JP2010249569A - Obstacle detection method and laser distance measuring instrument - Google Patents

Obstacle detection method and laser distance measuring instrument Download PDF

Info

Publication number
JP2010249569A
JP2010249569A JP2009096984A JP2009096984A JP2010249569A JP 2010249569 A JP2010249569 A JP 2010249569A JP 2009096984 A JP2009096984 A JP 2009096984A JP 2009096984 A JP2009096984 A JP 2009096984A JP 2010249569 A JP2010249569 A JP 2010249569A
Authority
JP
Japan
Prior art keywords
light
obstacle
height
measurement area
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009096984A
Other languages
Japanese (ja)
Inventor
Koichiro Nagata
宏一郎 永田
Minoru Uehara
実 上原
Yutaka Hisamitsu
豊 久光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2009096984A priority Critical patent/JP2010249569A/en
Publication of JP2010249569A publication Critical patent/JP2010249569A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an obstacle detection method which detects a person as an obstacle even if the person enters a groove in a railroad crossing, and also to provide a laser distance measuring instrument. <P>SOLUTION: The distance measuring instrument is provided with: a light projection part 1 for projecting laser light LT; a scanning part for performing scanning with the laser light LT; a light receiving part 2 for receiving reflected laser light LR made to return by being reflected by pedestrians present in the railroad crossing; a signal processing part 3 for creating and sending pedestrian measurement data D by a light reception signal Sr from the light receiving part 2; and a control part 6 for receiving the measurement data D and outputting a measurement result. The control part 6 makes processing for sorting pedestrian measurement data D obtained continuously with a plurality of thresholds for height, and processing for recognizing pedestrians, based on height data by the thresholds for height. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、踏切内や敷地内における障害物(歩行者,侵入者などの移動体や置石,倒木など物体を含む)の有無を検出するのに利用される障害物検出方法及びレーザ距離測定装置に関するものである。   The present invention relates to an obstacle detection method and a laser distance measuring device that are used to detect the presence or absence of obstacles (including moving objects such as pedestrians and intruders, and objects such as stones and fallen trees) in railroad crossings and sites. It is about.

従来、上記した障害物検出方法に類するものとしては、例えば、特許文献1に開示される横断歩行者検出方法がある。この検出方法は、レーザ光を横断歩道上に走査して、このレーザ光の投光タイミング及び横断歩道上に存在する歩行者で反射して戻った反射レーザ光の受光タイミングにより飛行時間を計測して歩行者を検出する方法である。
この方法では、レーザ光の走査により計測したデータのうちの所定の高さ(例えば、地上30cm程度の高さ)以上の計測データを抽出することによって、歩行者や車両の検出を行っている。
Conventionally, as a method similar to the above-described obstacle detection method, for example, there is a crossing pedestrian detection method disclosed in Patent Document 1. This detection method scans a laser beam on a pedestrian crossing, and measures the flight time based on the projection timing of this laser beam and the reception timing of the reflected laser beam reflected back by a pedestrian present on the pedestrian crossing. This is a method for detecting a pedestrian.
In this method, pedestrians and vehicles are detected by extracting measurement data having a predetermined height (for example, a height of about 30 cm above the ground) from data measured by scanning with laser light.

特許3472815号Patent 3472815

しかしながら、上記した従来の検出方法では、例えば、踏切内における歩行者や車両などの障害物の検出に用いた場合において、踏切内に形成された溝などの凹部や、遮断機脇の路面よりも低地の部位に人が入り込んだときに、その計測データが高さの閾値による選別処理から外れてしまい、検出漏れを生じる可能性があるという問題を有しており、この問題を解決することが従来の課題となっていた。   However, in the conventional detection method described above, for example, when used to detect an obstacle such as a pedestrian or a vehicle in a level crossing, it is more than a recess such as a groove formed in the level crossing or a road surface beside a breaker. When a person enters a lowland area, the measurement data is out of the sorting process based on the height threshold, and there is a possibility that a detection failure may occur, and this problem can be solved. It has been a conventional problem.

本発明は、上述した従来の課題に着目してなされたもので、例えば、踏切内における歩行者や車両などの障害物の検出に用いた場合において、凹部や低地の部位に人が入り込んだりしたとしても、障害物として検出することができる障害物検出方法及びレーザ距離測定装置を提供することを目的としている。   The present invention has been made by paying attention to the above-described conventional problems. For example, when used for detecting an obstacle such as a pedestrian or a vehicle in a railroad crossing, a person has entered a recess or a lowland part. However, an object of the present invention is to provide an obstacle detection method and a laser distance measurement device that can detect an obstacle.

本発明の請求項1に係る発明は、測定エリアに向けて投光したレーザ光を走査し、このレーザ光の投光タイミング及び測定エリア内に存在する障害物で反射して戻った反射レーザ光の受光タイミングにより飛行時間を計測して、前記障害物を検出する障害物検出方法であって、レーザ光の走査毎に取得される前記障害物の三次元データに対して複数の高さの閾値で選別する処理を行い、この処理で抽出した複数の高さデータに基づいて前記障害物を認識する構成としたことを特徴としており、この障害物検出方法の構成を前述の従来の課題を解決するための手段としている。   The invention according to claim 1 of the present invention scans the laser light projected toward the measurement area, and reflects the laser light projection timing and the reflected laser light returned by the obstacle present in the measurement area. The obstacle detection method for detecting the obstacle by measuring the time of flight based on the light reception timing of the plurality of height thresholds with respect to the three-dimensional data of the obstacle acquired for each scanning of the laser beam The obstacle detection method is configured to recognize the obstacle based on a plurality of height data extracted by this process, and this obstacle detection method configuration solves the above-mentioned conventional problems As a means to do.

また、本発明の請求項2に係る障害物検出方法において、複数の高さの閾値は、測定エリア内に存在する凹部から任意に選択された凹部に少なくとも1つの閾値が含まれるように設定される又は測定エリア内に存在する凹凸に合わせて設定される構成としている。
さらに、本発明の請求項3に係る障害物検出方法は、あらかじめ取得した前記測定エリア内の地面形状データに基づいて該測定エリアの地面を多数の小エリアに細分化し、複数の高さの閾値は、前記細分化した小エリア毎に同じ高さでそれぞれ設定される構成としている。
In the obstacle detection method according to claim 2 of the present invention, the plurality of height thresholds are set such that at least one threshold is included in a recess arbitrarily selected from the recesses existing in the measurement area. Or set according to the unevenness existing in the measurement area.
Furthermore, the obstacle detection method according to claim 3 of the present invention subdivides the ground of the measurement area into a plurality of small areas based on the ground shape data in the measurement area acquired in advance, and a plurality of height thresholds. Are set at the same height for each of the subdivided small areas.

一方、本発明の請求項4に係るレーザ距離測定装置は、レーザ光を発する投光部と、この投光部から発したレーザ光を測定エリアで走査する走査部と、前記測定エリア内に存在する障害物で反射して戻った反射レーザ光を前記走査部を介して受ける受光部と、前記投光部にレーザ光の投光指令を発すると共に前記走査部による走査を制御する制御部と、この制御部から与えられるレーザ光の投光タイミング及び前記受光部から与えられる反射レーザ光の受光タイミングにより飛行時間を計測して、前記障害物の三次元データを取得する信号処理部を備え、前記制御部では、レーザ光の走査毎に取得される前記障害物の三次元データを複数の高さの閾値で選別する処理と、この処理で抽出した複数の高さデータに基づいて障害物を認識する処理を行う構成としたことを特徴としており、このレーザ距離測定装置の構成を前述の従来の課題を解決するための手段としている。   On the other hand, a laser distance measuring device according to claim 4 of the present invention is present in a light projecting unit that emits laser light, a scanning unit that scans laser light emitted from the light projecting unit in the measurement area, and the measurement area. A light receiving unit that receives the reflected laser beam reflected and returned by the obstacle through the scanning unit, a control unit that issues a laser beam projection command to the light projecting unit and controls scanning by the scanning unit; A signal processing unit for measuring the flight time based on the light projection timing of the laser beam given from the control unit and the light reception timing of the reflected laser beam given from the light receiving unit, and obtaining three-dimensional data of the obstacle, The control unit recognizes the obstacle based on the process of selecting the three-dimensional data of the obstacle acquired at each scanning of the laser beam with a plurality of height thresholds and the plurality of height data extracted by this process. Processing It was configured to perform has been characterized, and the structure of the laser distance measuring device as a means for solving the conventional problems described above.

また、本発明の請求項5に係るレーザ距離測定装置は、前記制御部において、複数の高さの閾値は、測定エリア内に存在する凹部から任意に選択された凹部に少なくとも1つの閾値が含まれるように設定される又は測定エリア内に存在する凹凸に合わせて設定される構成としている。
さらに、本発明の請求項6に係るレーザ距離測定装置は、前記制御部において、あらかじめ取得した前記測定エリア内の地面形状データに基づいて該測定エリアの地面が多数の小エリアに細分化され、複数の高さの閾値は、前記細分化した小エリア毎に同じ高さでそれぞれ設定される構成としている。
In the laser distance measuring device according to claim 5 of the present invention, in the control unit, the plurality of height threshold values include at least one threshold value in a recess arbitrarily selected from the recesses existing in the measurement area. It is set so that it may be set according to the unevenness which exists in a measurement area.
Furthermore, in the laser distance measuring device according to claim 6 of the present invention, the control unit divides the ground of the measurement area into a large number of small areas based on the ground shape data in the measurement area acquired in advance. The plurality of height thresholds are set at the same height for each of the subdivided small areas.

本発明において、投光するレーザ光としては、半導体レーザや固体レーザやガスレーザなどを用いることができ、信号波形がパルス状や位相変調した正弦波状を成すレーザ光が使用される。
また、本発明の請求項3に係る障害物検出方法及び請求項6に係るレーザ距離測定装置において、あらかじめ取得した測定範囲内の地面形状データに基づいて地面を多数の小エリアに細分化する場合、小エリアのサイズは、本発明の適用場所や検出対象に基づいて決定する。
In the present invention, a semiconductor laser, a solid-state laser, a gas laser, or the like can be used as a laser beam to be projected, and a laser beam having a sine wave shape whose signal waveform is pulsed or phase-modulated is used.
In the obstacle detection method according to claim 3 of the present invention and the laser distance measurement device according to claim 6, when the ground is subdivided into a number of small areas based on the ground shape data within the measurement range acquired in advance. The size of the small area is determined based on the application location and detection target of the present invention.

本発明に係る障害物検出方法及びレーザ距離測定装置では、例えば、踏切内における歩行者や車両などの障害物の検出に用いた場合において、レーザ光の走査により連続して取得される三次元データに基づいて、踏切内の歩行者や車両の検出がなされる。
ここで、踏切内に形成された溝や段差や遮断機脇の路面よりも低地の部位などの凹部に人がいたとしても、複数設定された高さの閾値、例えば、溝や段差などの凹凸の部分毎に設定された高さの閾値による選別処理が三次元データに対して行われているので、凹部に入り込んだりした人を障害物として検出し得ることとなる。
In the obstacle detection method and laser distance measuring device according to the present invention, for example, when used for detection of an obstacle such as a pedestrian or a vehicle in a railroad crossing, the three-dimensional data continuously obtained by scanning with laser light. Based on the above, pedestrians and vehicles in the crossing are detected.
Here, even if there are people in recesses such as grooves and steps formed in the railroad crossing and parts of the ground that are lower than the road surface beside the breaker, multiple height thresholds, for example, unevenness such as grooves and steps, etc. Since the sorting process based on the height threshold set for each part is performed on the three-dimensional data, a person who has entered the recess can be detected as an obstacle.

この際、踏切内の地面形状をあらかじめ取得して記憶しておき、この踏切内の地面形状データに基づいて踏切の路面を多数の小エリアに細分化し、これらの細分化した小エリア毎に同じ高さの閾値をそれぞれ設定した場合には、高さの閾値が踏切内の地面形状にほぼ沿うことになるので、踏切内で倒れた人や、這って侵入した人や、置石などの高さ寸法が大きくない障害物をも検出し得ることとなる。   At this time, the ground shape in the level crossing is acquired and stored in advance, and the road surface of the level crossing is subdivided into a number of small areas based on the ground shape data in the level crossing, and the same for each of the subdivided small areas. If you set each height threshold, the height threshold will be almost in line with the shape of the ground in the railroad crossing. Obstacles that are not large in size can be detected.

加えて、列車接近信号が発せられていない列車が来ないときに、踏切内の地面形状データを随時計測して更新するように成せば、立ち木の生長による枝の入り込みや、積雪による路面のかさ上げなどの環境変化に迅速に対応し得ることとなる。   In addition, when a train without a train approach signal is not coming, if the ground shape data in the railroad crossing is measured and updated as needed, branches can be introduced due to the growth of standing trees, or the road surface can be covered by snow. It will be possible to respond quickly to environmental changes such as raising.

本発明の請求項1,2に係る障害物検出方法及び請求項4,5に係るレーザ距離測定装置では、上記した構成としたから、例えば、踏切内における歩行者や車両などの障害物の検出に用いた場合において、踏切内の溝や低地の部位などの凹部に人が入り込んだりしたとしても、障害物として検出することができるという非常に優れた効果がもたらされる。
また、本発明の請求項3に係る障害物検出方法及び請求項6に係るレーザ距離測定装置では、上記した構成としたから、同じく踏切内における歩行者や車両などの障害物の検出に用いた場合において、本発明の請求項1,2に係る障害物検出方法及び請求項4,5に係るレーザ距離測定装置と同じ効果が得られるのに加えて、踏切内で倒れた人や、這って侵入した人や、置石などの高さ寸法が大きくない障害物をも検出することができる。
Since the obstacle detection method according to claims 1 and 2 of the present invention and the laser distance measurement device according to claims 4 and 5 have the above-described configuration, for example, detection of obstacles such as pedestrians and vehicles in a crossing. Even if a person enters a recess such as a groove in a railroad crossing or a lowland part, the present invention has an excellent effect that it can be detected as an obstacle.
Moreover, since the obstacle detection method according to claim 3 of the present invention and the laser distance measuring device according to claim 6 have the above-described configuration, they are also used for detecting obstacles such as pedestrians and vehicles in the crossing. In the case, in addition to obtaining the same effect as the obstacle detection method according to claims 1 and 2 and the laser distance measuring device according to claims 4 and 5 of the present invention, It is possible to detect an intruder or an obstacle whose height is not large, such as a stone.

さらに、踏切内の地面形状データを随時計測して更新することで、生長した立ち木の枝が踏切内に入り込んだり、積雪により踏切内の路面がかさ上げしたりするなどといった環境の変化にも迅速に対応することが可能であるという非常に優れた効果がもたらされる。   In addition, by measuring and updating the ground shape data at the level crossing as needed, it is possible to quickly respond to changes in the environment such as the branches of grown trees entering the level crossing or the road surface inside the level crossing being raised due to snow. It is possible to provide a very excellent effect that it is possible to cope with the above.

本発明の一実施例に係る障害物検出方法及びレーザ距離測定装置を示すブロック図である。It is a block diagram which shows the obstacle detection method and laser distance measuring device which concern on one Example of this invention. 図1におけるレーザ距離測定装置の計測要領を示す斜視説明図(a)〜(e)である。It is a perspective explanatory view (a)-(e) which shows the measuring point of the laser distance measuring device in Drawing 1. 図1におけるレーザ距離測定装置による計測状況を示す側面説明図(a)及び平面説明図(b)である。It is side surface explanatory drawing (a) and plane explanatory drawing (b) which show the measurement condition by the laser distance measuring apparatus in FIG. 図1におけるレーザ距離測定装置の制御部における高さの閾値による選別処理要領説明図(a)〜(c)である。FIG. 6 is an explanatory diagram (a) to (c) of a selection processing procedure based on a height threshold in a control unit of the laser distance measuring device in FIG. 1. 本発明の他の実施例に係る障害物検出方法による計測状況を示す側面説明図(a)及び平面説明図(b)である。It is side explanatory drawing (a) and plane explanatory drawing (b) which show the measurement condition by the obstacle detection method based on the other Example of this invention. 図5の計測時における高さの閾値による選別処理要領説明図(a),(b)である。FIGS. 6A and 6B are explanatory diagrams of selection processing points based on a height threshold at the time of measurement in FIGS.

以下、本発明に係る障害物検出方法及びレーザ距離測定装置を図面に基づいて説明する。
[実施例1]
図1〜図4は、本発明に係る障害物検出方法及びレーザ距離測定装置の一実施例を示しており、この実施例では、本発明に係る障害物検出方法及びレーザ距離測定装置を踏切内における歩行者や車両などの障害物の検出に用いた場合を例に挙げて説明する。
Hereinafter, an obstacle detection method and a laser distance measurement device according to the present invention will be described with reference to the drawings.
[Example 1]
1 to 4 show an embodiment of an obstacle detection method and a laser distance measurement device according to the present invention. In this embodiment, the obstacle detection method and the laser distance measurement device according to the present invention are included in a railroad crossing. An example will be described for use in detecting obstacles such as pedestrians and vehicles.

図1に示すように、このレーザ距離測定装置は、投光したレーザ光LTの反射光LRを受光して踏切内の歩行者や車両(測定エリア内の障害物)までの距離を測定するレーザ距離測定装置であって、レーザ光LTを投光する投光部1と、反射光LRを受光して受光信号Srを発信する受光部2と、受光信号Srから物体の測定距離を含む計測データ(三次元データ)Dを作成して発信する信号処理部3と、投光部1、受光部2及び信号処理部3を収容するレーザレーダヘッド7と、このレーザレーダヘッド7と離隔して配置されるとともに計測データDを受信して測定結果を出力する制御部6と、を有している。投光部1、受光部2及び信号処理部3を収容するレーザレーダヘッド7は、図2に示すように、地面Eに立設した支柱8の上端部に配置される。   As shown in FIG. 1, the laser distance measuring device receives a reflected light LR of a projected laser beam LT and measures a distance to a pedestrian or vehicle (an obstacle in a measurement area) in a crossing. A distance measuring device, a light projecting unit 1 for projecting a laser beam LT, a light receiving unit 2 for receiving a reflected light LR and transmitting a light reception signal Sr, and measurement data including a measurement distance of an object from the light reception signal Sr (Three-dimensional data) A signal processing unit 3 that generates and transmits D, a laser radar head 7 that houses the light projecting unit 1, the light receiving unit 2, and the signal processing unit 3, and the laser radar head 7. And a control unit 6 that receives the measurement data D and outputs the measurement result. As shown in FIG. 2, the laser radar head 7 that houses the light projecting unit 1, the light receiving unit 2, and the signal processing unit 3 is disposed at the upper end of a column 8 that is erected on the ground E.

前記投光部1は、測定エリア内にレーザ光Lを発光して投光する機器である。かかる投光部1は、例えば、光源となるレーザダイオード1aと、レーザ光Lをコリメートする投光レンズ1bと、レーザダイオード1aを操作するLDドライバ1cとから構成される。LDドライバ1cは、信号処理部3からのトリガー信号Stに基づいてレーザ光Lを発光するようにレーザダイオード1aを操作し、レーザ光Lの投光と同時にパルス状の投光同期信号Ssを信号処理部3に発信する。なお、投光同期信号Ssは、トリガー信号Stにより代用するようにしてもよい。   The light projecting unit 1 is a device that emits laser light L in the measurement area and projects the light. The light projecting unit 1 includes, for example, a laser diode 1a serving as a light source, a light projecting lens 1b that collimates the laser light L, and an LD driver 1c that operates the laser diode 1a. The LD driver 1c operates the laser diode 1a so as to emit the laser beam L based on the trigger signal St from the signal processing unit 3, and outputs a pulsed projection synchronization signal Ss simultaneously with the projection of the laser beam L. Call the processing unit 3. Note that the projection synchronization signal Ss may be substituted by the trigger signal St.

図1において、投光レンズ1bを透過したレーザ光LTは、回転駆動されるポリゴンミラー11と回動駆動される平面ミラー12とにより構成される走査部の光学系により、略水平方向及び略鉛直方向に走査されるようになっている。ポリゴンミラー11は、例えば、6面体の4側面が鏡面化されており、対峙する2面(上下面)の中心を回転軸としてモータ11aにより回転されるように構成されている。モータ11aは、モータドライバ11bにより操作される。平面ミラー12は、例えば、モータ12aにより回動される回動軸の側面に接続されている。モータ12aは、モータドライバ12bにより操作される。また、モータドライバ11b,12bは、信号処理部3からの制御信号Smにより制御されるとともに、スキャン角度やスイング角度等の投光条件信号Scを信号処理部3に発信する。なお、かかる光学系は単なる一例であり、図示した構成に限定されるものではない。   In FIG. 1, a laser beam LT transmitted through a light projecting lens 1b is substantially horizontal and substantially vertical by an optical system of a scanning unit composed of a polygon mirror 11 that is rotationally driven and a plane mirror 12 that is rotationally driven. Scanned in the direction. The polygon mirror 11 has, for example, four sides of a hexahedron mirrored, and is configured to be rotated by a motor 11a with the center of two opposing surfaces (upper and lower surfaces) as rotation axes. The motor 11a is operated by a motor driver 11b. The flat mirror 12 is connected to a side surface of a rotating shaft that is rotated by a motor 12a, for example. The motor 12a is operated by a motor driver 12b. The motor drivers 11 b and 12 b are controlled by a control signal Sm from the signal processing unit 3 and transmit a light projection condition signal Sc such as a scan angle and a swing angle to the signal processing unit 3. Such an optical system is merely an example, and is not limited to the illustrated configuration.

前記受光部2は、測定エリア内に投光されたレーザ光LTの反射光LRを受光する機器である。ここでは、投光部1と受光部2と個別に設けて投光軸と受光軸とがずれるように構成しているが、投光軸と受光軸とが一致するように投光部1と受光部2が一体に形成されていてもよい。かかる受光部2は、例えば、反射光LRを集光する受光レンズ2aと、集光された反射光LRを受光して電圧に変換するフォトダイオード等の光電変換素子や増幅器等を有する受光部本体2bとから構成される。レーザレーダヘッド7の前面の投光窓Wを透過した反射光LRは、平面ミラー12及びポリゴンミラー11を介して受光レンズ2aに導かれる。そして、反射光LRを受光した受光部本体2bは、電圧値に変換された受光信号Srを信号処理部3に発信する。   The light receiving unit 2 is a device that receives the reflected light LR of the laser light LT projected in the measurement area. Here, the light projecting unit 1 and the light receiving unit 2 are provided separately so that the light projecting axis and the light receiving axis are shifted from each other, but the light projecting unit 1 and the light receiving axis are aligned with each other. The light receiving unit 2 may be integrally formed. The light receiving unit 2 includes, for example, a light receiving lens 2a that collects the reflected light LR, a photoelectric conversion element such as a photodiode that receives the collected reflected light LR and converts it into a voltage, an amplifier, and the like. 2b. The reflected light LR transmitted through the light projection window W on the front surface of the laser radar head 7 is guided to the light receiving lens 2 a through the plane mirror 12 and the polygon mirror 11. Then, the light receiving unit main body 2 b that has received the reflected light LR transmits a light receiving signal Sr converted into a voltage value to the signal processing unit 3.

前記信号処理部3は、測定距離、受光強度、投光条件等のデータを含む計測データDを発信する機器である。信号処理部3は、主信号処理部31と時間計測部32とを有する。
主信号処理部31は、トリガー信号Stの発信、モータドライバ11b,12bの制御信号Smの発信、スキャン角度やスイング角度等の投光条件信号Scの受信、時間計測部32からの信号(受光強度信号Sq及び飛行時間信号Sd)の受信、計測データDの発信等の処理を行う。
The signal processing unit 3 is a device that transmits measurement data D including data such as measurement distance, received light intensity, and light projection conditions. The signal processing unit 3 includes a main signal processing unit 31 and a time measurement unit 32.
The main signal processing unit 31 transmits a trigger signal St, transmits a control signal Sm for the motor drivers 11b and 12b, receives a light projection condition signal Sc such as a scan angle and a swing angle, and a signal (light reception intensity) from the time measurement unit 32. Processing such as reception of signal Sq and time-of-flight signal Sd) and transmission of measurement data D is performed.

一方、時間計測部32は、投光同期信号Ssの受信により時間の計測を開始し、受光信号Srを受信した時間を把握する。したがって、時間計測部32では、投光されたレーザ光LTが、物体に反射して受光されるまでの飛行時間を計測することができる。
また、時間計測部32は、受光信号Srから所望の受光強度を有する受光信号Srを選択する弁別機能や、受光信号Srのうち飛行時間の短いものを除外するゲート機能を有していてもよい。かかる弁別機能やゲート機能により、ノイズを効率よく排除することができる。
On the other hand, the time measurement unit 32 starts measuring time by receiving the light projection synchronization signal Ss, and grasps the time when the light reception signal Sr is received. Therefore, the time measuring unit 32 can measure the flight time until the projected laser beam LT is reflected by the object and received.
Further, the time measuring unit 32 may have a discrimination function for selecting a light reception signal Sr having a desired light reception intensity from the light reception signal Sr, and a gate function for excluding those having a short flight time from the light reception signal Sr. . Such discrimination function and gate function can efficiently eliminate noise.

そして、時間計測部32は、弁別機能やゲート機能を通過した受光信号Srの受光強度信号Sq及び飛行時間信号Sdを主信号処理部31に発信する。主信号処理部31は、飛行時間信号Sdを(光の速度)×(飛行時間)/2の計算式により距離データに変換し、受光強度信号Sq、スキャン角度やスイング角度等の投光条件信号Sc等と共に計測データDを作成し、制御部6に計測データDを発信する。   Then, the time measuring unit 32 transmits the received light intensity signal Sq and the flight time signal Sd of the received light signal Sr that has passed through the discrimination function and the gate function to the main signal processing unit 31. The main signal processing unit 31 converts the time-of-flight signal Sd into distance data by a formula of (light speed) × (time-of-flight) / 2, and a light projection condition signal such as a received light intensity signal Sq, a scan angle, and a swing angle. Measurement data D is created together with Sc and the like, and the measurement data D is transmitted to the control unit 6.

前記制御部6は、画像処理や、故障診断や、誤差補正を行うコンピュータであり、計測データDを受信して測定結果をディスプレイ、プリンタ、警報機等の出力機器9に出力する。
また、この制御部6は、ポリゴンミラー11のスキャン角度やスキャン速度、平面ミラー12のスイング角度やスイング速度、レーザ光Lのトリガー信号Stの発信タイミング等の条件設定を行い、これらの制御条件Shを信号処理部3に発信している。この制御部6は、通常レーザレーダヘッド7から離れた部位に配置される。
The control unit 6 is a computer that performs image processing, failure diagnosis, and error correction. The control unit 6 receives measurement data D and outputs measurement results to an output device 9 such as a display, a printer, or an alarm device.
Further, the control unit 6 sets conditions such as the scan angle and scan speed of the polygon mirror 11, the swing angle and swing speed of the plane mirror 12, and the transmission timing of the trigger signal St of the laser light L, and these control conditions Sh Is transmitted to the signal processing unit 3. The control unit 6 is usually disposed at a site away from the laser radar head 7.

さらに、制御部6は、踏切内に形成されている溝や段差、低地などの部分毎に高さの閾値を設定する処理と、計測データDに対する複数の高さの閾値による選別処理と、これらの高さの閾値によって選別された高さデータに基づいて障害物を歩行者や車両M1,M2として認識する処理を行うものとなっている(図2(d),(e))。
こうような構成を有するレーザ距離測定装置では、まず、図3に示すように、投光部1から投光したレーザ光LTを踏切内の測定エリアに走査して、計測データDを取得する。
Furthermore, the control unit 6 sets a height threshold value for each part such as a groove, a step, or a lowland formed in the railroad crossing, a selection process based on a plurality of height threshold values for the measurement data D, A process for recognizing an obstacle as a pedestrian or vehicle M1, M2 is performed based on the height data selected by the height threshold (FIGS. 2D and 2E).
In the laser distance measuring apparatus having such a configuration, first, as shown in FIG. 3, the measurement data D is obtained by scanning the laser light LT projected from the light projecting unit 1 in the measurement area in the railroad crossing.

この際、踏切内の路面Eには、制御部6により所定高さ(例えば、路面E上30cm程度の高さ)の閾値Aが設定されており、レーザ光LTを1走査する毎に計測データDに対する高さの閾値Aによる選別処理を行って、所定高さ以上の計測データDを抽出することにより、図4(a)に示すように、踏切内における障害物である歩行者T2〜T6を検出する。   At this time, a threshold A having a predetermined height (for example, a height of about 30 cm above the road surface E) is set on the road surface E in the railroad crossing by the control unit 6, and measurement data is obtained every time the laser beam LT is scanned one time. As shown in FIG. 4 (a), the pedestrians T2 to T6, which are obstacles in the railroad crossing, are extracted by performing a sorting process based on a threshold value A of height with respect to D and extracting measurement data D having a predetermined height or more. Is detected.

なお、図2(d)のX方向のような左右方向にレーザ光LTを1回振ることを1スキャンと称し、このスキャンを繰り返しながら図2(d)のY方向のような前後方向にレーザ光LTを振って測定エリアを一通り走査することを1フレームと称した場合、上述した閾値A以上の計測データDを抽出する処理は、1スキャン毎に行ってもよいし、1フレーム毎に行ってもよい。   In addition, shaking the laser beam LT once in the left-right direction such as the X direction in FIG. 2D is referred to as one scan, and the laser is moved in the front-rear direction such as the Y direction in FIG. 2D while repeating this scan. When scanning the measurement area with the light LT and scanning the entire measurement area is called one frame, the process of extracting the measurement data D above the threshold value A may be performed for each scan or for each frame. You may go.

ここで、踏切内の路面Eに対応する閾値Aによって抽出された検出結果Daには、踏切内の溝E1に入り込んだ二人の歩行者T1,T2のうちの背丈が高い歩行者T2のデータは含まれているが、背丈の低い歩行者T1のデータ(図4(a)に破線で示す部分)は含まれていない。
この溝E1には、制御部6により溝E1の底面に対応する閾値Bが設定されており、溝E1にレーザ光LTを1走査する毎に計測データDに対する高さの閾値Bによる選別処理を行い、溝E1内における所定高さ以上の計測データDを抽出することにより、図4(b)に示すように、溝E1内における障害物である歩行者T1を検出する。この際も、閾値B以上の計測データDを抽出する処理は、1スキャン毎に行ってもよいし、1フレーム毎に行ってもよい。
Here, in the detection result Da extracted by the threshold value A corresponding to the road surface E in the level crossing, data of the pedestrian T2 having a high height among the two pedestrians T1 and T2 entering the groove E1 in the level crossing. Is included, but the data of the pedestrian T1 having a low height (the portion indicated by the broken line in FIG. 4A) is not included.
A threshold value B corresponding to the bottom surface of the groove E1 is set in the groove E1 by the controller 6, and a selection process based on the height threshold value B with respect to the measurement data D is performed each time the laser beam LT is scanned once in the groove E1. The pedestrian T1, which is an obstacle in the groove E1, is detected as shown in FIG. 4B by extracting the measurement data D having a predetermined height or more in the groove E1. Also in this case, the process of extracting the measurement data D that is equal to or greater than the threshold value B may be performed for each scan or for each frame.

そして、この溝E1に入り込んだ背丈の低い歩行者T1のデータが反映された検出結果Dbと、溝E1に入り込んだ背丈の高い歩行者T2及び路面E上の歩行者T3〜T6のデータが反映された検出結果Daとを組み合わせれば、図4(c)に示すように、歩行者T1〜T6全員のデータが反映された検出結果Dcが得られるので、踏切内の溝E1に歩行者T1,T2が入り込んでいたとしても、これらの歩行者T1,T2を障害物として認識し得ることとなる。   And the detection result Db in which the data of the pedestrian T1 having a low height entering the groove E1 is reflected, and the data of the pedestrian T2 having a high height and the pedestrians T3 to T6 in the road E are reflected. When the detection result Da is combined, as shown in FIG. 4C, the detection result Dc reflecting the data of all the pedestrians T1 to T6 is obtained. Therefore, the pedestrian T1 is formed in the groove E1 in the crossing. , T2 can enter these pedestrians T1 and T2 as obstacles.

なお、ここでは、凹部である溝E1が1つの場合について説明したが、これに限定されるものではなく、測定エリア内に存在する複数の凹部から計測対象としたい1つ以上の凹部を任意に選択するようにしてもよい。また、複数の凹部を選択した場合には、それぞれに少なくとも1つの閾値が含まれるように閾値を設定することが望ましい。
[実施例2]
図5及び図6は、本発明に係る障害物検出方法の他の実施例を示しており、この実施例でも、本発明を踏切内における歩行者や車両などの障害物の検出に用いた場合を例に挙げて説明する。
In addition, although the case where the groove | channel E1 which is a recessed part is one was demonstrated here, it is not limited to this, One or more recessed parts to make it a measurement object from several recessed parts which exist in a measurement area are arbitrarily set. You may make it select. In addition, when a plurality of recesses are selected, it is desirable to set the threshold value so that each includes at least one threshold value.
[Example 2]
5 and 6 show another embodiment of the obstacle detection method according to the present invention. In this embodiment as well, the present invention is used for detecting obstacles such as pedestrians and vehicles in a crossing. Will be described as an example.

この実施例における障害物検出方法では、まず、上記したレーザ距離測定装置の運用前に、例えば、踏切に設置する際の初期設定時に、このレーザ距離測定装置を作動させて踏切内の路面Eの計測を行い、これで取得した段差を含む地面形状データを制御部6に記憶させる。
次いで、図5に示すように、投光部2から投光したレーザ光LTを踏切内に走査して、計測データDを取得する。
In the obstacle detection method in this embodiment, first, before the operation of the laser distance measuring device described above, for example, at the time of initial setting at the time of installation at a railroad crossing, the laser distance measuring device is operated to detect the road surface E in the railroad crossing. Measurement is performed, and the ground shape data including the level difference thus obtained is stored in the control unit 6.
Next, as shown in FIG. 5, the laser beam LT projected from the light projecting unit 2 is scanned into the railroad crossing to obtain measurement data D.

この際、図6(a)に示すように、上記したようにしてあらかじめ取得した段差F1〜F6を含む踏切内の地面形状データFに基づいて、路面Eを段差F1〜F6(多数の小エリア)に細分化し、これらの細分化した段差F1〜F6毎にそれぞれ同じ高さの閾値Cを設定している。
したがって、レーザ光LTを1走査する毎に計測データDに対する高さの閾値Cによる選別処理を行えば、図6(b)に示すように、歩行者T1〜T6全員の検出結果Ddが得られるので、踏切内に多数の段差F1〜F6があったとしても、路面E上や段差F1〜F6上の歩行者T1〜T6を障害物として検出し得ることとなる。なお、閾値C以上の計測データDを抽出する処理は、1スキャン毎に行ってもよいし、1フレーム毎に行ってもよい。
At this time, as shown in FIG. 6A, based on the ground shape data F in the railroad crossing including the steps F1 to F6 acquired in advance as described above, the road surface E is changed to steps F1 to F6 (a number of small areas). ) And a threshold C having the same height is set for each of the subdivided steps F1 to F6.
Accordingly, if the selection process is performed with the height threshold value C for the measurement data D every time the laser beam LT is scanned, as shown in FIG. 6B, detection results Dd of all pedestrians T1 to T6 are obtained. Therefore, even if there are many steps F1 to F6 in the railroad crossing, pedestrians T1 to T6 on the road surface E and steps F1 to F6 can be detected as obstacles. Note that the process of extracting the measurement data D equal to or greater than the threshold C may be performed for each scan or for each frame.

この障害物検出方法では、高さの閾値Cが踏切内の地面形状、すなわち、段差F1〜F6にほぼ沿うことになるので、踏切内で倒れた人や、這って侵入した人や、置石などの高さ寸法の大きくない障害物をも検出し得ることとなる。
加えて、列車接近信号が発せられていない列車が来ないときなどに、踏切内の地面形状データFを随時計測して更新するように成せば、立ち木の生長による枝の入り込みや、積雪による路面のかさ上げなどの環境変化に迅速に対応し得ることとなる。
In this obstacle detection method, the height threshold C substantially follows the ground shape in the railroad crossing, that is, the steps F1 to F6. Obstacles having a large height dimension can be detected.
In addition, if a train without a train approach signal is not coming, the ground shape data F in the railroad crossing can be measured and updated at any time. It will be possible to respond quickly to changes in the environment such as raising the price.

なお、上記した実施例では、本発明を踏切監視に適用した場合を例に挙げて説明したが、これに限定されるものではなく、他の適用例として、例えば、本発明を横断歩道の監視や敷地の監視に適用してもよい。   In the above-described embodiment, the case where the present invention is applied to level crossing monitoring has been described as an example. However, the present invention is not limited to this, and as another application example, for example, the present invention may be used for crosswalk monitoring. It may also be applied to monitoring the site.

1 投光部
2 受光部
3 信号処理部
6 制御部
11 ポリゴンミラー(走査部)
12 平面ミラー(走査部)
31 主信号処理部
32 時間計測部
A,B,C 高さ閾値
Da〜Dd 検出結果
E 路面(地面)
E1 溝(凹部)
F 地面形状データ
F1〜F6 段差
LR 反射レーザ光
LT 投光レーザ光
T1〜T6 歩行者(障害物)
DESCRIPTION OF SYMBOLS 1 Light projection part 2 Light reception part 3 Signal processing part 6 Control part 11 Polygon mirror (scanning part)
12 Flat mirror (scanning part)
31 Main signal processing unit 32 Time measurement unit A, B, C Height threshold Da to Dd Detection result E Road surface (ground)
E1 Groove (concave)
F Ground shape data F1-F6 Level difference LR Reflected laser beam LT Projected laser beam T1-T6 Pedestrian (obstacle)

Claims (6)

測定エリアに向けて投光したレーザ光を走査し、このレーザ光の投光タイミング及び測定エリア内に存在する障害物で反射して戻った反射レーザ光の受光タイミングにより飛行時間を計測して、前記障害物を検出する障害物検出方法であって、
レーザ光の走査毎に取得される前記障害物の三次元データに対して複数の高さの閾値で選別する処理を行い、この処理で抽出した複数の高さデータに基づいて前記障害物を認識する
ことを特徴とする障害物検出方法。
Scan the laser beam projected toward the measurement area, measure the flight time by the projection timing of this laser beam and the reception timing of the reflected laser beam reflected back by the obstacle present in the measurement area, An obstacle detection method for detecting the obstacle,
The three-dimensional data of the obstacle acquired every time the laser beam is scanned is subjected to a process of selecting with a plurality of height thresholds, and the obstacle is recognized based on the plurality of height data extracted by this process. An obstacle detection method characterized by:
複数の高さの閾値は、測定エリア内に存在する凹部から任意に選択された凹部に少なくとも1つの閾値が含まれるように設定される又は測定エリア内に存在する凹凸に合わせて設定される請求項1に記載の障害物検出方法。   The plurality of height threshold values are set so that at least one threshold value is included in a concave portion arbitrarily selected from the concave portions existing in the measurement area, or set in accordance with the unevenness existing in the measurement area. Item 5. An obstacle detection method according to Item 1. あらかじめ取得した前記測定エリア内の地面形状データに基づいて該測定エリアの地面を多数の小エリアに細分化し、複数の高さの閾値は、前記細分化した小エリア毎に同じ高さでそれぞれ設定される請求項1に記載の障害物検出方法。   Based on the ground shape data in the measurement area acquired in advance, the ground of the measurement area is subdivided into a number of small areas, and a plurality of height thresholds are set at the same height for each of the subdivided small areas. The obstacle detection method according to claim 1. レーザ光を発する投光部と、
この投光部から発したレーザ光を測定エリアで走査する走査部と、
前記測定エリア内に存在する障害物で反射して戻った反射レーザ光を前記走査部を介して受ける受光部と、
前記投光部にレーザ光の投光指令を発すると共に前記走査部による走査を制御する制御部と、
この制御部から与えられるレーザ光の投光タイミング及び前記受光部から与えられる反射レーザ光の受光タイミングにより飛行時間を計測して、前記障害物の三次元データを取得する信号処理部を備え、
前記制御部では、レーザ光の走査毎に取得される前記障害物の三次元データを複数の高さの閾値で選別する処理と、この処理で抽出した複数の高さデータに基づいて障害物を認識する処理を行う
ことを特徴とするレーザ距離測定装置。
A light emitting unit that emits laser light;
A scanning unit that scans the laser light emitted from the light projecting unit in a measurement area;
A light receiving unit that receives reflected laser light reflected by an obstacle existing in the measurement area and returned through the scanning unit;
A control unit that issues a laser beam projection command to the light projecting unit and controls scanning by the scanning unit;
A signal processing unit for measuring the flight time based on the light projection timing of the laser beam given from the control unit and the light reception timing of the reflected laser beam given from the light receiving unit, and acquiring the three-dimensional data of the obstacle;
In the control unit, a process of selecting the three-dimensional data of the obstacle acquired for each scan of the laser beam with a plurality of height thresholds, and an obstacle based on the plurality of height data extracted by this process A laser distance measuring device characterized by performing recognition processing.
前記制御部において、複数の高さの閾値は、測定エリア内に存在する凹部から任意に選択された凹部に少なくとも1つの閾値が含まれるように設定される又は測定エリア内に存在する凹凸に合わせて設定される請求項4に記載のレーザ距離測定装置。   In the control unit, the plurality of height threshold values are set so that at least one threshold value is included in a concave portion arbitrarily selected from the concave portions existing in the measurement area, or matched to the unevenness existing in the measurement area. The laser distance measuring device according to claim 4, which is set as follows. 前記制御部において、あらかじめ取得した前記測定エリア内の地面形状データに基づいて該測定エリアの地面が多数の小エリアに細分化され、複数の高さの閾値は、前記細分化した小エリア毎に同じ高さでそれぞれ設定される請求項4に記載のレーザ距離測定装置。   In the control unit, the ground of the measurement area is subdivided into a number of small areas based on the ground shape data in the measurement area acquired in advance, and a plurality of height thresholds are set for each of the subdivided small areas. The laser distance measuring device according to claim 4, wherein the laser distance measuring devices are set at the same height.
JP2009096984A 2009-04-13 2009-04-13 Obstacle detection method and laser distance measuring instrument Pending JP2010249569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009096984A JP2010249569A (en) 2009-04-13 2009-04-13 Obstacle detection method and laser distance measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009096984A JP2010249569A (en) 2009-04-13 2009-04-13 Obstacle detection method and laser distance measuring instrument

Publications (1)

Publication Number Publication Date
JP2010249569A true JP2010249569A (en) 2010-11-04

Family

ID=43312083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009096984A Pending JP2010249569A (en) 2009-04-13 2009-04-13 Obstacle detection method and laser distance measuring instrument

Country Status (1)

Country Link
JP (1) JP2010249569A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040872A (en) * 2011-08-18 2013-02-28 Mitsubishi Heavy Ind Ltd Measuring instrument, measuring method, and program
JP2019045199A (en) * 2017-08-30 2019-03-22 コニカミノルタ株式会社 Object detection system and object detection program
JP2023001875A (en) * 2021-06-21 2023-01-06 ジック アーゲー Photoelectric sensor and object detection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004280372A (en) * 2003-03-14 2004-10-07 Natl Inst For Land & Infrastructure Management Mlit Detection method of moving body
JP2005300259A (en) * 2004-04-08 2005-10-27 Ishikawajima Harima Heavy Ind Co Ltd Apparatus and method for detecting mobile unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004280372A (en) * 2003-03-14 2004-10-07 Natl Inst For Land & Infrastructure Management Mlit Detection method of moving body
JP2005300259A (en) * 2004-04-08 2005-10-27 Ishikawajima Harima Heavy Ind Co Ltd Apparatus and method for detecting mobile unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040872A (en) * 2011-08-18 2013-02-28 Mitsubishi Heavy Ind Ltd Measuring instrument, measuring method, and program
JP2019045199A (en) * 2017-08-30 2019-03-22 コニカミノルタ株式会社 Object detection system and object detection program
JP2023001875A (en) * 2021-06-21 2023-01-06 ジック アーゲー Photoelectric sensor and object detection method
JP7417661B2 (en) 2021-06-21 2024-01-18 ジック アーゲー Photoelectric sensor and object detection method

Similar Documents

Publication Publication Date Title
JP4691701B2 (en) Number detection device and method
JP6522383B2 (en) Laser radar device and traveling body
JP5076070B2 (en) Object detection device, object detection method, and object detection program
JP5267588B2 (en) Marking line detection apparatus and marking line detection method
JP5246430B2 (en) Obstacle detection method and apparatus
JP2020003236A (en) Distance measurement device, moving body, distance measurement method, and distance measurement system
JP2016180624A (en) Laser radar apparatus and travel body
JP2013156139A (en) Moving object detecting apparatus and moving object detecting method
KR20190011497A (en) Hybrid LiDAR scanner
US20170038458A1 (en) Laser radar device and detection method
JPWO2017141414A1 (en) Feature data structure, control device, storage device, control method, program, and storage medium
JP5716902B2 (en) Monitoring method and monitoring apparatus
JP4069456B2 (en) Number detection device and method
US20180128905A1 (en) Scanning lidar for an automated vehicle
JP5930178B2 (en) Vehicle detection method and vehicle detection device
JP2010249569A (en) Obstacle detection method and laser distance measuring instrument
JP2011106829A (en) Method for detecting moving body, and laser apparatus for measuring distance
JP6252722B2 (en) Laser distance measuring method and laser distance measuring apparatus
EP2910974A1 (en) Laser monitoring method and laser monitoring device
JP5896139B2 (en) Vehicle detection method and vehicle detection device
JP2011122851A (en) Method and device for detecting object
CN117413199A (en) Mobile profile for intelligent scanning using galvanometer mirrors inside LIDAR scanners
US20180246192A1 (en) Information processing device, control method, program, and storage medium
JP7205179B2 (en) Monitoring system
JP4811614B2 (en) Obstacle detection method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131023