storage device
CN104388869A (en) * 2014-10-16 2015-03-04 山东泰丰节能新材料股份有限公司 Steel plate composite hot-coating layer making technology
JP2015187936A (en) * 2014-03-26 2015-10-29 本田技研工業株式会社 Active material for lithium secondary batteries, manufacturing method thereof, and lithium secondary battery arranged by use thereof
CN106058194A (en) * 2016-07-21 2016-10-26 天津巴莫科技股份有限公司 Inlaid polyaniline/H2Ti12O25 nanosheet composite material and preparation method thereof
CN106920956A (en) * 2017-03-29 2017-07-04 天津巴莫科技股份有限公司 The preparation method of cryogenic carbon cladded type acid lithium titanate
CN109205668A (en) * 2018-11-30 2019-01-15 攀钢集团攀枝花钢铁研究院有限公司 Titanium hydrolysis plus seed preparation method and its online decision maker for preparing terminal
JP7013067B1 (en) * 2020-11-02 2022-01-31 国立大学法人信州大学 Filtration material, manufacturing method of filtration material, water treatment material and water purifier
WO2022091514A1 (en) * 2020-11-02 2022-05-05 国立大学法人信州大学 Filter material, production method for filter material, water treatment material, and water purifier
CN114792606A (en) * 2022-04-20 2022-07-26 北京航空航天大学 Carbon-loaded manganese-doped sodium titanate energy storage material, preparation method and application thereof, and negative electrode plate
WO2022222997A1 (en) * 2021-04-23 2022-10-27 李彦军 Method for preparing nano-titanate, nano-titanic acid and nano-tio 2 comprising embedded nanoparticles and method for preparing metal nanoparticles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001213623A (en) * 2000-01-26 2001-08-07 Toho Titanium Co Ltd Process of producing lithium titanate, lithium ion battery and electrode thereof
JP2001354421A (en) * 2000-06-08 2001-12-25 Toyota Central Res & Dev Lab Inc Lithium titanium double oxide for electrode active material of lithium secondary cell and method for manufacturing the same
JP2007234233A (en) * 2006-02-27 2007-09-13 National Institute Of Advanced Industrial & Technology Active material for lithium secondary battery, its manufacturing method, and lithium secondary cell using it
JP2008117625A (en) * 2006-11-02 2008-05-22 National Institute Of Advanced Industrial & Technology Lithium secondary battery active material, its manufacturing method, and lithium secondary battery using it
JP2008255000A (en) * 2007-03-13 2008-10-23 National Institute Of Advanced Industrial & Technology New titanium oxide, its preparation method and lithium rechargeable battery using the same as active material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001213623A (en) * 2000-01-26 2001-08-07 Toho Titanium Co Ltd Process of producing lithium titanate, lithium ion battery and electrode thereof
JP2001354421A (en) * 2000-06-08 2001-12-25 Toyota Central Res & Dev Lab Inc Lithium titanium double oxide for electrode active material of lithium secondary cell and method for manufacturing the same
JP2007234233A (en) * 2006-02-27 2007-09-13 National Institute Of Advanced Industrial & Technology Active material for lithium secondary battery, its manufacturing method, and lithium secondary cell using it
JP2008117625A (en) * 2006-11-02 2008-05-22 National Institute Of Advanced Industrial & Technology Lithium secondary battery active material, its manufacturing method, and lithium secondary battery using it
JP2008255000A (en) * 2007-03-13 2008-10-23 National Institute Of Advanced Industrial & Technology New titanium oxide, its preparation method and lithium rechargeable battery using the same as active material

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011241100A (en) * 2010-05-14 2011-12-01 Hitachi Chem Co Ltd Titanium dioxide, method of producing the same, lithium ion battery, and electrode for the same
US9446964B2 (en) 2011-04-28 2016-09-20 Ishihara Sangyo Kaisha, Ltd. Process for manufacturing lithium titanium oxides
EP2703355A4 (en) * 2011-04-28 2015-01-14 Ishihara Sangyo Kaisha Process for manufacturing lithium titanium oxides
KR20140006902A (en) * 2011-04-28 2014-01-16 이시하라 산교 가부시끼가이샤 Method for producing lithium titanate precursor, method for producing lithium titanate, lithium titanate, electrode active substance, and storage device
EP2703354A4 (en) * 2011-04-28 2015-03-25 Ishihara Sangyo Kaisha Method for producing lithium titanate precursor, method for producing lithium titanate, lithium titanate, electrode active substance, and storage device
EP2703355A1 (en) * 2011-04-28 2014-03-05 Ishihara Sangyo Kaisha, Ltd. Process for manufacturing lithium titanium oxides
EP2703354A1 (en) * 2011-04-28 2014-03-05 Ishihara Sangyo Kaisha, Ltd. Method for producing lithium titanate precursor, method for producing lithium titanate, lithium titanate, electrode active substance, and storage device
WO2012147854A1 (en) * 2011-04-28 2012-11-01 石原産業株式会社 Process for manufacturing lithium titanium oxides
US9428396B2 (en) 2011-04-28 2016-08-30 Ishihara Sangyo Kaisha, Ltd Method for producing lithium titanate precursor, method for producing lithium titanate, lithium titanate, electrode active material, and electricity storage device
JP5896994B2 (en) * 2011-04-28 2016-03-30 石原産業株式会社 Method for producing lithium titanate
KR101907082B1 (en) * 2011-04-28 2018-10-11 이시하라 산교 가부시끼가이샤 Method for producing lithium titanate precursor, method for producing lithium titanate, lithium titanate, electrode active substance, and storage device
JPWO2012147854A1 (en) * 2011-04-28 2014-07-28 石原産業株式会社 Method for producing lithium titanate
JP2014523084A (en) * 2011-07-04 2014-09-08 ユニベルシテ・ド・ピカルディ・ジュール・ヴェルヌ Electrode active material for sodium ion battery
JP2014029842A (en) * 2012-06-26 2014-02-13 Kyocera Corp Electrode material and secondary battery using the same
JP2014091654A (en) * 2012-11-05 2014-05-19 Doshisha Method of producing b-type titanium dioxide, and negative electrode active material and nonaqueous electrolyte secondary battery including the titanium dioxide
JP2013157335A (en) * 2013-04-30 2013-08-15 Toshiba Corp Method for producing negative electrode active material for battery
CN105473507A (en) * 2013-08-19 2016-04-06 独立行政法人产业技术综合研究所 Alkali metal titanium oxide having anisotropic structure, titanium oxide, electrode active material containing said oxides, and electricity storage device
KR101781764B1 (en) * 2013-08-19 2017-09-25 고쿠리츠켄큐카이하츠호진 상교기쥬츠 소고켄큐쇼 Alkali metal titanium oxide having anisotropic structure, titanium oxide, electrode active material containing said oxides, and electricity storage device
US9856148B2 (en) 2013-08-19 2018-01-02 National Institute Of Advanced Industrial Science And Technology Method for producing titanium oxide using porous titanium compound impregnated with solution
CN105473506A (en) * 2013-08-19 2016-04-06 独立行政法人产业技术综合研究所 Method for producing titanium oxide using porous titanium compound impregnated with solution
US20160190574A1 (en) * 2013-08-19 2016-06-30 National Institute Of Advanced Industrial Science And Technology Alkali metal titanium oxide having anisotropic structure, titanium oxide, electrode active material containing said oxides, and electricity storage device
WO2015025795A1 (en) * 2013-08-19 2015-02-26 独立行政法人産業技術総合研究所 Alkali metal titanium oxide having anisotropic structure, titanium oxide, electrode active material containing said oxides, and electricity storage device
WO2015025796A1 (en) * 2013-08-19 2015-02-26 独立行政法人産業技術総合研究所 Method for producing titanium oxide using porous titanium compound impregnated with solution
KR101795977B1 (en) * 2013-08-19 2017-11-08 고쿠리츠켄큐카이하츠호진 상교기쥬츠 소고켄큐쇼 Method for producing titanium oxide using porous titanium compound impregnated with solution
JPWO2015025795A1 (en) * 2013-08-19 2017-03-02 国立研究開発法人産業技術総合研究所 Alkali metal titanium oxide and titanium oxide having anisotropic structure, and electrode active material and electricity storage device containing these oxides
JPWO2015025796A1 (en) * 2013-08-19 2017-03-02 国立研究開発法人産業技術総合研究所 Method for producing titanium oxide using porous titanium compound impregnated with solution
JP2015187936A (en) * 2014-03-26 2015-10-29 本田技研工業株式会社 Active material for lithium secondary batteries, manufacturing method thereof, and lithium secondary battery arranged by use thereof
CN104269547A (en) * 2014-10-10 2015-01-07 西安中科新能源科技有限公司 Preparation method of carbon-coating vanadium-doped titanic oxide
CN104388869A (en) * 2014-10-16 2015-03-04 山东泰丰节能新材料股份有限公司 Steel plate composite hot-coating layer making technology
CN106058194A (en) * 2016-07-21 2016-10-26 天津巴莫科技股份有限公司 Inlaid polyaniline/H2Ti12O25 nanosheet composite material and preparation method thereof
CN106058194B (en) * 2016-07-21 2018-05-29 天津巴莫科技股份有限公司 Zyklopisch polyaniline/H2Ti12O25Nanosheet composite material and preparation method thereof
CN106920956A (en) * 2017-03-29 2017-07-04 天津巴莫科技股份有限公司 The preparation method of cryogenic carbon cladded type acid lithium titanate
CN109205668A (en) * 2018-11-30 2019-01-15 攀钢集团攀枝花钢铁研究院有限公司 Titanium hydrolysis plus seed preparation method and its online decision maker for preparing terminal
JP7013067B1 (en) * 2020-11-02 2022-01-31 国立大学法人信州大学 Filtration material, manufacturing method of filtration material, water treatment material and water purifier
WO2022091514A1 (en) * 2020-11-02 2022-05-05 国立大学法人信州大学 Filter material, production method for filter material, water treatment material, and water purifier
WO2022222997A1 (en) * 2021-04-23 2022-10-27 李彦军 Method for preparing nano-titanate, nano-titanic acid and nano-tio 2 comprising embedded nanoparticles and method for preparing metal nanoparticles
CN114792606A (en) * 2022-04-20 2022-07-26 北京航空航天大学 Carbon-loaded manganese-doped sodium titanate energy storage material, preparation method and application thereof, and negative electrode plate
CN114792606B (en) * 2022-04-20 2023-08-22 北京航空航天大学 Carbon-loaded manganese-doped sodium titanate energy storage material, preparation method and application thereof, and negative electrode plate

Also Published As

Publication number Publication date
JP5421644B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
JP5421644B2 (en) Method for producing titanic acid compound or titanium oxide
JP5612856B2 (en) TITANATE COMPOUND, PROCESS FOR PRODUCING THE SAME, ELECTRODE ACTIVE MATERIAL CONTAINING THE TITANATE COMPOUND, ELECTRIC STORAGE DEVICE USING THE ELECTRODE ACTIVE MATERIAL
JP5612857B2 (en) TITANATE COMPOUND, PROCESS FOR PRODUCING THE SAME, ELECTRODE ACTIVE MATERIAL CONTAINING THE TITANATE COMPOUND, ELECTRIC STORAGE DEVICE USING THE ELECTRODE ACTIVE MATERIAL
JP5701863B2 (en) Novel lithium titanate and method for producing the same, electrode active material containing the lithium titanate, and power storage device using the electrode active material
JP3894778B2 (en) Lithium titanate and lithium battery using the same
JP2011173761A (en) Titanium oxide-based compound for electrode and lithium secondary battery using the same
TW201236976A (en) Lithium titanium mixed oxide
JP6472089B2 (en) Titanate compounds, alkali metal titanate compounds, methods for producing them, and electricity storage devices using them as active materials
WO2012002122A1 (en) Method for producing porous lithium titanate, porous lithium titanate and lithium battery using same
JP4668539B2 (en) Method for producing lithium titanate and method for producing lithium battery
JP5594663B2 (en) Alkali metal titanate compound, method for producing the same, electrode active material containing the alkali metal titanate compound, and electricity storage device using the electrode active material
CN105307979A (en) Lithium titanate, production method for same, and electrical storage device employing same
JP6243932B2 (en) Method for producing titanium niobium oxide, and method for producing titanium niobium oxide negative electrode active material using titanium niobium oxide obtained therefrom
JP4597546B2 (en) Method for producing lithium titanate and method for producing lithium battery
JP2012248333A (en) Electrode active substance, manufacturing method thereof and power storage device employing electrode active substance
JP6013435B2 (en) ELECTRODE ACTIVE MATERIAL, ITS MANUFACTURING METHOD, AND ELECTRIC STORAGE DEVICE USING THE ELECTRODE ACTIVE MATERIAL
JP5270634B2 (en) Method for producing lithium titanate and method for producing lithium battery
JP5718966B2 (en) Method for producing alkali metal titanate compound and method for producing electricity storage device
JP5830842B2 (en) Method for producing lithium titanate particle powder and non-aqueous electrolyte secondary battery
JP2017152114A (en) Method for manufacturing negative electrode active material for nonaqueous electrolyte secondary battery, and negative electrode active material for nonaqueous electrolyte secondary battery
JP5632794B2 (en) Lithium titanate and method for producing the same, electrode active material containing the lithium titanate, and power storage device using the electrode active material
JP2017178688A (en) Lithium titanate precursor powder and manufacturing method thereof, manufacturing method of lithium titanate therewith, and lithium titanate, and electrode and electricity storage device therewith
JP2016150868A (en) Lithium titanate, production method thereof, and lithium secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131122

R151 Written notification of patent or utility model registration

Ref document number: 5421644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250