JP2010252204A - Optical reception device - Google Patents

Optical reception device Download PDF

Info

Publication number
JP2010252204A
JP2010252204A JP2009101522A JP2009101522A JP2010252204A JP 2010252204 A JP2010252204 A JP 2010252204A JP 2009101522 A JP2009101522 A JP 2009101522A JP 2009101522 A JP2009101522 A JP 2009101522A JP 2010252204 A JP2010252204 A JP 2010252204A
Authority
JP
Japan
Prior art keywords
polarization
chromatic dispersion
dispersion compensation
signal light
control signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009101522A
Other languages
Japanese (ja)
Other versions
JP5387113B2 (en
Inventor
Toshiharu Ito
俊治 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2009101522A priority Critical patent/JP5387113B2/en
Publication of JP2010252204A publication Critical patent/JP2010252204A/en
Application granted granted Critical
Publication of JP5387113B2 publication Critical patent/JP5387113B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical reception device capable of suitably adjusting a wavelength dispersion compensation value of polarization multiplex signal light. <P>SOLUTION: The optical reception device includes a variable wavelength dispersion compensator that inputs the polarization multiplex signal light generated by polarization-multiplexing two bit-synchronized signal light beams from a transmission line, and compensates for wavelength dispersion included in the polarization multiplex signal with the wavelength dispersion compensation value based upon a control signal, and a polarization separator that outputs separated signal light generated by polarization-separating the output of the variable wavelength dispersion compensator, generates the control signal depending upon the intensity of a clock signal included in the separated signal light, and adjusts the polarization separation based upon the control signal. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ビット同期している2つの信号光が偏波多重された偏波多重通信における可変波長分散補償器、光受信装置及び光伝送システム、ビット同期している2つの信号光が偏波多重された偏波多重通信の波長分散補償方法、光受信方法及び光伝送方法、並びに波長分散補償プログラム及び光受信プログラムに関する。   The present invention relates to a variable chromatic dispersion compensator, an optical receiver and an optical transmission system in polarization multiplexing communication in which two signal lights that are bit-synchronized are polarization-multiplexed, and two signal lights that are bit-synchronized are polarized waves. The present invention relates to a chromatic dispersion compensation method, an optical reception method and an optical transmission method for multiplexed polarization multiplexing communication, and a chromatic dispersion compensation program and an optical reception program.

多数のチャネルで構成される波長多重光伝送システムにおける総伝送容量増大には、1チャネル(1波長)あたりの伝送容量の増加が必要である。チャネル速度の高速化に向けた様々な技術開発が精力的に進められた結果、これまで主流であった2.5Gb/s、10Gb/sに加えて、最近では40Gb/sも実用化され、近い将来には100Gb/sの実用化も予想されている。   In order to increase the total transmission capacity in a wavelength division multiplexing optical transmission system composed of a large number of channels, it is necessary to increase the transmission capacity per channel (one wavelength). As a result of vigorous progress in various technological developments aimed at increasing the channel speed, in addition to the mainstream 2.5 Gb / s and 10 Gb / s, 40 Gb / s has recently been put into practical use. In the near future, the practical use of 100 Gb / s is also expected.

40Gb/sといった高速信号の伝送の際の課題は、波長分散耐力の極度の減少である。一般に同一の伝送方式を使用する場合、信号速度の向上はその二乗に反比例して波長分散耐力を減少させる。例えば、10Gb/sから40Gb/sへと信号速度が4倍になる際に、波長分散耐力は1/16となる。   A problem in transmitting a high-speed signal such as 40 Gb / s is an extreme reduction in chromatic dispersion tolerance. In general, when the same transmission method is used, the improvement of the signal speed decreases the chromatic dispersion tolerance in inverse proportion to the square. For example, when the signal speed is quadrupled from 10 Gb / s to 40 Gb / s, the chromatic dispersion tolerance is 1/16.

チャネル速度40Gb/s以上の長距離伝送では、伝送路で蓄積される波長分散をこの狭い波長分散耐力の内に収容することは、伝送路内の分散補償ファイバの管理・最適化だけでは実現不可能である。   In long-distance transmission with a channel speed of 40 Gb / s or higher, it is impossible to accommodate the chromatic dispersion accumulated in the transmission line within this narrow chromatic dispersion tolerance only by managing and optimizing the dispersion compensating fiber in the transmission line. Is possible.

この課題の解決は様々な形で試みられている。その中で、各受信器の入力に可変の波長分散補償器を配置し、この可変波長分散補償器により信号光に残留した波長分散を波長分散補償値で補償した後に、信号光を受信器へと送り込むのが最も一般的な解決方法である(例えば、特許文献1を参照。)。   Various attempts have been made to solve this problem. Among them, a variable chromatic dispersion compensator is arranged at the input of each receiver, and after compensating the chromatic dispersion remaining in the signal light with the chromatic dispersion compensation value by this variable chromatic dispersion compensator, the signal light is sent to the receiver. Is the most common solution (see, for example, Patent Document 1).

図1は、受信側に可変波長分散補償器を備える、関連する光伝送システムの概略構成図である。図1の光伝送システムは、送信器11からの信号光を可変波長分散補償器24に通しながら、受信器21が検出する符号誤り率を指標として波長分散補償値の最適化を行う。図1の光伝送システムは、可変波長分散補償器24の可変範囲の中で徐々に波長分散補償値を変化させていき、最良の符号誤り率を与える波長分散補償値を探る、というものである。   FIG. 1 is a schematic configuration diagram of a related optical transmission system including a tunable dispersion compensator on the receiving side. The optical transmission system of FIG. 1 optimizes the chromatic dispersion compensation value using the code error rate detected by the receiver 21 as an index while passing the signal light from the transmitter 11 through the variable chromatic dispersion compensator 24. In the optical transmission system of FIG. 1, the chromatic dispersion compensation value is gradually changed within the variable range of the tunable dispersion compensator 24 to search for the chromatic dispersion compensation value that gives the best code error rate. .

図8は、図1の光伝送システムが行う波長分散補償値の最適化を説明するフローチャートである。ステップS11で波長分散補償値の最適化を開始した後、ステップS12で可変波長分散補償器24は波長分散補償値を最大化又は最小化する。可変波長分散補償器24は、ステップS13で受信器21が符号誤り率を測定可能かどうかを確認し、測定不可能ならステップS15で波長分散補償値を1ステップずつ変更する。測定可能であれば、可変波長分散補償器24はステップS14で前回の波長分散補償値で測定した符号誤り率と今回測定した符号誤り率とを比較する。改善していれば、ステップS15で可変波長分散補償器24は波長分散補償値を1ステップずつ変更する。劣化していれば、ステップS16で可変波長分散補償器24は現在の波長分散補償値の近傍を掃引して最良の符号誤り率を与える波長分散補償値を探して設定する。最適な波長分散補償値を設定した後、波長分散補償値の最適化を終了する。   FIG. 8 is a flowchart for explaining optimization of the chromatic dispersion compensation value performed by the optical transmission system of FIG. After the optimization of the chromatic dispersion compensation value is started in step S11, the variable chromatic dispersion compensator 24 maximizes or minimizes the chromatic dispersion compensation value in step S12. The variable chromatic dispersion compensator 24 confirms whether or not the receiver 21 can measure the code error rate in step S13. If the measurement is impossible, the tunable dispersion compensator 24 changes the chromatic dispersion compensation value step by step in step S15. If measurement is possible, the variable chromatic dispersion compensator 24 compares the code error rate measured with the previous chromatic dispersion compensation value with the code error rate measured this time in step S14. If improved, the tunable dispersion compensator 24 changes the chromatic dispersion compensation value step by step in step S15. If it has deteriorated, the variable chromatic dispersion compensator 24 sweeps the vicinity of the current chromatic dispersion compensation value in step S16 and searches for and sets the chromatic dispersion compensation value that gives the best code error rate. After setting the optimum chromatic dispersion compensation value, the optimization of the chromatic dispersion compensation value is finished.

一方、1チャネル(1波長)あたりの伝送容量の増加のための手段として注目されている技術に偏波多重/分離伝送方式がある。通常の光伝送システムでは、各チャネルの信号光は光ファイバの2つの偏波軸のうちの一方しか使用しないのに対し、偏波多重方式では2つとも使用することを特徴とする。具体的には、同じ信号波長を使用する独立な2つの信号光を、偏波多重器により合波し、その状態で伝送路を伝搬させ、受信器では偏波分離器により再度2つの信号光に分離し、2つの独立な受信器で受信する。   On the other hand, there is a polarization multiplexing / demultiplexing transmission system as a technique that is attracting attention as a means for increasing the transmission capacity per channel (one wavelength). In a normal optical transmission system, the signal light of each channel uses only one of the two polarization axes of the optical fiber, whereas the polarization multiplexing system uses both. Specifically, two independent signal lights using the same signal wavelength are combined by a polarization multiplexer, propagated through the transmission line in that state, and then received again by the polarization separator at the receiver. And received by two independent receivers.

図2は、偏波多重方式を使用した関連する光伝送システムの概略構成図である。2つの送信器(11、12)から出力された2つの独立な信号光は偏波多重器13により多重され、伝送路401へと送り込まれる。受信端では偏波分離器23により再度2つの信号光に分離され、送信器11から送られた信号光は受信器21により、送信器12から送られた信号光は受信器22により受信される。波長分散に偏波依存性は無いので、伝送路401中で蓄積された波長分散は、偏波分離器23の前の可変波長分散補償器24で一括して補償される。   FIG. 2 is a schematic configuration diagram of a related optical transmission system using the polarization multiplexing method. Two independent signal lights output from the two transmitters (11, 12) are multiplexed by the polarization multiplexer 13 and sent to the transmission line 401. At the receiving end, the signal light is again separated by the polarization separator 23, the signal light sent from the transmitter 11 is received by the receiver 21, and the signal light sent from the transmitter 12 is received by the receiver 22. . Since the chromatic dispersion has no polarization dependence, the chromatic dispersion accumulated in the transmission line 401 is collectively compensated by the variable chromatic dispersion compensator 24 in front of the polarization separator 23.

図3は、関連する光伝送システムにおける光受信装置を説明する図である。図3の光受信装置は、偏波分離器23、偏波分離器23の前段に配置される可変分散補償器24及び偏波分離器23の後段に配置される受信器(21、22)を備える。偏波分離器23は、偏波制御器31、偏波ビームスプリッタ32、光分岐器33及び制御信号抽出回路34を有する。   FIG. 3 is a diagram for explaining an optical receiver in a related optical transmission system. The optical receiver of FIG. 3 includes a polarization separator 23, a variable dispersion compensator 24 disposed in front of the polarization separator 23, and a receiver (21, 22) disposed in the subsequent stage of the polarization separator 23. Prepare. The polarization separator 23 includes a polarization controller 31, a polarization beam splitter 32, an optical splitter 33, and a control signal extraction circuit 34.

偏波ビームスプリッタ32は、偏波制御器31からの信号光を多重されている偏波成分毎に分離して出力する。光分岐器33は偏波ビームスプリッタ32の一方の出力を分岐する。制御信号抽出回路34は、光分岐器33が分岐した信号光に基づいて制御信号を出力する。例えば、制御信号抽出回路34は、信号光に含まれるクロック成分の強度を測定し、これを制御信号として出力することができる。   The polarization beam splitter 32 separates and outputs the signal light from the polarization controller 31 for each multiplexed polarization component. The optical splitter 33 branches one output of the polarization beam splitter 32. The control signal extraction circuit 34 outputs a control signal based on the signal light branched by the optical splitter 33. For example, the control signal extraction circuit 34 can measure the intensity of the clock component included in the signal light and output it as a control signal.

偏波制御器31は、入力される制御信号に基づいて、信号光の2つの偏波成分と偏波ビームスプリッタ32の2つの固有偏波軸とが一致するように信号光の偏波状態を制御する。例えば、偏波制御器31は、偏波ビームスプリッタ32の一方の出力に含まれるクロック成分の強度を最大化(場合により最小化)するように信号光の偏波状態を調整する。   Based on the input control signal, the polarization controller 31 changes the polarization state of the signal light so that the two polarization components of the signal light coincide with the two intrinsic polarization axes of the polarization beam splitter 32. Control. For example, the polarization controller 31 adjusts the polarization state of the signal light so as to maximize (or in some cases minimize) the intensity of the clock component included in one output of the polarization beam splitter 32.

特開2002−208892号公報JP 2002-208992 A

しかし、偏波多重信号光が波長分散を有する場合、偏波分離器は完全に偏波分離することができない。このため、各受信器に入力される光が、それぞれ2つの送信器からの信号光が混合した状態の光となり、符号誤り率を指標として波長分散補償値を決定することが困難になる。   However, when the polarization multiplexed signal light has chromatic dispersion, the polarization separator cannot completely separate the polarization. For this reason, the light input to each receiver becomes light in which the signal light from the two transmitters is mixed, and it is difficult to determine the chromatic dispersion compensation value using the code error rate as an index.

例えば、可変波長分散補償器で波長分散補償値を徐々に変化させていき、波長分散がゼロになる波長分散補償値を発見したとしても、偏波多重/分離の過程が対称性であるので、受信器は異なる送信器からの信号光を受信する場合がある。図2で説明すれば、送信器11からの信号光を受信器22が受信し、送信器12からの信号光を受信器21が受信する可能性がある。この場合、受信器は正常な符号誤り率の検出を行うことができず、波長分散補償値を決定することができない。このように、偏波多重信号光に対する波長分散補償値を最適に調整することは、受信器の符号誤り率を指標とするだけでは難しいという課題がある。   For example, even if the chromatic dispersion compensation value is gradually changed with the variable chromatic dispersion compensator and the chromatic dispersion compensation value is found to be zero, the polarization multiplexing / demultiplexing process is symmetric, The receiver may receive signal light from different transmitters. As illustrated in FIG. 2, there is a possibility that the receiver 22 receives the signal light from the transmitter 11 and the receiver 21 receives the signal light from the transmitter 12. In this case, the receiver cannot detect a normal code error rate and cannot determine the chromatic dispersion compensation value. Thus, there is a problem that it is difficult to optimally adjust the chromatic dispersion compensation value for the polarization multiplexed signal light only by using the code error rate of the receiver as an index.

本発明の目的は、上記課題を解決するための技術を提供することである。すなわち、本発明は、偏波多重信号光の波長分散補償値を最適に調整することができる光受信装置を提供することを目的とする。   The objective of this invention is providing the technique for solving the said subject. That is, an object of the present invention is to provide an optical receiver capable of optimally adjusting the chromatic dispersion compensation value of polarization multiplexed signal light.

具体的には、本発明に係る光受信装置は、ビット同期している2つの信号光が偏波多重された偏波多重信号光が伝送路から入力され、制御信号に基づく波長分散補償値で前記偏波多重信号光に含まれる波長分散の補償を行う可変波長分散補償器と、前記可変波長分散補償器の出力を偏波分離した分離信号光を出力するとともに、前記分離信号光に含まれるクロック成分の強度に依存する前記制御信号を生成し、前記制御信号に基づいて偏波分離の調整を行う偏波分離器と、を備える。   Specifically, in the optical receiver according to the present invention, polarization multiplexed signal light in which two signal lights that are bit-synchronized are polarization multiplexed is input from a transmission line, and a chromatic dispersion compensation value based on a control signal is obtained. A variable chromatic dispersion compensator that compensates for chromatic dispersion included in the polarization multiplexed signal light, and a separated signal light obtained by polarization-separating the output of the variable chromatic dispersion compensator, and included in the separated signal light A polarization separator that generates the control signal depending on the intensity of the clock component and adjusts polarization separation based on the control signal.

本発明は、偏波多重信号光の波長分散補償値を最適に調整することができる光受信装置を提供することができる。   The present invention can provide an optical receiver capable of optimally adjusting the chromatic dispersion compensation value of polarization multiplexed signal light.

関連する光伝送システムの概略構成図である。It is a schematic block diagram of a related optical transmission system. 関連する光伝送システムの概略構成図である。It is a schematic block diagram of a related optical transmission system. 関連する光伝送システムにおける光受信装置を説明する図である。It is a figure explaining the optical receiver in a related optical transmission system. 本発明に係る光受信装置の概略構成図である。It is a schematic block diagram of the optical receiver which concerns on this invention. 波長分散補償値とクロック成分の強度との関係を示した図である。It is the figure which showed the relationship between a chromatic dispersion compensation value and the intensity | strength of a clock component. 本発明に係る光受信装置の概略構成図である。It is a schematic block diagram of the optical receiver which concerns on this invention. 波長分散補償値とクロック成分の強度との関係を示した図である。It is the figure which showed the relationship between a chromatic dispersion compensation value and the intensity | strength of a clock component. 関連する光受信装置が行う波長分散補償値の最適化を説明するフローチャートである。It is a flowchart explaining optimization of the chromatic dispersion compensation value which a related optical receiver performs. 本発明に係る光受信装置が行う波長分散補償値の最適化を説明するフローチャートである。It is a flowchart explaining the optimization of the chromatic dispersion compensation value which the optical receiver which concerns on this invention performs. 本発明に係る光受信装置が行う波長分散補償値の最適化を説明するフローチャートである。It is a flowchart explaining the optimization of the chromatic dispersion compensation value which the optical receiver which concerns on this invention performs.

添付の図面を参照して本発明の実施の形態を説明する。以下に説明する実施の形態は本発明の構成の例であり、本発明は、以下の実施の形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiment described below is an example of the configuration of the present invention, and the present invention is not limited to the following embodiment. In the present specification and drawings, the same reference numerals denote the same components.

(第1の実施形態)
図4は、本実施形態の光伝送システムの概略構成図である。本光伝送システムはビット同期している2つの信号光が偏波多重された偏波多重通信の多重信号光を伝送路401へ出力する光送信装置301、光受信装置302と、を備える。
(First embodiment)
FIG. 4 is a schematic configuration diagram of the optical transmission system of the present embodiment. This optical transmission system includes an optical transmission device 301 and an optical reception device 302 that output multiplexed signal light of polarization multiplexing communication in which two signal lights that are bit-synchronized are polarization multiplexed to the transmission line 401.

光受信装置302は、ビット同期している2つの信号光が偏波多重された偏波多重信号光が伝送路401から入力され、制御信号に基づく波長分散補償値で偏波多重信号光に含まれる波長分散の補償を行う可変波長分散補償器24と、可変波長分散補償器24の出力(補償信号光)を偏波分離した分離信号光を出力するとともに、分離信号光に含まれるクロック成分の強度に依存する制御信号を生成し、制御信号に基づいて偏波分離の調整を行う偏波分離器23と、を備える。   In the optical receiver 302, polarization multiplexed signal light in which two bit-synchronized signal lights are polarization multiplexed is input from the transmission line 401, and is included in the polarization multiplexed signal light with a chromatic dispersion compensation value based on the control signal. The chromatic dispersion compensator 24 for compensating the chromatic dispersion, and the separated signal light obtained by polarization-separating the output (compensation signal light) of the variable chromatic dispersion compensator 24, and the clock component included in the separated signal light A polarization separator 23 that generates a control signal depending on intensity and adjusts polarization separation based on the control signal.

光受信装置302の特徴は、偏波分離器23が波長分散に依存する値を含む制御信号を生成しており、可変波長分散補償器24はこれを指標としていることである。偏波分離器23が生成する制御信号は、偏波多重信号光を偏波分離した分離信号光のクロック成分の強度に依存しており、偏波多重信号光に含まれる波長分散で強度が変化する。このため、可変波長分散補償器24は分離信号光のクロック成分の強度を大きくするように波長分散を補償する。   A feature of the optical receiver 302 is that the polarization separator 23 generates a control signal including a value depending on chromatic dispersion, and the variable chromatic dispersion compensator 24 uses this as an index. The control signal generated by the polarization separator 23 depends on the intensity of the clock component of the separated signal light obtained by polarization-separating the polarization multiplexed signal light, and the intensity changes due to the chromatic dispersion included in the polarization multiplexed signal light. To do. For this reason, the variable chromatic dispersion compensator 24 compensates the chromatic dispersion so as to increase the intensity of the clock component of the separated signal light.

また、偏波分離器23も制御信号に基づいて偏波分離を行っている。偏波分離は直交する2つの信号光の混信が最小となるように分離する偏波角を調整する。ここでは、光受信装置302に入力する偏波多重信号光はビット同期している2つの信号光であるため、偏波分離器23は、分離信号光のクロック成分の強度が所定の値となるように偏波分離を調整している。例えば、2つの信号光の位相が150°ずれている場合、偏波分離器23は、分離信号光のクロック成分の強度を最大値より低い所定の値になるように偏波分離を調整する。2つの信号光の位相が180°ずれている場合、すなわち、ビットインターリーブの場合、偏波分離器23は、分離信号光のクロック成分の強度が最大になるように偏波分離を調整する。2つの信号光の位相と振幅が一致する場合、偏波分離器23は、分離信号光のクロック成分の強度が最小になるように偏波分離を調整する。   The polarization separator 23 also performs polarization separation based on the control signal. In the polarization separation, the polarization angle for separation is adjusted so that interference between two orthogonal signal lights is minimized. Here, since the polarization multiplexed signal light input to the optical receiver 302 is two signal lights that are bit-synchronized, the polarization separator 23 has a predetermined value for the intensity of the clock component of the separated signal light. The polarization separation is adjusted as follows. For example, when the phase of the two signal lights is shifted by 150 °, the polarization separator 23 adjusts the polarization separation so that the intensity of the clock component of the separated signal light becomes a predetermined value lower than the maximum value. When the two signal lights are 180 ° out of phase, that is, in the case of bit interleaving, the polarization separator 23 adjusts the polarization separation so that the intensity of the clock component of the separated signal light is maximized. When the phase and amplitude of the two signal lights match, the polarization separator 23 adjusts the polarization separation so that the intensity of the clock component of the separated signal light is minimized.

以下、偏波多重信号光がビットインターリーブの場合について、さらに詳細に説明する。光受信装置302は、ビットインターリーブ多重された偏波多重通信の多重信号光が伝送路401から入力され、多重信号光に含まれる伝送路401で蓄積された波長分散を可変の波長分散補償値で補償し、補償信号光として出力する可変波長分散補償器24と、可変波長分散補償器24に対して波長分散補償値を指示する波長分散補償量制御器41と、可変波長分散補償器24からの補償信号光を偏波分離し、分離信号光として出力する偏波分離器23と、偏波分離器23からの分離信号光をそれぞれ受信する複数の受信器(21、22)と、を備える。   Hereinafter, the case where the polarization multiplexed signal light is bit interleaved will be described in more detail. The optical receiver 302 receives the multiplexed signal light of the polarization multiplexing communication that has been bit-interleaved multiplexed from the transmission path 401, and changes the chromatic dispersion accumulated in the transmission path 401 included in the multiplexed signal light with a variable chromatic dispersion compensation value. From the variable chromatic dispersion compensator 24 that compensates and outputs as a compensation signal light, the chromatic dispersion compensation amount controller 41 that instructs the chromatic dispersion compensation value to the variable chromatic dispersion compensator 24, A polarization separator 23 that separates the compensation signal light and outputs it as separated signal light, and a plurality of receivers (21, 22) that receive the separated signal light from the polarization separator 23, respectively.

波長分散補償量制御器41は、分離信号光に含まれるクロック成分の強度を波長分散補償値を決定する指標としている。また、偏波分離器23は、分離信号光に含まれるクロック成分の強度を補償信号光の偏波分離を調整する指標としている。   The chromatic dispersion compensation amount controller 41 uses the intensity of the clock component included in the separated signal light as an index for determining the chromatic dispersion compensation value. The polarization separator 23 uses the intensity of the clock component included in the separated signal light as an index for adjusting the polarization separation of the compensation signal light.

光受信装置302は、偏波分離した信号光に含まれるクロック成分の強度を指標として、波長分散の補償と偏波分離の最適化を行う。光受信装置302が用いられる光伝送システムの信号光のフォーマットは、同一の信号速度の各偏波成分をRZ(Return to Zero)化させ、両成分のRZパルスの相対位置を半周期ずらして偏波多重したビットインターリーブ多重である。   The optical receiving apparatus 302 performs chromatic dispersion compensation and optimization of polarization separation, using the intensity of the clock component included in the polarization separated signal light as an index. The signal light format of the optical transmission system in which the optical receiver 302 is used is that each polarization component having the same signal speed is converted to RZ (Return to Zero), and the relative positions of the RZ pulses of both components are shifted by a half cycle and polarized. Wave-multiplexed bit interleave multiplexing.

ビットインターリーブ多重であるので、両偏波成分が完全に偏波分離されたときにクロック成分の強度は最大になる。また、波長分散が残留している状態では信号光のパルス広がりのためにクロック成分の強度は滅少する。また、クロック成分の強度は波長分散の大きさによっても増減する。例えば、波長分散がゼロのときにクロック成分の強度は最大となる。このため、クロック成分の強度を指標とすることで、偏波分離だけでなく波長分散補償値も最適化することができる。   Because of bit interleave multiplexing, the intensity of the clock component is maximized when both polarization components are completely polarization separated. In the state where chromatic dispersion remains, the intensity of the clock component decreases due to the pulse spread of the signal light. The intensity of the clock component also increases / decreases depending on the magnitude of chromatic dispersion. For example, the intensity of the clock component is maximized when the chromatic dispersion is zero. Therefore, by using the intensity of the clock component as an index, not only the polarization separation but also the chromatic dispersion compensation value can be optimized.

光受信装置302は、受信器における符号誤り率を波長分散補償値の指標にしていないため、偏波多重信号光の波長分散補償値を最適に調整することができる。   Since the optical receiver 302 does not use the code error rate at the receiver as an index of the chromatic dispersion compensation value, it can optimally adjust the chromatic dispersion compensation value of the polarization multiplexed signal light.

続いて、波長分散補償値を最適化する手段について説明する。第1の実施形態における手段は常に偏波制御を行う手段である。   Subsequently, a means for optimizing the chromatic dispersion compensation value will be described. The means in the first embodiment is always means for performing polarization control.

偏波分離器23は、偏波制御器31、偏波ビームスプリッタ32、光分岐器33及び制御信号抽出回路34を有する。偏波ビームスプリッタ32は、補償信号光を偏波分離し、分離信号として出力する。光分岐器33は、偏波ビームスプリッタ32が出力した分離信号の一方から信号光を分岐する。制御信号抽出回路34は、光分岐器33が分岐した信号光に含まれるクロック成分の強度を測定し、制御信号を出力する。偏波制御器31は、制御信号抽出回路34からの制御信号に基づき、常に可変波長分散補償器24からの補償信号光の偏波状態を調整して偏波ビームスプリッタ32に出力する。また、偏波分離器23は、補償信号光を偏波分離する際に、分離信号光に含まれるクロック成分の強度が最大となるように補償信号光の偏波状態を調整をする。   The polarization separator 23 includes a polarization controller 31, a polarization beam splitter 32, an optical splitter 33, and a control signal extraction circuit 34. The polarization beam splitter 32 polarization-separates the compensation signal light and outputs it as a separated signal. The optical branching device 33 branches the signal light from one of the separated signals output from the polarization beam splitter 32. The control signal extraction circuit 34 measures the intensity of the clock component included in the signal light branched by the optical splitter 33 and outputs a control signal. Based on the control signal from the control signal extraction circuit 34, the polarization controller 31 always adjusts the polarization state of the compensation signal light from the variable wavelength dispersion compensator 24 and outputs it to the polarization beam splitter 32. Further, the polarization separator 23 adjusts the polarization state of the compensation signal light so that the intensity of the clock component included in the separation signal light is maximized when the compensation signal light is polarization separated.

波長分散補償量制御器41は、制御信号抽出回路34から入力される制御信号に基づき、分離信号光に含まれるクロック成分の強度が閾値以上になるように波長分散補償値を決定する。より詳細には、波長分散補償量制御器41は、可変波長分散補償器24の波長分散補償値を徐々に変化させ、分離信号光に含まれるクロック成分の強度をモニタすることにより、波長分散補償値とクロック成分の強度との関係を調査する。   Based on the control signal input from the control signal extraction circuit 34, the chromatic dispersion compensation amount controller 41 determines the chromatic dispersion compensation value so that the intensity of the clock component included in the separated signal light is equal to or greater than a threshold value. More specifically, the chromatic dispersion compensation amount controller 41 gradually changes the chromatic dispersion compensation value of the variable chromatic dispersion compensator 24 and monitors the intensity of the clock component included in the separated signal light, thereby chromatic dispersion compensation. Investigate the relationship between the value and the intensity of the clock component.

図5は、波長分散補償量制御器41が可変波長分散補償器24の波長分散補償値を徐々に変化させて分離信号光に含まれるクロック成分の強度をモニタしたときの実施例である。図5のように波長分散補償値の可変範囲内にクロック成分の強度の最大値が現れた場合、ここが最適な波長分散補償値である。   FIG. 5 shows an embodiment in which the chromatic dispersion compensation amount controller 41 monitors the intensity of the clock component contained in the separated signal light by gradually changing the chromatic dispersion compensation value of the variable chromatic dispersion compensator 24. When the maximum value of the intensity of the clock component appears within the variable range of the chromatic dispersion compensation value as shown in FIG. 5, this is the optimum chromatic dispersion compensation value.

調査後、波長分散補償量制御器41は、クロック成分の強度が最大値となるような波長分散補償値を可変波長分散補償器24に通知する。なお、波長分散補償値を決定する時間を短縮させる場合、閾値を設け、クロック成分の強度がこの閾値を超えたときの波長分散補償値を可変波長分散補償器24に通知してもよい。可変波長分散補償器24は、波長分散補償量制御器41が決定した波長分散補償値で多重信号光の波長分散を補償する。これにより、光受信装置302は偏波多重信号光の波長分散補償値を最適に調整することができる。   After the investigation, the chromatic dispersion compensation amount controller 41 notifies the variable chromatic dispersion compensator 24 of a chromatic dispersion compensation value that maximizes the intensity of the clock component. When the time for determining the chromatic dispersion compensation value is shortened, a threshold value may be provided, and the chromatic dispersion compensation value when the clock component intensity exceeds the threshold value may be notified to the variable chromatic dispersion compensator 24. The variable chromatic dispersion compensator 24 compensates the chromatic dispersion of the multiplexed signal light with the chromatic dispersion compensation value determined by the chromatic dispersion compensation amount controller 41. Thereby, the optical receiver 302 can optimally adjust the chromatic dispersion compensation value of the polarization multiplexed signal light.

光受信装置302は、クロック成分の強度を指標として波長分散の補償を完了させた後、受信器の符号誤り率を指標として波長分散補償値を微調整してもよい。具体的には、可変波長分散補償器24は、まず、分離信号光に含まれるクロック成分の強度で多重信号に含まれる波長分散を補償し、次いで受信器(21、22)の符号誤り検出機能を使用して符号誤り率を最小とするように多重信号に含まれる波長分散をさらに補償する。   The optical receiving apparatus 302 may finely adjust the chromatic dispersion compensation value using the code error rate of the receiver as an index after completing the compensation of chromatic dispersion using the intensity of the clock component as an index. Specifically, the variable chromatic dispersion compensator 24 first compensates the chromatic dispersion included in the multiplexed signal with the intensity of the clock component included in the separated signal light, and then the code error detection function of the receiver (21, 22). To further compensate the chromatic dispersion included in the multiplexed signal so as to minimize the code error rate.

次に、光受信装置302の光受信方法を説明する。光受信装置302は、波長分散補償量制御器41が分離信号光に含まれるクロック成分の強度を指標として波長分散補償値を決定する波長分散補償値制御手順と、偏波分離器23が分離信号光に含まれるクロック成分の強度を指標として補償信号光の偏波分離を調整する偏波分離調整手順と、を行う。すなわち、光受信装置302の光受信方法は、ビット同期している2つの信号光が偏波多重された偏波多重信号光を、制御信号に基づく波長分散補償値で前記偏波多重信号光に含まれる波長分散の補償を行う可変波長分散補償手順と、前記波長分散の補償を行った前記偏波多重信号光を偏波分離した分離信号光を出力し、前記分離信号光に含まれるクロック成分の強度に依存する前記制御信号を生成し、前記制御信号に基づいて偏波分離の調整を行う偏波分離手順と、を含む。偏波分離器23が行う偏波分離調整手順は、図3での説明と同様である。   Next, an optical reception method of the optical reception device 302 will be described. The optical receiver 302 includes a chromatic dispersion compensation value control procedure in which the chromatic dispersion compensation amount controller 41 determines a chromatic dispersion compensation value using the intensity of the clock component included in the separated signal light as an index, and the polarization separator 23 receives the separated signal. A polarization separation adjustment procedure for adjusting the polarization separation of the compensation signal light using the intensity of the clock component included in the light as an index is performed. In other words, the optical receiving method of the optical receiving apparatus 302 is that the polarization multiplexed signal light in which two bit-synchronized signal lights are polarization multiplexed is converted into the polarization multiplexed signal light with a chromatic dispersion compensation value based on the control signal. A variable chromatic dispersion compensation procedure for compensating for the included chromatic dispersion, and a separated signal light obtained by polarization-separating the polarization multiplexed signal light for which the chromatic dispersion compensation has been performed, and a clock component included in the separated signal light And a polarization separation procedure for generating the control signal depending on the intensity of the signal and adjusting the polarization separation based on the control signal. The polarization separation adjustment procedure performed by the polarization separator 23 is the same as that described with reference to FIG.

図9は、波長分散補償量制御器41が行う波長分散補償値制御手順及び波長分散補償値調整手順を説明するフローチャートである。波長分散補償値制御手順は、ステップS21からステップS24を含む。波長分散補償値調整手順は、ステップS25からステップS29を含む。   FIG. 9 is a flowchart for explaining a chromatic dispersion compensation value control procedure and a chromatic dispersion compensation value adjustment procedure performed by the chromatic dispersion compensation amount controller 41. The chromatic dispersion compensation value control procedure includes steps S21 to S24. The chromatic dispersion compensation value adjustment procedure includes steps S25 to S29.

ステップS21で波長分散補償値制御手順を開始した後、波長分散補償量制御器41は、ステップS22で可変波長分散補償器24の波長分散補償値を最大化又は最小化する。波長分散補償量制御器41は、ステップS23で制御信号抽出回路34から出力される制御信号に基づき分離信号光に含まれるクロック成分の強度が閾値より大きいか否かを判断する。小さい場合、波長分散補償量制御器41は、ステップS24で可変波長分散補償器24に波長分散補償値を1ステップずつ変更させる。大きい場合、波長分散補償量制御器41はステップS25で受信器(21、22)が符号誤り率を測定可能かどうかを確認する。測定不能の場合、波長分散補償量制御器41はステップS26で偏波制御器31をリセットして再度符号誤り率を測定可能かどうかを確認する。測定可能の場合、波長分散補償量制御器41はステップS27で前回の波長分散補償値で測定した符号誤り率と今回測定した符号誤り率とを比較する。改善していれば、波長分散補償量制御器41はステップS24で可変波長分散補償器24の波長分散補償値を1ステップずつ変更する。劣化していれば、波長分散補償量制御器41はステップS28で現在の可変波長分散補償器24の波長分散補償値の近傍を掃引して最良の符号誤り率を与える波長分散補償値を探して設定する。波長分散補償量制御器41はステップS29で最適な波長分散補償値を可変波長分散補償器24に設定した後、波長分散補償値制御手順を終了する。   After starting the chromatic dispersion compensation value control procedure in step S21, the chromatic dispersion compensation amount controller 41 maximizes or minimizes the chromatic dispersion compensation value of the variable chromatic dispersion compensator 24 in step S22. The chromatic dispersion compensation amount controller 41 determines whether or not the intensity of the clock component included in the separated signal light is greater than the threshold based on the control signal output from the control signal extraction circuit 34 in step S23. If it is smaller, the chromatic dispersion compensation amount controller 41 causes the tunable chromatic dispersion compensator 24 to change the chromatic dispersion compensation value step by step in step S24. If it is larger, the chromatic dispersion compensation amount controller 41 confirms whether or not the receiver (21, 22) can measure the code error rate in step S25. If measurement is impossible, the chromatic dispersion compensation amount controller 41 resets the polarization controller 31 in step S26 and confirms whether the code error rate can be measured again. If measurement is possible, the chromatic dispersion compensation amount controller 41 compares the code error rate measured with the previous chromatic dispersion compensation value with the code error rate measured this time in step S27. If it is improved, the chromatic dispersion compensation amount controller 41 changes the chromatic dispersion compensation value of the tunable chromatic dispersion compensator 24 step by step in step S24. If so, the chromatic dispersion compensation amount controller 41 searches for a chromatic dispersion compensation value that gives the best code error rate by sweeping the vicinity of the chromatic dispersion compensation value of the current variable chromatic dispersion compensator 24 in step S28. Set. The chromatic dispersion compensation amount controller 41 sets the optimum chromatic dispersion compensation value in the variable chromatic dispersion compensator 24 in step S29, and then ends the chromatic dispersion compensation value control procedure.

光受信装置302は、偏波分離調整手順と波長分散補償値制御手順とを同時に行うこともできるが、偏波分離器23が偏波分離調整手順を行った後に、波長分散補償量制御器41が波長分散補償値制御手順を行うこともできる。波長分散補償値を決定する時間を短縮することができる。   The optical receiver 302 can simultaneously perform the polarization separation adjustment procedure and the chromatic dispersion compensation value control procedure, but after the polarization separator 23 performs the polarization separation adjustment procedure, the chromatic dispersion compensation amount controller 41. Can also perform a chromatic dispersion compensation value control procedure. The time for determining the chromatic dispersion compensation value can be shortened.

(第2の実施形態)
図6は、本実施形態の他の光伝送システムの概略構成図である。本光伝送システムは図4の光伝送システムの光受信装置302を光受信装置303に置換したものである。光受信装置303も、光受信装置302と同様に可変波長分散補償器24と、偏波分離器23と、を備える。光受信装置303は、可変波長分散補償器24が分離信号光のクロック成分の強度を大きくするように波長分散を補償し、偏波分離器23が分離信号光のクロック成分の強度が所定の値となるように偏波分離を調整する点も光受信装置302と同様である。以下、偏波多重信号光がビットインターリーブの場合について、さらに詳細に説明する。
(Second Embodiment)
FIG. 6 is a schematic configuration diagram of another optical transmission system according to this embodiment. This optical transmission system is obtained by replacing the optical receiver 302 in the optical transmission system of FIG. Similar to the optical receiver 302, the optical receiver 303 also includes a tunable dispersion compensator 24 and a polarization separator 23. The optical receiver 303 compensates the chromatic dispersion so that the variable chromatic dispersion compensator 24 increases the intensity of the clock component of the separated signal light, and the polarization separator 23 sets the intensity of the clock component of the separated signal light to a predetermined value. The polarization adjustment is adjusted so that Hereinafter, the case where the polarization multiplexed signal light is bit interleaved will be described in more detail.

光受信装置303の波長分散補償値を最適化する手段は、波長分散最適化中に偏波制御器をスクランブラとして使用する手段である。光受信装置303と図4の光受信装置302との違いは、光受信装置303が偏波分離器23の代替として偏波分離器23aを備えている点である。偏波分離器23aは、偏波制御器31、偏波ビームスプリッタ32、光分岐器33、制御信号抽出回路34、ランダム信号発信器35及びスイッチ36を有する。   The means for optimizing the chromatic dispersion compensation value of the optical receiver 303 is means for using the polarization controller as a scrambler during chromatic dispersion optimization. The difference between the optical receiver 303 and the optical receiver 302 of FIG. 4 is that the optical receiver 303 includes a polarization separator 23 a as an alternative to the polarization separator 23. The polarization separator 23 a includes a polarization controller 31, a polarization beam splitter 32, an optical splitter 33, a control signal extraction circuit 34, a random signal transmitter 35, and a switch 36.

偏波分離器23aと図4の偏波分離器23との違いは、偏波分離器23aがランダム信号発信器35及びスイッチ36を有することである。偏波分離器23aがランダム信号発信器35及びスイッチ36を有することで光受信装置303は以下のように動作する。なお、偏波分離器23aと偏波分離器23と異なる部分のみ説明する。   The difference between the polarization separator 23 a and the polarization separator 23 in FIG. 4 is that the polarization separator 23 a includes a random signal transmitter 35 and a switch 36. Since the polarization separator 23a includes the random signal transmitter 35 and the switch 36, the optical receiver 303 operates as follows. Only portions different from the polarization separator 23a and the polarization separator 23 will be described.

ランダム信号発信器35は、ランダム信号を出力する。スイッチ36は、ランダム信号発信器35からのランダム信号か、又は制御信号抽出回路34からの制御信号かを選択し、偏波制御器31に入力する。偏波制御器31は、ランダム信号が入力されるときは可変波長分散補償器24からの補償信号光の偏波状態を変動させて偏波ビームスプリッタ32に出力し、制御信号が入力されるときは制御信号に基づき、可変波長分散補償器24からの補償信号光の偏波状態を調整して偏波ビームスプリッタ32に出力する。   The random signal transmitter 35 outputs a random signal. The switch 36 selects a random signal from the random signal transmitter 35 or a control signal from the control signal extraction circuit 34 and inputs the selected signal to the polarization controller 31. When a random signal is input, the polarization controller 31 changes the polarization state of the compensation signal light from the variable wavelength dispersion compensator 24 and outputs it to the polarization beam splitter 32, and when the control signal is input. Adjusts the polarization state of the compensation signal light from the tunable dispersion compensator 24 based on the control signal and outputs it to the polarization beam splitter 32.

偏波制御器31は、ランダム信号が入力されるとき、ある所定の速度でランダムに出力偏波状態を変動させる偏波スクランブラとして動作する。偏波制御器31がスクランブラとして動作しているとき、分離信号光に含まれるクロック成分の強度は大きく変動する。クロック成分の強度の最大値は、2つの偏波成分と、偏波ビームスプリッタ32の固有偏波が一致した瞬間に現れる。一方、偏波制御器31は、制御信号が入力されているとき、分離信号光に含まれるクロック成分の強度が最大となるように補償信号光の偏波状態を調整する。   The polarization controller 31 operates as a polarization scrambler that randomly changes the output polarization state at a predetermined speed when a random signal is input. When the polarization controller 31 operates as a scrambler, the intensity of the clock component included in the separated signal light varies greatly. The maximum value of the intensity of the clock component appears at the moment when the two polarization components and the intrinsic polarization of the polarization beam splitter 32 coincide. On the other hand, when the control signal is input, the polarization controller 31 adjusts the polarization state of the compensation signal light so that the intensity of the clock component included in the separated signal light is maximized.

波長分散補償量制御器41はこの最大値をモニタしながら、徐々に波長分散補償値を変化させていき、両者の関係を調べる。詳細には、波長分散補償量制御器41は、制御信号抽出回路34からの制御信号が入力されており、偏波制御器31にランダム信号が入力されているときに、可変波長分散補償器24に対して波長分散補償値を所定期間毎に変化させるように指示し、所定期間内で分離信号光に含まれるクロック成分の強度が最大である期間内最大値を取得し、所定期間毎の期間内最大値を比較し、最も大きい期間内最大値を出した所定期間の波長分散補償値を検出する。   While monitoring the maximum value, the chromatic dispersion compensation amount controller 41 gradually changes the chromatic dispersion compensation value and examines the relationship between the two. Specifically, the chromatic dispersion compensation amount controller 41 receives the control signal from the control signal extraction circuit 34, and when the random signal is input to the polarization controller 31, the variable chromatic dispersion compensator 24. The chromatic dispersion compensation value is instructed to be changed every predetermined period, the maximum value within the period in which the intensity of the clock component included in the separated signal light is maximum within the predetermined period, and the period for each predetermined period The maximum chromatic dispersion values are compared, and the chromatic dispersion compensation value for a predetermined period in which the maximum maximum value within the period is obtained is detected.

図7は、波長分散補償量制御器41が可変波長分散補償器24に対して波長分散補償値を所定期間毎に変化させるように指示したときの波長分散補償値とクロック成分の強度との関係を示した実施例である。図7は、波長分散補償値D[k+1]を与えた期間の期間内最大値が他の期間より大きく、波長分散補償値D[k+1]が最適な波長分散補償値であることを示している。   FIG. 7 shows the relationship between the chromatic dispersion compensation value and the intensity of the clock component when the chromatic dispersion compensation amount controller 41 instructs the variable chromatic dispersion compensator 24 to change the chromatic dispersion compensation value every predetermined period. It is the Example which showed. FIG. 7 shows that the maximum value in the period in which the chromatic dispersion compensation value D [k + 1] is given is larger than the other periods, and the chromatic dispersion compensation value D [k + 1] is the optimum chromatic dispersion compensation value. .

多重信号光の偏波状態に関わらず、波長分散補償量制御器41は波長分散補償値の最適値を見つけることができる。その後、可変波長分散補償器24は、波長分散補償量制御器41が検出した最適な波長分散補償値で多重信号光の波長分散を補償する。また、可変波長分散補償器24が多重信号の波長分散を補償した後、偏波分離器23aは補償信号光の偏波分離を行う。具体的には、スイッチ36はランダム信号発信器35からのランダム信号から制御信号抽出回路34からの制御信号に切り替える。これにより偏波制御器31は、偏波スクランブルを停止して偏波制御を開始する。これにより、光受信装置303は偏波多重信号光の波長分散補償及び偏波多重信号光の偏波分離の双方の最適化を確実に行うことができる。   Regardless of the polarization state of the multiplexed signal light, the chromatic dispersion compensation amount controller 41 can find the optimum value of the chromatic dispersion compensation value. Thereafter, the variable chromatic dispersion compensator 24 compensates the chromatic dispersion of the multiplexed signal light with the optimum chromatic dispersion compensation value detected by the chromatic dispersion compensation amount controller 41. In addition, after the tunable dispersion compensator 24 compensates the chromatic dispersion of the multiplexed signal, the polarization separator 23a performs polarization separation of the compensation signal light. Specifically, the switch 36 switches from the random signal from the random signal transmitter 35 to the control signal from the control signal extraction circuit 34. As a result, the polarization controller 31 stops polarization scrambling and starts polarization control. As a result, the optical receiver 303 can reliably optimize both the chromatic dispersion compensation of the polarization multiplexed signal light and the polarization separation of the polarization multiplexed signal light.

光受信装置303も、図4の光受信装置302と同様に、クロック成分の強度を指標として波長分散の補償を完了させた後、受信器の符号誤り率で波長分散補償値を微調整してもよい。   Similarly to the optical receiver 302 in FIG. 4, the optical receiver 303 also completes the chromatic dispersion compensation using the intensity of the clock component as an index, and then fine-tunes the chromatic dispersion compensation value with the code error rate of the receiver. Also good.

次に、光受信装置303の光受信方法を説明する。光受信装置303は、図4の光受信装置302と同様に、偏波分離調整手順と波長分散補償値制御手順を行う。   Next, an optical reception method of the optical reception device 303 will be described. The optical receiving device 303 performs the polarization separation adjustment procedure and the chromatic dispersion compensation value control procedure as in the optical receiving device 302 of FIG.

図10は、波長分散補償量制御器41が行う波長分散補償値制御手順及び波長分散補償値調整手順を説明するフローチャートである。波長分散補償値制御手順は、ステップS31からステップS34を含む。波長分散補償値調整手順は、ステップS35からステップS39を含む。偏波分離調整手順は、ステップS35の後でステップS36の前に行うことができる。また、偏波分離調整手順は、ステップS39の後に行ってもよい。   FIG. 10 is a flowchart for explaining the chromatic dispersion compensation value control procedure and the chromatic dispersion compensation value adjustment procedure performed by the chromatic dispersion compensation amount controller 41. The chromatic dispersion compensation value control procedure includes steps S31 to S34. The chromatic dispersion compensation value adjustment procedure includes steps S35 to S39. The polarization separation adjustment procedure can be performed after step S35 and before step S36. Further, the polarization separation adjustment procedure may be performed after step S39.

ステップS31で波長分散補償値制御手順を開始した後、波長分散補償量制御器41はステップS32でスイッチ36をランダム信号発信器35に切り替えてランダム信号を偏波制御器31に入力する。これで、偏波制御器31は偏波スクランブラとして機能する。波長分散補償量制御器41は、ステップS33で所定期間毎に波長分散補償値を変更して可変波長分散補償器24に指示する。そして、波長分散補償量制御器41は、図7のように所定期間毎の期間内最大値を比較し、最も大きい期間内最大値を出した所定期間の波長分散補償値を探し出す。さらに、波長分散補償量制御器41は、ステップS34で探し出した波長分散補償値を可変波長分散補償器24に設定する。その後、波長分散補償量制御器41は、ステップS35でスイッチ36を切り替えて制御信号を偏波制御器31に入力する。これで、偏波制御器31は補償信号光の偏波状態を調整することができる。続いて、波長分散補償量制御器41はステップS36で受信器(21、22)が符号誤り率を測定可能かどうかを確認する。測定不能の場合、波長分散補償量制御器41はステップS37で偏波制御器31をリセットして再度符号誤り率を測定可能かどうかを確認する。測定可能の場合、波長分散補償量制御器41はステップS38で現在の波長分散補償値の近傍を掃引して最良の符号誤り率を与える波長分散補償値を探して設定する。最適な波長分散補償値を設定した後、波長分散補償値の最適化を終了する。   After starting the chromatic dispersion compensation value control procedure in step S31, the chromatic dispersion compensation amount controller 41 switches the switch 36 to the random signal transmitter 35 and inputs a random signal to the polarization controller 31 in step S32. Thus, the polarization controller 31 functions as a polarization scrambler. In step S33, the chromatic dispersion compensation amount controller 41 changes the chromatic dispersion compensation value every predetermined period and instructs the tunable chromatic dispersion compensator 24. Then, the chromatic dispersion compensation amount controller 41 compares the maximum values in the period for each predetermined period as shown in FIG. 7, and finds the chromatic dispersion compensation value in the predetermined period that gives the largest maximum value in the period. Further, the chromatic dispersion compensation amount controller 41 sets the chromatic dispersion compensation value found in step S34 in the variable chromatic dispersion compensator 24. Thereafter, the chromatic dispersion compensation amount controller 41 switches the switch 36 in step S <b> 35 and inputs a control signal to the polarization controller 31. Thus, the polarization controller 31 can adjust the polarization state of the compensation signal light. Subsequently, the chromatic dispersion compensation amount controller 41 confirms whether or not the receiver (21, 22) can measure the code error rate in step S36. If measurement is impossible, the chromatic dispersion compensation amount controller 41 resets the polarization controller 31 in step S37 and confirms whether the code error rate can be measured again. If measurement is possible, the chromatic dispersion compensation amount controller 41 searches for and sets a chromatic dispersion compensation value that gives the best code error rate by sweeping the vicinity of the current chromatic dispersion compensation value in step S38. After setting the optimum chromatic dispersion compensation value, the optimization of the chromatic dispersion compensation value is finished.

光受信装置303は、最初に可変波長分散補償器が最適な波長分散補償量を与えるため、偏波制御器は常に偏波制御を正確に行うことができ、光伝送システムの信頼性を高めることができる。   In the optical receiving device 303, since the variable chromatic dispersion compensator first provides an optimum amount of chromatic dispersion compensation, the polarization controller can always perform the polarization control accurately and improve the reliability of the optical transmission system. Can do.

例えば、光受信装置302及び光受信装置303の光受信方法は、コンピュータが読み取り可能な光受信プログラムとして作成し、コンピュータに実行させることで実現することができる。コンピュータが光受信プログラムを実行することで、光受信装置302及び光受信装置303は偏波多重信号光の波長分散補償値を最適に調整することができる。   For example, the optical reception method of the optical reception device 302 and the optical reception device 303 can be realized by creating a computer-readable optical reception program and causing the computer to execute it. When the computer executes the optical reception program, the optical reception device 302 and the optical reception device 303 can optimally adjust the chromatic dispersion compensation value of the polarization multiplexed signal light.

11、12:送信器
13:偏波多重器
21、22:受信器
23、23a:偏波分離器
24:可変波長分散補償器
31:偏波制御器
32:偏波ビームスプリッタ
33:光分岐器
34:制御信号抽出回路
35:ランダム信号発信器
36:スイッチ
41:波長分散補償量制御器
301:光送信装置
302、303:光受信装置
401:伝送路
S11〜S17、S21〜S29、S31〜S39:ステップ
11, 12: Transmitter 13: Polarization multiplexer 21, 22: Receiver 23, 23a: Polarization separator 24: Variable chromatic dispersion compensator 31: Polarization controller 32: Polarization beam splitter 33: Optical splitter 34: Control signal extraction circuit 35: Random signal transmitter 36: Switch 41: Chromatic dispersion compensation amount controller 301: Optical transmission device 302, 303: Optical reception device 401: Transmission paths S11 to S17, S21 to S29, S31 to S39 : Step

Claims (32)

ビット同期している2つの信号光が偏波多重された偏波多重信号光が伝送路から入力され、制御信号に基づく波長分散補償値で前記偏波多重信号光に含まれる波長分散の補償を行う可変波長分散補償器と、
前記可変波長分散補償器の出力を偏波分離した分離信号光を出力するとともに、前記分離信号光に含まれるクロック成分の強度に依存する前記制御信号を生成し、前記制御信号に基づいて偏波分離の調整を行う偏波分離器と、
を備える光受信装置。
A polarization multiplexed signal light in which two signal lights that are bit-synchronized are polarization multiplexed is input from a transmission line, and the chromatic dispersion included in the polarization multiplexed signal light is compensated with a chromatic dispersion compensation value based on the control signal. A tunable dispersion compensator to perform,
Outputs the separated signal light obtained by polarization-separating the output of the variable wavelength dispersion compensator, generates the control signal that depends on the intensity of the clock component included in the separated signal light, and polarizes based on the control signal A polarization separator for adjusting the separation;
An optical receiver comprising:
前記偏波分離器は、
前記可変波長分散補償器の出力を偏波分離し、前記分離信号として出力する偏波ビームスプリッタと、
前記偏波ビームスプリッタからの前記分離信号光に含まれるクロック成分の強度を測定し、前記制御信号を出力する制御信号抽出回路と、
を有することを特徴とする請求項1に記載の光受信装置。
The polarization separator is
A polarization beam splitter that polarization-separates the output of the variable chromatic dispersion compensator and outputs the separated signal; and
A control signal extraction circuit that measures the intensity of a clock component included in the separated signal light from the polarization beam splitter and outputs the control signal;
The optical receiver according to claim 1, comprising:
前記偏波分離器は、
前記制御信号抽出回路からの前記制御信号に基づき、前記分離信号光に含まれるクロック成分の強度が所定値となるように前記可変波長分散補償器の出力の偏波状態を調整して前記偏波ビームスプリッタに出力する偏波制御器をさらに有することを特徴とする請求項2に記載の光受信装置。
The polarization separator is
Based on the control signal from the control signal extraction circuit, the polarization state of the output of the tunable dispersion compensator is adjusted by adjusting the polarization state of the variable chromatic dispersion compensator so that the intensity of the clock component included in the separated signal light becomes a predetermined value. The optical receiver according to claim 2, further comprising a polarization controller that outputs the beam to the beam splitter.
前記波長分散補償量制御器は、
前記制御信号抽出回路からの前記制御信号が入力され、前記分離信号光に含まれるクロック成分の強度が閾値以上になるように前記波長分散補償値を決定することを特徴とする請求項2又は3に記載の光受信装置。
The chromatic dispersion compensation amount controller is
4. The chromatic dispersion compensation value is determined such that the control signal from the control signal extraction circuit is input and the intensity of a clock component included in the separated signal light is equal to or greater than a threshold value. The optical receiver described in 1.
前記偏波分離器が前記可変波長分散補償器の出力の偏波分離の調整を完了した後、前記波長分散補償量制御器が前記波長分散補償値を決定することを特徴とする請求項1から4のいずれかに記載の光受信装置。   2. The chromatic dispersion compensation amount controller determines the chromatic dispersion compensation value after the polarization separator completes the adjustment of polarization separation of the output of the variable chromatic dispersion compensator. 5. The optical receiver according to any one of 4 above. 前記偏波分離器は、
ランダム信号を出力するランダム信号発信器と、
前記ランダム信号発信器からの前記ランダム信号又は前記制御信号抽出回路からの前記制御信号が入力され、前記ランダム信号が入力されるときに、前記可変波長分散補償器の出力の偏波状態をランダムに変動させて前記偏波ビームスプリッタに出力する偏波制御器と、
をさらに有することを特徴とする請求項2に記載の光受信装置。
The polarization separator is
A random signal transmitter that outputs a random signal;
When the random signal from the random signal transmitter or the control signal from the control signal extraction circuit is input and the random signal is input, the polarization state of the output of the variable chromatic dispersion compensator is randomly selected A polarization controller for varying and outputting to the polarization beam splitter;
The optical receiver according to claim 2, further comprising:
前記波長分散補償量制御器は、
前記制御信号抽出回路からの前記制御信号が入力されており、
前記偏波制御器に前記ランダム信号が入力されているときに、前記可変波長分散補償器に対して前記波長分散補償値を所定期間毎に変化させるように指示し、前記所定期間内で前記分離信号光に含まれるクロック成分の強度が最大の期間内最大値を検出し、前記所定期間毎の前記期間内最大値を比較し、最も大きい前記期間内最大値を出した前記所定期間での前記波長分散補償値を探し出して決定することを特徴とする請求項6に記載の光受信装置。
The chromatic dispersion compensation amount controller is
The control signal from the control signal extraction circuit is input,
When the random signal is input to the polarization controller, the variable chromatic dispersion compensator is instructed to change the chromatic dispersion compensation value every predetermined period, and the separation is performed within the predetermined period. The maximum value within the period in which the intensity of the clock component included in the signal light is maximum is detected, the maximum value within the period for each predetermined period is compared, and the maximum value within the period is output in the predetermined period. The optical receiver according to claim 6, wherein the chromatic dispersion compensation value is found and determined.
前記波長分散補償量制御器が前記波長分散補償値を決定した後、
前記偏波分離器は、前記制御信号が入力され、前記制御信号に基づき、前記分離信号光に含まれるクロック成分の強度が所定値となるように前記可変波長分散補償器の出力の偏波状態を調整して前記偏波ビームスプリッタに出力し、前記可変波長分散補償器の出力の偏波分離を完了することを特徴とする請求項7に記載の光受信装置。
After the chromatic dispersion compensation amount controller determines the chromatic dispersion compensation value,
The polarization separator receives the control signal, and based on the control signal, the polarization state of the output of the tunable dispersion compensator so that the intensity of the clock component included in the separated signal light becomes a predetermined value The optical receiver according to claim 7, wherein the optical signal is adjusted and output to the polarization beam splitter to complete polarization separation of the output of the variable wavelength dispersion compensator.
前記波長分散補償量制御器は、前記分離信号光をそれぞれ受信する受信器の符号誤り検出機能を使用して符号誤り率を最小とするように前記波長分散補償値をさらに調整することを特徴とする請求項1から8のいずれかに記載の光受信装置。   The chromatic dispersion compensation amount controller further adjusts the chromatic dispersion compensation value so as to minimize a code error rate by using a code error detection function of a receiver that receives the separated signal light, respectively. The optical receiver according to claim 1. 前記ビット同期している2つの信号光のビット位相が略180°ずれており、
前記偏波分離器は、前記分離信号に含まれるクロック成分の強度が最大となるように偏波分離の調整を行うことを特徴とする請求項1から9のいずれかに記載の光受信装置。
The bit phases of the two signal lights in bit synchronization are shifted by approximately 180 °,
10. The optical receiver according to claim 1, wherein the polarization separator adjusts polarization separation so that an intensity of a clock component included in the separated signal is maximized. 11.
ビット同期している2つの信号光が偏波多重された偏波多重信号光を伝送路へ出力する光送信装置と、請求項1から10のいずれかに記載の光受信装置と、を備えることを特徴とする光伝送システム。   11. An optical transmission device that outputs a polarization multiplexed signal light in which two signal lights that are bit-synchronized are polarization multiplexed to the transmission line, and the optical reception device according to claim 1. An optical transmission system characterized by ビット同期している2つの信号光が偏波多重された偏波多重信号光を、制御信号に基づく波長分散補償値で前記偏波多重信号光に含まれる波長分散の補償を行う可変波長分散補償手順と、
前記波長分散の補償を行った前記偏波多重信号光を偏波分離した分離信号光を出力し、前記分離信号光に含まれるクロック成分の強度に依存する前記制御信号を生成し、前記制御信号に基づいて偏波分離の調整を行う偏波分離手順と、
を含む光受信方法。
Variable chromatic dispersion compensation that compensates for chromatic dispersion included in the polarization multiplexed signal light by using the chromatic dispersion compensation value based on the control signal for the polarization multiplexed signal light in which two signal lights that are bit-synchronized are polarization multiplexed. Procedure and
Outputting a separated signal light obtained by polarization-separating the polarization multiplexed signal light that has been compensated for the chromatic dispersion, generating the control signal depending on the intensity of a clock component included in the separated signal light, and the control signal Polarization separation procedure for adjusting polarization separation based on
Including an optical receiving method.
前記偏波分離調整手順は、
前記分離信号光に含まれるクロック成分の強度を測定して前記制御信号を出力することを特徴とする請求項12に記載の光受信方法。
The polarization separation adjustment procedure includes:
13. The optical receiving method according to claim 12, wherein the control signal is output by measuring an intensity of a clock component included in the separated signal light.
前記偏波分離調整手順は、
前記制御信号に基づき、前記分離信号光に含まれるクロック成分の強度が所定値となるように前記可変波長分散補償器の出力の偏波状態を調整することを特徴とする請求項12又は13に記載の光受信方法。
The polarization separation adjustment procedure includes:
The polarization state of the output of the tunable dispersion compensator is adjusted based on the control signal so that the intensity of the clock component included in the separated signal light becomes a predetermined value. The optical receiving method as described.
前記波長分散補償量制御手順は、
前記制御信号に基づき、前記分離信号光に含まれるクロック成分の強度が閾値以上になるように前記波長分散補償値を決定することを特徴とする請求項12から14のいずれかに記載の光受信方法。
The chromatic dispersion compensation amount control procedure includes:
15. The optical reception according to claim 12, wherein the chromatic dispersion compensation value is determined based on the control signal so that an intensity of a clock component included in the separated signal light is equal to or higher than a threshold value. Method.
前記偏波分離調整手順の後に前記波長分散補償値制御手順を行うことを特徴とする請求項12から15のいずれかに記載の光受信方法。   16. The optical reception method according to claim 12, wherein the chromatic dispersion compensation value control procedure is performed after the polarization separation adjustment procedure. 前記波長分散補償量制御手順は、
ランダム信号を用いて前記可変波長分散補償器の出力の偏波状態をランダムに変動させた後に該可変波長分散補償器の出力を偏波分離して前記分離信号光とすることを特徴とする請求項12又は13に記載の光受信方法。
The chromatic dispersion compensation amount control procedure includes:
The output of the variable wavelength dispersion compensator is randomly changed using a random signal, and then the output of the variable wavelength dispersion compensator is polarized and separated to obtain the separated signal light. Item 14. The optical receiving method according to Item 12 or 13.
前記波長分散補償量制御手順は、
前記可変波長分散補償器の出力の偏波状態がランダムに変動するときに、前記可変波長分散補償器に対して前記波長分散補償値を所定期間毎に変化させるように指示し、前記制御信号に基づき、前記所定期間内で前記分離信号光に含まれるクロック成分の強度が最大の期間内最大値を検出し、前記所定期間毎の前記期間内最大値を比較し、最も大きい前記期間内最大値を出した前記所定期間での前記波長分散補償値を探し出して決定することを特徴とする請求項17に記載の光受信方法。
The chromatic dispersion compensation amount control procedure includes:
When the polarization state of the output of the variable chromatic dispersion compensator changes randomly, the variable chromatic dispersion compensator is instructed to change the chromatic dispersion compensation value every predetermined period, and the control signal Based on this, the maximum value within the period in which the intensity of the clock component included in the separated signal light is maximum within the predetermined period is detected, the maximum value within the period for each predetermined period is compared, and the largest maximum value within the period The optical reception method according to claim 17, wherein the chromatic dispersion compensation value in the predetermined period of time is determined and determined.
前記波長分散補償値制御手順の後、
前記偏波分離調整手順は、前記制御信号に基づき、前記分離信号光に含まれるクロック成分の強度が所定値となるように前記可変波長分散補償器の出力の偏波状態を調整することを特徴とする請求項18に記載の光受信方法。
After the chromatic dispersion compensation value control procedure,
The polarization separation adjustment procedure adjusts the polarization state of the output of the tunable dispersion compensator so that the intensity of the clock component included in the separated signal light becomes a predetermined value based on the control signal. The optical receiving method according to claim 18.
前記波長分散補償値制御手順及び前記偏波分離調整手順の後に、
前記分離信号光を受信するときの符号誤り率を最小とするように前記波長分散補償値をさらに調整する波長分散補償値調整手順を行うことを特徴とする請求項12から19のいずれかに記載の光受信方法。
After the chromatic dispersion compensation value control procedure and the polarization separation adjustment procedure,
20. The chromatic dispersion compensation value adjustment procedure for further adjusting the chromatic dispersion compensation value so as to minimize a code error rate when receiving the separated signal light is performed. Optical reception method.
前記ビット同期している2つの信号光のビット位相が略180°ずれており、
前記偏波分離手順で、前記分離信号に含まれるクロック成分の強度が最大となるように偏波分離の調整を行うことを特徴とする請求項12から20のいずれかに記載の光受信方法。
The bit phases of the two signal lights in bit synchronization are shifted by approximately 180 °,
21. The optical receiving method according to claim 12, wherein in the polarization separation procedure, the polarization separation is adjusted so that the intensity of the clock component included in the separated signal is maximized.
ビット同期している2つの信号光が偏波多重された偏波多重信号光を伝送路へ出力する光送信方法と、請求項11から19のいずれかに記載の光受信方法と、を備えることを特徴とする光伝送方法。   20. An optical transmission method for outputting a polarization multiplexed signal light in which two bit-synchronized signal lights are polarization multiplexed, and an optical reception method according to any one of claims 11 to 19. An optical transmission method characterized by the above. 可変波長分散補償器が、ビット同期している2つの信号光が偏波多重された偏波多重信号光を、制御信号に基づく波長分散補償値で前記偏波多重信号光に含まれる波長分散の補償をする可変波長分散補償手順を行い、
偏波分離器が、前記可変波長分散補償器の出力を偏波分離した分離信号光を出力するとともに、前記分離信号光に含まれるクロック成分の強度に依存する前記制御信号を生成し、前記制御信号に基づいて偏波分離の調整をする偏波分離手順を行う光受信方法をコンピュータに実行させる光受信プログラム。
A variable chromatic dispersion compensator converts a polarization multiplexed signal light obtained by polarization multiplexing two signal lights that are bit-synchronized with a wavelength dispersion compensation value based on a control signal. Perform variable chromatic dispersion compensation procedure to compensate,
A polarization separator that outputs separated signal light obtained by polarization-separating the output of the variable wavelength dispersion compensator, and generates the control signal that depends on the intensity of a clock component included in the separated signal light, and the control An optical reception program for causing a computer to execute an optical reception method for performing a polarization separation procedure for adjusting polarization separation based on a signal.
前記偏波分離調整手順において、
前記偏波分離器の制御信号抽出回路が、前記分離信号光に含まれるクロック成分の強度を測定して前記制御信号を出力する光受信方法をコンピュータに実行させることを特徴とする請求項23に記載の光受信プログラム。
In the polarization separation adjustment procedure,
The control signal extraction circuit of the polarization separator causes a computer to execute an optical reception method of measuring the intensity of a clock component included in the separated signal light and outputting the control signal. The optical receiving program described.
前記偏波分離調整手順において、
前記偏波分離器の偏波制御器が、前記制御信号に基づき、前記分離信号光に含まれるクロック成分の強度が最大となるように前記可変波長分散補償器の出力の偏波状態を調整する光受信方法をコンピュータに実行させることを特徴とする請求項23又は24に記載の光受信プログラム。
In the polarization separation adjustment procedure,
Based on the control signal, the polarization controller of the polarization separator adjusts the polarization state of the output of the tunable dispersion compensator so that the intensity of the clock component included in the separated signal light is maximized. 25. The optical reception program according to claim 23, wherein the optical reception method is executed by a computer.
前記波長分散補償量制御手順において、
前記波長分散補償量制御器が、前記制御信号に基づき、前記分離信号光に含まれるクロック成分の強度が閾値以上になるように前記波長分散補償値を決定する光受信方法をコンピュータに実行させることを特徴とする請求項23から25のいずれかに記載の光受信プログラム。
In the chromatic dispersion compensation amount control procedure,
The chromatic dispersion compensation amount controller causes the computer to execute an optical reception method for determining the chromatic dispersion compensation value based on the control signal so that the intensity of the clock component included in the separated signal light is equal to or greater than a threshold value. The optical reception program according to any one of claims 23 to 25.
前記偏波分離調整手順の後に前記波長分散補償値制御手順を行う光受信方法をコンピュータに実行させることを特徴とする請求項23から26のいずれかに記載の光受信プログラム。   27. The optical reception program according to claim 23, further causing a computer to execute an optical reception method for performing the chromatic dispersion compensation value control procedure after the polarization separation adjustment procedure. 前記波長分散補償量制御手順において、
前記偏波分離器の偏波制御器が、ランダム信号を用いて前記可変波長分散補償器の出力の偏波状態をランダムに変動させ、前記偏波分離器の偏波ビームスプリッタが、該可変波長分散補償器の出力を偏波分離して前記分離信号光とする光受信方法をコンピュータに実行させることを特徴とする請求項23又は24に記載の光受信プログラム。
In the chromatic dispersion compensation amount control procedure,
The polarization controller of the polarization separator randomly varies the polarization state of the output of the variable chromatic dispersion compensator using a random signal, and the polarization beam splitter of the polarization separator includes the variable wavelength 25. The optical reception program according to claim 23 or 24, causing a computer to execute an optical reception method in which an output of a dispersion compensator is subjected to polarization separation to obtain the separated signal light.
前記波長分散補償量制御手順において、
前記可変波長分散補償器の出力の偏波状態がランダムに変動するときに、前記波長分散補償量制御器が、前記可変波長分散補償器に対して前記波長分散補償値を所定期間毎に変化させるように指示し、前記制御信号に基づき、前記所定期間内で前記分離信号光に含まれるクロック成分の強度が最大の期間内最大値を検出し、前記所定期間毎の前記期間内最大値を比較し、最も大きい前記期間内最大値を出した前記所定期間での前記波長分散補償値を探し出して決定する光受信方法をコンピュータに実行させることを特徴とする請求項28に記載の光受信プログラム。
In the chromatic dispersion compensation amount control procedure,
When the polarization state of the output of the tunable dispersion compensator changes randomly, the chromatic dispersion compensation amount controller changes the chromatic dispersion compensation value for each predetermined period with respect to the tunable dispersion compensator. Based on the control signal, the maximum value within the period in which the intensity of the clock component included in the separated signal light is maximum within the predetermined period is detected, and the maximum value within the period for each predetermined period is compared. 29. The optical reception program according to claim 28, further causing a computer to execute an optical reception method for finding and determining the chromatic dispersion compensation value in the predetermined period when the largest maximum value in the period is output.
前記波長分散補償値制御手順の後、前記偏波分離調整手順において、
前記偏波分離器の偏波制御器が、前記制御信号に基づき、前記分離信号光に含まれるクロック成分の強度が最大となるように前記可変波長分散補償器の出力の偏波状態を調整する光受信方法をコンピュータに実行させることを特徴とする請求項29に記載の光受信プログラム。
After the chromatic dispersion compensation value control procedure, in the polarization separation adjustment procedure,
Based on the control signal, the polarization controller of the polarization separator adjusts the polarization state of the output of the tunable dispersion compensator so that the intensity of the clock component included in the separated signal light is maximized. 30. The optical reception program according to claim 29, which causes a computer to execute the optical reception method.
前記波長分散補償値制御手順及び前記偏波分離調整手順の後の波長分散補償値調整手順において、
前記偏波分離器の偏波制御器が、前記分離信号光を受信するときの符号誤り率を最小とするように前記波長分散補償値をさらに調整する光受信方法をコンピュータに実行させることを特徴とする請求項23から30のいずれかに記載の光受信プログラム。
In the chromatic dispersion compensation value adjustment procedure after the chromatic dispersion compensation value control procedure and the polarization separation adjustment procedure,
The polarization controller of the polarization separator causes a computer to execute an optical reception method for further adjusting the chromatic dispersion compensation value so as to minimize a code error rate when the separated signal light is received. The optical reception program according to any one of claims 23 to 30.
前記ビット同期している2つの信号光のビット位相が略180°ずれており、
前記偏波分離器が、前記分離信号に含まれるクロック成分の強度を最大にするように偏波分離の調整を行う光受信方法をコンピュータに実行させることを特徴とする請求項23から31のいずれかに記載の光受信プログラム。
The bit phases of the two signal lights in bit synchronization are shifted by approximately 180 °,
32. The method according to claim 23, wherein the polarization separator causes the computer to execute an optical reception method for adjusting polarization separation so as to maximize the intensity of the clock component included in the separated signal. The light receiving program according to the above.
JP2009101522A 2009-04-20 2009-04-20 Optical receiver Expired - Fee Related JP5387113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009101522A JP5387113B2 (en) 2009-04-20 2009-04-20 Optical receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009101522A JP5387113B2 (en) 2009-04-20 2009-04-20 Optical receiver

Publications (2)

Publication Number Publication Date
JP2010252204A true JP2010252204A (en) 2010-11-04
JP5387113B2 JP5387113B2 (en) 2014-01-15

Family

ID=43314010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009101522A Expired - Fee Related JP5387113B2 (en) 2009-04-20 2009-04-20 Optical receiver

Country Status (1)

Country Link
JP (1) JP5387113B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430634A (en) * 1990-05-24 1992-02-03 Nippon Telegr & Teleph Corp <Ntt> Signal communication system
JP2003509898A (en) * 1999-09-08 2003-03-11 シーメンス アクチエンゲゼルシヤフト Optical information transmission apparatus and method
JP2007528175A (en) * 2004-03-09 2007-10-04 エリクソン エービー System, method and apparatus for polarization mode dispersion compensation and demultiplexing of polarization multiplexed signal
JP2008172799A (en) * 2007-01-12 2008-07-24 Fujitsu Ltd Monitoring polarization of signal communicated through polarization multiplexing
JP2008170996A (en) * 2007-01-12 2008-07-24 Fujitsu Ltd Communication of signal by ask modulation and psk modulation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430634A (en) * 1990-05-24 1992-02-03 Nippon Telegr & Teleph Corp <Ntt> Signal communication system
JP2003509898A (en) * 1999-09-08 2003-03-11 シーメンス アクチエンゲゼルシヤフト Optical information transmission apparatus and method
JP2007528175A (en) * 2004-03-09 2007-10-04 エリクソン エービー System, method and apparatus for polarization mode dispersion compensation and demultiplexing of polarization multiplexed signal
JP2008172799A (en) * 2007-01-12 2008-07-24 Fujitsu Ltd Monitoring polarization of signal communicated through polarization multiplexing
JP2008170996A (en) * 2007-01-12 2008-07-24 Fujitsu Ltd Communication of signal by ask modulation and psk modulation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013014423; Yunfeng Shen, et al.: 'PMDC for polarization multiplexed RZ-DQPSK systems' Conference on Optical Fiber Communication - incudes post deadline papers, 2009. OFC 2009. , 20090322, pages.1-3, IEEE *

Also Published As

Publication number Publication date
JP5387113B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
US6925262B2 (en) Method and system for compensating chromatic dispersion
US20100239245A1 (en) Polarization Mode Emulators and Polarization Mode Dispersion Compensators Based on Optical Polarization Rotators with Discrete Polarization States
JP3923373B2 (en) Automatic dispersion compensation device and compensation method
JP4053389B2 (en) Optical signal-to-noise ratio monitoring method and optical transmission system using the same
JP7121887B2 (en) Digital coherent receiver and its skew adjustment method
JP5471578B2 (en) Chromatic dispersion measurement method and apparatus, and optical transmission system
US20070177876A1 (en) Chromatic dispersion monitoring method and chromatic dispersion monitoring apparatus, and optical transmission system
JP2008098975A (en) Receiver, transmitter, reception method and transmission method
US9071354B2 (en) Optical receiving apparatus and characteristic compensation method
JP2001203637A (en) Wavelength multiplex optical transmission system
JP2003298515A (en) System for compensating both wavelength dispersion and polarization mode dispersion
JP3740538B2 (en) Optical receiver and dispersion compensation control method
JP2009152857A (en) Variable dispersion compensation control method and variable dispersion compensation control device
US9735916B2 (en) Optical receiver, optical signal processing method, and optical transmission system
CN100423478C (en) Method and apparatus for detection and compensation of PMD parameters in signals transmitted over optical fiber links and system of communication therewith
JP2007329558A (en) Wavelength dispersion control method and wavelength dispersion control system
JP5387113B2 (en) Optical receiver
Koebele et al. Two-mode transmission with digital inter-modal cross-talk mitigation
de Gabory et al. DWDM transmission of 128Gb/s PM-16QAM signal over 1815km of 7-core MCF using shared carrier reception for improving the received signal quality
KR20160050687A (en) Apparatus and Method for Optical Receiving based on Multi-Mode Fiber
JP4056846B2 (en) Dispersion monitoring device, dispersion monitoring method, and automatic dispersion compensation system
JP4282559B2 (en) Optical transmission method and optical transmission system
JP5861516B2 (en) Optical transmission apparatus and characteristic compensation method
JP5492118B2 (en) WDM signal batch coherent receiver and method
JP5445603B2 (en) Variable dispersion compensation control method and variable dispersion compensation control apparatus

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110706

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130923

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees