JP2010250985A - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP2010250985A
JP2010250985A JP2009096531A JP2009096531A JP2010250985A JP 2010250985 A JP2010250985 A JP 2010250985A JP 2009096531 A JP2009096531 A JP 2009096531A JP 2009096531 A JP2009096531 A JP 2009096531A JP 2010250985 A JP2010250985 A JP 2010250985A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
mixture
slit
electrode mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009096531A
Other languages
Japanese (ja)
Inventor
Hisao Yamashige
寿夫 山重
Shinobu Okayama
忍 岡山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009096531A priority Critical patent/JP2010250985A/en
Publication of JP2010250985A publication Critical patent/JP2010250985A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a secondary battery capable of restraining deviation of ions used as charge carriers on a negative electrode. <P>SOLUTION: In the secondary battery having a positive electrode 10 wherein a positive electrode mixture 12 is coated on a positive electrode collector 11, the negative electrode 20 wherein a negative electrode mixture 22 is coated on a negative electrode collector 21, and a separator 30 interposed between the positive electrode 10 and the negative electrode 20, in which a coated area of the negative electrode mixture 22 is larger than a coated area of the positive electrode mixture 12, slits 23, 23 are arranged on the negative electrode mixture 22 of the negative electrode 20 from a coated surface of the negative electrode mixture 22 to the negative electrode collector 21 on the negative electrode 20, and the slits 23, 23 are arranged at a section located on an outer periphery of the positive electrode mixture 12 in the negative electrode mixture 22 while the positive electrode 10, the negative electrode 20, and the separator 30 are laminated. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、二次電池に関し、特に正極に比して面積の大きい負極を有するリチウムイオン二次電池に関する。   The present invention relates to a secondary battery, and more particularly to a lithium ion secondary battery having a negative electrode having a larger area than a positive electrode.

従来、二次電池としては、シート状に形成された正極と負極とをセパレータを介して積層して構成される電極群を捲回した状態でケース内に収容したものがある。このような捲回型の二次電池においては、主として電極を捲回する時に、対向する正極と負極との間にズレが生じて、充電時にデンドライトが生成される等の問題があったため、ズレを考慮して正極に比して面積の大きい負極が用いられている(例えば、特許文献1参照)。   Conventionally, as a secondary battery, there is a battery that is housed in a case in a wound state of an electrode group formed by laminating a positive electrode and a negative electrode formed in a sheet shape via a separator. In such a wound type secondary battery, there is a problem that, when the electrode is mainly wound, a gap is generated between the positive electrode and the negative electrode facing each other, and dendrite is generated during charging. In consideration of the above, a negative electrode having a larger area than the positive electrode is used (for example, see Patent Document 1).

しかし、図4に示すように、正極110に比して面積の大きい負極120を有する二次電池は、負極120内におけるリチウムイオンのような電荷担体となるイオンPが、負極120に対向する正極110の面積よりも広がってしまい、負極120でイオンの偏りが生じる。
よって、負極120で電位ムラが発生するため、電位の高い部分は熱暴走温度が低く、発熱量が大きくなり、それに伴って負極120の部位ごとで安全性にバラツキが生じる。
また、正極110と負極120との間でSOC(State of Charge)にもズレが発生し、対向する正極110と負極120とにおけるSOCが部位によって異なり、それに伴って電池全体としての容量が悪化する。
However, as shown in FIG. 4, the secondary battery having the negative electrode 120 having a larger area than the positive electrode 110 has a positive electrode in which ions P serving as charge carriers such as lithium ions in the negative electrode 120 face the negative electrode 120. More than the area of 110, the negative electrode 120 causes ion bias.
Therefore, potential unevenness occurs in the negative electrode 120, so that a portion with a high potential has a low thermal runaway temperature and a large amount of heat generation, and as a result, the safety of each part of the negative electrode 120 varies.
Also, the SOC (State of Charge) is shifted between the positive electrode 110 and the negative electrode 120, and the SOC of the positive electrode 110 and the negative electrode 120 facing each other varies depending on the part, and accordingly, the capacity of the entire battery deteriorates. .

特開平8−50917号公報JP-A-8-50917

本発明は、電荷担体となるイオンの負極上での偏りを抑制する二次電池を提供することを課題とする。   An object of the present invention is to provide a secondary battery that suppresses unevenness of ions serving as charge carriers on a negative electrode.

請求項1においては、正極合剤が正極集電体に塗工されてなる正極と、負極合剤が負極集電体に塗工されてなる負極と、前記正極と前記負極との間に介装されたセパレータと、を備え、前記負極合剤の塗工面積は、前記正極合剤の塗工面積に比して大きい二次電池であって、前記負極の負極合剤には、前記負極における負極合剤の塗工面から前記負極集電体にかけて負極合剤を除去した、第一スリットが設けられ、前記第一スリットは、前記正極と前記負極と前記セパレータとが積層された状態で、前記負極合剤における前記正極合剤の外周に位置する部分に配置されるものである。   In claim 1, a positive electrode in which a positive electrode mixture is applied to a positive electrode current collector, a negative electrode in which a negative electrode mixture is applied to a negative electrode current collector, and the positive electrode and the negative electrode are interposed. A secondary battery having a coating area of the negative electrode mixture larger than a coating area of the positive electrode mixture, and the negative electrode mixture of the negative electrode includes the negative electrode In the state where the negative electrode mixture is removed from the coating surface of the negative electrode mixture in the negative electrode current collector, a first slit is provided, and the first slit is in a state where the positive electrode, the negative electrode, and the separator are laminated, It arrange | positions in the part located in the outer periphery of the said positive mix in the said negative mix.

請求項2においては、前記負極の負極合剤には、前記第一スリットよりも外側に、前記負極における負極合剤の塗工面から前記負極集電体にかけて、第二スリットが設けられるものである。   According to a second aspect of the present invention, the negative electrode mixture of the negative electrode is provided with a second slit outside the first slit from the coating surface of the negative electrode mixture in the negative electrode to the negative electrode current collector. .

請求項3においては、前記負極の負極合剤には、前記第一スリットよりも内側に、前記負極における負極合剤の塗工面から前記負極集電体にかけて、第三スリットが設けられるものである。   In Claim 3, the negative electrode mixture of the negative electrode is provided with a third slit on the inner side of the first slit from the coating surface of the negative electrode mixture in the negative electrode to the negative electrode current collector. .

本発明によれば、電荷担体となるイオンの負極上での偏りを抑制することが可能となる。したがって、負極での電位ムラや、正極と負極との間でのSOCのズレを防止することができ、二次電池の安全性が向上すると共に、電池容量の悪化を防止することができる。   According to the present invention, it is possible to suppress the deviation of ions serving as charge carriers on the negative electrode. Therefore, potential unevenness at the negative electrode and SOC shift between the positive electrode and the negative electrode can be prevented, and the safety of the secondary battery can be improved and the battery capacity can be prevented from deteriorating.

本発明の一実施形態に係る二次電池の電極群を示す概略図。Schematic which shows the electrode group of the secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係る二次電池の別形態を示す概略図。Schematic which shows another form of the secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係る二次電池の別形態を示す概略図。Schematic which shows another form of the secondary battery which concerns on one Embodiment of this invention. 従来の二次電池の電極群を示す概略図。Schematic which shows the electrode group of the conventional secondary battery.

図1に示すように、本発明の一実施形態に係る二次電池は、主に正極10、負極20、及びセパレータ30から構成されたリチウムイオン二次電池やニッケル・水素蓄電池等の二次電池である。
前記二次電池は、具体的には、正極10と負極20とを、セパレータ30を介装しつつ積層して電極群40とし、電極群40を捲回して金属缶や金属樹脂複合フィルム等の容器に収納した後、電解液を含浸させて構成されている。
なお、以下では、図示における左右方向を電極群40の「幅方向」とし、この「幅方向」に奥行方向に直交する方向を電極群40の「捲回方向」として説明する。
As shown in FIG. 1, a secondary battery according to an embodiment of the present invention is a secondary battery such as a lithium ion secondary battery or a nickel / hydrogen storage battery mainly composed of a positive electrode 10, a negative electrode 20, and a separator 30. It is.
Specifically, in the secondary battery, the positive electrode 10 and the negative electrode 20 are laminated with a separator 30 interposed therebetween to form an electrode group 40, and the electrode group 40 is wound to form a metal can, a metal resin composite film, or the like. After being housed in a container, it is configured by impregnating with an electrolytic solution.
In the following description, the horizontal direction in the drawing is referred to as the “width direction” of the electrode group 40, and the direction perpendicular to the “width direction” in the depth direction is described as the “winding direction” of the electrode group 40.

正極10は、二次電池に用いられる正極であり、金属箔である正極集電体11の表面に、ダイコータ等の塗工装置を用いてペースト状の正極合剤12を塗布し、乾燥させた後、ロールプレス等の所定の処理を経て形成される。
正極集電体11は、アルミニウム、チタン、ステンレス鋼等の金属箔からなる集電体である。
正極合剤12は、粉末状の正極活物質を導電助剤や結着剤等と共に分散溶媒で混練したペースト状の電極合剤である。
The positive electrode 10 is a positive electrode used for a secondary battery, and a paste-like positive electrode mixture 12 was applied to the surface of a positive electrode current collector 11 which is a metal foil using a coating device such as a die coater and dried. Thereafter, it is formed through a predetermined process such as a roll press.
The positive electrode current collector 11 is a current collector made of a metal foil such as aluminum, titanium, or stainless steel.
The positive electrode mixture 12 is a paste-like electrode mixture obtained by kneading a powdered positive electrode active material with a conductive solvent, a binder, and the like in a dispersion solvent.

負極20は、二次電池に用いられる負極であり、正極10に比して大きい面積を有する。負極20は、正極10と同様に、金属箔である負極集電体21の表面に、ダイコータ等の塗工装置を用いてペースト状の負極合剤22を塗布し、乾燥させた後、ロールプレス等の所定の処理を経て形成される。
負極集電体21は、銅、ニッケル、ステンレス鋼等の金属箔からなる集電体である。
負極合剤22は、粉末状の負極活物質を導電助剤や結着剤等と共に分散溶媒で混練したペースト状の電極合剤である。
The negative electrode 20 is a negative electrode used for a secondary battery, and has a larger area than the positive electrode 10. Similarly to the positive electrode 10, the negative electrode 20 was applied to the surface of the negative electrode current collector 21, which is a metal foil, using a coating device such as a die coater, dried, and then rolled. It forms through predetermined processes, such as.
The negative electrode current collector 21 is a current collector made of a metal foil such as copper, nickel, and stainless steel.
The negative electrode mixture 22 is a paste-like electrode mixture obtained by kneading a powdered negative electrode active material with a conductive solvent, a binder, and the like in a dispersion solvent.

セパレータ30は、正極10と負極20との間に介在し、それらを離間させる絶縁体である。セパレータ30は、ポリオレフィン樹脂等の多孔性材料からなり、電荷担体となるイオンPがセパレータ30を介して正極10と負極20との間を移動可能とすることでイオン導電性を保持している。   The separator 30 is an insulator that is interposed between the positive electrode 10 and the negative electrode 20 and separates them. The separator 30 is made of a porous material such as a polyolefin resin, and retains ionic conductivity by allowing ions P serving as charge carriers to move between the positive electrode 10 and the negative electrode 20 via the separator 30.

電極群40は、正極10における正極合剤12の塗工面と負極20における負極合剤22の塗工面とがセパレータ30を介して対向した状態で、正極10と負極20とセパレータ30とが積層されてなる充放電要素である。   In the electrode group 40, the positive electrode 10, the negative electrode 20, and the separator 30 are laminated in a state in which the coating surface of the positive electrode mixture 12 in the positive electrode 10 and the coating surface of the negative electrode mixture 22 in the negative electrode 20 face each other with the separator 30 interposed therebetween. Charge / discharge element.

以下では、本発明の一実施形態に係る二次電池における負極20の構造についてより詳細に説明する。   Below, the structure of the negative electrode 20 in the secondary battery which concerns on one Embodiment of this invention is demonstrated in detail.

図1に示すように、負極20は、正極10よりも大きい面積を有する。詳細には、負極20における負極集電体21への負極合剤22の塗工幅(幅方向の塗工長さ)が、正極10における正極集電体11への正極合剤12の塗工幅よりも大きく形成されており、負極集電体21への負極合剤22の塗工面積は、正極10における正極集電体11への正極合剤12の塗工面積に比して大きくなっている。ただし、正極合剤12及び負極合剤22の捲回方向の長さは等しいものとする。   As shown in FIG. 1, the negative electrode 20 has a larger area than the positive electrode 10. Specifically, the coating width (the coating length in the width direction) of the negative electrode mixture 22 on the negative electrode current collector 21 in the negative electrode 20 is equal to the coating width of the positive electrode mixture 12 on the positive electrode current collector 11 in the positive electrode 10. The coating area of the negative electrode mixture 22 on the negative electrode current collector 21 is larger than the coating area of the positive electrode mixture 12 on the positive electrode current collector 11 in the positive electrode 10. ing. However, the lengths of the positive electrode mixture 12 and the negative electrode mixture 22 in the winding direction are equal.

負極20の負極合剤22には、捲回方向に沿ってスリット23・23が設けられ、正極10と負極20とセパレータ30とが積層された状態で、負極合剤22における正極合剤12の外周に位置する部分、つまり正極合剤12の幅方向における両端部に位置する部分(図1における破線L・Rで示す位置)にそれぞれ配置される。換言すれば、正極10における正極合剤12の塗工面積と、それに対向する負極20における負極合剤22のスリット23・23によって囲まれた部分の面積とが略同じになるようにスリット23・23が設けられる。   In the negative electrode mixture 22 of the negative electrode 20, slits 23 and 23 are provided along the winding direction, and the positive electrode mixture 12 in the negative electrode mixture 22 in the state where the positive electrode 10, the negative electrode 20, and the separator 30 are laminated. It arrange | positions at the part located in the outer periphery, ie, the part (position shown with the broken line LR in FIG. 1) located in the both ends in the width direction of the positive mix 12 respectively. In other words, the coating area of the positive electrode mixture 12 on the positive electrode 10 and the area of the portion surrounded by the slits 23, 23 of the negative electrode mixture 22 on the negative electrode 20 facing it are substantially the same. 23 is provided.

スリット23は、正極合剤12の幅方向における両端部に位置する部分(図1における破線L・Rで示す位置)に、負極20における負極合剤22の塗工面(セパレータ30側の面)から負極集電体21に至るまで矩形状に形成された切込みである。つまり、負極集電体21上において、スリット23・23が形成される箇所には負極合剤22が存在しない。このように、負極合剤22では、スリット23・23によってイオンPの通過が遮断される。
スリット23は、負極集電体21に負極合剤22を塗布した後に針状の部材を用いて負極合剤22に切込みを入れたり、負極集電体21に負極合剤22を間欠的に塗布したり等して形成される。
The slit 23 extends from the coating surface (surface on the separator 30 side) of the negative electrode mixture 22 in the negative electrode 20 to portions (positions indicated by broken lines L and R in FIG. 1) located at both ends in the width direction of the positive electrode mixture 12. It is a cut formed in a rectangular shape up to the negative electrode current collector 21. That is, on the negative electrode current collector 21, the negative electrode mixture 22 does not exist at the positions where the slits 23 and 23 are formed. Thus, in the negative electrode mixture 22, the passage of the ions P is blocked by the slits 23 and 23.
The slit 23 is formed by applying a negative electrode mixture 22 to the negative electrode current collector 21 and then cutting the negative electrode mixture 22 using a needle-like member, or intermittently applying the negative electrode mixture 22 to the negative electrode current collector 21. Or the like.

以上のように、負極20の負極合剤22に、スリット23・23を設けている。つまり、スリット23・23を設けることによって、負極20が正極10と比して大きい面積を有する場合でも、正極10における正極合剤12の塗工面積と、正極10の正極合剤12に対向する負極20における負極合剤22の塗工面積とを同程度にしている。
これにより、イオンPがスリット23を越えて移動することができず、負極20で対向する正極10における正極合剤12の塗工面積よりも広がることがないため、負極20でのイオンPの偏りを抑制することが可能となる。
したがって、負極20での電位ムラや、正極10と負極20との間でのSOCのズレを防止することができ、前記二次電池の安全性が向上すると共に、電池容量の悪化を防止することができる。
As described above, the slits 23 and 23 are provided in the negative electrode mixture 22 of the negative electrode 20. That is, by providing the slits 23, 23, even when the negative electrode 20 has a larger area than the positive electrode 10, the coating area of the positive electrode mixture 12 on the positive electrode 10 and the positive electrode mixture 12 of the positive electrode 10 are opposed to each other. The coating area of the negative electrode mixture 22 in the negative electrode 20 is made approximately the same.
As a result, the ions P cannot move beyond the slit 23 and do not spread beyond the coating area of the positive electrode mixture 12 on the positive electrode 10 facing the negative electrode 20, so that the bias of the ions P in the negative electrode 20 Can be suppressed.
Therefore, it is possible to prevent potential unevenness in the negative electrode 20 and shift of SOC between the positive electrode 10 and the negative electrode 20, thereby improving the safety of the secondary battery and preventing deterioration of the battery capacity. Can do.

また、図2に示すように、負極20における負極合剤22のスリット23・23よりも幅方向外側に所定の間隔をあけて、第二スリットとしてスリット24・24を更に設ける構成としてもよい。
スリット24は、スリット23と略同様に形成された切込みであって、スリット23が形成されている部分は負極合剤22が除去されており、負極20における負極合剤22の塗工面(セパレータ30側の面)から負極集電体21に至るまで矩形状に形成されている。
In addition, as shown in FIG. 2, a configuration may be adopted in which slits 24 and 24 are further provided as second slits with a predetermined interval on the outer side in the width direction from the slits 23 and 23 of the negative electrode mixture 22 in the negative electrode 20.
The slit 24 is a cut formed in substantially the same manner as the slit 23, and the negative electrode mixture 22 is removed from the portion where the slit 23 is formed, and the coating surface (separator 30) of the negative electrode mixture 22 in the negative electrode 20. From the side surface) to the negative electrode current collector 21.

これにより、例えば、電極群40を捲回する時、正極10が負極20に対して幅方向の一側(図2に示す矢印方向)にズレた場合であっても、破線Lで示す部分に位置するスリット23よりも幅方向外側(正極10のズレ方向)にスリット24が設けられているので、スリット23よりも幅方向外側における負極20でのイオンPの拡散をスリット23とスリット24との間に留めることができ、イオンPの偏りを抑制することが可能となり、正極10のズレが生じていない場合と略同様に負極20の正極10に対向する部分でのイオンPの偏りを抑制することが可能となる。
また、正極10が負極20に対して幅方向の他側(図2に示す矢印方向と逆方向)にズレた場合でも、破線Rで示す部分に位置するスリット23よりも幅方向外側(正極10のズレ方向)にスリット24が設けられているので、図2に示す矢印方向に正極10がズレた場合と同様の効果を奏する。
Thereby, for example, when the electrode group 40 is wound, even if the positive electrode 10 is displaced to one side in the width direction (the arrow direction shown in FIG. 2) with respect to the negative electrode 20, Since the slit 24 is provided on the outer side in the width direction than the slit 23 that is positioned (the displacement direction of the positive electrode 10), the diffusion of the ions P on the negative electrode 20 on the outer side in the width direction with respect to the slit 23 is caused between the slit 23 and the slit 24. The bias of the ions P can be suppressed, and the bias of the ions P in the portion of the negative electrode 20 facing the positive electrode 10 is suppressed in substantially the same manner as when the deviation of the positive electrode 10 does not occur. It becomes possible.
Further, even when the positive electrode 10 is shifted to the other side in the width direction with respect to the negative electrode 20 (opposite to the arrow direction shown in FIG. 2), the outer side in the width direction (the positive electrode 10) Since the slit 24 is provided in the direction of misalignment), the same effect as when the positive electrode 10 is misaligned in the arrow direction shown in FIG.

また、更に、図3に示すように、負極20における負極合剤22のスリット23・23よりも幅方向内側に所定の間隔をあけて、第三スリットとしてスリット25・25を設ける構成としてもよい。
スリット25は、スリット23と略同様に形成された切込みであり、負極20における負極合剤22の塗工面(セパレータ30側の面)から負極集電体21に至るまで矩形状に形成されている。
Furthermore, as shown in FIG. 3, it is good also as a structure which provides the slit 25 * 25 as a 3rd slit at predetermined intervals in the width direction inner side rather than the slit 23 * 23 of the negative mix 22 in the negative electrode 20. FIG. .
The slit 25 is a cut formed in substantially the same manner as the slit 23, and is formed in a rectangular shape from the coating surface (surface on the separator 30 side) of the negative electrode mixture 22 in the negative electrode 20 to the negative electrode current collector 21. .

これにより、例えば、電極群40を捲回する時、正極10が負極20に対して幅方向の一側(図3に示す矢印方向)にズレた場合であっても、破線Rで示す部分に位置するスリット23よりも幅方向内側(正極10のズレ方向)にスリット25が設けられているので、スリット23よりも幅方向内側における負極20でのイオンPの偏りを抑制することが可能となり、更に負極20の正極10に対向する部分でのイオンPの拡散をスリット25・25間で留めることができ、イオンPの偏りを抑制することが可能となる。
また、正極10が負極20に対して幅方向の他側(図2に示す矢印方向と逆方向)にズレた場合でも、破線Lで示す部分に位置するスリット23よりも幅方向内側(正極10のズレ方向)にスリット25が設けられているので、図3に示す矢印方向に正極10がズレた場合と同様の効果を奏する。
Thereby, for example, when the electrode group 40 is wound, even if the positive electrode 10 is shifted to one side in the width direction (the arrow direction shown in FIG. 3) with respect to the negative electrode 20, Since the slit 25 is provided on the inner side in the width direction (shift direction of the positive electrode 10) than the slit 23 positioned, it is possible to suppress the bias of the ions P at the negative electrode 20 on the inner side in the width direction from the slit 23. Furthermore, the diffusion of the ions P in the portion of the negative electrode 20 facing the positive electrode 10 can be stopped between the slits 25 and 25, and the bias of the ions P can be suppressed.
Further, even when the positive electrode 10 is shifted to the other side in the width direction with respect to the negative electrode 20 (the direction opposite to the arrow direction shown in FIG. 2), the inner side in the width direction (the positive electrode 10) Since the slits 25 are provided in the direction of misalignment), the same effect as when the positive electrode 10 is misaligned in the direction of the arrow shown in FIG.

なお、スリット24・25の位置は、電極群40を捲回する時に生じるズレを考慮して設定される。具体的には、予想される正極10と負極20とのズレの分だけスリット23から間隔をあけて外側にスリット24、内側にスリット25が配置される。   Note that the positions of the slits 24 and 25 are set in consideration of a shift that occurs when the electrode group 40 is wound. Specifically, the slit 24 is arranged on the outer side and the slit 25 is arranged on the inner side with a gap from the slit 23 by an amount corresponding to the expected deviation between the positive electrode 10 and the negative electrode 20.

以上のように、負極20の負極合剤22に、更にスリット24・24や、スリット25・25を設ける、つまり、負極合剤22の幅方向に複数のスリットを形成することで、正極10と負極20とのズレが生じた場合であっても、正極10と負極20とのズレが生じていない場合におけるスリット23・23の効果と略同様の効果を奏し、電極群40を捲回する時に生じる正極10と負極20とのズレを吸収することができる。   As described above, the negative electrode mixture 22 of the negative electrode 20 is further provided with slits 24 and 24 and slits 25 and 25, that is, by forming a plurality of slits in the width direction of the negative electrode mixture 22, Even when a deviation from the negative electrode 20 occurs, the effect of the slits 23 and 23 when there is no deviation between the positive electrode 10 and the negative electrode 20 is substantially the same, and the electrode group 40 is wound. The generated deviation between the positive electrode 10 and the negative electrode 20 can be absorbed.

なお、スリット23・24・25の幅方向の長さは、イオンPの通過を遮断でき、かつスリット23・24・25にデンドライトが生成されるといった悪影響が生じない程度に設定される。
また、スリット23・24・25の形状は、本実施形態においては矩形状に形成したが、V字状や半楕円状等、イオンPの通過を遮断でき、かつスリット23・24・25にデンドライトが生成されるといった悪影響が生じなければ、その形状を限定しない。
The length in the width direction of the slits 23, 24, and 25 is set to such an extent that the passage of the ions P can be blocked and no adverse effects such as generation of dendrites in the slits 23, 24, and 25 occur.
In addition, the slits 23, 24, and 25 are formed in a rectangular shape in this embodiment. However, the slits 23, 24, and 25 can block the passage of ions P such as a V shape or a semi-elliptical shape, and the slits 23, 24, and 25 have dendrites. The shape is not limited as long as there is no adverse effect that is generated.

また、本実施形態においては、正極合剤12及び負極合剤22の捲回方向の長さは等しいものとしたが、正極合剤12の捲回方向の長さよりも負極合剤22の捲回方向の長さが大きい場合は、正極10と負極20とセパレータ30とが積層された状態で、負極合剤22における正極合剤12の外周に位置する部分に全周にわたってスリット23が設けられる。そして、予想される正極10と負極20とのズレの分だけスリット23から間隔をあけて外側にスリット24、内側にスリット25が、スリット23と平行するように設けられる。   In the present embodiment, the lengths of the positive electrode mixture 12 and the negative electrode mixture 22 in the winding direction are equal, but the winding length of the negative electrode mixture 22 is longer than the length of the positive electrode mixture 12 in the winding direction. When the length in the direction is large, the slit 23 is provided over the entire circumference in a portion of the negative electrode mixture 22 located on the outer periphery of the positive electrode mixture 12 in a state where the positive electrode 10, the negative electrode 20, and the separator 30 are laminated. Then, a slit 24 is provided on the outer side and a slit 25 is provided on the inner side so as to be parallel to the slit 23 with an interval from the slit 23 corresponding to the expected deviation between the positive electrode 10 and the negative electrode 20.

P イオン
10 正極
11 正極集電体
12 正極合剤
20 負極
21 負極集電体
22 負極合剤
23 スリット(第一スリット)
24 スリット(第二スリット)
25 スリット(第三スリット)
30 セパレータ
40 電極群
P ion 10 Positive electrode 11 Positive electrode current collector 12 Positive electrode mixture 20 Negative electrode 21 Negative electrode current collector 22 Negative electrode mixture 23 Slit (first slit)
24 slit (second slit)
25 Slit (third slit)
30 separator 40 electrode group

Claims (3)

正極合剤が正極集電体に塗工されてなる正極と、
負極合剤が負極集電体に塗工されてなる負極と、
前記正極と前記負極との間に介装されたセパレータと、を備え、
前記負極合剤の塗工面積は、前記正極合剤の塗工面積に比して大きい二次電池であって、
前記負極の負極合剤には、前記負極における負極合剤の塗工面から前記負極集電体にかけて負極合剤を除去した、第一スリットが設けられ、
前記第一スリットは、前記正極と前記負極と前記セパレータとが積層された状態で、前記負極合剤における前記正極合剤の外周に位置する部分に配置される二次電池。
A positive electrode in which a positive electrode mixture is applied to a positive electrode current collector;
A negative electrode in which a negative electrode mixture is applied to a negative electrode current collector;
A separator interposed between the positive electrode and the negative electrode,
The coating area of the negative electrode mixture is a secondary battery larger than the coating area of the positive electrode mixture,
The negative electrode mixture of the negative electrode is provided with a first slit in which the negative electrode mixture is removed from the coating surface of the negative electrode mixture in the negative electrode to the negative electrode current collector,
The first slit is a secondary battery disposed in a portion of the negative electrode mixture positioned on the outer periphery of the positive electrode mixture in a state where the positive electrode, the negative electrode, and the separator are stacked.
前記負極の負極合剤には、前記第一スリットよりも外側に、前記負極における負極合剤の塗工面から前記負極集電体にかけて、第二スリットが設けられる請求項1に記載の二次電池。   2. The secondary battery according to claim 1, wherein the negative electrode mixture of the negative electrode is provided with a second slit outside the first slit from the coating surface of the negative electrode mixture in the negative electrode to the negative electrode current collector. . 前記負極の負極合剤には、前記第一スリットよりも内側に、前記負極における負極合剤の塗工面から前記負極集電体にかけて、第三スリットが設けられる請求項1又は請求項2に記載の二次電池。   The negative electrode mixture of the negative electrode is provided with a third slit inside the first slit from the coating surface of the negative electrode mixture in the negative electrode to the negative electrode current collector. Secondary battery.
JP2009096531A 2009-04-10 2009-04-10 Secondary battery Pending JP2010250985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009096531A JP2010250985A (en) 2009-04-10 2009-04-10 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009096531A JP2010250985A (en) 2009-04-10 2009-04-10 Secondary battery

Publications (1)

Publication Number Publication Date
JP2010250985A true JP2010250985A (en) 2010-11-04

Family

ID=43313113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009096531A Pending JP2010250985A (en) 2009-04-10 2009-04-10 Secondary battery

Country Status (1)

Country Link
JP (1) JP2010250985A (en)

Similar Documents

Publication Publication Date Title
US11121439B2 (en) Secondary battery
US20120196167A1 (en) Electrode assembly for a battery and method for manufacturing same
JP4823398B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP6146232B2 (en) Secondary battery
US10497985B2 (en) Electrode plate for power storage devices and power storage device
JP2011054555A (en) Electrode assembly, and rechargeable battery with the same
JP6167854B2 (en) Electrode for power storage device and electrode assembly for power storage device
JP2015191879A (en) Wound type secondary battery
JP2008300141A (en) Laminated secondary battery and its manufacturing method
JP2016119203A (en) Electrode body and manufacturing method for electrode body
JP2014179217A (en) Method for manufacturing secondary battery, and secondary battery
US10998543B2 (en) Roll electrode and method for manufacturing roll electrode
JP2014107218A (en) Power storage device and method of manufacturing electrode assembly
JP2016012541A (en) Power storage device and manufacturing method of power storage device
JP2012174959A (en) Power storage cell and manufacturing method therefor
JP2014116080A (en) Electricity storage device and method for manufacturing electricity storage device
JP2015076196A (en) Power storage element and electrode plate
KR102028167B1 (en) Secondary battery and manufacturing method using the same
JP2010212143A (en) Electrode manufacturing method and electrode manufacturing device
KR20160054219A (en) Electrode assembly with srs coated separator
TW201817066A (en) Lithium ion secondary battery and manufacturing method thereof
JP2015222657A (en) Secondary battery
JP2012181922A (en) Battery cell using coating-type electrode group
KR101265212B1 (en) Rechargeable battery
JP2012049103A (en) Electrode assembly, secondary battery comprising the same, and manufacturing method of the same