JP2010250978A - Method for manufacturing battery electrode, battery electrode, bipolar battery, assembled battery and vehicle - Google Patents

Method for manufacturing battery electrode, battery electrode, bipolar battery, assembled battery and vehicle Download PDF

Info

Publication number
JP2010250978A
JP2010250978A JP2009096403A JP2009096403A JP2010250978A JP 2010250978 A JP2010250978 A JP 2010250978A JP 2009096403 A JP2009096403 A JP 2009096403A JP 2009096403 A JP2009096403 A JP 2009096403A JP 2010250978 A JP2010250978 A JP 2010250978A
Authority
JP
Japan
Prior art keywords
battery
electrode layer
current collector
reinforcing portion
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009096403A
Other languages
Japanese (ja)
Inventor
Keisuke Wakabayashi
計介 若林
Satoshi Ichikawa
聡 市川
Katsuya Kobayashi
克也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009096403A priority Critical patent/JP2010250978A/en
Publication of JP2010250978A publication Critical patent/JP2010250978A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a battery electrode and a battery electrode, which can prevent a collector from corrupting on the occasion of roll press. <P>SOLUTION: The method for manufacturing a battery electrode comprises a reinforcement step of placing a reinforcement part 130 on a collector 120 including an electroconductive resin layer, the reinforcement part having a greater compressive strength than the collector. The method also includes a coating step of applying electrode slurries 150, 160 onto the collector. The reinforcement step is intended to isolate the reinforcement part in a short-axis direction of the longitudinal collector and place the part along a longitudinal direction of the collector. The coating step is intended to apply the electrode slurry in such a manner that the end of the electrode layer 150 is situated on the reinforcement part. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電池用電極の製造方法、電池用電極、双極型電池、組電池、および車両に関する。   The present invention relates to a battery electrode manufacturing method, a battery electrode, a bipolar battery, an assembled battery, and a vehicle.

近年、大気汚染や地球温暖化に対処するため、二酸化炭素量の低減が切に望まれており、自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)の導入による二酸化炭素排出量の低減に期待が集まっている。このようないわゆる電動車両においては、放電・充電ができる電源装置の活用が不可欠であり、リチウムイオン二次電池やニッケル・水素二次電池等の電池について様々な研究・開発がなされている。   In recent years, in order to cope with air pollution and global warming, a reduction in the amount of carbon dioxide has been eagerly desired. In the automobile industry, the amount of carbon dioxide emissions due to the introduction of electric vehicles (EV) and hybrid electric vehicles (HEV) has been reduced. Expectations are gathered for reduction. In such a so-called electric vehicle, it is indispensable to use a power supply device capable of discharging and charging, and various researches and developments have been made on batteries such as lithium ion secondary batteries and nickel / hydrogen secondary batteries.

これらの電池に用いられる電極は一般的に、活物質を含む電極層を集電体の表面に形成した構成を有する。製造の際、活物質を含む電極スラリーを集電体の表面に塗布して乾燥させた後、集電体は、電極層とともにロールプレスされる(例えば特許文献1参照。)。集電体としては金属箔が知られているが、電池の高出力密度化および高容量密度化の要求から、電池の更なる軽量化が必要とされており、導電性の樹脂層を含む集電体が提案されている。   The electrodes used in these batteries generally have a configuration in which an electrode layer containing an active material is formed on the surface of a current collector. During production, an electrode slurry containing an active material is applied to the surface of the current collector and dried, and then the current collector is roll-pressed together with the electrode layer (see, for example, Patent Document 1). Metal foil is known as a current collector. However, due to the demand for higher output density and higher capacity density of the battery, further weight reduction of the battery is required, and a collector including a conductive resin layer is required. Electrical bodies have been proposed.

特開平10−112320号公報JP-A-10-112320

しかし、集電体が樹脂層を含むと金属箔に比べて強度が低下し、ロールプレスの際に圧力に耐えられず集電体が破損する虞がある。   However, when the current collector includes a resin layer, the strength is lower than that of the metal foil, and the current collector may not be able to withstand the pressure during roll pressing and may be damaged.

本発明は、このような課題を解決するためになされたものであり、ロールプレスの際、集電体の破損防止を図り得る電池用電極の製造方法および電池用電極を提供することを目的とする。   The present invention has been made to solve such a problem, and an object of the present invention is to provide a battery electrode manufacturing method and a battery electrode that can prevent the current collector from being damaged during roll press. To do.

上記目的を達成するための本発明の電池用電極の製造方法は、導電性の樹脂層を含む集電体に、集電体より圧縮強度が大きい補強部を配置する補強工程を有する。本発明の電池用電極の製造方法はまた、電極スラリーを集電体に塗布する塗工工程を含む。補強工程は、補強部を、長尺状の集電体の短手方向に離隔させ、且つ集電体の長手方向に沿って配置する。塗工工程は、電極層の端部が補強部の上に位置するように、電極スラリーを塗布する。   The battery electrode manufacturing method of the present invention for achieving the above object has a reinforcing step of disposing a reinforcing portion having a compressive strength higher than that of the current collector on the current collector including the conductive resin layer. The battery electrode manufacturing method of the present invention also includes a coating step of applying electrode slurry to the current collector. In the reinforcing step, the reinforcing portions are spaced apart in the short direction of the long current collector and are disposed along the longitudinal direction of the current collector. In the coating step, the electrode slurry is applied so that the end portion of the electrode layer is positioned on the reinforcing portion.

上記目的を達成するための本発明の電池用電極は、導電性の樹脂層を含む集電体と、集電体の表面に形成される電極層と、を含む。本発明の電池用電極はまた、電極層の対向する1組の端部の下に配置される補強部を含む。   The battery electrode of the present invention for achieving the above object includes a current collector including a conductive resin layer and an electrode layer formed on the surface of the current collector. The battery electrode of the present invention also includes a reinforcing portion disposed under a pair of opposing ends of the electrode layer.

本発明の電池用電極の製造方法によれば、電極層の端部が補強部の上に位置することとなるので、ロールプレス時に電極層の端部にかかる応力を補強部によって吸収して樹脂層を含む集電体の破損防止を図れ、電池用電極を連続的に製造できる。   According to the battery electrode manufacturing method of the present invention, since the end of the electrode layer is located on the reinforcing portion, the stress applied to the end of the electrode layer at the time of roll pressing is absorbed by the reinforcing portion and the resin. The current collector including the layer can be prevented from being damaged, and the battery electrode can be continuously produced.

本発明の電池用電極は、電極層の端部の下に配置される補強部を有するため、電池用電極の製造におけるロールプレス時に、電極層の端部にかかる応力を補強部によって吸収して、樹脂層を含む集電体の破損防止を図れ、電池用電極の連続的な製造を可能とする。   Since the battery electrode of the present invention has a reinforcing portion disposed below the end portion of the electrode layer, the stress applied to the end portion of the electrode layer is absorbed by the reinforcing portion at the time of roll pressing in manufacturing the battery electrode. The current collector including the resin layer can be prevented from being damaged, and the battery electrode can be continuously manufactured.

(A)は第1実施形態の電池用電極の概要を模式的に示した平面概略図、(B)は1−1線に沿う断面概略図、(C)は第1実施形態の電池用電極の概要を模式的に示した平面概略図である。(A) is the plane schematic which showed the outline | summary of the battery electrode of 1st Embodiment typically, (B) is the cross-sectional schematic drawing along line 1-1, (C) is the battery electrode of 1st Embodiment. It is the plane schematic which showed the outline | summary typically. 実施形態の電池用電極の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the battery electrode of embodiment. (A)は第1実施形態の補強工程を説明するための平面概略図、(B)は3−3線に沿う断面概略図である。(A) is the plane schematic for demonstrating the reinforcement process of 1st Embodiment, (B) is the cross-sectional schematic along 3-3 line. (A)は第1実施形態の塗工工程を説明するための平面概略図、(B)は4−4線に沿う断面概略図、(C)は第1実施形態の塗工工程を説明するための平面概略図である。(A) is the plane schematic for demonstrating the coating process of 1st Embodiment, (B) is the cross-sectional schematic drawing along line 4-4, (C) demonstrates the coating process of 1st Embodiment. FIG. 双極型リチウムイオン二次電池の外観を模式的に表した斜視図である。It is the perspective view which represented typically the external appearance of the bipolar lithium ion secondary battery. (A)組電池の平面図であり、(B)は組電池の正面図であり、(C)は組電池の側面図である。(A) It is a top view of an assembled battery, (B) is a front view of an assembled battery, (C) is a side view of an assembled battery. 組電池を搭載した車両の概念図である。It is a conceptual diagram of the vehicle carrying an assembled battery. (A)は第2実施形態の電池用電極の概要を模式的に示した平面概略図、(B)は8−8線に沿う断面概略図、(C)は第2実施形態の電池用電極の概要を模式的に示した平面概略図である。(A) is a schematic plan view schematically showing the outline of the battery electrode of the second embodiment, (B) is a schematic cross-sectional view taken along line 8-8, and (C) is a battery electrode of the second embodiment. It is the plane schematic which showed the outline | summary typically. (A)は第2実施形態の補強工程を説明するための平面概略図、(B)は9−9線に沿う断面概略図である。(A) is the plane schematic for demonstrating the reinforcement process of 2nd Embodiment, (B) is the cross-sectional schematic along 9-9 line. (A)は第2実施形態の塗工工程を説明するための平面概略図、(B)は10−10線に沿う断面概略図、(C)は第2実施形態の塗工工程を説明するための平面概略図である。(A) is the plane schematic for demonstrating the coating process of 2nd Embodiment, (B) is the cross-sectional schematic along 10-10 line, (C) demonstrates the coating process of 2nd Embodiment. FIG. (A)は第3実施形態の電池用電極の概要を模式的に示した平面概略図、(B)は11−11線に沿う断面概略図、(C)は第3実施形態の電池用電極の概要を模式的に示した平面概略図である。(A) is the plane schematic which typically showed the outline | summary of the battery electrode of 3rd Embodiment, (B) is the cross-sectional schematic drawing which follows the 11-11 line, (C) is the battery electrode of 3rd Embodiment. It is the plane schematic which showed the outline | summary typically. (A)は第3実施形態の補強工程を説明するための平面概略図、(B)は12−12線に沿う断面概略図、(C)は第3実施形態の補強工程を説明するための平面概略図である。(A) is a schematic plan view for explaining the reinforcing step of the third embodiment, (B) is a schematic sectional view taken along the line 12-12, and (C) is for explaining the reinforcing step of the third embodiment. FIG. (A)は第3実施形態の塗工工程を説明するための平面概略図、(B)は13−13線に沿う断面概略図、(C)は第3実施形態の塗工工程を説明するための平面概略図である。(A) is the plane schematic for demonstrating the coating process of 3rd Embodiment, (B) is the cross-sectional schematic along 13-13 line | wire, (C) demonstrates the coating process of 3rd Embodiment. FIG. (A)は実施形態と異なる電池用電極の一例を模式的に示した平面概略図、(B)は14−14線に沿う断面概略図である。(A) is the plane schematic which showed typically an example of the battery electrode different from embodiment, (B) is the cross-sectional schematic which follows a 14-14 line. (A)は実施形態と異なる電池用電極の製造方法の一例を示すための平面概略図、(B)は15−15線に沿う断面概略図である。(A) is the plane schematic for showing an example of the manufacturing method of the battery electrode different from embodiment, (B) is the cross-sectional schematic which follows 15-15 line. 実施形態と異なる一例を説明するための平面概略図である。It is a plane schematic diagram for explaining an example different from an embodiment. 実施形態と異なる電池用電極の一例を模式的に示す部分拡大概略図である。It is the partial expansion schematic which shows typically an example of the battery electrode different from embodiment. 第1実施形態の電池用電極の部分拡大概略図である。It is the partial expansion schematic of the battery electrode of 1st Embodiment. 実施形態と異なる電池用電極の一例を部分的に拡大して示す断面概略図である。It is a section schematic diagram expanding and showing an example of a battery electrode different from an embodiment partially. 実施形態と異なる電池用電極の一例を部分的に拡大して示す断面概略図である。It is a section schematic diagram expanding and showing an example of a battery electrode different from an embodiment partially.

以下、図面を参照して、本発明の実施形態を説明する。なお、以下で説明する実施形態において、各実施形態で共通する機能を有する部材については、類似の符号を付し、また、重複する説明は省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the embodiments described below, members having functions common to the respective embodiments are denoted by similar reference numerals, and redundant description is omitted.

<第1実施形態>
図1において概説すると、本実施形態の電池用電極100は、導電性の樹脂層を含む集電体120と、集電体120の表面に形成される電極層と、を含む。電池用電極100は、双極型リチウムイオン二次電池に用いられるものである。電池用電極100は、電極層としての正極層110を集電体120の一方の面121に有し、電極層としての負極層140を集電体120の他方の面122に有する。電池用電極100はまた、電極層の対向する1組の端部112、114の下、より具体的には、正極層110の端部112、114と集電体120との間に配置される補強部130を含む。
<First Embodiment>
As outlined in FIG. 1, the battery electrode 100 of this embodiment includes a current collector 120 including a conductive resin layer and an electrode layer formed on the surface of the current collector 120. The battery electrode 100 is used for a bipolar lithium ion secondary battery. The battery electrode 100 has a positive electrode layer 110 as an electrode layer on one surface 121 of the current collector 120 and a negative electrode layer 140 as an electrode layer on the other surface 122 of the current collector 120. The battery electrode 100 is also disposed under a pair of opposing ends 112, 114 of the electrode layer, more specifically, between the ends 112, 114 of the positive electrode layer 110 and the current collector 120. A reinforcing part 130 is included.

集電体120は、導電性を有する樹脂層を含み、好適には、導電性を有する樹脂層からなる。樹脂層は導電性高分子によって形成される。導電性高分子は、導電性を有し、電荷移動媒体として用いられるイオンに関して伝導性を有さない材料から選択される。代表的な例として、ポリエン系導電性高分子が挙げられる。樹脂層が導電性を有するための他の形態としては、樹脂層が樹脂および導電性フィラーを含む形態が挙げられる。導電性フィラーは、導電性を有する材料から選択される。好ましくは、導電性を有する樹脂層内のイオン透過を抑制する観点から、電荷移動媒体として用いられるイオンに関して伝導性を有さない材料を用いるのが望ましい。具体的には、導電性フィラーとして、アルミニウム材、ステンレス(SUS)材、グラファイトやカーボンブラックなどのカーボン材、銀材、金材、銅材、チタン材などが挙げられる。   The current collector 120 includes a resin layer having conductivity, and preferably includes a resin layer having conductivity. The resin layer is formed of a conductive polymer. The conductive polymer is selected from materials that are conductive and have no conductivity with respect to ions used as charge transfer media. A typical example is a polyene conductive polymer. As another form for the resin layer to have conductivity, a form in which the resin layer contains a resin and a conductive filler can be mentioned. The conductive filler is selected from materials having conductivity. Preferably, from the viewpoint of suppressing ion permeation in the resin layer having conductivity, it is desirable to use a material that does not have conductivity with respect to ions used as the charge transfer medium. Specifically, examples of the conductive filler include aluminum materials, stainless steel (SUS) materials, carbon materials such as graphite and carbon black, silver materials, gold materials, copper materials, and titanium materials.

正極層110は、正極活物質を含む。また、正極層110は必要に応じてその他の添加剤をさらに含む。正極活物質としては、例えば、LiMn、LiCoO、LiNiO、Li(Ni−Co−Mn)Oおよびこれらの遷移金属の一部が他の元素により置換されたもの等のリチウム−遷移金属複合酸化物、リチウム−遷移金属リン酸化合物、リチウム−遷移金属硫酸化合物などが挙げられる。場合によっては、2種以上の正極活物質が併用されてもよい。好ましくは、容量、出力特性の観点から、リチウム−遷移金属複合酸化物が、正極活物質として用いられる。 The positive electrode layer 110 includes a positive electrode active material. The positive electrode layer 110 further includes other additives as necessary. As the positive electrode active material, for example, LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , Li (Ni—Co—Mn) O 2, and lithium-such as those in which a part of these transition metals are substituted with other elements Examples include transition metal composite oxides, lithium-transition metal phosphate compounds, and lithium-transition metal sulfate compounds. In some cases, two or more positive electrode active materials may be used in combination. Preferably, a lithium-transition metal composite oxide is used as the positive electrode active material from the viewpoint of capacity and output characteristics.

負極層140は、負極活物質を含む。また、負極層140は必要に応じてその他の添加剤をさらに含む。負極活物質としては、例えば、グラファイト、ソフトカーボン、ハードカーボン等の炭素材料、リチウム−遷移金属複合酸化物(例えば、LiTi12)、金属材料、リチウム合金系負極材料などが挙げられる。場合によっては、2種以上の負極活物質が併用されてもよい。好ましくは、容量、出力特性の観点から、炭素材料またはリチウム−遷移金属複合酸化物が、負極活物質として用いられる。 The negative electrode layer 140 includes a negative electrode active material. The negative electrode layer 140 further includes other additives as necessary. Examples of the negative electrode active material include carbon materials such as graphite, soft carbon, and hard carbon, lithium-transition metal composite oxides (for example, Li 4 Ti 5 O 12 ), metal materials, lithium alloy negative electrode materials, and the like. . In some cases, two or more negative electrode active materials may be used in combination. Preferably, from the viewpoint of capacity and output characteristics, a carbon material or a lithium-transition metal composite oxide is used as the negative electrode active material.

正極層110および負極層140はバインダを含む。バインダの好適な例として、ポリフッ化ビニリデン、ポリイミド、スチレン・ブタジエンゴム、カルボキシメチルセルロース、ポリプロピレン、ポリテトラフルオロエチレン、ポリアクリロニトリル、ポリアミドが挙げられる。   The positive electrode layer 110 and the negative electrode layer 140 include a binder. Preferable examples of the binder include polyvinylidene fluoride, polyimide, styrene / butadiene rubber, carboxymethyl cellulose, polypropylene, polytetrafluoroethylene, polyacrylonitrile, and polyamide.

正極層110および負極層140に含まれうるその他の添加剤としては、例えば、導電助剤、電解質塩(リチウム塩)、イオン伝導性ポリマー等が挙げられる。導電助剤とは、正極層110または負極層140の導電性を向上させるために配合される添加物をいう。導電助剤としては、アセチレンブラック等のカーボンブラック、グラファイト、気相成長炭素繊維などの炭素材料が挙げられる。電解質塩(リチウム塩)としては、Li(CSON、LiPF、LiBF、LiClO、LiAsF、LiCFSO等が挙げられる。イオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)系およびポリプロピレンオキシド(PPO)系のポリマーが挙げられる。 Examples of other additives that can be included in the positive electrode layer 110 and the negative electrode layer 140 include a conductive additive, an electrolyte salt (lithium salt), and an ion conductive polymer. The conductive additive refers to an additive that is blended to improve the conductivity of the positive electrode layer 110 or the negative electrode layer 140. Examples of the conductive assistant include carbon materials such as carbon black such as acetylene black, graphite, and vapor grown carbon fiber. Examples of the electrolyte salt (lithium salt) include Li (C 2 F 5 SO 2 ) 2 N, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 and the like. Examples of the ion conductive polymer include polyethylene oxide (PEO) -based and polypropylene oxide (PPO) -based polymers.

デンドライト析出を防止するため、負極層140の面積は正極層110の面積に比べて大きいことが好ましく、負極層140の外周は正極層110の外周の外側に位置する。そして、負極層140の端部142、144は、補強部130に支持される位置にある。正極層110および負極層140は、集電体120に電気的に接続している。   In order to prevent dendrite precipitation, the area of the negative electrode layer 140 is preferably larger than the area of the positive electrode layer 110, and the outer periphery of the negative electrode layer 140 is located outside the outer periphery of the positive electrode layer 110. Then, the end portions 142 and 144 of the negative electrode layer 140 are at positions where they are supported by the reinforcing portion 130. The positive electrode layer 110 and the negative electrode layer 140 are electrically connected to the current collector 120.

補強部130は、集電体120より圧縮強度が大きい。また補強部130の耐熱温度は、集電体120の耐熱温度より大きいことが好ましい。補強部130は、例えば樹脂によって形成される。補強部130は、例えば、ナイロン66(登録商標)、ポリアセタール、ポリカーボネート、フッ素樹脂(PTFE)、フッ化ビニリデン、PPO、ポリスルホン、ABS、ポリエチレン、ポリプロピレン、塩化ビニル、フェノール樹脂、エポキシ樹脂によって形成され得る。また、補強部130は、金属によって形成され得る。   The reinforcing part 130 has a higher compressive strength than the current collector 120. Further, the heat resistance temperature of the reinforcing portion 130 is preferably larger than the heat resistance temperature of the current collector 120. The reinforcing part 130 is made of, for example, resin. The reinforcing portion 130 can be formed of, for example, nylon 66 (registered trademark), polyacetal, polycarbonate, fluororesin (PTFE), vinylidene fluoride, PPO, polysulfone, ABS, polyethylene, polypropylene, vinyl chloride, phenol resin, or epoxy resin. . Moreover, the reinforcement part 130 may be formed with a metal.

電池用電極100の製造方法について説明する。   A method for manufacturing the battery electrode 100 will be described.

図2に示すように、電池用電極100の製造方法は、集電体120に補強部130を配置する補強工程S110を含む。電池用電極100の製造方法はまた、正極活物質を含む正極スラリー150(電極スラリー)および負極活物質を含む負極スラリー160(電極スラリー)を集電体120に塗布する塗工工程S120と、正極スラリー150および負極スラリー160を乾燥させる乾燥工程S130と、を含む。また電池用電極100の製造方法は、正極層110および負極層140をプレスするプレス工程S140と、長尺状の集電体120を切断する切断工程S150と、を有する。   As shown in FIG. 2, the method for manufacturing the battery electrode 100 includes a reinforcing step S <b> 110 in which the reinforcing portion 130 is disposed on the current collector 120. The manufacturing method of the battery electrode 100 also includes a coating step S120 for applying a positive electrode slurry 150 (electrode slurry) containing a positive electrode active material and a negative electrode slurry 160 (electrode slurry) containing a negative electrode active material to the current collector 120; A drying step S130 for drying the slurry 150 and the negative electrode slurry 160. Moreover, the manufacturing method of the battery electrode 100 includes a pressing step S140 for pressing the positive electrode layer 110 and the negative electrode layer 140, and a cutting step S150 for cutting the long current collector 120.

図3に示すように、補強工程S110は、補強部130を、長尺状の集電体120の短手方向に離隔させ、且つ集電体120の長手方向に沿って配置する。補強工程S110は、正極層110を形成するための、集電体120の一方の面121と、負極層140を形成するための、集電体120の他方の面122とのうち、一方の面121に補強部130を配置する。補強部130は、例えば接着剤によって集電体120に固定される。   As shown in FIG. 3, in the reinforcing step S <b> 110, the reinforcing portions 130 are separated in the short direction of the long current collector 120 and arranged along the longitudinal direction of the current collector 120. In the reinforcing step S110, one surface out of one surface 121 of the current collector 120 for forming the positive electrode layer 110 and the other surface 122 of the current collector 120 for forming the negative electrode layer 140. The reinforcing part 130 is arranged at 121. The reinforcing part 130 is fixed to the current collector 120 with an adhesive, for example.

図4に示すように、塗工工程S120は、正極スラリー150を一方の面121に塗布し、負極スラリー160を他方の面122に塗布する。塗工工程S120は、ロールトゥロールによって集電体120を搬送し、スリットダイ(不図示)によって、正極スラリー150および負極スラリー160を塗布する。スリットダイとしては公知技術を利用できる。塗工工程S120は、正極スラリー150および負極スラリー160を、集電体120の長手方向に沿って間欠的に塗布する。   As shown in FIG. 4, in the coating step S <b> 120, the positive electrode slurry 150 is applied to one surface 121 and the negative electrode slurry 160 is applied to the other surface 122. In the coating step S120, the current collector 120 is conveyed by roll-to-roll, and the positive electrode slurry 150 and the negative electrode slurry 160 are applied by a slit die (not shown). A known technique can be used as the slit die. In the coating step S <b> 120, the positive electrode slurry 150 and the negative electrode slurry 160 are intermittently applied along the longitudinal direction of the current collector 120.

正極スラリー150は、上述したような、正極活物質、導電助剤、およびバインダを含み、これらに加え、粘度を調整するための溶媒を含む。負極スラリー160は、上述したような、負極活物質、導電助剤、バインダを含み、これらに加え、溶媒を含む。正極スラリー150および負極スラリー160に含まれる溶媒は、例えばN−メチル−2−ピロリドンである。   The positive electrode slurry 150 includes a positive electrode active material, a conductive additive, and a binder as described above, and in addition to these, includes a solvent for adjusting the viscosity. The negative electrode slurry 160 includes a negative electrode active material, a conductive additive, and a binder as described above, and in addition to these, includes a solvent. The solvent contained in the positive electrode slurry 150 and the negative electrode slurry 160 is N-methyl-2-pyrrolidone, for example.

塗工工程S120は、補強部130と補強部130との間に正極スラリー150を塗布する。ここで、集電体120の短手方向における正極スラリー150の長さL1a(以下、単に正極スラリー150の幅L1aと称す)は、補強部130と補強部130との間の長さL3より大きい(L1a>L3)。つまり、塗工工程S120は、正極層110の端部112、114が補強部130の上に位置するように、正極スラリー150を塗布する。   In the coating step S <b> 120, the positive electrode slurry 150 is applied between the reinforcing portion 130 and the reinforcing portion 130. Here, the length L1a of the positive electrode slurry 150 in the short direction of the current collector 120 (hereinafter simply referred to as the width L1a of the positive electrode slurry 150) is larger than the length L3 between the reinforcing portion 130 and the reinforcing portion 130. (L1a> L3). That is, in the coating step S <b> 120, the positive electrode slurry 150 is applied so that the end portions 112 and 114 of the positive electrode layer 110 are positioned on the reinforcing portion 130.

また、塗工工程S120は、負極層140の端部142、144が補強部130に支持される位置にくるように、負極スラリー160を塗布する。したがって集電体120の短手方向における負極スラリー160の長さL2a(以下、単に負極スラリー160の幅L2aと称す)が、補強部130と補強部130との間の長さL3より大きい(L1a>L3)。   In addition, in the coating step S120, the negative electrode slurry 160 is applied so that the end portions 142 and 144 of the negative electrode layer 140 are in positions where the reinforcing portions 130 are supported. Therefore, the length L2a of the negative electrode slurry 160 in the short direction of the current collector 120 (hereinafter simply referred to as the width L2a of the negative electrode slurry 160) is larger than the length L3 between the reinforcing portion 130 and the reinforcing portion 130 (L1a > L3).

負極スラリー160の幅L2aは、正極スラリー150の幅L1aより大きく(L2a>L1a)、また、集電体120の長手方向において、負極スラリー160の長さL2bは、正極スラリー150の長さL1bより大きい(L2b>L3b)。このように塗布することによって、負極層140が正極層110より大きく形成される。   The width L2a of the negative electrode slurry 160 is larger than the width L1a of the positive electrode slurry 150 (L2a> L1a), and the length L2b of the negative electrode slurry 160 is longer than the length L1b of the positive electrode slurry 150 in the longitudinal direction of the current collector 120. Large (L2b> L3b). By applying in this way, the negative electrode layer 140 is formed larger than the positive electrode layer 110.

乾燥工程S130は、公知の技術によって正極スラリー150および負極スラリー160を乾燥でき、例えば、熱風乾燥炉(不図示)によって乾燥させる。乾燥工程S130において正極スラリー150および負極スラリー160を乾燥させるための乾燥温度T、集電体120の熱変形温度T1(5kg/cm負荷)、および補強部130の熱変形温度T2(5kg/cm負荷)は、T1<T<T2の関係を満たすことが好ましい。 In the drying step S130, the positive electrode slurry 150 and the negative electrode slurry 160 can be dried by a known technique, for example, dried in a hot air drying furnace (not shown). In the drying step S130, the drying temperature T for drying the positive electrode slurry 150 and the negative electrode slurry 160, the thermal deformation temperature T1 of the current collector 120 (5 kg / cm 2 load), and the thermal deformation temperature T2 of the reinforcing portion 130 (5 kg / cm 2 load) preferably satisfies the relationship of T1 <T <T2.

例えば、乾燥温度Tが140℃程度であると、補強部130の材質としては、ナイロン66(登録商標)、ポリカーボネート等、熱変形温度T2が150℃以上のものが好適である。また、金属によって形成される補強部130も好適である。   For example, when the drying temperature T is about 140 ° C., the material of the reinforcing portion 130 is preferably nylon 66 (registered trademark), polycarbonate, or the like having a thermal deformation temperature T 2 of 150 ° C. or higher. Moreover, the reinforcement part 130 formed with a metal is also suitable.

プレス工程S140は、ロールトゥロールによって集電体120を搬送しつつ、正極層110および負極層140を、ロールプレスする。そして、切断工程S150は、例えばシャーリングマシン(不図示)によって、長尺状の集電体120を切断し、電池用電極100を形成する。ロールプレスによって、正極層110および負極層140の空隙率が調整される。ロールプレスのプレス圧は、例えば100MPaである。補強部130の圧縮強度が大きくなると、プレス工程S140において補強部130が変形し難く、好ましい。このため補強部130の材質は、乾燥温度Tに加え、プレス圧を考慮して、適宜決定するのが好ましい。   In the pressing step S140, the positive electrode layer 110 and the negative electrode layer 140 are roll-pressed while the current collector 120 is conveyed by roll-to-roll. In the cutting step S150, the long current collector 120 is cut by, for example, a shearing machine (not shown) to form the battery electrode 100. The porosity of the positive electrode layer 110 and the negative electrode layer 140 is adjusted by the roll press. The press pressure of the roll press is 100 MPa, for example. When the compressive strength of the reinforcing part 130 is increased, it is preferable that the reinforcing part 130 is not easily deformed in the pressing step S140. For this reason, it is preferable that the material of the reinforcing portion 130 is appropriately determined in consideration of the pressing pressure in addition to the drying temperature T.

電池用電極100を含む双極型リチウムイオン二次電池30(双極型電池)、これを複数電気的に接続してなる組電池40、および組電池40を搭載した電気自動車50(車両)について述べる。   A bipolar lithium ion secondary battery 30 (bipolar battery) including the battery electrode 100, an assembled battery 40 formed by electrically connecting a plurality of these batteries, and an electric vehicle 50 (vehicle) equipped with the assembled battery 40 will be described.

図5に示すように、双極型リチウムイオン二次電池30は、長方形状の扁平な形状を有し、長手方向に位置する両端から、電力を取り出すための正極タブ31および負極タブ33がそれぞれ引き出されている。   As shown in FIG. 5, the bipolar lithium ion secondary battery 30 has a rectangular flat shape, and a positive electrode tab 31 and a negative electrode tab 33 for taking out electric power are drawn out from both ends located in the longitudinal direction. It is.

双極型リチウムイオン二次電池30は、実際に充放電反応が進行する略矩形の発電要素37が、外装材としてのラミネートシート35の内部に封止された構造を有する。詳しくは、高分子−金属複合ラミネートシート35を外装材として用い、その周辺部の全部を熱融着にて接合することにより、発電要素37を収納し密封した構成を有している。ここで発電要素37は、電解質を介して電池用電極100を積層した構成を有する。具体的には、1つの電池用電極100の正極層110と、他の電池用電極100の負極層140とが、電解質を介して対向するようにして、電池用電極100、電解質、電池用電極100がこの順に積層されている。電解質としては、公知のものを適用でき、例えば液体電解質またはポリマー電解質が用いられ得る。   The bipolar lithium ion secondary battery 30 has a structure in which a substantially rectangular power generation element 37 in which a charge / discharge reaction actually proceeds is sealed inside a laminate sheet 35 as an exterior material. Specifically, the power generation element 37 is housed and sealed by using the polymer-metal composite laminate sheet 35 as an exterior material and joining all of its peripheral parts by heat fusion. Here, the power generation element 37 has a configuration in which the battery electrode 100 is stacked via an electrolyte. Specifically, the positive electrode layer 110 of one battery electrode 100 and the negative electrode layer 140 of another battery electrode 100 are opposed to each other with the electrolyte interposed therebetween, so that the battery electrode 100, the electrolyte, and the battery electrode 100 are stacked in this order. As the electrolyte, a known one can be applied, and for example, a liquid electrolyte or a polymer electrolyte can be used.

図6に示すように、組電池40は、双極型リチウムイオン二次電池30が複数、直列に又は並列に電気的に接続した小型の組電池43を、複数、直列に又は並列に電気的に接続した構成を有する。複数の小型の組電池43は、それぞれ、装脱着可能である。   As shown in FIG. 6, the assembled battery 40 includes a plurality of small-sized assembled batteries 43 electrically connected in series or in parallel with a plurality of bipolar lithium ion secondary batteries 30. It has a connected configuration. Each of the plurality of small assembled batteries 43 can be attached and detached.

小型の組電池43は、バスバーのような部材を用いて相互に電気的に接続し、接続治具41によって複数段積層される。何個の双極型リチウムイオン二次電池30を接続して小型の組電池43を作製するか、また、小型の組電池43を何段積層して組電池40を作製するかは、必要とされる電池容量や出力に応じて決めればよい。   The small assembled battery 43 is electrically connected to each other using a member such as a bus bar, and a plurality of layers are stacked by the connection jig 41. It is necessary to connect how many bipolar lithium ion secondary batteries 30 to make the small assembled battery 43 and how many stages of the small assembled batteries 43 are stacked to make the assembled battery 40. It may be determined according to the battery capacity and output.

図7に示すように、電気自動車50は、車体中央部の座席下に組電池40を搭載している。座席下に搭載することによって、車内空間およびトランクルームを広く取ることができる。組電池40は、電気自動車50のモータ駆動用電源として用いられ得る。   As shown in FIG. 7, the electric vehicle 50 has the assembled battery 40 mounted under the seat in the center of the vehicle body. By mounting it under the seat, the interior space and the trunk room can be widened. The assembled battery 40 can be used as a power source for driving the motor of the electric vehicle 50.

第1実施形態の効果を述べる。   The effect of the first embodiment will be described.

電池用電極100は、正極層110の端部112、114の下に配置される補強部130を有するため、プレス工程S140において正極層110の端部112、114にかかる応力を補強部130によって吸収し、樹脂層からなる集電体120の破損防止を図れ、連続的な製造を可能とする。   Since the battery electrode 100 includes the reinforcing portion 130 disposed below the end portions 112 and 114 of the positive electrode layer 110, the reinforcing portion 130 absorbs stress applied to the end portions 112 and 114 of the positive electrode layer 110 in the pressing step S140. In addition, the current collector 120 made of the resin layer can be prevented from being damaged and can be continuously manufactured.

電池用電極100は、正極層110の端部112、114の下、特に、正極層110の端部112、114と集電体120との間に補強部130を有するため、端部112、114の下の集電体120内部に補強部130を配置する場合と異なり、プレス工程S140において正極層110の端部112、114にかかる応力を直接緩和できる。また、集電体120内部に補強部130を配置する場合に比べ、製造が容易である。   Since the battery electrode 100 has the reinforcing portion 130 under the end portions 112 and 114 of the positive electrode layer 110, particularly between the end portions 112 and 114 of the positive electrode layer 110 and the current collector 120, the end portions 112 and 114 are provided. Unlike the case where the reinforcing portion 130 is disposed inside the lower current collector 120, the stress applied to the end portions 112 and 114 of the positive electrode layer 110 in the pressing step S140 can be directly relieved. Further, the manufacturing is easier than the case where the reinforcing portion 130 is disposed inside the current collector 120.

電池用電極100は、集電体120の両面121、122のうち、一方の面121に補強部130を有するため、両面121、122に補強部を有する場合に比べ、重量、およびコストを抑制できる。   Since the battery electrode 100 has the reinforcing portion 130 on one surface 121 of the both surfaces 121 and 122 of the current collector 120, the weight and cost can be suppressed as compared with the case where the both surfaces 121 and 122 have the reinforcing portion. .

電池用電極100では、一方の面122に配置された負極層140の端部142、144が、その一方の面122と反対側の他方の面121に配置された補強部130に支持される位置にある。このため、電池用電極100は、プレス工程S140において負極層140の端部142、144にかかる応力を補強部130によって吸収し、集電体120の破損をより一層効果的に防止できる。   In the battery electrode 100, positions where the ends 142 and 144 of the negative electrode layer 140 disposed on the one surface 122 are supported by the reinforcing portion 130 disposed on the other surface 121 opposite to the one surface 122. It is in. For this reason, the battery electrode 100 absorbs the stress applied to the end portions 142 and 144 of the negative electrode layer 140 in the pressing step S140 by the reinforcing portion 130, and can more effectively prevent the current collector 120 from being damaged.

電池用電極100は、補強部130がナイロン66(登録商標)、ポリカーボネートまたは金属によって形成されることによって、補強部130の耐熱性を高め、乾燥工程S130において、補強部130の形状維持を図り得る。そして、電池用電極100は、高温化でも補強部130の形状維持を図り得るため、乾燥工程S130において高温でテンションのかかる状況に集電体120がおかれても、集電体120全体の歪み等の発生を抑制できる。   In the battery electrode 100, the reinforcing part 130 is made of nylon 66 (registered trademark), polycarbonate, or metal, so that the heat resistance of the reinforcing part 130 can be improved, and the shape of the reinforcing part 130 can be maintained in the drying step S130. . Since the battery electrode 100 can maintain the shape of the reinforcing portion 130 even at a high temperature, even if the current collector 120 is placed in a situation where a tension is applied at a high temperature in the drying step S130, the entire current collector 120 is distorted. Etc. can be suppressed.

電池用電極100の製造方法によれば、正極層110の端部112、114が補強部130の上に位置することとなるので、プレス工程S140において正極層110の端部112、114にかかる応力を補強部130によって吸収して樹脂層を含む集電体120の破損防止を図れ、電池用電極100を連続的に製造できる。   According to the method for manufacturing the battery electrode 100, since the end portions 112 and 114 of the positive electrode layer 110 are positioned on the reinforcing portion 130, the stress applied to the end portions 112 and 114 of the positive electrode layer 110 in the pressing step S140. Can be absorbed by the reinforcing portion 130 to prevent the current collector 120 including the resin layer from being damaged, and the battery electrode 100 can be continuously manufactured.

電池用電極100の製造方法は、補強工程S110において、長尺状の集電体120の長手方向に補強部130を配置するため、ロールトゥロールによって搬送するとき、集電体120の長手方向にテンションがかかっても、集電体120の変形を抑制できる。   In the reinforcing step S110, the battery electrode 100 is manufactured by arranging the reinforcing portion 130 in the longitudinal direction of the long current collector 120. Therefore, when transported by roll-to-roll, Even if tension is applied, deformation of the current collector 120 can be suppressed.

電池用電極100の製造方法は、補強工程S110において、集電体120の両面121、122のうち、一方の面121に補強部130を配置するため、両面121、122に補強部130を配置する場合に比べ、電池用電極100の重量、およびコストを抑制できる。   In the manufacturing method of the battery electrode 100, in the reinforcing step S <b> 110, the reinforcing portion 130 is disposed on both surfaces 121 and 122 in order to dispose the reinforcing portion 130 on one surface 121 of the both surfaces 121 and 122 of the current collector 120. Compared to the case, the weight and cost of the battery electrode 100 can be suppressed.

電池用電極100の製造方法は、塗工工程S120において、負極層140の端部142、144が補強部130に支持される位置にくるように負極スラリー160を塗布するため、プレス工程S140において負極層140の端部142、144にかかる応力を補強部130によって吸収し、集電体120の破損をより一層効果的に防止できる。   In the coating process S120, the battery electrode 100 is manufactured by applying the negative electrode slurry 160 so that the ends 142 and 144 of the negative electrode layer 140 are supported by the reinforcing part 130 in the coating process S120. The stress applied to the end portions 142 and 144 of the layer 140 is absorbed by the reinforcing portion 130, and the current collector 120 can be more effectively prevented from being damaged.

双極型リチウムイオン二次電池30は、第1実施形態の電池用電極100を含むため、電池用電極100と同様の効果を奏し、製造時、正極層110の端部112、114にかかる応力を補強部130によって吸収して集電体120の破損防止を図り得る。   Since the bipolar lithium ion secondary battery 30 includes the battery electrode 100 of the first embodiment, the same effect as that of the battery electrode 100 can be obtained, and stress applied to the end portions 112 and 114 of the positive electrode layer 110 can be reduced during manufacturing. The current collector 120 can be prevented from being damaged by being absorbed by the reinforcing portion 130.

組電池40は、電池用電極100を含む双極型リチウムイオン二次電池30を、複数電気的に接続した構成を有する。このため組電池40は、電池用電極100と同様の効果を奏し、製造時、正極層110の端部112、114にかかる応力を補強部130によって吸収して集電体120の破損防止を図り得る。   The assembled battery 40 has a configuration in which a plurality of bipolar lithium ion secondary batteries 30 including the battery electrode 100 are electrically connected. For this reason, the assembled battery 40 has the same effect as the battery electrode 100, and at the time of manufacture, the stress applied to the end portions 112 and 114 of the positive electrode layer 110 is absorbed by the reinforcing portion 130 to prevent the current collector 120 from being damaged. obtain.

電気自動車50は、電池用電極100を含む組電池40を備えるため、電池用電極100と同様の効果を奏し、製造時、正極層110の端部112、114にかかる応力を補強部130によって吸収して集電体120の破損防止を図り得る。   Since the electric vehicle 50 includes the assembled battery 40 including the battery electrode 100, the electric vehicle 50 has the same effect as the battery electrode 100 and absorbs stress applied to the end portions 112 and 114 of the positive electrode layer 110 by the reinforcing portion 130 during manufacturing. Thus, damage to the current collector 120 can be prevented.

<第2実施形態>
概説すると、第2実施形態は、第1実施形態と略同様であるが、補強部が電極層の外周を囲むように配置される点で、第1実施形態と異なる。
<Second Embodiment>
In overview, the second embodiment is substantially the same as the first embodiment, but differs from the first embodiment in that the reinforcing portion is disposed so as to surround the outer periphery of the electrode layer.

図8に示すように、第2実施形態の電池用電極200では、補強部230は、正極層210の外周を囲み、正極層210の端部211、212、213、214と集電体220との間に位置する。また、負極層240の端部241、242、243、244の全てが、補強部230に支持される位置にある。   As shown in FIG. 8, in the battery electrode 200 of the second embodiment, the reinforcing portion 230 surrounds the outer periphery of the positive electrode layer 210, and ends 211, 212, 213, 214 of the positive electrode layer 210, the current collector 220, Located between. In addition, all of the end portions 241, 242, 243, and 244 of the negative electrode layer 240 are at positions where they are supported by the reinforcing portion 230.

図9に示すように、第2実施形態の電池用電極200の製造方法では、補強工程S210(図2参照)は、正極層210の外周を囲む位置に補強部230を配置する。そして、図10に示すように、塗工工程S220は、正極層210の端部211、212、213、214の全ての下に補強部230が位置するように、正極スラリー250を塗布する。また、塗工工程S220は、負極層240の端部241、242、243、244の全てが補強部230に支持される位置にくるように、負極スラリー260を塗布する。   As shown in FIG. 9, in the method for manufacturing the battery electrode 200 of the second embodiment, in the reinforcing step S <b> 210 (see FIG. 2), the reinforcing portion 230 is disposed at a position surrounding the outer periphery of the positive electrode layer 210. Then, as shown in FIG. 10, in the coating step S <b> 220, the positive electrode slurry 250 is applied so that the reinforcing portion 230 is located under all of the end portions 211, 212, 213, and 214 of the positive electrode layer 210. Also, in the coating step S <b> 220, the negative electrode slurry 260 is applied so that all of the end portions 241, 242, 243, and 244 of the negative electrode layer 240 are in positions where the reinforcing portions 230 are supported.

第2実施形態の効果を述べる。   The effect of 2nd Embodiment is described.

電池用電極200では、補強部230が、正極層210の外周を囲み、プレス工程S240において、正極層210の端部211、212、213、214の全てにかかる応力を吸収する。このため、電池用電極200は、第1実施形態の効果に加え、集電体220の破損をより一層効果的に防止できるという効果を奏する。   In the battery electrode 200, the reinforcing portion 230 surrounds the outer periphery of the positive electrode layer 210, and absorbs stress applied to all the end portions 211, 212, 213, and 214 of the positive electrode layer 210 in the pressing step S240. For this reason, in addition to the effect of 1st Embodiment, the electrode 200 for batteries has the effect that the damage of the electrical power collector 220 can be prevented much more effectively.

電池用電極200では、負極層240の端部241、242、243、244の全てが補強部230に支持される位置にあり、プレス工程S240において、補強部230が、負極層240の端部241、242、243、244の全てにかかる応力を吸収する。このため、電池用電極200は、第1実施形態の効果に加え、集電体220の破損をより一層効果的に防止できるという効果を奏する。   In the battery electrode 200, all of the end portions 241, 242, 243, and 244 of the negative electrode layer 240 are in positions where the reinforcing portion 230 is supported. In the pressing step S 240, the reinforcing portion 230 becomes the end portion 241 of the negative electrode layer 240. 242, 243, 244 are all absorbed. For this reason, in addition to the effect of 1st Embodiment, the electrode 200 for batteries has the effect that the damage of the electrical power collector 220 can be prevented much more effectively.

電池用電極200の製造方法は、補強工程S210において、正極層210の外周を囲む位置に補強部230を配置し、且つ、塗工工程S220において、正極層210の端部211、212、213、214の全ての下に補強部230が位置するように正極スラリー250を塗布する。このため、プレス工程S240において、補強部230が正極層210の端部211、212、213、214の全てにかかる応力を吸収する。したがって、電池用電極200の製造方法は、第1実施形態の効果に加え、集電体220の破損をより一層効果的に防止できるという効果を奏する。   In the reinforcing step S210, the battery electrode 200 is manufactured by arranging the reinforcing portion 230 at a position surrounding the outer periphery of the positive electrode layer 210, and in the coating step S220, the end portions 211, 212, 213, The positive electrode slurry 250 is applied so that the reinforcing part 230 is located under all of 214. For this reason, in the pressing step S240, the reinforcing portion 230 absorbs stress applied to all of the end portions 211, 212, 213, and 214 of the positive electrode layer 210. Therefore, in addition to the effect of the first embodiment, the method for manufacturing the battery electrode 200 has an effect that the current collector 220 can be more effectively prevented from being damaged.

電池用電極200の製造方法は、塗工工程S220において、負極層240の端部241、242、243、244の全てが補強部230に支持される位置にくるように、負極スラリー260を塗布する。このため、プレス工程S240において、補強部230が負極層240の端部241、242、243、244の全てにかかる応力を吸収する。したがって、電池用電極200の製造方法は、第1実施形態の効果に加え、集電体220の破損をより一層効果的に防止できるという効果を奏する。   In the manufacturing method of the battery electrode 200, in the coating step S220, the negative electrode slurry 260 is applied so that all of the end portions 241, 242, 243, and 244 of the negative electrode layer 240 are supported by the reinforcing portion 230. . For this reason, in press process S240, the reinforcement part 230 absorbs the stress concerning all the edge parts 241, 242, 243, and 244 of the negative electrode layer 240. FIG. Therefore, in addition to the effect of the first embodiment, the method for manufacturing the battery electrode 200 has an effect that the current collector 220 can be more effectively prevented from being damaged.

<第3実施形態>
第3実施形態は第2実施形態と略同様であるが、集電体の両面に補強部が配置される点で、第3実施形態は第2実施形態と異なる。
<Third Embodiment>
The third embodiment is substantially the same as the second embodiment, but the third embodiment differs from the second embodiment in that reinforcing portions are arranged on both sides of the current collector.

図11に示すように、電池用電極300では、正極層310が配置される一方の面321だけでなく、面321と反対側の、他方の面322にさらに補強部370が配置される。   As shown in FIG. 11, in the battery electrode 300, a reinforcing portion 370 is further disposed not only on one surface 321 where the positive electrode layer 310 is disposed, but also on the other surface 322 opposite to the surface 321.

負極層340側の補強部370は、負極層340の外周を囲み、負極層340の端部341、342、343、344の下、より具体的には、負極層340の端部341、342、343、344と集電体320との間に配置されている。   The reinforcing portion 370 on the negative electrode layer 340 side surrounds the outer periphery of the negative electrode layer 340, and below the end portions 341, 342, 343, and 344 of the negative electrode layer 340, more specifically, the end portions 341, 342 of the negative electrode layer 340, 343 and 344 and the current collector 320 are disposed.

図12に示すように、電池用電極300の製造方法では、補強工程S310(図2参照)は、正極層310を囲む位置に補強部330を配置するだけでなく、負極層340を囲む位置にも補強部370を配置する。そして、図13に示すように、塗工工程S320は、負極層340の端部341、342、343、344の全ての下に補強部370が位置するように、負極スラリー360を塗布する。   As shown in FIG. 12, in the method for manufacturing the battery electrode 300, the reinforcing step S <b> 310 (see FIG. 2) not only arranges the reinforcing portion 330 at the position surrounding the positive electrode layer 310 but also at the position surrounding the negative electrode layer 340. Also, the reinforcing portion 370 is arranged. And as shown in FIG. 13, coating process S320 apply | coats the negative electrode slurry 360 so that the reinforcement part 370 may be located under all edge part 341,342,343,344 of the negative electrode layer 340. FIG.

第3実施形態の効果を述べる。   The effects of the third embodiment will be described.

電池用電極300は、正極層310側に補強部330を有するだけでなく、負極層340側にも補強部370を有し、プレス工程S340において負極層340の端部341、342、343、344にかかる応力をその補強部370によって直接吸収する。このため、電池用電極300は、第2実施形態の効果に加え、集電体320の破損をより一層効果的に防止できるという効果を奏する。   The battery electrode 300 has not only the reinforcing portion 330 on the positive electrode layer 310 side but also the reinforcing portion 370 on the negative electrode layer 340 side, and ends 341, 342, 343, and 344 of the negative electrode layer 340 in the pressing step S340. Is directly absorbed by the reinforcing portion 370. For this reason, in addition to the effect of 2nd Embodiment, the electrode 300 for batteries has the effect that damage to the collector 320 can be prevented much more effectively.

電池用電極300の製造方法は、補強工程S310において、正極層310を形成するための一方の面321に補強部330を配置するだけでなく、負極層340を形成するための他方の面322にも補強部370を配置する。このため、プレス工程S340において、負極層340の端部341、342、343、344にかかる応力を補強部370が直接吸収する。したがって、電池用電極300の製造方法は、第2実施形態の効果に加え、集電体320の破損をより一層効果的に防止できるという効果を奏する。   In the reinforcing step S310, the manufacturing method of the battery electrode 300 includes not only arranging the reinforcing portion 330 on one surface 321 for forming the positive electrode layer 310 but also providing the other surface 322 for forming the negative electrode layer 340 on the other surface 322. Also, the reinforcing portion 370 is arranged. For this reason, in the pressing step S340, the reinforcing portion 370 directly absorbs stress applied to the end portions 341, 342, 343, and 344 of the negative electrode layer 340. Therefore, in addition to the effect of the second embodiment, the method for manufacturing the battery electrode 300 has an effect that the current collector 320 can be more effectively prevented from being damaged.

本発明は、上述した実施形態に限定されるものではなく、特許請求の範囲の範囲内で種々改変できる。   The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims.

例えば、双極型電池は、積層型(扁平型)に限定されず、本発明は、巻回型(円筒型)の双極型電池を含む。   For example, the bipolar battery is not limited to the stacked type (flat type), and the present invention includes a wound type (cylindrical) bipolar battery.

また、本発明は双極型の形態に限定されず、集電体の両面に正極層を配置する形態、および集電体の両面に負極層を配置する形態、つまり非双極型の形態を含む。このとき、電池は、集電体の両面に正極層を配置してなる電池用電極と、集電体の両面に負極層を配置してなる電池用電極とを、電解質を介して積層した構成を有する。   Further, the present invention is not limited to the bipolar type, and includes a mode in which the positive electrode layer is disposed on both sides of the current collector and a mode in which the negative electrode layer is disposed on both sides of the current collector, that is, a non-bipolar type. At this time, the battery has a configuration in which a battery electrode in which a positive electrode layer is disposed on both surfaces of a current collector and a battery electrode in which a negative electrode layer is disposed on both surfaces of the current collector are stacked via an electrolyte. Have

また、本発明は、リチウムイオン二次電池に限定されず、ナトリウムイオン二次電池、カリウムイオン二次電池、ニッケル水素二次電池、ニッケルカドミウム二次電池、ニッケル水素電池等を含む。   Moreover, this invention is not limited to a lithium ion secondary battery, A sodium ion secondary battery, a potassium ion secondary battery, a nickel hydride secondary battery, a nickel cadmium secondary battery, a nickel hydride battery, etc. are included.

また、本発明は、集電体が導電性を有する樹脂層からなる形態に限定されず、集電体が樹脂製の薄膜と金属製の薄膜との多層フィルムである形態を含む。   Moreover, this invention is not limited to the form which a current collector consists of a resin layer which has electroconductivity, The form which a current collector is a multilayer film of a resin-made thin film and a metal thin film is included.

また、本発明は補強部を集電体の表面に配置する形態に限定されない。つまり、本発明は、例えば図14、および図15に示すように、集電体420内部に補強部430を配置する形態を含む。集電体420内部に補強部430を配置する形態では、集電体表面に補強部を配置する形態に比べ、凹凸が少ないため、ロールトゥロールによる搬送の際、巻取りが容易である。また、集電体420内部に補強部430を配置する形態では、集電体表面に補強部を配置する形態のように、集電体表面と補強部との密着を考慮する必要がなく、表面処理を簡素化できる。   Moreover, this invention is not limited to the form which arrange | positions a reinforcement part on the surface of an electrical power collector. That is, the present invention includes a form in which the reinforcing portion 430 is disposed inside the current collector 420 as shown in FIGS. 14 and 15, for example. In the embodiment in which the reinforcing portion 430 is disposed inside the current collector 420, there are less irregularities than in the embodiment in which the reinforcing portion is disposed on the surface of the current collector, so that winding is easy when transported by roll-to-roll. Further, in the embodiment in which the reinforcing portion 430 is disposed inside the current collector 420, it is not necessary to consider the close contact between the current collector surface and the reinforcing portion, unlike the embodiment in which the reinforcing portion is disposed on the current collector surface. Processing can be simplified.

また、本発明は、補強部が連続的に配置される形態に限定されず、例えば図16に示すように、補強部530が間欠的に配置される形態を含む。   Moreover, this invention is not limited to the form in which a reinforcement part is arrange | positioned continuously, For example, as shown in FIG. 16, the form in which the reinforcement part 530 is arrange | positioned intermittently is included.

また、例えば図17に示すように、補強部630、670が、異なる材質の部材631、632、671、672を組み合わせた構成を有しても良い。図17に示す形態では、補強部630、670は、2層構造を有する。2層のうち、集電体620側の一方631、671は相対的に剛性の高い材料によって形成され、他方632、672は弾性材によって形成される。このような構成にすることによって、充放電時の電極層610、640の収縮および膨張に補強部630、670が追随できる。   Further, for example, as shown in FIG. 17, the reinforcing portions 630 and 670 may have a configuration in which members 631, 632, 671, and 672 of different materials are combined. In the form shown in FIG. 17, the reinforcing portions 630 and 670 have a two-layer structure. Of the two layers, one 631 and 671 on the current collector 620 side are formed of a relatively rigid material, and the other 632 and 672 are formed of an elastic material. With such a configuration, the reinforcing portions 630 and 670 can follow the contraction and expansion of the electrode layers 610 and 640 during charging and discharging.

また、図18で拡大して示すように、上述した第1実施形態の補強部100では、集電体120の厚み方向における断面が矩形形状であるが、本発明はこれに限定されず、補強部の形状は適宜設計できる。例えば図19に示すように、補強部の断面形状は、図18で示すような第1実施形態の補強部130の4つの角131、132、133、134のうちの1つ、角131を面取りした形状であってもよい。第1実施形態のように断面形状が矩形形状であると、電極スラリーを塗布したとき、補強部130の角131の部分で、電極スラリーは拡散し難く、補強部130と電極層110との間に隙間が生じ易い。しかし、図19のように面取りした形状によって、電極スラリーが拡散し易くなり、補強部730と電極層710とを密着させられる。   Further, as shown in an enlarged view in FIG. 18, in the reinforcing portion 100 of the first embodiment described above, the cross section in the thickness direction of the current collector 120 is a rectangular shape, but the present invention is not limited to this, and the reinforcing portion 100 The shape of the part can be designed as appropriate. For example, as shown in FIG. 19, the cross-sectional shape of the reinforcing portion is chamfered by one of the four corners 131, 132, 133, and 134 of the reinforcing portion 130 of the first embodiment as shown in FIG. The shape may be sufficient. When the electrode slurry is applied when the cross-sectional shape is rectangular as in the first embodiment, the electrode slurry hardly diffuses at the corners 131 of the reinforcing portion 130, and the gap between the reinforcing portion 130 and the electrode layer 110 is small. There is a tendency for gaps to occur. However, the chamfered shape as shown in FIG. 19 facilitates the diffusion of the electrode slurry, and the reinforcing portion 730 and the electrode layer 710 can be brought into close contact with each other.

また、図20に示すように、補強部830が細孔831を有してもよい。補強部830が細孔831を有すると、電極スラリーを塗布したとき、電極スラリーは、細孔831に入り込むため拡散し易く、補強部830と電極層810とを密着させられる。   In addition, as shown in FIG. 20, the reinforcing portion 830 may have pores 831. When the reinforcing portion 830 has the pores 831, when the electrode slurry is applied, the electrode slurry enters the pores 831 and is thus easily diffused, and the reinforcing portion 830 and the electrode layer 810 can be brought into close contact with each other.

また、双極型電池は、第1実施形態のものに限定されず、第2実施形態の電池用電極200または第3実施形態の電池用電極300を含むものであってもよい。また、組電池は、第1実施形態のものに限定されず、第2実施形態の電池用電極200を含む双極型電池、第3実施形態の電池用電極300を含む双極型電池、または、非双極型の電池用電極を含む電池を、複数電気的に接続したものであってもよい。そして車両は、このような組電池を搭載したものであってもよい。   In addition, the bipolar battery is not limited to that of the first embodiment, and may include the battery electrode 200 of the second embodiment or the battery electrode 300 of the third embodiment. The assembled battery is not limited to that of the first embodiment, and is a bipolar battery including the battery electrode 200 of the second embodiment, a bipolar battery including the battery electrode 300 of the third embodiment, or a non-battery. A plurality of batteries including bipolar battery electrodes may be electrically connected. The vehicle may be mounted with such an assembled battery.

また、車両は、電気自動車に限定されず、例えば、自動車ならばハイブリット車、燃料電池車(いずれも四輪車(乗用車、トラック、バスなどの商用車、軽自動車など)のほか、二輪車(バイク)や三輪車を含む)を含む。   In addition, the vehicle is not limited to an electric vehicle. For example, if it is an automobile, it is a hybrid vehicle, a fuel cell vehicle (both four-wheeled vehicles (commercial vehicles such as passenger cars, trucks, buses, light vehicles, etc.), and two-wheeled vehicles (motorcycles). ) And tricycles).

また、組電池の用途が自動車に限定されるわけではなく、例えば、電車などの移動体の各種電源であっても適用は可能であるし、無停電電源装置などの載置用電源として利用することも可能である。   In addition, the use of the assembled battery is not limited to automobiles. For example, it can be applied to various power sources for moving bodies such as trains, and can be used as a power source for mounting such as an uninterruptible power supply. It is also possible.

100、200、300、400、600、700、800 電池用電極、
110、210、310、410、610、710、810 正極層(電極層)、
112、114、211、212、213、214、311、312、313、314、412、414、614、714、814、 正極層の端部、
120、220、320、420、520、620、720、820 集電体、
121、221、321 集電体の面(一方の面)、
122、222、322 集電体の面(他方の面)、
130、230、330、370、430、530、630、670、730、
830 補強部、
140、240、340、440、640、740、840 負極層(電極層)、
142、144、242、244、341、342、343、344、442、444、644、744、844 負極層の端部、
150、250、350、450、550 正極スラリー(電極スラリー)、
160、260、360、460 負極スラリー(電極スラリー)、
S110、S210、S310 補強工程、
S120、S220、S320 塗工工程、
S130、S230、S330 乾燥工程、
S140、S240、S340 プレス工程、
S150、S250、S350 切断工程、
30 双極型リチウムイオン二次電池(双極型電池)、
40 組電池、
50 電気自動車(車両)。
100, 200, 300, 400, 600, 700, 800 Battery electrode,
110, 210, 310, 410, 610, 710, 810 positive electrode layer (electrode layer),
112, 114, 211, 212, 213, 214, 311, 312, 313, 314, 412, 414, 614, 714, 814, end of the positive electrode layer,
120, 220, 320, 420, 520, 620, 720, 820 current collector,
121, 221, 321 Current collector surface (one surface),
122, 222, 322 current collector surface (the other surface),
130, 230, 330, 370, 430, 530, 630, 670, 730,
830 reinforcement,
140, 240, 340, 440, 640, 740, 840 negative electrode layer (electrode layer),
142, 144, 242, 244, 341, 342, 343, 344, 442, 444, 644, 744, 844, the end of the negative electrode layer,
150, 250, 350, 450, 550 positive electrode slurry (electrode slurry),
160, 260, 360, 460 negative electrode slurry (electrode slurry),
S110, S210, S310 reinforcing step,
S120, S220, S320 Coating process,
S130, S230, S330 drying process,
S140, S240, S340 pressing process,
S150, S250, S350 cutting process,
30 Bipolar lithium ion secondary battery (bipolar battery),
40 battery packs,
50 Electric car (vehicle).

Claims (15)

導電性の樹脂層を含む集電体に、前記集電体より圧縮強度が大きい補強部を、長尺状の前記集電体の短手方向に離隔させ、且つ前記集電体の長手方向に沿って配置する補強工程と、
電極層の端部が前記補強部の上に位置するように、電極スラリーを前記集電体に塗布する塗工工程と、を含む電池用電極の製造方法。
A reinforcing part having a compressive strength larger than that of the current collector is separated from the current collector including the conductive resin layer in the short direction of the long current collector, and in the longitudinal direction of the current collector. A reinforcement step to be arranged along,
And a coating step of applying an electrode slurry to the current collector so that an end portion of the electrode layer is positioned on the reinforcing portion.
前記補強工程は、前記電極層としての正極層を形成するための前記集電体の一方の面と、前記電極層としての負極層を形成するための前記集電体の他方の面とのうち、前記一方の面に前記補強部を配置し、
前記塗工工程は、前記電極スラリーとしての正極スラリーを前記一方の面に塗布し、前記電極スラリーとしての負極スラリーを前記他方の面に塗布する請求項1に記載の電池用電極の製造方法。
The reinforcing step includes: one surface of the current collector for forming the positive electrode layer as the electrode layer and the other surface of the current collector for forming the negative electrode layer as the electrode layer , Arranging the reinforcing part on the one surface,
The battery electrode manufacturing method according to claim 1, wherein in the coating step, a positive electrode slurry as the electrode slurry is applied to the one surface, and a negative electrode slurry as the electrode slurry is applied to the other surface.
前記塗工工程は、前記負極層の端部が、前記一方の面に配置された補強部に支持される位置にくるように、前記負極スラリーを塗布する請求項2に記載の電池用電極の製造方法。   3. The battery electrode according to claim 2, wherein in the coating step, the negative electrode slurry is applied such that an end portion of the negative electrode layer comes to a position supported by a reinforcing portion disposed on the one surface. Production method. 前記補強工程は、前記正極層の外周を囲む位置に前記補強部を配置する請求項2または請求項3に記載の電池用電極の製造方法。   The battery electrode manufacturing method according to claim 2, wherein the reinforcing step includes arranging the reinforcing portion at a position surrounding an outer periphery of the positive electrode layer. 前記補強工程は、前記他方の面にさらに前記補強部を配置する請求項2〜請求項4のいずれか1つに記載の電池用電極の製造方法。   The method for manufacturing a battery electrode according to claim 2, wherein the reinforcing step further includes arranging the reinforcing portion on the other surface. 導電性の樹脂層を含む集電体と、
前記集電体の表面に形成される電極層と、
前記電極層の対向する1組の端部の下に配置される補強部と、を含む電池用電極。
A current collector including a conductive resin layer;
An electrode layer formed on the surface of the current collector;
And a reinforcing portion disposed under a pair of opposed end portions of the electrode layer.
前記補強部は、前記電極層の端部と前記集電体との間に配置される請求項6に記載の電池用電極。   The battery electrode according to claim 6, wherein the reinforcing portion is disposed between an end portion of the electrode layer and the current collector. 前記電極層としての正極層が前記集電体の一方の面に形成され、前記電極層としての負極層が前記集電体の他方の面に形成され、前記補強部は前記一方の面に配置される請求項6または請求項7に記載の電池用電極。   A positive electrode layer as the electrode layer is formed on one surface of the current collector, a negative electrode layer as the electrode layer is formed on the other surface of the current collector, and the reinforcing portion is disposed on the one surface The battery electrode according to claim 6 or claim 7. 前記負極層の端部は、前記一方の面に配置された前記補強部に支持される位置にある請求項8に記載の電池用電極。   The battery electrode according to claim 8, wherein an end portion of the negative electrode layer is located at a position supported by the reinforcing portion disposed on the one surface. 前記補強部は、前記正極層の外周を囲む請求項8または請求項9に記載の電池用電極。   The battery electrode according to claim 8, wherein the reinforcing portion surrounds an outer periphery of the positive electrode layer. 前記補強部は、前記他方の面にさらに配置される請求項8〜請求項10のいずれか1つに記載の電池用電極。   The battery electrode according to any one of claims 8 to 10, wherein the reinforcing portion is further arranged on the other surface. 前記補強部は、ナイロン66、ポリカーボネート、または金属によって形成される請求項6〜請求項11のいずれか1つに記載の電池用電極。   The battery electrode according to any one of claims 6 to 11, wherein the reinforcing portion is made of nylon 66, polycarbonate, or metal. 請求項8〜請求項11のいずれか1つに記載の電池用電極を含む双極型電池。   A bipolar battery comprising the battery electrode according to any one of claims 8 to 11. 請求項6〜請求項12のいずれか1つに記載の電池用電極を含む電池を複数電気的に接続してなる組電池。   An assembled battery formed by electrically connecting a plurality of batteries including the battery electrode according to any one of claims 6 to 12. 請求項14に記載の組電池をモータ駆動用電源として搭載した車両。   A vehicle equipped with the assembled battery according to claim 14 as a motor driving power source.
JP2009096403A 2009-04-10 2009-04-10 Method for manufacturing battery electrode, battery electrode, bipolar battery, assembled battery and vehicle Pending JP2010250978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009096403A JP2010250978A (en) 2009-04-10 2009-04-10 Method for manufacturing battery electrode, battery electrode, bipolar battery, assembled battery and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009096403A JP2010250978A (en) 2009-04-10 2009-04-10 Method for manufacturing battery electrode, battery electrode, bipolar battery, assembled battery and vehicle

Publications (1)

Publication Number Publication Date
JP2010250978A true JP2010250978A (en) 2010-11-04

Family

ID=43313107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009096403A Pending JP2010250978A (en) 2009-04-10 2009-04-10 Method for manufacturing battery electrode, battery electrode, bipolar battery, assembled battery and vehicle

Country Status (1)

Country Link
JP (1) JP2010250978A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013054826A (en) * 2011-08-31 2013-03-21 Sekisui Chem Co Ltd Process of manufacturing bipolar electrode and process of manufacturing assembly of bipolar electrode
WO2014156638A1 (en) * 2013-03-26 2014-10-02 古河電気工業株式会社 All-solid-state secondary battery
US9373869B2 (en) 2011-05-27 2016-06-21 Toyota Jidosha Kabushiki Kaisha Bipolar all-solid-state battery
JP2018147602A (en) * 2017-03-01 2018-09-20 日産自動車株式会社 Secondary battery
CN113394375A (en) * 2021-06-15 2021-09-14 宁德新能源科技有限公司 Electrochemical device and electronic device
CN114026722A (en) * 2020-06-30 2022-02-08 宁德新能源科技有限公司 Separator, electrochemical device comprising same, and electronic device
WO2022041194A1 (en) * 2020-08-31 2022-03-03 宁德新能源科技有限公司 Electrode plate, electrochemical apparatus, and electronic apparatus
CN114175305A (en) * 2020-06-25 2022-03-11 株式会社Lg新能源 Electrode having adhesive layer formed therein and method of manufacturing the same
WO2023221703A1 (en) * 2022-05-16 2023-11-23 宁德时代新能源科技股份有限公司 Current collector, electrode plate, battery cell, battery and electric device
JP7459758B2 (en) 2020-10-23 2024-04-02 株式会社豊田自動織機 Energy storage cell

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9373869B2 (en) 2011-05-27 2016-06-21 Toyota Jidosha Kabushiki Kaisha Bipolar all-solid-state battery
DE112011105286B4 (en) 2011-05-27 2020-06-18 Toyota Jidosha Kabushiki Kaisha Bipolar solid-state battery
JP2013054826A (en) * 2011-08-31 2013-03-21 Sekisui Chem Co Ltd Process of manufacturing bipolar electrode and process of manufacturing assembly of bipolar electrode
US11264617B2 (en) 2013-03-26 2022-03-01 Furukawa Electric Co., Ltd. All-solid-state secondary battery
WO2014156638A1 (en) * 2013-03-26 2014-10-02 古河電気工業株式会社 All-solid-state secondary battery
CN105027346A (en) * 2013-03-26 2015-11-04 古河电气工业株式会社 All-solid-state secondary battery
JP2018147602A (en) * 2017-03-01 2018-09-20 日産自動車株式会社 Secondary battery
CN114175305A (en) * 2020-06-25 2022-03-11 株式会社Lg新能源 Electrode having adhesive layer formed therein and method of manufacturing the same
JP2022543417A (en) * 2020-06-25 2022-10-12 エルジー エナジー ソリューション リミテッド Electrode formed with binder layer and manufacturing method thereof
EP3993091A4 (en) * 2020-06-25 2022-11-16 LG Energy Solution, Ltd. Electrode with binder layer formed therein and method for manufacturing same
JP7376686B2 (en) 2020-06-25 2023-11-08 エルジー エナジー ソリューション リミテッド Electrode with binder layer formed and method for manufacturing the same
CN114026722A (en) * 2020-06-30 2022-02-08 宁德新能源科技有限公司 Separator, electrochemical device comprising same, and electronic device
JP2022542749A (en) * 2020-06-30 2022-10-07 寧徳新能源科技有限公司 Separators, electrochemical and electronic devices containing such separators
JP7361137B2 (en) 2020-06-30 2023-10-13 寧徳新能源科技有限公司 Separators, electrochemical devices and electronic devices containing such separators
WO2022041194A1 (en) * 2020-08-31 2022-03-03 宁德新能源科技有限公司 Electrode plate, electrochemical apparatus, and electronic apparatus
JP7459758B2 (en) 2020-10-23 2024-04-02 株式会社豊田自動織機 Energy storage cell
CN113394375A (en) * 2021-06-15 2021-09-14 宁德新能源科技有限公司 Electrochemical device and electronic device
WO2023221703A1 (en) * 2022-05-16 2023-11-23 宁德时代新能源科技股份有限公司 Current collector, electrode plate, battery cell, battery and electric device

Similar Documents

Publication Publication Date Title
JP2010250978A (en) Method for manufacturing battery electrode, battery electrode, bipolar battery, assembled battery and vehicle
JP5969131B2 (en) Method for manufacturing electrode assembly
JP5359562B2 (en) Bipolar battery current collector
JP5410822B2 (en) Bipolar battery current collector
KR101484433B1 (en) Bipolar battery current collector and bipolar battery
WO2010100979A1 (en) Bipolar secondary cell and method for producing the same
JP5343500B2 (en) Bipolar electrode and bipolar secondary battery using the same
EP3154114B1 (en) Electrode assembly, fabricating method of the electrode assembly and electrochemical cell containing the electrode assembly
JP2007213930A (en) Bipolar battery, battery pack and vehicle with them mounted thereon
JP2002279969A (en) Battery and on-vehicle secondary battery
KR20120019459A (en) Bipolar secondary battery
US20140212751A1 (en) Electrode assembly, fabricating method of the electrode assembly and electrochemical cell containing the electrode assembly
JP2007188746A (en) Bipolar battery, battery pack, and vehicle mounting their batteries
JP2011018585A (en) Negative electrode material for lithium ion secondary battery, and lithium ion secondary battery using the same
US10468638B2 (en) Method for forming a pouch for a secondary battery
JP2010272357A (en) Negative electrode for lithium ion secondary battery
CN106463656B (en) Battery and cell manufacturing method
JP4483489B2 (en) Assembled battery
JP5326450B2 (en) Electrode and manufacturing method thereof
KR20170063222A (en) Secondary battery with relieved gas trap
CN115842093B (en) Pole piece, manufacturing method, electrode assembly, manufacturing method, battery cell and battery
JP6755311B2 (en) Non-aqueous electrolyte secondary battery
JP2010097729A (en) Electrode for secondary battery, secondary battery, and vehicle mounted with the same
JP7316520B2 (en) battery
JP2010212093A (en) Bipolar battery