JP2010249667A - Temperature sensor - Google Patents

Temperature sensor Download PDF

Info

Publication number
JP2010249667A
JP2010249667A JP2009099607A JP2009099607A JP2010249667A JP 2010249667 A JP2010249667 A JP 2010249667A JP 2009099607 A JP2009099607 A JP 2009099607A JP 2009099607 A JP2009099607 A JP 2009099607A JP 2010249667 A JP2010249667 A JP 2010249667A
Authority
JP
Japan
Prior art keywords
temperature
sensor element
lead wire
lead wires
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009099607A
Other languages
Japanese (ja)
Other versions
JP4892030B2 (en
Inventor
Kazuto Koshimizu
和人 越水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Electronics Co Ltd
Original Assignee
Shibaura Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibaura Electronics Co Ltd filed Critical Shibaura Electronics Co Ltd
Priority to JP2009099607A priority Critical patent/JP4892030B2/en
Publication of JP2010249667A publication Critical patent/JP2010249667A/en
Application granted granted Critical
Publication of JP4892030B2 publication Critical patent/JP4892030B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a temperature sensor for preventing lead wires of a sensor element from becoming thin and stably maintaining the accuracy of detected temperatures. <P>SOLUTION: The temperature sensor includes a sensor element unit 10 having a temperature sensing body 2 whose electric resistance varies with the temperature, a pair of lead wires 4 electrically connected to the temperature sensing body 2, and a covering material 5 sealing the temperature sensing body 2 and a predetermined area of the lead wires 4, the lead wires 4 extracted from a sealing end 6 of the covering material 5; a metal protective tube 20 housing the sensor element unit 10 except a part of the lead wires 4; and a ceramic shielding body 7 located between the sensor element unit 10 and the metal protective tube 20 and surrounding the sealing end 6. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、温度によって電気抵抗が変化する感温体を備えた温度センサに関する。   The present invention relates to a temperature sensor provided with a temperature sensing element whose electrical resistance varies with temperature.

自動車の排気ガス、給湯器、ボイラー、オーブンレンジ、ストーブ等の温度を測定するために、温度によって抵抗値が変化する感温体を用いた温度センサが広く利用されている。かかる温度センサに用いられる温度センサ素子(以下、単にセンサ素子)は、図4に示すように、一対の電極3を設けた感温体2と、一対の電極3に接続されたリード線4と、感温体2を封止する耐熱性の結晶質ガラス、非晶質ガラス等からなる被覆材5と、から構成されている。センサ素子を電気オーブン(電気度センサ)、ラジアントヒータ、燃焼器具、排気ガス浄化装置などに設置する場合には、振動・外力・燃焼ガス等からセンサ素子を保護するために、センサ素子は密閉性の高い金属保護管に収納された状態で用いられている。   In order to measure the temperature of automobile exhaust gas, water heaters, boilers, microwave ovens, stoves, and the like, temperature sensors using a temperature sensing element whose resistance value changes with temperature are widely used. As shown in FIG. 4, a temperature sensor element (hereinafter simply referred to as a sensor element) used in such a temperature sensor includes a temperature sensing body 2 provided with a pair of electrodes 3, and lead wires 4 connected to the pair of electrodes 3. And a covering material 5 made of heat-resistant crystalline glass, amorphous glass, or the like for sealing the temperature sensitive body 2. When the sensor element is installed in an electric oven (electricity sensor), radiant heater, combustion appliance, exhaust gas purification device, etc., the sensor element is hermetically sealed to protect the sensor element from vibration, external force, combustion gas, etc. It is used in a state of being housed in a high metal protective tube.

特許文献1には、使用環境温度が750℃以上になると温度センサを構成する金属保護管の酸化により、感温体2の周囲の酸素分圧が変動することがあり、これに伴い感温体2の組成が変動して温度−抵抗値特性が不安定になるので、金属保護管内に気孔率が30〜70%の耐震フィラーを充填することが開示されている。   According to Patent Document 1, when the use environment temperature becomes 750 ° C. or higher, the oxygen partial pressure around the temperature sensing element 2 may fluctuate due to oxidation of the metal protective tube constituting the temperature sensor. Since the temperature-resistance value characteristic becomes unstable due to fluctuation of the composition of No. 2, it is disclosed that a seismic filler having a porosity of 30 to 70% is filled in the metal protective tube.

しかるに、本発明者等の検討によると、600℃〜1000℃という高温下で使用されると、センサ素子を保護する金属保護管が酸化されることに加えて、被覆材5から引出された一対のリード線4のうち陽極側が次第に細くなり、被覆材5と細くなったリード線4との密着部分に隙間が生じることを知見した。被覆材5とリード線4との間に隙間が生じると、感温体2の周囲の雰囲気からの封止状態を維持することできなくなり、センサ素子の特性への影響が懸念される。ところが、特許文献1には、被覆材5とリード線4との間に生じる隙間について何ら開示、示唆されていない。   However, according to the study by the present inventors, when used at a high temperature of 600 ° C. to 1000 ° C., the metal protective tube that protects the sensor element is oxidized, and a pair drawn from the covering material 5. It has been found that the anode side of the lead wire 4 is gradually narrowed, and a gap is formed in the close contact portion between the covering material 5 and the thin lead wire 4. If a gap is generated between the covering material 5 and the lead wire 4, the sealed state from the atmosphere around the temperature sensing element 2 cannot be maintained, and there is a concern about the influence on the characteristics of the sensor element. However, Patent Document 1 does not disclose or suggest any gap generated between the covering material 5 and the lead wire 4.

特開2008−215919号公報JP 2008-215919 A 特許第3806434公報Japanese Patent No. 3806434

本発明は、このような技術的課題に基づいてなされたもので、センサ素子のリード線が細くなるのを防止して、検知温度の精度を安定して保つことができる温度センサを提供することを目的とする。   The present invention has been made based on such a technical problem, and provides a temperature sensor that can prevent the lead wire of the sensor element from being thinned and can maintain the accuracy of the detected temperature stably. With the goal.

金属保護管は、高温耐熱性に優れたステンレス合金、Ni基超合金が主に用いられる。これら耐熱合金は、ニッケル、クロムを主成分として含むが、高温環境下において、ニッケル、クロム、鉄などの構成原子が蒸発、放出される。また、リード線4を構成する白金や白金合金、ニッケル及びこれらの酸化物も500℃を越えた温度では蒸発し始める。本発明者等は、これらがリード線を細くする要因となっているのではないかと推測し、600〜1000℃という高温下で使用されたセンサ素子、特に被覆材5の表面に付着した組成物の構成元素を分析した。その結果、図5に示すように、この組成物にはクロム(Cr)と酸素(O)が多く含まれており、この組成物は導電性を有する酸化クロムであることが判明した。クロムは、センサ素子を保護する金属保護管に含まれるものであり、金属保護管が高温に曝されて酸化し、酸化物となって金属保護管の内部に放出されたものと考えられる。放出された酸化クロムを含む酸化物は、被覆材5の表面に付着するが、その一部は一対のリード線4間を埋める。   As the metal protective tube, a stainless alloy and a Ni-base superalloy excellent in high temperature heat resistance are mainly used. These heat-resistant alloys contain nickel and chromium as main components, but constituent atoms such as nickel, chromium and iron are evaporated and released under a high temperature environment. Further, platinum, platinum alloy, nickel, and oxides thereof constituting the lead wire 4 also start to evaporate at a temperature exceeding 500 ° C. The present inventors presume that these may be a factor for thinning the lead wire, and the composition adhered to the surface of the sensor element used at a high temperature of 600 to 1000 ° C., particularly the covering material 5. The constituent elements of were analyzed. As a result, as shown in FIG. 5, this composition contains a large amount of chromium (Cr) and oxygen (O), and it was found that this composition is chromium oxide having conductivity. Chromium is contained in a metal protective tube that protects the sensor element. It is considered that the metal protective tube is oxidized by exposure to a high temperature and is released as an oxide inside the metal protective tube. Although the released oxide containing chromium oxide adheres to the surface of the covering material 5, a part of the oxide fills between the pair of lead wires 4.

リード線4間には、高い絶縁性能を有する結晶質ガラス、非晶質ガラス等からなる被覆材5が介在しているので、センサ素子に通電したとしても図6(a)に示すように、リード線4間にリーク電流は生じない。なお、図6において矢印が電流を示す。ところが、上述のとおり、導電性を有する物質、例えば上述した酸化クロムがリード線4間を埋めるように付着すると、リード線4間の絶縁性能が損なわれ、図6(b)に示すように、通電によりリード線4間にリーク電流が生じる。そのために、陽極側のリード線4に電解腐食(高温マイグレーション)が生じ、リード線4を構成する金属電子を放出する。その結果、金属電子が放出された陽極側のリード線4は次第に細くなり、図6(c)に示すように被覆材5と陽極側のリード線4との間に隙間が生じることを本発明者等は知見した。
なお、以上では酸化クロムの付着を具体的に示したが、金属保護管の組成によっては他の金属元素が高温マイグレーションの原因になることがあろうし、リード線4を構成する元素が高温マイグレーションの原因になることもあろう。
Between the lead wires 4, since a covering material 5 made of crystalline glass, amorphous glass or the like having high insulation performance is interposed, even if the sensor element is energized, as shown in FIG. There is no leakage current between the lead wires 4. In FIG. 6, arrows indicate current. However, as described above, when a conductive material, for example, chromium oxide described above adheres so as to fill the space between the lead wires 4, the insulation performance between the lead wires 4 is impaired, and as shown in FIG. Leakage current is generated between the lead wires 4 by energization. Therefore, electrolytic corrosion (high temperature migration) occurs in the lead wire 4 on the anode side, and metal electrons constituting the lead wire 4 are emitted. As a result, the anode-side lead wire 4 from which the metal electrons have been emitted becomes gradually thinner, and a gap is formed between the covering material 5 and the anode-side lead wire 4 as shown in FIG. 6C. Found out.
In the above, the adhesion of chromium oxide was specifically shown. However, depending on the composition of the metal protective tube, other metal elements may cause high-temperature migration, and the elements constituting the lead wire 4 are high-temperature migration. It may be a cause.

以上の通りであり、金属保護管あるいはリード線4に起因する導電性を有する組成物がリード線4間に付着するのを防止することが、高温マイグレーションの発生を防止するために必要である。そこでなされた本発明の温度センサは、センサ素子と、リード線の一部を除いて感温体を収容する金属製の保護管とを備えることを前提とする。そして、センサ素子は、温度によって電気抵抗が変化する感温体と、感温体に電気的に接続される一対のリード線と、感温体と接続部から所定範囲内のリード線とを封止する被覆材とを有している。また、このセンサ素子は、リード線が被覆材の封止端から引出される。以上の構成を有する本発明の温度センサは、センサ素子と保護管の間にあって、封止端を取り囲むセラミック製の遮蔽体を設けることを特徴としており、この遮蔽体は感温体側に配置されるすり鉢状の凹部を備える遮蔽部と、遮蔽部に連なり、リード線が貫通して収容されるリード線保護部とを備え、遮蔽部が少なくとも封止端を取り囲むように配置される。このように遮蔽部が少なくとも封止端を取り囲むように配置されることによって、主に金属保護管を要因とする導電性を有する組成物がリード線間へ付着するのを防ぐことができ、高温マイグレーションを防止することが可能となる。   As described above, it is necessary to prevent the conductive composition due to the metal protective tube or the lead wire 4 from adhering between the lead wires 4 in order to prevent the occurrence of high temperature migration. The temperature sensor of the present invention made there is premised on including a sensor element and a metal protective tube that accommodates the temperature sensing element except for a part of the lead wire. The sensor element seals a temperature sensing element whose electrical resistance varies with temperature, a pair of lead wires electrically connected to the temperature sensing element, and a lead wire within a predetermined range from the temperature sensing element and the connection portion. And a covering material to be stopped. Further, in this sensor element, the lead wire is pulled out from the sealing end of the covering material. The temperature sensor of the present invention having the above configuration is characterized in that a ceramic shield is provided between the sensor element and the protective tube and surrounds the sealing end, and this shield is arranged on the temperature sensing element side. A shielding part having a mortar-shaped recess and a lead wire protection part that is connected to the shielding part and accommodates through the lead wire are disposed, and the shielding part is disposed so as to surround at least the sealing end. By arranging the shielding portion so as to surround at least the sealing end in this way, it is possible to prevent the conductive composition mainly due to the metal protective tube from adhering between the lead wires, It becomes possible to prevent migration.

本発明の温度センサにおいて、被覆材と遮蔽体との変位を規制する充填材を遮蔽部の凹部内に介在させてもよい。これにより、導電性を有する組成物の付着をより確実に防ぐとともに、センサ素子に対する遮蔽体の位置決めを適切に行うことができ、温度センサの形状と性能の安定性が確保できる。   In the temperature sensor of the present invention, a filler for regulating the displacement between the covering material and the shield may be interposed in the concave portion of the shielding portion. Thereby, while adhering of the composition which has electroconductivity is prevented more reliably, positioning of the shield with respect to a sensor element can be performed appropriately, and the stability of the shape and performance of a temperature sensor can be ensured.

また本発明の温度センサにおいて、遮蔽体の外径がセンサ素子の外径以下であることが好ましい。遮蔽体とセンサ素子を収容する金属保護管の外径を、センサ素子のみを収容する場合の外径と同等に保つことができるので、温度センサを応答性の良い小サイズに維持しながらも高温マイグレーションの発生を防止できる。なお、遮蔽体の外径とは遮蔽体の最大外径で特定され、センサ素子の外径とはセンサ素子の最大外径で特定される。   In the temperature sensor of the present invention, it is preferable that the outer diameter of the shield is not more than the outer diameter of the sensor element. The outer diameter of the metal protective tube that houses the shield and the sensor element can be kept the same as the outer diameter when only the sensor element is housed. The occurrence of migration can be prevented. The outer diameter of the shield is specified by the maximum outer diameter of the shield, and the outer diameter of the sensor element is specified by the maximum outer diameter of the sensor element.

本発明の温度センサによれば、リード線間への導電性物質の付着による高温マイグレーションを防止し、被覆材による感温体の封止状態を保つことが可能となる。したがって、温度センサの温度検知精度を安定して確保することができる。   According to the temperature sensor of the present invention, it is possible to prevent high-temperature migration due to adhesion of a conductive substance between the lead wires, and to maintain the sealed state of the temperature sensing element by the covering material. Therefore, it is possible to stably ensure the temperature detection accuracy of the temperature sensor.

(a)は本実施形態の温度センサの縦断面図、(b)は遮蔽体の平面図、(c)は遮蔽体の底面図である。(A) is a longitudinal cross-sectional view of the temperature sensor of this embodiment, (b) is a plan view of the shield, and (c) is a bottom view of the shield. (a)は本実施形態の変形例を示す縦断面図、(b)は本実施形態の他の変形例を示す縦断面図、(c)は比較例の温度センサの縦断面図である。(A) is a longitudinal cross-sectional view which shows the modification of this embodiment, (b) is a longitudinal cross-sectional view which shows the other modification of this embodiment, (c) is a longitudinal cross-sectional view of the temperature sensor of a comparative example. 図1に示した本実施形態の温度センサ、図2(c)に示した比較例の温度センサを用いて行なった高温通電試験の結果を示すグラフである。It is a graph which shows the result of the high temperature electricity supply test done using the temperature sensor of this embodiment shown in FIG. 1, and the temperature sensor of the comparative example shown in FIG.2 (c). 従来のセンサ素子を示す図である。It is a figure which shows the conventional sensor element. リード線間の付着物の元素分析結果を示すグラフである。It is a graph which shows the elemental analysis result of the deposit | attachment between lead wires. (a)従来のセンサ素子における検知電流印加の様子を示し、(b)はリーク電流発生の様子を示し、(c)はリード線の細りを示す。(A) A state of detection current application in a conventional sensor element is shown, (b) shows a state of leakage current generation, and (c) shows a thin lead wire.

以下、添付図面に示す実施の形態に基づいてこの発明を詳細に説明する。
図1(a)は本実施形態の温度センサ1を示す。
温度センサ1は、センサ素子ユニット10と、リード線4の後方側の一部を除いてセンサ素子ユニット10を収容する金属保護管20とから構成される。
センサ素子ユニット10は、温度によって電気抵抗が変化する感温体2と、感温体2に電極3を介して電気的に接続される一対のリード線4と、感温体2と電極3から所定範囲内のリード線4とを封止する被覆材5とを備える。リード線4は、被覆材5の封止端6から引出される。
Hereinafter, the present invention will be described in detail based on embodiments shown in the accompanying drawings.
Fig.1 (a) shows the temperature sensor 1 of this embodiment.
The temperature sensor 1 includes a sensor element unit 10 and a metal protective tube 20 that houses the sensor element unit 10 except for a part on the rear side of the lead wire 4.
The sensor element unit 10 includes a temperature sensing element 2 whose electrical resistance varies with temperature, a pair of lead wires 4 electrically connected to the temperature sensing element 2 via an electrode 3, and the temperature sensing element 2 and the electrode 3. And a covering material 5 for sealing the lead wires 4 within a predetermined range. The lead wire 4 is drawn out from the sealing end 6 of the covering material 5.

感温体2としては、サーミスタを用いることが好ましいが、温度によって電気抵抗が変化するものを広く適用できる。500〜1000℃の高温域で使用される場合、サーミスタとしては、例えば本発明者が先に特許文献2で開示したY、Cr、Mn、CaおよびOを含み、Y:Cr:Mn:Caのモル比が75〜85:7〜10:7〜10:1〜5である金属酸化物を用いることが好ましい。この金属酸化物から構成される感温体2は、1000℃以上の高温まで温度測定が可能である。ただし、これはあくまで例示であり、他のサーミスタを用いることもできることは言うまでもない。   Although it is preferable to use a thermistor as the temperature sensing element 2, those whose electric resistance varies with temperature can be widely applied. When used in a high temperature range of 500 to 1000 ° C., the thermistor includes, for example, Y, Cr, Mn, Ca and O previously disclosed in Patent Document 2 by the present inventor, and Y: Cr: Mn: Ca It is preferable to use a metal oxide having a molar ratio of 75 to 85: 7 to 10: 7 to 10: 1 to 5. The temperature sensing element 2 composed of this metal oxide can measure the temperature up to a high temperature of 1000 ° C. or higher. However, this is only an example, and it goes without saying that other thermistors can be used.

リード線4としては、白金又は白金合金を用いることができる。白金合金としては、イリジウムを1〜20wt%含有するものが高温耐久性の観点から好ましい。   As the lead wire 4, platinum or a platinum alloy can be used. As the platinum alloy, one containing 1 to 20 wt% of iridium is preferable from the viewpoint of high temperature durability.

被覆材5は、非晶質ガラス又は結晶質ガラスから構成される。それぞれが単独で用いることもできるが、所望の熱膨張係数を有するように非晶質ガラスと結晶質ガラスとを混合して用いることもできる。結晶質ガラスとしては、例えば、酸化ケイ素、酸化カルシウム、酸化マンガン、酸化アルミニウムから構成されるものが好ましく、より具体的にはSiO:30〜60wt%、CaO:10〜30wt%、MgO:5〜25wt%、Al:0〜15wt%の組成を有するものを本発明に用いることができる。また、ガラスに無機材料粉末を添加したもの等を用いて構成してもよい。ガラスに添加する無機材料粉末としては、酸化アルミニウム(Al)、酸化マグネシウム(MgO)、酸化イットリウム(Y)、酸化ジルコニウム(ZrO)等、感温体2を構成する金属酸化物等が挙げられる。 The covering material 5 is made of amorphous glass or crystalline glass. Each can be used alone, but it is also possible to use a mixture of amorphous glass and crystalline glass so as to have a desired thermal expansion coefficient. The crystalline glass, for example, silicon oxide, calcium oxide, manganese oxide, preferably those composed of aluminum oxide, more specifically SiO 2: 30~60wt%, CaO: 10~30wt%, MgO: 5 Those having a composition of ˜25 wt% and Al 2 O 3 : 0 to 15 wt% can be used in the present invention. Moreover, you may comprise using what added inorganic material powder to glass. Examples of the inorganic material powder added to the glass include aluminum oxide (Al 2 O 3 ), magnesium oxide (MgO), yttrium oxide (Y 2 O 3 ), and zirconium oxide (ZrO 2 ). An oxide etc. are mentioned.

このセンサ素子ユニット10は、セラミックからなる遮蔽体7を備える。
センサ素子ユニット10と金属保護管20の間に設けられる遮蔽体7は、外形が円錐台形をなし、被覆材5の後端側を取り囲んで封止端6を密閉する。したがって、リード線4間に導電性の組成物が付着することがない。遮蔽体7は、アルミナ(Al)、窒化ケイ素(Si)等のセラミックからなる。
The sensor element unit 10 includes a shield 7 made of ceramic.
The shield 7 provided between the sensor element unit 10 and the metal protective tube 20 has a truncated cone shape and surrounds the rear end side of the covering material 5 to seal the sealing end 6. Therefore, the conductive composition does not adhere between the lead wires 4. The shield 7 is made of a ceramic such as alumina (Al 2 O 3 ) or silicon nitride (Si 3 N 4 ).

温度センサ1は、リード線4の後方側の一部を除いてセンサ素子ユニット10を収容する金属保護管20を備える。金属保護管20は、ステンレス合金、Ni基超合金、その他の耐熱合金から構成される。これら合金は、耐熱性を確保するために、Ni、Crを多く含んでいる。例えば、Ni基超合金の1例であるJIS NCF600は、Niを75wt%、Crを16wt%程度含んでいる。   The temperature sensor 1 includes a metal protective tube 20 that houses the sensor element unit 10 except for a part on the rear side of the lead wire 4. The metal protective tube 20 is made of a stainless alloy, a Ni-base superalloy, or other heat resistant alloy. These alloys contain a large amount of Ni and Cr in order to ensure heat resistance. For example, JIS NCF600, which is an example of a Ni-base superalloy, contains about 75 wt% Ni and about 16 wt% Cr.

円筒状の遮蔽体7は、前方側にすり鉢状の凹部7cが形成される。凹部7cは凹部7cの外周に沿って設けられる遮蔽壁7wに取り囲まれる。凹部7cと遮蔽壁7wにより遮蔽部71が構成される。遮蔽体7には、凹部7cの底から後方に向けて貫通し、リード線4が挿通される2つの保持孔7hが形成されるリード線保護部72が遮蔽部71に連なって一体に形成される。
遮蔽体7は、被覆材5の後方側が凹部7c内に収容されるように配置される。したがって、遮蔽壁7wが封止端6を取り囲み、リード線4間に導電性の組成物が付着するのを防止できる。なお、被覆材5と遮蔽壁7wとの間に隙間があるが、後述の高温通電試験の結果より、このような隙間があっても、リード線4間への導電性の組成物が付着するのを防止できることが確認された。
温度センサ1において、遮蔽体7の外径は、被覆材5の最大外径と同等(以下でももちろんかまわない)に設定されているので、遮蔽体7を設けない場合と温度センサ60の外形寸法を同等にできる。
The cylindrical shield 7 is formed with a mortar-shaped recess 7c on the front side. The recess 7c is surrounded by a shielding wall 7w provided along the outer periphery of the recess 7c. A shielding part 71 is constituted by the recess 7c and the shielding wall 7w. The shield body 7 is integrally formed with a lead wire protection portion 72 that is continuous with the shield portion 71 and penetrates from the bottom of the recess 7 c toward the rear to form two holding holes 7 h through which the lead wires 4 are inserted. The
The shield 7 is disposed such that the rear side of the covering material 5 is accommodated in the recess 7c. Therefore, the shielding wall 7w surrounds the sealing end 6 and can prevent the conductive composition from adhering between the lead wires 4. In addition, although there is a gap between the covering material 5 and the shielding wall 7w, the conductive composition adheres between the lead wires 4 even if there is such a gap from the result of a high-temperature energization test described later. It was confirmed that this can be prevented.
In the temperature sensor 1, the outer diameter of the shield 7 is set to be equal to the maximum outer diameter of the covering material 5 (which may of course be the following), and therefore the outer dimensions of the temperature sensor 60 and the case where the shield 7 is not provided. Can be made equivalent.

さらに、被覆材5、リード線4に対して遮蔽体7を定位置に位置決めし、固定するために、図2(a)に示すように、遮蔽体7の凹部7c内に耐熱性のセラミック接着材8を充填した温度センサ30とすることもできる。これにより、導電性の組成物が付着するのをより効果的に防止できるとともに、被覆材5と遮蔽体7との変位を規制することができる。この機能は、セラミック接着材8に限らず、スラリとして供給されたセラミック粉末を焼結した充填材でも同様に得ることができる。
また、図2(b)に示すように、遮蔽体7のリード線保護部72を長く延長し、かつ金属保護管20にかしめ部20cを設けて、遮蔽体7を保護管20に固定する温度センサ40とすることもできる。
Further, in order to position and fix the shielding body 7 at a fixed position with respect to the covering material 5 and the lead wire 4, as shown in FIG. The temperature sensor 30 filled with the material 8 may be used. Thereby, while being able to prevent more effectively that an electroconductive composition adheres, the displacement with the coating | covering material 5 and the shielding body 7 can be controlled. This function can be obtained not only with the ceramic adhesive 8 but also with a filler obtained by sintering ceramic powder supplied as a slurry.
Further, as shown in FIG. 2 (b), a temperature at which the lead wire protection part 72 of the shield 7 is extended long and a caulking part 20 c is provided on the metal protection pipe 20 to fix the shield 7 to the protection pipe 20. The sensor 40 can also be used.

実施形態にかかる温度センサ1を用い、800℃、大気中で10mAの電流を通電しながら連続1000時間保持し、その間の電気抵抗を測定した。比較として、図2(c)に示す比較温度センサ50を用いて同様の測定を行なった。結果を図3に示す。図3は、25℃における電気抵抗を基準とする電気抵抗の変化率を示している。
比較温度センサ(比較例)は、100時間目で電気抵抗が大きく上昇しているのに対して、本実施形態に係る温度センサ1(実施形態)は、1000時間経過後においても電気抵抗の変動は生じなかった。
このように、遮蔽壁7wが封止端6を取り囲むだけで、リード線4間に導電性の組成物が付着するのを防止できることが実証された。図2(a)のように、遮蔽体7の凹部7c内に耐熱性のセラミック接着材8を充填した場合でも、もちろん温度センサ1と同様の結果が得られた。
Using the temperature sensor 1 according to the embodiment, a current of 10 mA was passed in the atmosphere at 800 ° C. and held continuously for 1000 hours, and the electrical resistance during that time was measured. For comparison, the same measurement was performed using a comparative temperature sensor 50 shown in FIG. The results are shown in FIG. FIG. 3 shows the rate of change of electrical resistance with respect to electrical resistance at 25 ° C.
The electric resistance of the comparative temperature sensor (comparative example) greatly increases at the 100th hour, whereas the temperature sensor 1 (embodiment) according to the present embodiment varies in electric resistance even after 1000 hours. Did not occur.
As described above, it was proved that the conductive composition can be prevented from adhering between the lead wires 4 only by surrounding the sealing end 6 with the shielding wall 7w. As shown in FIG. 2A, even when the heat-resistant ceramic adhesive 8 was filled in the recess 7c of the shield 7, the same result as that of the temperature sensor 1 was obtained.

本発明による温度センサは、種々の用途に用いることができる。その例として、電気式ヒータの温度制御に用いることができるし、火炎バーナの温度制御に用いることができる。いずれにおいても、温度センサSからの検知温度と設定温度とを通電回路を含む制御回路内において比較し、その比較結果に基づいて、電気式ヒータの場合には投入電力を制御し、火炎バーナの場合には投入する燃料・空気を制御する。なお、電気ヒータの具体例としては、オーブン、ラジアントヒータ、排気ガス浄化装置(DPF:Diesel particulate filter)のフィルタ再生ヒータ等が掲げられる。また、火炎バーナとしては、ガスバーナ、石油バーナが掲げられる。ただし、これはあくまで例示であり、本発明を限定するものではない。   The temperature sensor according to the present invention can be used for various applications. As an example, it can be used for temperature control of an electric heater and can be used for temperature control of a flame burner. In any case, the detected temperature from the temperature sensor S and the set temperature are compared in a control circuit including an energization circuit. Based on the comparison result, the electric power is controlled in the case of an electric heater, and the flame burner is controlled. In some cases, the fuel and air to be input are controlled. Specific examples of the electric heater include an oven, a radiant heater, a filter regeneration heater of an exhaust gas purification device (DPF: Diesel particulate filter), and the like. As the flame burner, a gas burner and an oil burner are listed. However, this is only an example and does not limit the present invention.

なお、この発明の実施例を図面により詳述してきたが、これ以外にも、本発明の主旨を逸脱しない限り、上記実施の形態で挙げた構成を取捨選択し、あるいは他の構成に適宜変更することが可能である。   Although the embodiment of the present invention has been described in detail with reference to the drawings, the configuration described in the above embodiment is selected or changed to another configuration as long as it does not depart from the gist of the present invention. Is possible.

1,30,40,50…温度センサ
10…センサ素子ユニット
2…感温体、3…電極、4…リード線、5…被覆材、6…封止端
7…遮蔽体
7c…凹部、7h…保持孔、7w…遮蔽壁、71…遮蔽部、72…リード線保護部
8…セラミック接着材
20…金属保護管
DESCRIPTION OF SYMBOLS 1,30,40,50 ... Temperature sensor 10 ... Sensor element unit 2 ... Temperature sensing body, 3 ... Electrode, 4 ... Lead wire, 5 ... Covering material, 6 ... Sealing end 7 ... Shielding body 7c ... Recessed part, 7h ... Holding hole, 7w ... shielding wall, 71 ... shielding part, 72 ... lead wire protection part 8 ... ceramic adhesive 20 ... metal protection tube

Claims (3)

温度によって電気抵抗が変化する感温体と、前記感温体に電気的に接続される一対のリード線と、前記感温体と、前記接続部から所定範囲内の前記リード線とを封止する被覆材とを備え、前記リード線が前記被覆材の封止端から引出されるセンサ素子と、
前記リード線の一部を除いて前記センサ素子を収容する金属製の保護管と、
前記センサ素子と前記保護管の間にあって、前記封止端を取り囲むセラミック製の遮蔽体と、
を備え、
前記遮蔽体は、
前記感温体側に配置されるすり鉢状の凹部を備える遮蔽部と、
前記遮蔽部に連なり、前記リード線が貫通して収容されるリード線保護部とを備え、
前記遮蔽部が少なくとも前記封止端を取り囲むように配置されることを特徴とする温度センサ。
Seals a temperature sensing element whose electrical resistance varies with temperature, a pair of lead wires electrically connected to the temperature sensing element, the temperature sensing element, and the lead wires within a predetermined range from the connecting portion. A sensor element with which the lead wire is drawn out from a sealing end of the covering material,
A metal protective tube that accommodates the sensor element except for a part of the lead wire;
A ceramic shield between the sensor element and the protective tube and surrounding the sealing end;
With
The shield is
A shielding part provided with a mortar-shaped recess disposed on the temperature-sensitive body side;
A lead wire protection part that is connected to the shielding part and is accommodated through the lead wire;
The temperature sensor, wherein the shielding part is disposed so as to surround at least the sealing end.
前記被覆材と前記遮蔽体との変位を規制する充填材を前記遮蔽部の凹部内に介在させる請求項1に記載の温度センサ。   The temperature sensor according to claim 1, wherein a filler that regulates displacement between the covering material and the shielding body is interposed in the concave portion of the shielding portion. 前記遮蔽体の外径が前記センサ素子の外径以下である請求項1又は2に記載の温度センサ。   The temperature sensor according to claim 1 or 2, wherein an outer diameter of the shield is equal to or smaller than an outer diameter of the sensor element.
JP2009099607A 2009-04-16 2009-04-16 Temperature sensor Expired - Fee Related JP4892030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009099607A JP4892030B2 (en) 2009-04-16 2009-04-16 Temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009099607A JP4892030B2 (en) 2009-04-16 2009-04-16 Temperature sensor

Publications (2)

Publication Number Publication Date
JP2010249667A true JP2010249667A (en) 2010-11-04
JP4892030B2 JP4892030B2 (en) 2012-03-07

Family

ID=43312170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009099607A Expired - Fee Related JP4892030B2 (en) 2009-04-16 2009-04-16 Temperature sensor

Country Status (1)

Country Link
JP (1) JP4892030B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113125029A (en) * 2016-11-03 2021-07-16 丹佛斯有限公司 Exhaust gas temperature sensor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393535A (en) * 1986-10-04 1988-04-23 Nitto Kohki Co Ltd Clamping device
JPH02227624A (en) * 1989-02-28 1990-09-10 Nippondenso Co Ltd Temperature sensor
JPH07159250A (en) * 1993-12-03 1995-06-23 Matsushita Electric Ind Co Ltd Temperatupe detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393535A (en) * 1986-10-04 1988-04-23 Nitto Kohki Co Ltd Clamping device
JPH02227624A (en) * 1989-02-28 1990-09-10 Nippondenso Co Ltd Temperature sensor
JPH07159250A (en) * 1993-12-03 1995-06-23 Matsushita Electric Ind Co Ltd Temperatupe detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113125029A (en) * 2016-11-03 2021-07-16 丹佛斯有限公司 Exhaust gas temperature sensor device
US11846547B2 (en) 2016-11-03 2023-12-19 Danfoss A/S Tubular wire shielding for an exhaust gas temperature sensor arrangement, exhaust gas temperature sensor arrangement and method for assembling an exhaust gas temperature sensor arrangement

Also Published As

Publication number Publication date
JP4892030B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
EP2428781B1 (en) Temperature sensor and temperature sensor system
JP2708915B2 (en) Gas detection sensor
JP5872582B2 (en) Temperature sensors and equipment
US7439845B2 (en) Temperature sensor for a resistance thermometer, in particular for use in the exhaust gas system of combustion engines
JP6017052B2 (en) High stability high temperature chip
US9752936B2 (en) Temperature sensor
JP2010525367A (en) Particulate matter sensor
JP2010520443A5 (en)
JP2016029359A (en) Temperature sensor
JP2009527761A (en) Temperature sensor device
JPS5960237A (en) Glow plug with built-in internal pressure detector
US4528086A (en) Oxygen sensor with heater
JP2009175129A (en) Temperature sensor and its manufacturing method
JP3306427B2 (en) Sheath structure
JP2010032237A (en) Temperature sensor
JP4892030B2 (en) Temperature sensor
US4834863A (en) Oxygen sensor having a heater
JP4203346B2 (en) Manufacturing method of temperature sensor
JP6279284B2 (en) Temperature sensor
JP2004198360A (en) Gas sensor
JP6321470B2 (en) Thermistor element and temperature sensor
US7061363B2 (en) Passive, high-temperature-resistant resistor element for measuring temperature in passenger and commercial vehicles
JPH0247494Y2 (en)
JPS6225251A (en) Oxygen concentration detector
JP2017207443A (en) Temperature sensor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4892030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees