JP2010249528A - Method for measuring concentration of fumigation gas and instrument using the same - Google Patents

Method for measuring concentration of fumigation gas and instrument using the same Download PDF

Info

Publication number
JP2010249528A
JP2010249528A JP2009096043A JP2009096043A JP2010249528A JP 2010249528 A JP2010249528 A JP 2010249528A JP 2009096043 A JP2009096043 A JP 2009096043A JP 2009096043 A JP2009096043 A JP 2009096043A JP 2010249528 A JP2010249528 A JP 2010249528A
Authority
JP
Japan
Prior art keywords
gas
fumigation
concentration
value
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009096043A
Other languages
Japanese (ja)
Other versions
JP4975055B2 (en
Inventor
Kenji Nakazawa
堅二 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKASEIKI CO Ltd
Original Assignee
TOKASEIKI CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKASEIKI CO Ltd filed Critical TOKASEIKI CO Ltd
Priority to JP2009096043A priority Critical patent/JP4975055B2/en
Publication of JP2010249528A publication Critical patent/JP2010249528A/en
Application granted granted Critical
Publication of JP4975055B2 publication Critical patent/JP4975055B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and instrument for accurately measuring the concentration of the bactericidal/insecticidal gas in a fumigation housing with the elapse of time. <P>SOLUTION: After fumigation gas is introduced into the fumigation housing C, the concentration of the bactericidal/insecticidal gas in the fumigation housing is first measured by an infrared type gas sensor 70 to obtain a first measured value while the concentration of the bactericidal/insecticidal gas in the fumigation housing is subsequently measured by a catalytic combustion type gas sensor DS to obtain a second measured value and the first measured value is divided by the second measured value to obtain a correction value. Thereafter, the concentration of the bactericidal/insecticidal gas in the fumigation housing is intermittently and repeatedly measured with the elapse of time by the catalytic combustion type gas sensor DS and the value obtained by multiplying the measured value by the correction value is intermittently and repeatedly obtained as the gas concentration value in the fumigation housing. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は,燻蒸ガス濃度測定方法およびその方法を用いた燻蒸ガス濃度測定装置に関するものである。より詳しくは,燻蒸庫(燻蒸室)内に燻蒸対象物(例えば文化財,美術品等)を収納し,燻蒸ガスを燻蒸庫内に入れて燻蒸対象物を燻蒸する際に,燻蒸庫内における燻蒸ガスの濃度を経時的に測定するための燻蒸ガス濃度測定方法およびその方法を用いた装置に関するものである。   The present invention relates to a fumigation gas concentration measurement method and a fumigation gas concentration measurement device using the method. More specifically, when fumigation objects (for example, cultural assets, arts, etc.) are stored in the fumigation chamber (fumigation chamber) and fumigation gas is put into the fumigation chamber to fumigate the fumigation objects, The present invention relates to a fumigation gas concentration measuring method for measuring a fumigation gas concentration over time, and an apparatus using the method.

従来,文化財等の燻蒸に使用される燻蒸ガスは臭化メチルと酸化エチレンとの混合ガス(商品名「エキボン」)が主流であった。この従来の燻蒸ガス(エキボン)は臭化メチル,酸化エチレン共に殺菌・殺虫能力を有しているため,従来は,燻蒸庫内に投入する「エキボン」の総量を測定することで滅菌(殺菌・殺虫)能力の程度を把握することができた。
このため,従来は,光干渉計式ガス濃度計を用いて前記混合ガス(商品名「エキボン」)の濃度を測定すれば,燻蒸庫内における滅菌(殺菌・殺虫)能力の程度を把握することができた。
Conventionally, the fumigation gas used for fumigation of cultural properties, etc., has been mainly mixed gas of methyl bromide and ethylene oxide (trade name “Ekibon”). Since this conventional fumigation gas (exibone) has both sterilization and insecticidal ability for both methyl bromide and ethylene oxide, sterilization (sterilization and sterilization) has been conventionally performed by measuring the total amount of “exibone” that is put into the fumigation chamber. We were able to grasp the degree of (insecticidal) ability.
For this reason, conventionally, if the concentration of the mixed gas (trade name “EXBON”) is measured using an optical interferometer-type gas concentration meter, the degree of sterilization (sterilization / insecticidal) ability in the fumigation chamber can be ascertained. I was able to.

ところが近年,オゾンホール対策として上記「エキボン」に含まれている臭化メチルの使用が制限されたことから,文化財等の燻蒸には,エキボン以外の数種類のガスが使用されるようになってきた。
酸化エチレンと希釈用ガスであるHFC134a(R134a)との混合ガス(商品名「エキヒューム」)はそれら文化財燻蒸ガスの代表例であり,現在,多くの博物館や美術館で使用されている。
However, in recent years, the use of methyl bromide contained in the above-mentioned “Ekbon” has been restricted as a measure against ozone holes, and several types of gases other than Ekbon have come to be used for fumigation of cultural properties. It was.
A mixed gas (trade name “Exfume”) of ethylene oxide and HFC134a (R134a) which is a dilution gas is a representative example of such a cultural property fumigation gas, and is currently used in many museums and art galleries.

ところで,上述したように酸化エチレンは殺菌・殺虫能力を有しているが,上記「エキヒューム」に含まれているHFC134a(化学式:CH2FCF3)は殺菌・殺虫能力を有していない。
また,「エキヒューム」の酸化エチレンとHFC134aとの濃度比は1:2.5でHFC134aの方が多い。さらに,燻蒸時,酸化エチレンは燻蒸対象物に吸着されるがHFC134aは殆ど吸着されない。このため,燻蒸庫内においては,経時的かつ相対的に,殺菌・殺虫能力を有していないHFC134aの濃度が濃くなる。
したがって,光干渉計式ガス濃度計を用いて上記「エキヒューム」の濃度測定(総量測定)を行っても(仮に経時的に行ったとしても),燻蒸庫内の滅菌(殺菌・殺虫)能力の程度を把握することはできない。
By the way, as described above, ethylene oxide has a sterilizing and insecticidal ability, but HFC134a (chemical formula: CH2FCF3) contained in the “exfume” does not have a sterilizing and insecticidal ability.
In addition, the concentration ratio of “exfume” ethylene oxide to HFC134a is 1: 2.5, and HFC134a is more common. Further, during fumigation, ethylene oxide is adsorbed on the fumigation object, but HFC134a is hardly adsorbed. For this reason, in the fumigation store, the concentration of HFC134a having no sterilizing / insecticidal ability increases with time.
Therefore, even if the concentration measurement (total amount measurement) of the above “exfume” is performed using an optical interferometer type gas concentration meter (even if it is performed over time), the sterilization (sterilization / insecticing) capability of the fumigation chamber The degree cannot be grasped.

このため,上記「エキヒューム」を用いて燻蒸を行う場合において燻蒸庫内の滅菌(殺菌・殺虫)能力の程度を把握するためには,燻蒸庫内空間における,HFC134a共存下での酸化エチレン濃度を測定する必要が生じる。
「エキヒューム」を用いて文化財等の燻蒸を行う上での酸化エチレン濃度は,燻蒸初期時で1.5〜2.0%,24時間後で1%以上が必要とされる。
一方,「エキヒューム」に含まれる酸化エチレンは可燃性ガスであるから,接触燃焼式(触媒燃焼式)センサで爆発下限界濃度(3%)迄の濃度測定が可能である。
そこで現在,接触燃焼式センサを有する検知部を用いて,燻蒸時における燻蒸庫内空間の酸化エチレン濃度を経時的に計測するということが行われている。
Therefore, in order to grasp the degree of sterilization (sterilization and insecticidal) ability in the fumigation chamber when fumigation is performed using the above “exfume”, the ethylene oxide concentration in the fumigation chamber space in the presence of HFC134a is determined. There is a need to measure.
The concentration of ethylene oxide when fumigating cultural assets using “Exfume” is 1.5 to 2.0% at the beginning of fumigation, and 1% or more after 24 hours.
On the other hand, since ethylene oxide contained in “Exfume” is a flammable gas, it is possible to measure the concentration up to the lower explosion limit concentration (3%) with a catalytic combustion type (catalytic combustion type) sensor.
Therefore, at present, the detection unit having a contact combustion type sensor is used to measure the ethylene oxide concentration in the fumigation chamber during fumigation over time.

図8は,接触燃焼式センサを用いた検知部による濃度測定の原理を説明する原理図である。
同図に示すように,検知部10には,可燃性ガスの酸化反応に対して高い触媒活性を持つ白金やパラジウムからなり,定電流にて比較的低温度に熱せられるガス検知素子(接触燃焼式センサ)DSが組み込まれている。被検気体中の可燃性ガスは,このガス検知素子に触れると触媒作用によって燃焼(触媒燃焼)し,燃焼によって生じた熱がガス検知素子DSの電気抵抗を増大させる。電気抵抗の増大量は被検ガス中の可燃性ガスの濃度に比例するので,電気回路中のメーターMにより濃度を表示することができる(例えば特許文献1,0007〜0009段落参照)。
なお,電気回路中のCSは,ガスの接触燃焼以外の温度変化および圧力変動による測定誤差を補償するための,不感処理を施した温度補償素子であり,検知素子と同一構成の素子をガラスで被覆した構成となっている。
文化財等の燻蒸は,通常,燻蒸庫内を負圧に維持した状態で行われることから,上記のような圧力変動に対応した検知部を用いることが望ましい。
FIG. 8 is a principle diagram for explaining the principle of concentration measurement by a detection unit using a contact combustion type sensor.
As shown in the figure, the detection unit 10 is made of platinum or palladium having a high catalytic activity for the oxidation reaction of combustible gas and is heated to a relatively low temperature with a constant current (contact combustion). Type sensor) DS is incorporated. When the combustible gas in the test gas touches the gas detection element, it burns by catalytic action (catalytic combustion), and the heat generated by the combustion increases the electrical resistance of the gas detection element DS. Since the amount of increase in electrical resistance is proportional to the concentration of the combustible gas in the test gas, the concentration can be displayed by the meter M in the electrical circuit (see, for example, Patent Document 1, 0007 to 0009 paragraphs).
The CS in the electric circuit is a temperature compensation element that has been subjected to insensitive processing to compensate for measurement errors due to temperature changes and pressure fluctuations other than gas catalytic combustion. It has a covered structure.
Since fumigation of cultural assets is usually performed with the inside of the fumigation chamber maintained at a negative pressure, it is desirable to use a detection unit that responds to the pressure fluctuation as described above.

現在,一般的に,燻蒸時における燻蒸庫内空間の酸化エチレン濃度の経時的計測は,以上のような検知部を用いて連続的に(例えば24時間燻蒸する場合には24時間連続して)行っている。
現在,実用に供される上記検知部10のガス検知素子(接触燃焼式センサ)の主成分はパラジウムである。
一方,文化財等の燻蒸に用いられる「エキヒューム」に共存するHFC134aの化学式はCH2FCF3であることから,そのF成分(フッ素)が触媒毒として前記ガス検知素子の触媒(主成分パラジウム)の機能を低下させる。
Currently, in general, the time-dependent measurement of the ethylene oxide concentration in the fumigation chamber during fumigation is continuously performed using the detector as described above (for example, 24 hours in the case of fumigation for 24 hours). Is going.
Currently, the main component of the gas detection element (contact combustion sensor) of the detection unit 10 that is put into practical use is palladium.
On the other hand, since the chemical formula of HFC134a coexisting with “Exfume” used for fumigation of cultural assets, etc. is CH2FCF3, the F component (fluorine) serves as a catalyst poison to function as a catalyst (main component palladium) of the gas detection element. Reduce.

現在一般に行われている燻蒸庫内酸化エチレン濃度の測定では,燻蒸中,連続的に測定がなされるので,ガス検知素子が測定ガスである燻蒸ガスに連続して略常時接触する(暴露される)。このため,ガス検知素子の感度が経時的に低下し,正確な濃度測定を行うことができなくなるという問題が生じている。
上述したように,「エキヒューム」の酸化エチレンとHFC134aとの濃度比は1:2.5でHFC134aの方が多く,また,燻蒸時,酸化エチレンが燻蒸対象物に吸着されるのに対してHFC134aは殆ど吸着されないことで経時的かつ相対的にHFC134aの濃度が濃くなり,さらにまた,燻蒸中に追加投薬がなされることがあると,同様の理由でHFC134aの濃度が更に濃くなることから触媒毒作用が加速されて,酸化エチレン濃度の正確な測定がより一層困難になる。
In the measurement of ethylene oxide concentration in the fumigation chamber, which is generally performed at present, the measurement is made continuously during fumigation, so the gas detection element is in continuous contact with the fumigation gas that is the measurement gas (almost always exposed). ). For this reason, there is a problem that the sensitivity of the gas detection element decreases with time and accurate concentration measurement cannot be performed.
As described above, the concentration ratio of ethylene oxide and HFC134a in “Exfume” is 1: 2.5, which is higher in HFC134a. In addition, during fumigation, ethylene oxide is adsorbed by the fumigation target, whereas HFC134a. Is hardly adsorbed, so that the concentration of HFC134a increases with time and relatively, and if additional dosage is given during fumigation, the concentration of HFC134a increases for the same reason. The action is accelerated, making it more difficult to accurately measure the ethylene oxide concentration.

そこで本件出願人は,特許文献2に見られるように,燻蒸庫内可燃性ガス(酸化エチレン)濃度の測定を経時的にかつ正確に行うことを目的として,間欠的に所定時間のみ接触燃焼式センサへ燻蒸ガスを導入し,当該燻蒸ガス中の可燃性ガスの濃度を測定した後,接触燃焼式ガスセンサへ燻蒸ガスを含ないエアを導入して当該センサ回りの燻蒸ガス(したがって触媒毒)を掃気するようにした燻蒸ガス濃度測定装置をすでに提案し,実施している。
このような装置によれば,接触燃焼式センサが燻蒸ガスに接触する(暴露される)時間を短くし,それによって接触燃焼式センサの感度低下を抑制して,燻蒸庫内可燃性ガス濃度の測定を経時的にかつ従来に比べて正確に行うことが可能となる。
Therefore, as shown in Patent Document 2, the applicant of the present application intermittently detects the concentration of combustible gas (ethylene oxide) in the fumigation chamber over time and accurately only for a predetermined time. After introducing the fumigation gas into the sensor and measuring the concentration of the combustible gas in the fumigation gas, air containing no fumigation gas is introduced into the contact combustion type gas sensor, and the fumigation gas (and thus catalyst poison) around the sensor is removed. We have already proposed and implemented a fumigation gas concentration measuring device designed to scavenge.
According to such a device, the time that the contact combustion sensor contacts (exposes) the fumigation gas is shortened, thereby suppressing the decrease in sensitivity of the contact combustion sensor, and the combustible gas concentration in the fumigation chamber is reduced. Measurement can be performed with time and more accurately than in the past.

特開2005−321216号公報JP 2005-321216 A 特開2007−256131号公報JP 2007-256131 A

上述したように,特許文献2記載の装置によれば,接触燃焼式センサが燻蒸ガスに接触する時間を短くすることで,接触燃焼式センサの感度低下を抑制することが可能になった。
しかしながら,この装置であっても,長期間運用する(燻蒸作業を何度も行う)と,やはり接触燃焼式センサの感度が次第に低下してくるという課題は依然として残っている。
本発明の目的は,上記課題を解決し,燻蒸庫内における殺菌・殺虫用ガスの濃度測定を経時的にかつより正確に行うことができる燻蒸ガス濃度測定方法およびその方法を用いた燻蒸ガス濃度測定装置を提供することにある。
As described above, according to the device described in Patent Document 2, it is possible to suppress a decrease in sensitivity of the contact combustion type sensor by shortening the time during which the contact combustion type sensor contacts the fumigation gas.
However, even with this device, the problem remains that the sensitivity of the contact combustion sensor gradually decreases when operated for a long period of time (fumigation is repeated many times).
The object of the present invention is to solve the above-mentioned problems and to measure the concentration of the gas for sterilization and insecticide in the fumigation chamber over time and more accurately, and the fumigation gas concentration using the method. It is to provide a measuring device.

上記目的を達成するために本発明の燻蒸ガス濃度測定方法は,燻蒸庫内に燻蒸対象物を収納し,殺菌・殺虫性および可燃性ならびに赤外線吸収性を有する殺菌・殺虫用ガスと,この殺菌・殺虫用ガスよりも弱い赤外線吸収性を有しかつ触媒毒として作用する希釈用ガスと,を含む燻蒸ガスを燻蒸庫内に入れて燻蒸対象物を燻蒸するに際し,
燻蒸ガスを燻蒸庫内に入れた後,先ず赤外線式ガスセンサにて燻蒸庫内における前記殺菌・殺虫用ガスの濃度を測定して第1測定値を得,次いで,接触燃焼式ガスセンサにて燻蒸庫内における前記殺菌・殺虫用ガスの濃度を測定して第2測定値を得るとともに,前記第1測定値を第2測定値で割った補正値を得,その後,経時的に,前記接触燃焼式ガスセンサにて燻蒸庫内における前記殺菌・殺虫用ガスの濃度を間欠的に繰り返し測定し,その測定値に前記補正値を乗じた値を,燻蒸庫内におけるガス濃度値として間欠的に繰り返し得ることを特徴とする。
この燻蒸ガス濃度測定方法によれば,次のような作用効果が得られる。
殺菌・殺虫用ガスと希釈用ガスとの混合ガスである燻蒸ガスを用いて燻蒸作業を行う過程において,殺菌・殺虫用ガスの希釈用ガスに対する相対濃度は,燻蒸過程の初期段階においては高いが,燻蒸が進むにつれて,殺菌・殺虫用ガスは燻蒸対象に吸収されてゆくから,殺菌・殺虫用ガスの希釈用ガスに対する相対濃度は次第に低くなって行く。
本発明において用いる殺菌・殺虫用ガスは,希釈用ガスに比べて赤外線吸収性が強い(赤外線吸収度合いが高い)から,燻蒸ガス中の殺菌・殺虫用ガスの濃度は,赤外線式ガスセンサによって測定することが可能である。赤外線式ガスセンサは,ガス感度の安定性および再現性に優れており,殺菌・殺虫用ガスの希釈用ガスに対する相対濃度が高いとき,殺菌・殺虫用ガスの濃度を正確に測定することが可能である。しかし,上記相対濃度が低くなると,燻蒸ガス中の殺菌・殺虫用ガスの濃度を赤外線式ガスセンサで正確に測定することは困難になる。
一方,接触燃焼式ガスセンサは,可燃性ガスに対してはその濃度に比例した信号を出力する。本発明において用いる殺菌・殺虫用ガスは可燃性ガスであるから,接触燃焼式ガスセンサは,本発明において用いる殺菌・殺虫用ガスに対しては,その濃度に比例した信号を出力する。しかし,本発明において用いる燻蒸ガスは触媒毒として作用する希釈用ガスを含んでいるので,測定時間が総体的に長くなる(燻蒸作業を何度も行う)につれて,接触燃焼式ガスセンサの感度は次第に低下してゆく。
この発明では,燻蒸ガスを燻蒸庫内に入れた後,先ず赤外線式ガスセンサにて燻蒸庫内における殺菌・殺虫用ガスの濃度を測定して第1測定値を得るから,殺菌・殺虫用ガスの希釈用ガスに対する相対濃度が高い初期段階において,赤外線式ガスセンサにて正確に第1測定値を得ることができる。赤外線式ガスセンサは,ガス感度の安定性および再現性に優れているから,燻蒸作業を長期に亘って何度行ったとしても,第1測定値は,その度ごとに正確に得ることができる。
次いで,この発明では,接触燃焼式ガスセンサにて燻蒸庫内における前記殺菌・殺虫用ガスの濃度を測定して第2測定値を得るとともに,前記第1測定値を第2測定値で割った補正値を得るが,このとき,接触燃焼式ガスセンサの感度が仮に低下していたとしても,上記第1測定値は正確に得られているから,補正値自体は正確に得ることができる。
その後,この発明では,経時的に,接触燃焼式ガスセンサにて燻蒸庫内における殺菌・殺虫用ガスの濃度を間欠的に繰り返し測定し,その測定値に前記補正値を乗じた値を,燻蒸庫内におけるガス濃度値として間欠的に繰り返し得るから,仮に,接触燃焼式ガスセンサの感度が長期運用により低下していたとしても,燻蒸庫内における殺菌・殺虫用ガスの濃度を経時的に正確に測定することが可能となる。
上記の補正は,燻蒸作業が行われる度になされるから,長期に亘って,正確なガス濃度測定を行うことが可能となる。
望ましくは,前記赤外線式ガスセンサによる測定は,燻蒸庫内空間の上下方向において2以上の箇所で行い,それらの測定値が一致したとき,該測定値を前記第1測定値とする。
このようにすると,第1測定値を,より正確に得ることができ,したがって,より正確な補正値を得ることができる。
また望ましくは,前記第2測定値自体に関しても,前記補正値を乗じて,燻蒸庫内におけるガス濃度値を得る。
このようにすると,接触燃焼式ガスセンサによる初回の測定値である前記第2測定値を,前記補正値を得るためだけでなく,接触燃焼式ガスセンサに基づく初回のガス濃度値を得るのに利用できる。
また上記目的を達成するために本発明の燻蒸ガス濃度測定装置は,請求項1記載の燻蒸ガス濃度測定方法を用いたガス濃度測定装置であって,
燻蒸庫内の燻蒸ガスを赤外線式ガスセンサに導入して燻蒸ガス中の殺菌・殺虫用ガスの濃度を測定して前記第1測定値を得る第1測定手段と,
燻蒸庫内の燻蒸ガスを接触燃焼式ガスセンサに導入して燻蒸ガス中の殺菌・殺虫用ガスの濃度を測定して前記第2測定値を得る第2測定手段と,
前記第1測定値を前記第2測定値で割って前記補正値を得るとともに,その補正値を記憶し,その後の前記第2測定手段による測定値に前記補正値を乗じた値を,燻蒸庫内におけるガス濃度値として得る制御部と,
を備えていることを特徴とする。
この燻蒸ガス濃度測定装置によれば,請求項1記載の燻蒸ガス濃度測定方法による作用効果と同様な作用効果が得られる。
望ましくは,前記赤外線式ガスセンサに燻蒸庫内の燻蒸ガスを導入する導入経路と,前記接触燃焼式ガスセンサに燻蒸庫内の燻蒸ガスを導入する導入経路とを,共通の導入経路で構成する。
このように構成すると,前記補正値をより正確に得ることができる。
仮に,赤外線式ガスセンサに燻蒸庫内の燻蒸ガスを導入する導入経路と,接触燃焼式ガスセンサに燻蒸庫内の燻蒸ガスを導入する導入経路とを,個別に構成したとすると,赤外線式ガスセンサに導入される燻蒸ガスの状態と,接触燃焼式ガスセンサに導入される燻蒸ガスの状態との間に大きな差異が生じるおそれが生じ,前記補正値を正確に得ることができなくなるおそれが大きくなる。
これに対し,赤外線式ガスセンサに燻蒸庫内の燻蒸ガスを導入する導入経路と,接触燃焼式ガスセンサに燻蒸庫内の燻蒸ガスを導入する導入経路とを共通の導入経路で構成すると,赤外線式ガスセンサに導入される燻蒸ガスの状態と,接触燃焼式ガスセンサに導入される燻蒸ガスの状態との間に大きな差異が生じないか生じたとしてもその差異は著しく小さくなる。したがって,前記補正値をより正確に得ることができる。
In order to achieve the above object, the fumigation gas concentration measuring method of the present invention comprises storing a fumigation object in a fumigation chamber, sterilizing / insecticidal and flammable and infrared absorbing gas, -When fumigating a fumigation object by placing a fumigation gas containing a dilution gas that has a weaker infrared absorption than an insecticidal gas and acts as a catalyst poison into the fumigation chamber,
After the fumigation gas is put in the fumigation chamber, first, the concentration of the sterilizing and insecticidal gas in the fumigation chamber is measured with an infrared gas sensor to obtain a first measured value, and then the fumigation chamber with a contact combustion type gas sensor. The concentration of the gas for sterilization / insecticide is measured to obtain a second measured value, and a correction value obtained by dividing the first measured value by the second measured value is obtained. The gas sensor can intermittently repeatedly measure the concentration of the sterilizing / insecticidal gas in the fumigation chamber, and multiply the measured value by the correction value to intermittently repeat the gas concentration value in the fumigation chamber. It is characterized by.
According to this fumigation gas concentration measuring method, the following effects can be obtained.
In the process of fumigation using fumigation gas, which is a mixed gas of sterilization / insecticide gas and dilution gas, the relative concentration of sterilization / insecticide gas to dilution gas is high in the initial stage of fumigation process. As the fumigation progresses, the sterilizing / insecticidal gas is absorbed by the object of fumigation, so that the relative concentration of the sterilizing / insecticidal gas to the dilution gas gradually decreases.
The sterilizing / insecticing gas used in the present invention has a higher infrared absorptivity (higher infrared absorption) than the dilution gas, so the concentration of the sterilizing / insecticing gas in the fumigation gas is measured by an infrared gas sensor. It is possible. The infrared gas sensor has excellent stability and reproducibility of gas sensitivity, and when the relative concentration of the sterilizing / insecticidal gas to the dilution gas is high, the concentration of the sterilizing / insecticidal gas can be accurately measured. is there. However, if the relative concentration becomes low, it becomes difficult to accurately measure the concentration of the sterilizing / insecticidal gas in the fumigation gas with the infrared gas sensor.
On the other hand, the catalytic combustion type gas sensor outputs a signal proportional to the concentration of combustible gas. Since the sterilizing / insecticidal gas used in the present invention is a combustible gas, the contact combustion type gas sensor outputs a signal proportional to the concentration of the sterilizing / insecticidal gas used in the present invention. However, since the fumigation gas used in the present invention contains a diluting gas that acts as a catalyst poison, the sensitivity of the catalytic combustion type gas sensor gradually increases as the measurement time becomes longer overall (fumigation is repeated many times). It will decline.
In this invention, after the fumigation gas is put in the fumigation chamber, the concentration of the sterilization / insecticide gas in the fumigation chamber is first measured by an infrared gas sensor to obtain the first measured value. In the initial stage where the relative concentration with respect to the dilution gas is high, the first measurement value can be accurately obtained by the infrared gas sensor. Since the infrared gas sensor is excellent in stability and reproducibility of gas sensitivity, the first measurement value can be obtained accurately every time no matter how many times fumigation work is performed.
Next, in the present invention, a contact combustion gas sensor is used to measure the concentration of the sterilizing / insecticidal gas in the fumigation chamber to obtain a second measured value, and to correct the first measured value divided by the second measured value. At this time, even if the sensitivity of the catalytic combustion type gas sensor is lowered, the correction value itself can be obtained accurately because the first measurement value is obtained accurately.
Thereafter, in the present invention, the concentration of the gas for sterilization and insecticide in the fumigation chamber is measured intermittently and repeatedly with the contact combustion gas sensor, and the value obtained by multiplying the measured value by the correction value is obtained. As the gas concentration value can be intermittently repeated in the inside, even if the sensitivity of the catalytic combustion type gas sensor has decreased due to long-term operation, the concentration of the sterilizing / insecticidal gas in the fumigation chamber can be accurately measured over time. It becomes possible to do.
Since the above correction is made every time fumigation is performed, accurate gas concentration measurement can be performed over a long period of time.
Desirably, the measurement by the infrared gas sensor is performed at two or more locations in the vertical direction of the space inside the fumigation chamber, and when the measured values coincide with each other, the measured value is set as the first measured value.
In this way, the first measurement value can be obtained more accurately, and thus a more accurate correction value can be obtained.
Desirably, the second measured value itself is also multiplied by the correction value to obtain a gas concentration value in the fumigation chamber.
In this way, the second measured value, which is the first measured value by the catalytic combustion type gas sensor, can be used not only to obtain the correction value but also to obtain the first gas concentration value based on the catalytic combustion type gas sensor. .
In order to achieve the above object, the fumigation gas concentration measuring device of the present invention is a gas concentration measuring device using the fumigation gas concentration measuring method according to claim 1,
First measuring means for obtaining the first measured value by introducing the fumigation gas in the fumigation chamber into an infrared gas sensor and measuring the concentration of the sterilizing / insecticidal gas in the fumigation gas;
Second measuring means for obtaining the second measured value by introducing the fumigation gas in the fumigation chamber into a contact combustion type gas sensor and measuring the concentration of the sterilizing / insecticidal gas in the fumigation gas;
The first measurement value is divided by the second measurement value to obtain the correction value, the correction value is stored, and the value obtained by multiplying the measurement value obtained by the second measurement means by the correction value is then stored in the fumigation chamber. A control unit for obtaining a gas concentration value in the inside,
It is characterized by having.
According to this fumigation gas concentration measuring device, the same effect as that obtained by the fumigation gas concentration measuring method according to claim 1 can be obtained.
Preferably, the introduction path for introducing the fumigation gas in the fumigation chamber into the infrared gas sensor and the introduction path for introducing the fumigation gas in the fumigation chamber into the contact combustion type gas sensor are configured as a common introduction path.
If comprised in this way, the said correction value can be obtained more correctly.
Assuming that the introduction path for introducing the fumigation gas in the fumigation chamber to the infrared gas sensor and the introduction path for introducing the fumigation gas in the fumigation chamber to the contact combustion type gas sensor are configured separately, the introduction path is introduced into the infrared gas sensor. There is a risk that a large difference occurs between the state of the fumigation gas to be produced and the state of the fumigation gas introduced into the catalytic combustion type gas sensor, and the possibility that the correction value cannot be obtained accurately increases.
On the other hand, if the introduction route for introducing the fumigation gas in the fumigation chamber into the infrared gas sensor and the introduction route for introducing the fumigation gas in the fumigation chamber into the contact combustion type gas sensor are configured as a common introduction route, the infrared gas sensor Even if there is a large difference between the state of the fumigation gas introduced into the gas and the state of the fumigation gas introduced into the catalytic combustion type gas sensor, the difference is remarkably reduced. Therefore, the correction value can be obtained more accurately.

燻蒸装置全体を示す図。The figure which shows the whole fumigation apparatus. 本発明に係る燻蒸ガス濃度測定装置の一実施の形態を示す配管及び回路図。The piping and circuit diagram which show one Embodiment of the fumigation gas concentration measuring apparatus which concerns on this invention. 赤外線式ガスセンサによるガス濃度の測定原理を示す図。The figure which shows the measurement principle of the gas concentration by an infrared type gas sensor. 赤外線式ガスセンサの回路図。The circuit diagram of an infrared type gas sensor. 検知部および増幅回路の具体例を示す図。The figure which shows the specific example of a detection part and an amplifier circuit. 測定シーケンスを示すフローチャート。The flowchart which shows a measurement sequence. 測定シーケンスを示すフローチャート。The flowchart which shows a measurement sequence. 接触燃焼式センサを用いた検知部による濃度測定の原理を説明する原理図。The principle figure explaining the principle of the density | concentration measurement by the detection part using a contact combustion type sensor.

以下,本発明に係る燻蒸ガス濃度測定方法およびその方法を用いた燻蒸ガス濃度測定装置の実施の形態について図面を参照して説明する。主として燻蒸ガス濃度測定装置について説明することで燻蒸ガス濃度測定方法についての説明ともする。
先ず,図1を参照して燻蒸装置およびその装置を用いた燻蒸作業の一例について説明し,次いで,燻蒸ガス濃度測定装置について説明する。
Embodiments of a fumigation gas concentration measuring method and a fumigation gas concentration measuring device using the method according to the present invention will be described below with reference to the drawings. The fumigation gas concentration measuring device will be mainly described to explain the fumigation gas concentration measurement method.
First, an example of the fumigation device and the fumigation work using the device will be described with reference to FIG. 1, and then the fumigation gas concentration measuring device will be described.

図1は燻蒸庫Cを含む燻蒸装置全体を示す図である。
図1に示す燻蒸装置100は,燻蒸庫C内の温度を一定に保つための温度調整装置101と,燻蒸庫C内を負圧状態に保つための減圧装置102と,燻蒸ガスが充填されている燻蒸ガス容器103と,この燻蒸ガス容器103に配管121,燻蒸ガス元弁122,投薬速度調整弁123を介して接続されている気化器104と,燻蒸ガス容器103の重さを秤量する秤量器105と,気化器104からの燻蒸ガスを投薬弁124を介して燻蒸庫C内に供給するための配管125と,燻蒸庫C内のガス濃度を定期的に確認・記録するための燻蒸ガス濃度測定装置1と,庫内残留ガスを吸着装置107に送る排気装置106と,上記温度調整装置101,減圧装置102,気化器104,排気装置106,および投薬弁124の作動を制御する燻蒸制御盤110と,燻蒸庫C内の温度を測定するための温度計111と,燻蒸庫C内の気圧を測定するための圧力計112とを有している。温度計111,圧力計112はそれぞれ燻蒸制御盤110に接続されている。
FIG. 1 is a diagram showing the entire fumigation apparatus including the fumigation warehouse C.
A fumigation device 100 shown in FIG. 1 is filled with a temperature adjusting device 101 for keeping the temperature in the fumigation chamber C constant, a decompression device 102 for keeping the inside of the fumigation chamber C in a negative pressure state, and fumigation gas. A fumigation gas container 103, a vaporizer 104 connected to the fumigation gas container 103 via a pipe 121, a fumigation gas main valve 122, a dosing rate adjustment valve 123, and a weighing for weighing the fumigation gas container 103 105, a pipe 125 for supplying the fumigation gas from the vaporizer 104 into the fumigation chamber C through the dosing valve 124, and a fumigation gas for periodically checking and recording the gas concentration in the fumigation chamber C It controls the operation of the concentration measuring device 1, the exhaust device 106 for sending the residual gas in the cabinet to the adsorption device 107, the temperature adjusting device 101, the decompression device 102, the vaporizer 104, the exhaust device 106, and the dosing valve 124. A control panel 110, and a thermometer 111 for measuring the temperature in the fumigation chamber C, and a pressure gauge 112 for measuring the air pressure in the fumigation chamber C. The thermometer 111 and the pressure gauge 112 are each connected to the fumigation control panel 110.

燻蒸作業は,次のような投薬工程,燻蒸工程,および排気工程からなる。
投薬工程:
(1)燻蒸対象物(例えば文化財や美術品)Bを燻蒸庫Cに収納し,密閉する。
(2)燻蒸庫C内の温度を一定にする。
この工程は,温度計111の測定値に基づいて燻蒸制御盤110が温度調整装置101を制御することによって行われる。
(3)気化器104を一定温度に加温する
この工程は,気化器104に内蔵された図示しない温度センサの測定値に基づいて燻蒸制御盤110が気化器104を制御することによって行われる。
(4)燻蒸ガス容器103の重さを秤量器105で秤量する。
(5)燻蒸庫C内を適量減圧する。
この工程は,圧力計112の測定値に基づいて燻蒸制御盤110が減圧装置102を制御することによって行われる。
(6)投薬弁124,燻蒸ガス元弁122を開ける。
この作業は作業員によってなされる。投薬弁124は電磁弁であり,燻蒸制御盤110が備える図示しないスイッチを作業員が操作することで行われる。
(7)秤量器105を観測しながら投薬速度調整弁123にて燻蒸ガスを適量,適時間,気化器104に送る。
この作業は作業員によってなされる。この作業によって,燻蒸ガス容器103から適量の燻蒸ガスGが,気化器104および配管125を経て燻蒸庫C内に供給(投薬)される。
例えば,燻蒸庫Cの容積が10立方メートル=10000リットルであり,燻蒸ガスとして上述した「エキヒューム」を用いる場合,「エキヒューム」の有効滅菌剤は酸化エチレンであるから,燻蒸初期において酸化エチレンの濃度を例えば1.5%とするには,「エキヒューム」の投薬量は1964gとする。
なお,参考のために説明すると,この場合の上記投薬量は次のようにして算出することができる。
酸化エチレンの分子量は44であり,酸化エチレン44gが気化すると,22.4リットルの容積になる。
この容積の,燻蒸庫Cの容積=10000リットルに対する割合は,
22.4/10000=0.224%であるから,酸化エチレンの濃度を1.5%とするための倍率は1.5/0.224=6.696倍となる。
そのときの酸化エチレン質量は6.696&times;44=294.624gであり,「エキヒューム」中の酸化エチレン割合は15wt%であるから,
「エキヒューム投薬量」は294.624/0.15=1964g
となる。
(8)燻蒸ガス元弁122,投薬弁124を閉じる。
(9)後に詳しく説明するように,燻蒸ガス濃度測定装置1にて燻蒸ガスGが適量投薬されたことを確認する。
後述する上中下の測定結果が均等且つ所要の濃度に達していることを確認することで投薬工程が完了する。
The fumigation work consists of the following dosing process, fumigation process, and exhaust process.
Dosing process:
(1) A fumigation object (for example, a cultural asset or a work of art) B is stored in a fumigation box C and sealed.
(2) The temperature in the fumigation warehouse C is made constant.
This step is performed by the fumigation control panel 110 controlling the temperature adjustment device 101 based on the measured value of the thermometer 111.
(3) Heating the vaporizer 104 to a constant temperature This process is performed by the fumigation control panel 110 controlling the vaporizer 104 based on the measured value of a temperature sensor (not shown) built in the vaporizer 104.
(4) The fumigation gas container 103 is weighed by a weighing device 105.
(5) The inside of the fumigation warehouse C is depressurized by an appropriate amount.
This process is performed by the fumigation control panel 110 controlling the decompression device 102 based on the measured value of the pressure gauge 112.
(6) Open the dosing valve 124 and the fumigation gas main valve 122.
This work is done by workers. The medication valve 124 is an electromagnetic valve, and is operated by an operator operating a switch (not shown) provided in the fumigation control panel 110.
(7) While observing the weighing device 105, the fumigation gas is sent to the vaporizer 104 at an appropriate amount and at an appropriate time by the dosing rate adjusting valve 123.
This work is done by workers. By this operation, an appropriate amount of fumigation gas G is supplied (medicated) into the fumigation chamber C through the vaporizer 104 and the pipe 125 from the fumigation gas container 103.
For example, when the volume of the fumigation warehouse C is 10 cubic meters = 10000 liters and the above-mentioned “exfume” is used as the fumigation gas, the effective sterilant of “exfume” is ethylene oxide. For example, for 1.5%, the dosage of “Exfume” is 1964 g.
For reference, the above dosage in this case can be calculated as follows.
The molecular weight of ethylene oxide is 44. When 44 g of ethylene oxide is vaporized, the volume becomes 22.4 liters.
The ratio of this volume to the volume of fumigation warehouse C = 10,000 liters is
Since 22.4 / 10000 = 0.224%, the magnification for setting the ethylene oxide concentration to 1.5% is 1.5 / 0.224 = 6.696 times.
The ethylene oxide mass at that time is 6.696 &times; 44 = 294.624 g, and the ratio of ethylene oxide in “Exfume” is 15 wt%.
"Exfume dosage" is 294.624 / 0.15 = 1964g
It becomes.
(8) The fumigation gas main valve 122 and the dosing valve 124 are closed.
(9) As will be described in detail later, the fumigation gas concentration measuring device 1 confirms that an appropriate amount of fumigation gas G has been administered.
The dosing process is completed by confirming that the measurement results in the upper, middle, and lower portions, which will be described later, have reached a uniform and required concentration.

燻蒸工程:
(10)後に詳しく説明するように,燻蒸ガス濃度測定装置1にて燻蒸庫C内のガス濃度を定期的に確認・記録する。
Fumigation process:
(10) As will be described in detail later, the gas concentration in the fumigation chamber C is periodically confirmed and recorded by the fumigation gas concentration measuring device 1.

排気工程:
(11)排気装置106にて庫内残留ガスを吸着装置107に送る。
この作業は,燻蒸制御盤110が備える図示しない排気装置106作動用のスイッチを作業員が操作することで行われる。
(12)後述する燻蒸ガス濃度測定装置1にて庫内残留ガス濃度が所定値以下になっていることを確認することで排気行程が終了し,燻蒸作業の全工程が完了する。。
Exhaust process:
(11) The exhaust device 106 sends the residual gas in the cabinet to the adsorption device 107.
This operation is performed by an operator operating a switch (not shown) for operating the exhaust device 106 provided in the fumigation control panel 110.
(12) When the fumigation gas concentration measuring device 1 to be described later confirms that the residual gas concentration in the cabinet is equal to or less than a predetermined value, the exhaust stroke is completed, and all the fumigation work steps are completed. .

図2は本発明に係る燻蒸ガス濃度測定方法を用いた燻蒸ガス濃度測定装置の一実施の形態を示す配管及び回路図である。
この燻蒸ガス濃度測定装置1は,上述したように,燻蒸庫C内に燻蒸対象物Bを収納し,殺菌・殺虫性および可燃性ならびに赤外線吸収性を有する殺菌・殺虫用ガスと,この殺菌・殺虫用ガスよりも弱い赤外線吸収性を有しかつ触媒毒として作用する希釈用ガスと,を含む燻蒸ガスGを燻蒸庫C内に入れて燻蒸対象物Bを燻蒸する際に,燻蒸庫C内における燻蒸ガスG中の殺菌・殺虫用ガスの濃度を経時的に測定するためのガス濃度測定装置である。
この実施の形態では,殺菌・殺虫用ガスとして酸化エチレンを,希釈用ガスとしてHFC134aを有する「エキヒューム」を燻蒸ガスGとして用いている。
FIG. 2 is a piping and circuit diagram showing an embodiment of a fumigation gas concentration measuring apparatus using the fumigation gas concentration measuring method according to the present invention.
As described above, the fumigation gas concentration measuring device 1 stores the fumigation object B in the fumigation chamber C, and has a bactericidal / insecticidal gas having a bactericidal / insecticidal and flammable property and an infrared absorbing property. When fumigating the fumigation object B with the fumigation gas G containing the dilution gas having a weaker infrared absorption than the insecticidal gas and acting as a catalyst poison in the fumigation chamber C, It is a gas concentration measuring device for measuring the density | concentration of the gas for disinfection and insecticide in the fumigation gas G in FIG.
In this embodiment, ethylene oxide is used as the sterilizing / insecticidal gas, and “exfume” having HFC134a as the diluting gas is used as the fumigation gas G.

図2に示すように,燻蒸ガス濃度測定装置1は,燻蒸庫C内の燻蒸ガスGを赤外線式ガスセンサ70に導入して燻蒸ガスG中の殺菌・殺虫用ガスの濃度を測定して第1測定値を得る第1測定手段M1と,
燻蒸庫C内の燻蒸ガスGを接触燃焼式ガスセンサDSに導入して燻蒸ガスG中の殺菌・殺虫用ガスの濃度を測定して第2測定値を得る第2測定手段M2と,
前記第1測定値を前記第2測定値で割って補正値を得るとともに,その補正値を記憶し,その後の前記第2測定手段M2による測定値に前記補正値を乗じた値を,燻蒸庫C内におけるガス濃度値として得る制御部60と,
を備えている。
As shown in FIG. 2, the fumigation gas concentration measuring device 1 introduces the fumigation gas G in the fumigation chamber C into the infrared gas sensor 70 to measure the concentration of the sterilizing / insecticidal gas in the fumigation gas G First measuring means M1 for obtaining measured values;
A second measuring means M2 for introducing the fumigation gas G in the fumigation chamber C into the contact combustion gas sensor DS and measuring the concentration of the sterilizing / insecticidal gas in the fumigation gas G to obtain a second measured value;
The first measurement value is divided by the second measurement value to obtain a correction value, the correction value is stored, and a value obtained by multiplying the subsequent measurement value by the second measurement means M2 with the correction value is obtained. A control unit 60 which obtains a gas concentration value in C;
It has.

第1測定手段M1は,赤外線式ガスセンサ70と,この赤外線式ガスセンサ70に燻蒸庫C内の燻蒸ガスGを導入する燻蒸ガス導入管20およびこの燻蒸ガス導入管20に介装された燻蒸ガス用電磁弁(SV1〜SV3)と,赤外線式ガスセンサ70へ,燻蒸ガスGを含ないエアAを導入するエア導入管30およびこのエア導入管30に介装されたエア用電磁弁(SV4−1)と,を有している。   The first measuring means M1 includes an infrared gas sensor 70, a fumigation gas introduction pipe 20 for introducing the fumigation gas G in the fumigation chamber C into the infrared gas sensor 70, and a fumigation gas intervening in the fumigation gas introduction pipe 20 An electromagnetic valve (SV1 to SV3), an air introduction pipe 30 for introducing air A that does not contain fumigation gas G into the infrared gas sensor 70, and an electromagnetic valve for air (SV4-1) interposed in the air introduction pipe 30 And have.

図3は赤外線式ガスセンサ70によるガス濃度の測定原理を示す図である。
赤外線式ガスセンサ70は,測定セル71,赤外線源72,検出ガスに対応したガス検出側帯域フィルタ73f,ガス検出側センサ73s,参照側帯域フィルタ74f,参照側センサ74s,およびこれらセンサの信号を増幅してガス濃度信号(測定信号)として出力する増幅器75とを備えている。
赤外線源72から放射された赤外線は,被検ガスにて吸収された波長以外が帯域フィルタで除去された後にガス検出側センサ73sに到達する。
上記吸収の度合いがガス濃度に比例することから,濃度を知ることができる。
すなわち,赤外線式ガスセンサ70は,赤外線がガスによって吸収される度合いがガス濃度に比例することを利用してガス濃度を測定するセンサである。
FIG. 3 is a diagram showing the principle of measuring the gas concentration by the infrared gas sensor 70.
The infrared gas sensor 70 amplifies the measurement cell 71, the infrared source 72, the gas detection side band filter 73f corresponding to the detection gas, the gas detection side sensor 73s, the reference side band filter 74f, the reference side sensor 74s, and signals of these sensors. And an amplifier 75 that outputs the gas concentration signal (measurement signal).
The infrared rays emitted from the infrared source 72 reach the gas detection side sensor 73s after the band filter removes the wavelengths other than those absorbed by the test gas.
Since the degree of absorption is proportional to the gas concentration, the concentration can be known.
That is, the infrared gas sensor 70 is a sensor that measures the gas concentration by utilizing the fact that the degree of absorption of infrared rays by gas is proportional to the gas concentration.

殺菌・殺虫用ガスと希釈用ガスとの混合ガス中の殺菌・殺虫用ガスの濃度を赤外線式ガスセンサ70で測定するためには,測定対象である殺菌・殺虫用ガスの赤外線吸収度合い(赤外線吸収性)が希釈用ガスによる赤外線吸収度合いに比べて高い必要がある。この実施の形態で用いる酸化エチレンによる赤外線吸収度合い(赤外線吸収性)はHFC134aによる赤外線吸収度合いに比べて数倍高いので,燻蒸ガスG中の酸化エチレン濃度を赤外線式ガスセンサ70で測定することが可能である。
図2に示す赤外線式ガスセンサ70にて得られたガス濃度信号(IR Gas sig)は制御部60へ送出される。
なお,図4に赤外線式ガスセンサ70の具体的な回路図の一例を示す。
In order to measure the concentration of the sterilizing / insecticidal gas in the gas mixture of the sterilizing / insecticidal gas and the dilution gas with the infrared gas sensor 70, the infrared absorption degree of the sterilizing / insecticidal gas to be measured (infrared absorption) Property) must be higher than the degree of infrared absorption by the dilution gas. Since the infrared absorption degree (infrared absorptivity) by ethylene oxide used in this embodiment is several times higher than the infrared absorption degree by HFC134a, it is possible to measure the ethylene oxide concentration in the fumigation gas G with the infrared gas sensor 70. It is.
A gas concentration signal (IR Gas sig) obtained by the infrared gas sensor 70 shown in FIG. 2 is sent to the control unit 60.
FIG. 4 shows an example of a specific circuit diagram of the infrared gas sensor 70.

図2に示すように,第2測定手段M2は,燻蒸ガスG中の可燃性ガスである酸化エチレンと接触して触媒燃焼を生じさせる触媒を有し,触媒燃焼による燃焼熱で電気抵抗値が変動する接触燃焼式ガスセンサDSと,この接触燃焼式ガスセンサDSの電気抵抗値の変動量を電気量に変換する電気回路とを有する検知部10と,
燻蒸庫C内の燻蒸ガスGを接触燃焼式ガスセンサDSへ導入する燻蒸ガス導入管20およびこの燻蒸ガス導入管20に介装された燻蒸ガス用電磁弁(SV1〜SV3)と,
接触燃焼式ガスセンサDSへ,燻蒸ガスGを含ないエアAを導入するエア導入管30およびこのエア導入管30に介装されたエア用電磁弁(SV4−1)と,を有している。
As shown in FIG. 2, the second measuring means M2 has a catalyst that comes into contact with ethylene oxide, which is a combustible gas in the fumigation gas G, and causes catalytic combustion. A detection unit 10 having a fluctuating catalytic combustion type gas sensor DS and an electric circuit for converting the fluctuation amount of the electric resistance value of the catalytic combustion type gas sensor DS into an electric quantity;
A fumigation gas introduction pipe 20 for introducing the fumigation gas G in the fumigation warehouse C to the contact combustion type gas sensor DS, and fumigation gas solenoid valves (SV1 to SV3) interposed in the fumigation gas introduction pipe 20;
The catalytic combustion type gas sensor DS has an air introduction pipe 30 for introducing air A containing no fumigation gas G, and an air solenoid valve (SV4-1) interposed in the air introduction pipe 30.

接触燃焼式センサDSは,図8を参照して先に説明したセンサ(パラジウムを主成分としたセンサ)で構成されている。また,検知部10は図8を参照して先に説明した原理に即した電気回路を有している。
11は検知部10からのセンサ出力を増幅するための増幅回路である。
The catalytic combustion type sensor DS is composed of the sensor described above with reference to FIG. Further, the detection unit 10 has an electric circuit based on the principle described above with reference to FIG.
Reference numeral 11 denotes an amplifier circuit for amplifying the sensor output from the detection unit 10.

図5に上記検知部10および増幅回路11の具体例を示す。
図5に示すように,この実施の形態では,ガスの接触燃焼以外の温度変化および圧力変動による測定誤差(すなわち燻蒸庫C内の温度変化および圧力変動による測定誤差)を補償すべく,温度補償素子CSに対しても,接触燃焼式ガスセンサDSに対してと同様に,燻蒸ガスGまたはエアAを導入する。
FIG. 5 shows a specific example of the detection unit 10 and the amplifier circuit 11.
As shown in FIG. 5, in this embodiment, in order to compensate for measurement errors due to temperature changes and pressure fluctuations other than catalytic combustion of gas (that is, measurement errors due to temperature changes and pressure fluctuations in the fumigation chamber C), temperature compensation is performed. Similarly to the catalytic combustion type gas sensor DS, the fumigation gas G or air A is also introduced into the element CS.

この実施の形態における文化財等の燻蒸は,燻蒸庫C内を負圧に維持した状態で行われることから,上記のような圧力変動に対応した検知部10を用いる。
図5において,DS1は接触燃焼式ガスセンサDSが収納され,燻蒸ガスGまたはエアAが導入されるガスチャンバ,CS1は温度補償素子CSが収納され,燻蒸ガスGまたはエアAが導入されるガスチャンバである。
これらチャンバDS1,CS1は連通路12で連通している。チャンバDS1の入り口に燻蒸ガス導入管20(エア導入管30でもある)が赤外線式ガスセンサ70および連通管20bを介して接続され,チャンバCS1の出口に後述する排気管51(図2参照)が接続される。
接触燃焼式ガスセンサDSを備えた検知部10にて得られたガス濃度信号(CC Gas sig)は制御部60へ送出される。
Since the fumigation of the cultural property or the like in this embodiment is performed with the inside of the fumigation warehouse C maintained at a negative pressure, the detection unit 10 corresponding to the pressure fluctuation as described above is used.
In FIG. 5, DS1 is a gas chamber in which a catalytic combustion type gas sensor DS is accommodated and fumigation gas G or air A is introduced, and CS1 is a gas chamber in which a temperature compensation element CS is accommodated and fumigation gas G or air A is introduced. It is.
The chambers DS1 and CS1 communicate with each other through a communication path 12. A fumigation gas introduction pipe 20 (also an air introduction pipe 30) is connected to the entrance of the chamber DS1 via an infrared gas sensor 70 and a communication pipe 20b, and an exhaust pipe 51 (see FIG. 2) described later is connected to the exit of the chamber CS1. Is done.
A gas concentration signal (CC Gas sig) obtained by the detection unit 10 including the contact combustion type gas sensor DS is sent to the control unit 60.

図2に示すように,燻蒸ガス導入管20は,その一端が赤外線式ガスセンサ70に接続され,さらに赤外線式ガスセンサ70から連通管20bを介して接触燃焼式ガスセンサDSに接続されている。燻蒸ガス導入管20の他端は,3本の採気管21,22,23に分岐されて燻蒸庫Cに接続されている。
採気管21は燻蒸庫Cの上部に接続されて燻蒸ガスの上部採気口21aを形成し,採気管22は燻蒸庫Cの中程に接続されて燻蒸ガスの中部採気口22aを形成し,採気管23は燻蒸庫Cの下部に接続されて燻蒸ガスの下部採気口23aを形成している。
採気管21,22,23には,ぞれぞれ,前述した燻蒸ガス用電磁弁SV1〜SV3と,エアフィルタ24と,手動操作バルブ25とが介装されている。3つの手動操作バルブ25は,燻蒸ガス濃度測定開始時に全て手動で開けられる。
As shown in FIG. 2, one end of the fumigation gas introduction pipe 20 is connected to an infrared gas sensor 70, and further connected from the infrared gas sensor 70 to a catalytic combustion gas sensor DS via a communication pipe 20 b. The other end of the fumigation gas introduction pipe 20 is branched into three air collection pipes 21, 22 and 23 and connected to the fumigation chamber C.
The sampling tube 21 is connected to the upper part of the fumigation chamber C to form the upper sampling port 21a of the fumigation gas, and the sampling tube 22 is connected to the middle of the fumigation chamber C to form the middle sampling port 22a of the fumigation gas. The sampling tube 23 is connected to the lower part of the fumigation chamber C to form a lower sampling port 23a for the fumigation gas.
The fumigation gas solenoid valves SV1 to SV3, the air filter 24, and the manual operation valve 25 are interposed in the sampling tubes 21, 22, and 23, respectively. All three manually operated valves 25 are manually opened at the start of measurement of the fumigation gas concentration.

エア導入管30は,その一部が上記燻蒸ガス導入管20と共通の管で構成されていて一端が赤外線式ガスセンサ70に接続され,さらに赤外線式ガスセンサ70から連通管20bを介して接触燃焼式ガスセンサDSに接続されている。エア導入管30の他端は,エアフィルタ31を介して大気に開放されている。エア導入管30には前述したエア用電磁弁SV4−1が介装されている。   A part of the air introduction pipe 30 is formed of a pipe common to the fumigation gas introduction pipe 20 and one end is connected to the infrared gas sensor 70. Further, the contact combustion type is connected from the infrared gas sensor 70 through the communication pipe 20b. It is connected to the gas sensor DS. The other end of the air introduction pipe 30 is opened to the atmosphere via an air filter 31. The air introduction pipe 30 is provided with the aforementioned air solenoid valve SV4-1.

燻蒸ガス導入管20およびエア導入管30の共通管部分にはポンプPと第1切換弁(三方電磁弁)SV5とが介装されている。
以上から分かるように,赤外線式ガスセンサ70に燻蒸庫C内の燻蒸ガスGを導入する導入経路と,接触燃焼式ガスセンサDSに燻蒸庫C内の燻蒸ガスGを導入する導入経路とは,共通の導入経路で構成されている。
A pump P and a first switching valve (three-way solenoid valve) SV5 are interposed in the common pipe portion of the fumigation gas introduction pipe 20 and the air introduction pipe 30.
As can be seen from the above, the introduction route for introducing the fumigation gas G in the fumigation chamber C to the infrared gas sensor 70 and the introduction route for introducing the fumigation gas G in the fumigation chamber C to the contact combustion type gas sensor DS are common. It consists of an introduction route.

第1切換弁SV5にはバイパス管50が接続されている。第1切換弁SV5は,通常,バイパス管50側に切り替わっている(図中「NO」参照)。
接触燃焼式ガスセンサDSの他端には,排気管51が接続され,この排気管51と上記バイパス管50とが,合流部52で合流し,その合流管53の先端に第2切換弁(三方電磁弁)SV4−2が設けられている。
A bypass pipe 50 is connected to the first switching valve SV5. The first switching valve SV5 is normally switched to the bypass pipe 50 side (see “NO” in the figure).
An exhaust pipe 51 is connected to the other end of the catalytic combustion type gas sensor DS. The exhaust pipe 51 and the bypass pipe 50 are joined at a junction 52, and a second switching valve (three-way) is connected to the tip of the junction pipe 53. (Electromagnetic valve) SV4-2 is provided.

第2切換弁SV4−2には,赤外線式ガスセンサ70を通過し,接触燃焼式ガスセンサDSに接触した後の燻蒸ガスGを燻蒸庫C内へ戻すための燻蒸ガス戻し管54が接続されている。燻蒸ガス戻し管54には手動操作バルブ55が設けられている。この手動操作バルブ55は,燻蒸ガス濃度測定時に手動で開けられる。第2切換弁SV4−2は,通常,燻蒸ガス戻し管54側を閉じている(図中「NC」参照)。この第2切換弁SV4−2は,後述するように,エア排気手段を構成する。
なお,排気管51には,上記バイパス管50との合流部52と接触燃焼式ガスセンサDSの間において,逆止弁56が設けられている。
The second switching valve SV4-2 is connected to a fumigation gas return pipe 54 for returning the fumigation gas G after passing through the infrared gas sensor 70 and contacting the contact combustion type gas sensor DS into the fumigation chamber C. . A manual operation valve 55 is provided in the fumigation gas return pipe 54. The manual operation valve 55 is manually opened when measuring the fumigation gas concentration. The second switching valve SV4-2 normally closes the fumigation gas return pipe 54 side (see “NC” in the figure). As will be described later, the second switching valve SV4-2 constitutes an air exhaust means.
The exhaust pipe 51 is provided with a check valve 56 between the junction 52 with the bypass pipe 50 and the contact combustion gas sensor DS.

制御部60は,少なくとも赤外線式ガスセンサ70にて得られた第1測定値と検知部10にて得られた第2測定値を記憶する記憶手段(RAM)80と,第1測定値を第2測定値で割って補正値を得ることができる演算手段とを有している。その補正値は記憶手段80に記憶される。演算手段は,第2測定手段M2による測定値に前記補正値を乗じた値を得ることができる演算手段である。   The control unit 60 includes storage means (RAM) 80 for storing at least the first measurement value obtained by the infrared gas sensor 70 and the second measurement value obtained by the detection unit 10, and the first measurement value as the second measurement value. Arithmetic means capable of dividing the measured value to obtain a correction value. The correction value is stored in the storage unit 80. The calculation means is calculation means that can obtain a value obtained by multiplying the measurement value obtained by the second measurement means M2 by the correction value.

制御部60は,上記第1測定値を得るための制御モードである投薬モードと,上記第2測定値を得るとともに,第1測定値を第2測定値で割った補正値を得,その後,経時的に,接触燃焼式ガスセンサDSにて燻蒸庫C内における殺菌・殺虫用ガスの濃度を間欠的に繰り返し測定し,その測定値に前記補正値を乗じた値を,燻蒸庫内におけるガス濃度値として間欠的に繰り返し得るための制御モードである燻蒸モードとを備えており,これら投薬モードと燻蒸モードとを切り替えるモード切替スイッチ90を有している。各モードによる制御については後述する。   The control unit 60 obtains a dosing mode which is a control mode for obtaining the first measurement value, the second measurement value, a correction value obtained by dividing the first measurement value by the second measurement value, and then Over time, the concentration of the sterilizing / insecticidal gas in the fumigation chamber C is measured intermittently with the catalytic combustion gas sensor DS, and the value obtained by multiplying the measured value by the correction value is the gas concentration in the fumigation chamber. A fumigation mode, which is a control mode for intermittently repeating values, is provided, and a mode changeover switch 90 for switching between the dosing mode and the fumigation mode is provided. The control in each mode will be described later.

制御部60は,燻蒸ガス用電磁弁(SV1〜SV3)とエア用電磁弁(SV4−1)とを後述するように,間欠的に作動させて,所定時間のみ赤外線式ガスセンサ70および接触燃焼式ガスセンサDSへ燻蒸ガスGを導入させて当該燻蒸ガスG中の殺菌・殺虫用ガスの濃度を測定させ,また,赤外線式ガスセンサ70および接触燃焼式ガスセンサDSへエアAを導入させてこれらセンサ回りの燻蒸ガスGを掃気させる,という動作を間欠的に繰り返し実行させる。なお,40はその制御用中継基板である。
また,この実施の形態では,制御部60は,測定結果等を表示するための表示部とプリンタを備えている。
The controller 60 operates the fumigation gas solenoid valves (SV1 to SV3) and the air solenoid valve (SV4-1) intermittently, as will be described later, and the infrared gas sensor 70 and the catalytic combustion type only for a predetermined time. The fumigation gas G is introduced into the gas sensor DS to measure the concentration of the sterilizing and insecticidal gas in the fumigation gas G, and the air A is introduced into the infrared gas sensor 70 and the catalytic combustion gas sensor DS to surround the sensors. The operation of scavenging the fumigation gas G is repeatedly executed repeatedly. Reference numeral 40 denotes the control relay board.
In this embodiment, the control unit 60 includes a display unit and a printer for displaying measurement results and the like.

上記電磁弁SV1〜SV3,SV4−1,第1切換弁SV5,第2切換弁SV4−2,およびポンプPは,それぞれ制御部60に電気的に接続されており,その作動が制御部60によって後述するように制御される。
前述した赤外線式ガスセンサ70,および増幅回路11は制御部60に接続されており,赤外線式ガスセンサ70および増幅回路11からの出力信号(ガス濃度信号)は,制御部60が備えるA/D変換器にてそれぞれA/D変換され,所定の演算処理がなされて表示部に濃度測定結果としてデジタル表示される。なお,測定結果はプリンタにてプリントアウトすることが可能である。
The solenoid valves SV1 to SV3, SV4-1, the first switching valve SV5, the second switching valve SV4-2, and the pump P are electrically connected to the control unit 60, respectively. Control is performed as described later.
The infrared gas sensor 70 and the amplifier circuit 11 described above are connected to the control unit 60, and an output signal (gas concentration signal) from the infrared gas sensor 70 and the amplifier circuit 11 is an A / D converter included in the control unit 60. Are subjected to A / D conversion, subjected to predetermined calculation processing, and digitally displayed as a concentration measurement result on the display unit. The measurement result can be printed out by a printer.

制御部60は,タイマ機能を備えており,このタイマ機構によって,この測定装置のユーザーが測定待機時間を設定することができるようになっている。制御部60は,ユーザーによって設定された上記測定待機時間に基づき,上記電磁弁SV1〜SV3,SV4−1,第1切換弁SV5,第2切換弁SV4−2,およびポンプPを後述のように作動させて燻蒸庫C内の酸化エチレン濃度を経時的に測定させる。なお,測定動作を行う際には,前述したように,手動操作バルブ25,55は予め開いておく。また,前述したように,第1切換弁SV5は,通常,バイパス管50側に切り替わっており,第2切換弁SV4−2は,通常,燻蒸ガス戻し管54側を閉じている。
制御部60は,上述したような演算および制御を可能とする演算・制御プログラムが格納されたマイクロコントローラで構成されている。
The control unit 60 has a timer function, and this timer mechanism allows a user of this measuring apparatus to set a measurement standby time. Based on the measurement waiting time set by the user, the controller 60 controls the solenoid valves SV1 to SV3, SV4-1, the first switching valve SV5, the second switching valve SV4-2, and the pump P as described later. Operate to measure the ethylene oxide concentration in the fumigation chamber C over time. When performing the measurement operation, the manual operation valves 25 and 55 are opened in advance as described above. As described above, the first switching valve SV5 is normally switched to the bypass pipe 50 side, and the second switching valve SV4-2 is normally closed to the fumigation gas return pipe 54 side.
The control unit 60 is configured by a microcontroller in which a calculation / control program that enables the calculation and control as described above is stored.

以下,前述した燻蒸作業における各工程と対応させて,制御部60による測定シーケンスについて説明する。
図6および図7は制御部60による測定シーケンスを示すフローチャートである。
図6は投薬モードによるシーケンスを示しており,図7は燻蒸モードによるシーケンスを示している。なお,図7に示す燻蒸モードにおけるシーケンスは,制御部60が備えるタイマーにより,60分おきに燻蒸ガスGの測定動作を3分間行うように設定された場合を示している。
Hereinafter, the measurement sequence by the control unit 60 will be described in correspondence with each process in the fumigation operation described above.
6 and 7 are flowcharts showing a measurement sequence by the control unit 60.
FIG. 6 shows a sequence in the medication mode, and FIG. 7 shows a sequence in the fumigation mode. The sequence in the fumigation mode shown in FIG. 7 shows a case where the measurement operation of the fumigation gas G is set to be performed every 60 minutes by the timer provided in the control unit 60 for 3 minutes.

燻蒸作業の前述した投薬工程を行う際に,当該投薬工程における上記(1)〜(8)の作業を行った後,すなわち燻蒸ガス元弁122,投薬弁124を閉じた後,(9)の作業すなわち,燻蒸ガス濃度測定装置1にて燻蒸ガスGが適量投薬されたことの確認作業を行うべく,モード切替スイッチ90を投薬モードに設定し,燻蒸ガス濃度測定装置1を作動させる。これにより,制御部60は,図6に示す下記シーケンスを実行する。   When performing the above-mentioned dosing process of the fumigation operation, after performing the operations (1) to (8) in the dosing process, that is, after closing the fumigation gas main valve 122 and the dosing valve 124, In order to perform the operation, that is, the operation for confirming that the fumigation gas G has been administered in an appropriate amount by the fumigation gas concentration measurement device 1, the mode changeover switch 90 is set to the administration mode and the fumigation gas concentration measurement device 1 is operated. Thereby, the control part 60 performs the following sequence shown in FIG.

(1)ステップST1で測定がスタートし,ステップST2〜7で採気管21,22,23内のガス置換を以下のようにして行う。
(2)ステップST2で,ポンプPを作動させるとともに,採気管21(CH.1)の電磁弁SV1をON(開)し,かつ,第2切換弁SV4−2を燻蒸ガス戻し管54側に切り替えて,58秒間,採気管21を通じて燻蒸庫C内の燻蒸ガスGを第1切換弁SV5まで吸引する。
この際,前述したように,第1切換弁SV5はバイパス管50側に切り替わっており,第2切換弁SV4−2は燻蒸ガス戻し管54側に切り替わっているので,採気管21を通じて吸引された燻蒸ガスGは,赤外線式ガスセンサ70および接触燃焼式ガスセンサDSへ導入されることなく,バイパス管50,第2切換弁SV4−2,および燻蒸ガス戻し管54を経て燻蒸庫C内へ戻される。
(3)ステップST3で,採気管21(CH.1)の電磁弁SV1をOFF(閉)するとともに,ポンプPを停止させる(これらの動作に2秒間かかる)。
(1) Measurement starts in step ST1, and gas replacement in the sampling tubes 21, 22, 23 is performed as follows in steps ST2-7.
(2) In step ST2, the pump P is operated, the electromagnetic valve SV1 of the sampling tube 21 (CH.1) is turned on (opened), and the second switching valve SV4-2 is moved to the fumigation gas return pipe 54 side. Then, the fumigation gas G in the fumigation chamber C is sucked to the first switching valve SV5 through the sampling tube 21 for 58 seconds.
At this time, as described above, the first switching valve SV5 is switched to the bypass pipe 50 side, and the second switching valve SV4-2 is switched to the fumigation gas return pipe 54 side. The fumigation gas G is returned to the fumigation chamber C through the bypass pipe 50, the second switching valve SV4-2, and the fumigation gas return pipe 54 without being introduced into the infrared gas sensor 70 and the catalytic combustion gas sensor DS.
(3) In step ST3, the solenoid valve SV1 of the sampling tube 21 (CH.1) is turned off (closed) and the pump P is stopped (the operation takes 2 seconds).

(4)ステップST4で,ポンプPを作動させるとともに,採気管22(CH.2)の電磁弁SV2をON(開)し,58秒間,採気管22を通じて燻蒸庫C内の燻蒸ガスGを第1切換弁SV5まで吸引する。
この際,前述したと同様,第1切換弁SV5はバイパス管50側に切り替わっており,第2切換弁SV4−2は燻蒸ガス戻し管54側に切り替わっているので,採気管22を通じて吸引された燻蒸ガスGは,赤外線式ガスセンサ70および接触燃焼式ガスセンサDSへ導入されることなく,バイパス管50,第2切換弁SV4−2,および燻蒸ガス戻し管54を経て燻蒸庫C内へ戻される。
(5)ステップST5で,採気管22(CH.2)の電磁弁SV2をOFF(閉)するとともに,ポンプPを停止させる(これらの動作に2秒間かかる)。
(4) In step ST4, the pump P is activated and the solenoid valve SV2 of the sampling tube 22 (CH.2) is turned on (opened), and the fumigation gas G in the fumigation chamber C is supplied through the sampling tube 22 for 58 seconds. Suction to 1 switching valve SV5.
At this time, as described above, the first switching valve SV5 has been switched to the bypass pipe 50 side, and the second switching valve SV4-2 has been switched to the fumigation gas return pipe 54 side. The fumigation gas G is returned to the fumigation chamber C through the bypass pipe 50, the second switching valve SV4-2, and the fumigation gas return pipe 54 without being introduced into the infrared gas sensor 70 and the catalytic combustion gas sensor DS.
(5) In step ST5, the electromagnetic valve SV2 of the air sampling tube 22 (CH.2) is turned off (closed) and the pump P is stopped (the operation takes 2 seconds).

(6)ステップST6で,ポンプPを作動させるとともに,採気管23(CH.3)の電磁弁SV3をON(開)し,58秒間採気管23を通じて燻蒸庫C内の燻蒸ガスGを第1切換弁SV5まで吸引する。
この際,前述したと同様,採気管23を通じて吸引された燻蒸ガスGは,バイパス管50,第2切換弁SV4−2,および燻蒸ガス戻し管54を経て燻蒸庫C内へ戻される。
(7)ステップST7で,採気管23(CH.3)の電磁弁SV3をOFF(閉)するとともに,ポンプPを停止させる(これらの動作に2秒間かかる)。
(6) In step ST6, the pump P is operated, the solenoid valve SV3 of the sampling tube 23 (CH.3) is turned on (opened), and the fumigation gas G in the fumigation chamber C is first passed through the sampling tube 23 for 58 seconds. Suction to the switching valve SV5.
At this time, as described above, the fumigation gas G sucked through the sampling tube 23 is returned to the fumigation chamber C through the bypass pipe 50, the second switching valve SV4-2, and the fumigation gas return pipe 54.
(7) In step ST7, the solenoid valve SV3 of the air sampling tube 23 (CH.3) is turned off (closed), and the pump P is stopped (these operations take 2 seconds).

以上のようなステップST2〜ST7の動作により,採気管21,22,23内のガスが,燻蒸ガスGで満たされる。なお,このステップST2〜ST7においては,燻蒸ガスGは第1切換弁SV5までは導入されるが,赤外線式ガスセンサ70および接触燃焼式ガスセンサDSへ導入されることなく燻蒸庫C内へ戻されるので,燻蒸ガスG中の酸化エチレン濃度の測定は行われない。   The gas in the sampling tubes 21, 22, and 23 is filled with the fumigation gas G by the operations in steps ST2 to ST7 as described above. In steps ST2 to ST7, the fumigation gas G is introduced up to the first switching valve SV5, but is returned to the fumigation chamber C without being introduced into the infrared gas sensor 70 and the catalytic combustion gas sensor DS. , Measurement of ethylene oxide concentration in fumigation gas G is not performed.

ステップST8以降で測定動作を行わせる。
この実施の形態では,先ずステップST8〜ST17で,赤外線式ガスセンサ70にて燻蒸庫C内における殺菌・殺虫用ガスの濃度を測定して第1測定値を得,次いで図7に示すステップST20〜ST37で,接触燃焼式ガスセンサDSにて燻蒸庫C内における殺菌・殺虫用ガスの濃度を測定して第2測定値を得るとともに,第1測定値を第2測定値で割った補正値を得,その後,経時的に,接触燃焼式ガスセンサDSにて燻蒸庫C内における殺菌・殺虫用ガスの濃度を間欠的に繰り返し測定し,その測定値に補正値を乗じた値を,燻蒸庫C内におけるガス濃度値として間欠的に繰り返し得る。
The measurement operation is performed after step ST8.
In this embodiment, first, in steps ST8 to ST17, the concentration of the sterilizing / insecticidal gas in the fumigation chamber C is measured by the infrared gas sensor 70 to obtain the first measured value, and then in steps ST20 to ST20 shown in FIG. In ST37, the concentration of the sterilizing / insecticidal gas in the fumigation chamber C is measured by the catalytic combustion gas sensor DS to obtain the second measured value, and the corrected value obtained by dividing the first measured value by the second measured value is obtained. Then, with time, the concentration of the sterilizing / insecticidal gas in the fumigation chamber C is measured intermittently with the catalytic combustion gas sensor DS, and the value obtained by multiplying the measured value by the correction value is stored in the fumigation chamber C. The gas concentration value in can be repeated intermittently.

(8)ステップST8で,第1測定値を得るための測定動作を開始するが,先ず,ゼロ調整を行う。すなわち,ポンプPを作動させるとともに,エア用電磁弁SV4−1をON(開)し,かつ,第1切換弁SV5を赤外線式ガスセンサ70および接触燃焼式ガスセンサDS側に,第2換弁SV4−2をエア排気側(図2中「NO」参照)に切り替えて,38秒間エアを赤外線式ガスセンサ70および接触燃焼式ガスセンサDSへ導入する。赤外線式ガスセンサ70および接触燃焼式ガスセンサDSへ導入されたエアは,赤外線式ガスセンサ70の測定セル71を通過し連通管20bを経て接触燃焼式ガスセンサDSに接触した後,排気管51,合流管53,および第2切換弁SV4−2を経て大気中へ排出される。
ゼロ調整は,制御部60が,このエア導入中において,赤外線式ガスセンサ70の出力が安定した時点で,測定値をゼロに設定する(すなわち測定値をリセットする)ことにより行われる。
上記ゼロ調整後(すなわち38秒経過後)エア用電磁弁SV4−1を閉じる。
(8) In step ST8, a measurement operation for obtaining the first measurement value is started. First, zero adjustment is performed. That is, the pump P is operated, the air solenoid valve SV4-1 is turned on (opened), the first switching valve SV5 is placed on the infrared gas sensor 70 and the catalytic combustion gas sensor DS side, and the second changeover valve SV4-2. Is switched to the air exhaust side (see “NO” in FIG. 2), and air is introduced into the infrared gas sensor 70 and the catalytic combustion gas sensor DS for 38 seconds. The air introduced into the infrared gas sensor 70 and the contact combustion gas sensor DS passes through the measurement cell 71 of the infrared gas sensor 70 and contacts the contact combustion gas sensor DS via the communication pipe 20b, and then the exhaust pipe 51 and the merging pipe 53. , And the second switching valve SV4-2.
The zero adjustment is performed by the control unit 60 setting the measurement value to zero (that is, resetting the measurement value) when the output of the infrared gas sensor 70 is stabilized during the air introduction.
After the zero adjustment (that is, after 38 seconds), the air solenoid valve SV4-1 is closed.

(9)上記エア用電磁弁SV4−1を閉じるとともに,ステップST9で,採気管21(CH.1)の電磁弁SV1をON(開)し,かつ,第2切換弁SV4−2を燻蒸ガス戻し管54側に切り替えて,20秒間,採気管21を通じて燻蒸庫C内の燻蒸ガスGを赤外線式ガスセンサ70および接触燃焼式ガスセンサDSへ導入して燻蒸ガスG中の殺菌・殺虫用ガス(酸化エチレン)の濃度の測定を赤外線式ガスセンサ70にて行う。これによって,燻蒸庫C内の上部における酸化エチレン濃度が測定される。
なお,接触燃焼式ガスセンサDSにも燻蒸ガスGは導入されるが,第1測定値が得られるまでは(ステップST19までは),接触燃焼式ガスセンサDSによる測定は行わない(モード切替スイッチ90が投薬モードになっているとき,接触燃焼式ガスセンサDSの信号は制御部60において無視される)。
酸化エチレンの濃度測定は,制御部60が,この燻蒸ガスGの導入中において,赤外線式ガスセンサ70の出力が安定した時点で,ガス濃度計算を行い,その結果を記憶手段80に記憶させるとともに表示部(60)に表示させることにより行われる。
なお,赤外線式ガスセンサ70および接触燃焼式ガスセンサDSへ導入された燻蒸ガスGは,接触燃焼式ガスセンサDSに接触した後,排気管51,合流管53,第2切換弁SV4−2,および燻蒸ガス戻し管54を経て燻蒸庫C内(燻蒸庫Cの上部)へ戻される。
上記濃度測定後(電磁弁SV1をONしてから20秒経過後),採気管21(CH.1)の電磁弁SV1を閉じる(OFFする)。
(10)上記電磁弁SV1を閉じるとともに,ステップST10で,ポンプPを2秒間停止させる。
(9) The air solenoid valve SV4-1 is closed, and in step ST9, the solenoid valve SV1 of the sampling tube 21 (CH.1) is turned on (opened), and the second switching valve SV4-2 is turned on as a fumigation gas. Switching to the return pipe 54 side, the fumigation gas G in the fumigation chamber C is introduced into the infrared gas sensor 70 and the catalytic combustion gas sensor DS through the air collection pipe 21 for 20 seconds, and the gas for sterilization and insecticide in the fumigation gas G (oxidation) The concentration of ethylene is measured by the infrared gas sensor 70. Thereby, the ethylene oxide concentration in the upper part in the fumigation warehouse C is measured.
The fumigation gas G is also introduced into the catalytic combustion type gas sensor DS, but no measurement is performed by the catalytic combustion type gas sensor DS (until the mode changeover switch 90 is turned on) until the first measurement value is obtained (until step ST19). When in the dosing mode, the signal from the catalytic combustion gas sensor DS is ignored by the control unit 60).
In the measurement of ethylene oxide concentration, the control unit 60 calculates the gas concentration when the output of the infrared gas sensor 70 is stabilized during the introduction of the fumigation gas G, and the result is stored in the storage means 80 and displayed. This is done by displaying on the part (60).
The fumigation gas G introduced into the infrared gas sensor 70 and the catalytic combustion gas sensor DS is brought into contact with the catalytic combustion gas sensor DS, and then the exhaust pipe 51, the merging pipe 53, the second switching valve SV4-2, and the fumigation gas. It returns to the inside of the fumigation warehouse C (the upper part of the fumigation warehouse C) through the return pipe 54.
After the concentration measurement (20 seconds after the electromagnetic valve SV1 is turned on), the electromagnetic valve SV1 of the sampling tube 21 (CH.1) is closed (turned OFF).
(10) The electromagnetic valve SV1 is closed and the pump P is stopped for 2 seconds in step ST10.

(11)ステップST11でポンプPを作動させるとともに,ステップST8同様,エア用電磁弁SV4−1をON(開)し,かつ,第2換弁SV4−2をエア排気側(図2中「NO」参照)に切り替えて,38秒間エアを赤外線式ガスセンサ70へ導入し,ゼロ調整を行った後,エア用電磁弁SV4−1を閉じる。なお,赤外線式ガスセンサ70へ導入されたエアは,排気管51,合流管53,および第2切換弁SV4−2を経て大気中へ排出される。 (11) In step ST11, the pump P is operated, and similarly to step ST8, the air solenoid valve SV4-1 is turned on (opened), and the second valve SV4-2 is turned on the air exhaust side ("NO" in FIG. 2). The air solenoid valve SV4-1 is closed after air is introduced into the infrared gas sensor 70 for 38 seconds and zero adjustment is performed. The air introduced into the infrared gas sensor 70 is discharged into the atmosphere through the exhaust pipe 51, the junction pipe 53, and the second switching valve SV4-2.

(12)上記エア用電磁弁SV4−1を閉じるとともに,ステップST12で,採気管22(CH.2)の電磁弁SV2をON(開)し,かつ,第2切換弁SV4−2を燻蒸ガス戻し管54側に切り替えて,20秒間採気管22を通じて燻蒸庫C内の燻蒸ガスGを赤外線式ガスセンサ70へ導入して燻蒸ガスG中の酸化エチレン濃度の測定,記憶,表示を先と同様に行う。これによって,燻蒸庫C内の中程における酸化エチレン濃度が測定される。
なお,赤外線式ガスセンサ70へ導入された燻蒸ガスGは,先と同様,燻蒸庫C内へ戻される。
上記濃度測定後(電磁弁SV2をONしてから20秒経過後),採気管22(CH.2)の電磁弁SV2を閉じる(OFFする)。
(13)上記電磁弁SV2を閉じるとともに,ステップST13で,ポンプPを2秒間停止させる。
(12) The air solenoid valve SV4-1 is closed, and in step ST12, the solenoid valve SV2 of the sampling tube 22 (CH.2) is turned on (opened), and the second switching valve SV4-2 is turned on as a fumigation gas. Switching to the return pipe 54 side, the fumigation gas G in the fumigation chamber C is introduced into the infrared gas sensor 70 through the air sampling pipe 22 for 20 seconds, and the measurement, storage and display of the ethylene oxide concentration in the fumigation gas G are the same as before. Do. Thereby, the ethylene oxide concentration in the middle of the fumigation chamber C is measured.
The fumigation gas G introduced into the infrared gas sensor 70 is returned to the fumigation chamber C as before.
After the concentration measurement (20 seconds after the solenoid valve SV2 is turned on), the solenoid valve SV2 of the air sampling tube 22 (CH.2) is closed (turned off).
(13) The electromagnetic valve SV2 is closed and the pump P is stopped for 2 seconds in step ST13.

(14)ステップST14でポンプPを作動させるとともに,ステップST8同様,エア用電磁弁SV4−1をON(開)し,かつ,第2換弁SV4−2をエア排気側(図2中「NO」参照)に切り替えて,38秒間エアを赤外線式ガスセンサ70へ導入し,ゼロ調整を行った後,エア用電磁弁SV4−1を閉じる。なお,赤外線式ガスセンサ70へ導入されたエアは,先と同様,大気中へ排出される。 (14) The pump P is operated in step ST14, the air solenoid valve SV4-1 is turned on (opened), and the second valve SV4-2 is turned on the air exhaust side ("NO" in FIG. 2), as in step ST8. The air solenoid valve SV4-1 is closed after air is introduced into the infrared gas sensor 70 for 38 seconds and zero adjustment is performed. The air introduced into the infrared gas sensor 70 is discharged into the atmosphere as before.

(15)上記エア用電磁弁SV4−1を閉じるとともに,ステップST15で,採気管23(CH.3)の電磁弁SV3をON(開)し,かつ,第2切換弁SV4−2を燻蒸ガス戻し管54側に切り替えて,20秒間,採気管23を通じて燻蒸庫C内の燻蒸ガスGを赤外線式ガスセンサ70へ導入して燻蒸ガスG中の酸化エチレン濃度の測定,記憶,表示を先と同様に行う。これによって,燻蒸庫C内の下部における酸化エチレン濃度が測定される。なお,赤外線式ガスセンサ70へ導入された燻蒸ガスGは,先と同様燻蒸庫C内へ戻される。
上記濃度測定後(電磁弁SV3をONしてから20秒経過後),採気管23(CH.3)の電磁弁SV3を閉じる(OFFする)。
(16)上記電磁弁SV3を閉じるとともに,ステップST16で,ポンプPを2秒間停止させる。
(15) The air solenoid valve SV4-1 is closed, and in step ST15, the solenoid valve SV3 of the air sampling tube 23 (CH.3) is turned on (opened), and the second switching valve SV4-2 is turned on as a fumigation gas. Switching to the return pipe 54 side, the fumigation gas G in the fumigation chamber C is introduced into the infrared gas sensor 70 through the air sampling pipe 23 for 20 seconds, and the measurement, storage, and display of the ethylene oxide concentration in the fumigation gas G are the same as before. To do. Thereby, the ethylene oxide concentration in the lower part in the fumigation warehouse C is measured. The fumigation gas G introduced into the infrared gas sensor 70 is returned into the fumigation chamber C as before.
After the concentration measurement (20 seconds after the solenoid valve SV3 is turned on), the solenoid valve SV3 of the air sampling tube 23 (CH.3) is closed (turned off).
(16) The solenoid valve SV3 is closed and the pump P is stopped for 2 seconds in step ST16.

(17)以上のステップST8〜ST16で第1測定値に関する1回(1サイクル)の測定動作が終了する。ステップST17では,上記ステップ9,12,15にて得られ記憶されていた測定値,すなわち,燻蒸庫Cにおける上部(CH.1),中部(CH.2),下部(CH.3)の測定値を比較し,それらの測定値が均等であるか否かを判断する。また,その測定値が所定値(この場合1.5%)に達しているか否かを判断する。
CH.1〜3の測定値が均等でないかあるいは所定値に達していない場合には,上記ステップST8〜17を繰り返す。
CH.1〜3の測定値が均等で(測定値が一致し)かつ所定値に達している場合には,図7に示すステップST18以降の燻蒸モードに進む。燻蒸モードへの切替は,モード切替スイッチ90を切り替えることによってなされる。ステップST17における判断およびモード切替スイッチ90の切替動作は,作業者(人手)によって行うこともできるし,制御部60が行うようにすることもできる。
なお,「測定値が一致(均等)」であるか否かは,測定精度との関係で適宜決定することができる。例えば本発明を実施する上で,また赤外線式ガスセンサ70および接触燃焼式ガスセンサDSの測定精度との関係で0.1%レベルでの一致が望ましい(求められる,あるいはそれで十分である)のであればそのように決定すればよいし,0.01%レベルでの一致が望ましい(求められる,あるいはそれで十分である)のであればそのように決定すればよい。
(17) One (one cycle) measurement operation for the first measurement value is completed in the above steps ST8 to ST16. In step ST17, the measurement values obtained and stored in steps 9, 12, and 15 above, that is, the measurement of the upper (CH.1), middle (CH.2), and lower (CH.3) in the fumigation chamber C. Compare the values and determine whether the measurements are equal. Further, it is determined whether or not the measured value has reached a predetermined value (in this case, 1.5%).
CH. When the measured values 1 to 3 are not equal or have not reached the predetermined value, the above steps ST8 to 17 are repeated.
CH. When the measured values 1 to 3 are equal (measured values match) and reach a predetermined value, the process proceeds to the fumigation mode after step ST18 shown in FIG. Switching to the fumigation mode is performed by switching the mode switch 90. The determination in step ST17 and the switching operation of the mode selector switch 90 can be performed by an operator (manual) or can be performed by the control unit 60.
It should be noted that whether or not “measured values are identical (equal)” can be appropriately determined in relation to measurement accuracy. For example, when the present invention is carried out, and coincidence at the 0.1% level is desirable (required or sufficient) in relation to the measurement accuracy of the infrared gas sensor 70 and the catalytic combustion gas sensor DS, It may be determined as such, and if coincidence at the 0.01% level is desirable (required or sufficient), it may be determined as such.

(18)モード切替スイッチ90が燻蒸モードに切り替えられることで,ステップST18で燻蒸モードに入る。
(19)ステップST19では,上記ステップST17においてCH.1〜3の測定値が均等で(測定値が一致し)かつ所定値に達していると判断された際の,その測定値を第1測定値として記憶手段80に記憶させる。この実施の形態では,CH.1の測定値を第1測定値として記憶させるが,CH.1〜3の測定値は一致しているから,CH.2またはCH.3の測定値を第1測定値として記憶させることもできる。
(18) When the mode switch 90 is switched to the fumigation mode, the fumigation mode is entered at step ST18.
(19) In step ST19, in step ST17, CH. When it is determined that the measured values 1 to 3 are equal (measured values match) and have reached a predetermined value, the measured values are stored in the storage unit 80 as first measured values. In this embodiment, CH. 1 measurement value is stored as the first measurement value. Since the measured values of 1 to 3 coincide, CH. 2 or CH. 3 measurement values can also be stored as the first measurement value.

(20)ステップST20で,燻蒸庫C内におけるガス濃度値(酸化エチレン濃度値)を経時的に得るための測定動作を開始するが,先ず,ゼロ調整を行う。すなわち,ポンプPを作動させるとともに,エア用電磁弁SV4−1をON(開)し,かつ,第1切換弁SV5を赤外線式ガスセンサ70および接触燃焼式ガスセンサDS側に,第2換弁SV4−2をエア排気側(図2中「NO」参照)に切り替えて,38秒間エアを接触燃焼式ガスセンサDSへ導入する。接触燃焼式ガスセンサDSへ導入されたエアは,接触燃焼式ガスセンサDSに接触した後,排気管51,合流管53,および第2切換弁SV4−2を経て大気中へ排出される。
ゼロ調整は,制御部60が,このエア導入中において,接触燃焼式ガスセンサDSの出力が安定した時点で,測定値をゼロに設定する(すなわち測定値をリセットする)ことにより行われる。
上記ゼロ調整後(すなわち38秒経過後)エア用電磁弁SV4−1を閉じる。
(20) In step ST20, a measurement operation for obtaining a gas concentration value (ethylene oxide concentration value) in the fumigation chamber C with time is started. First, zero adjustment is performed. That is, the pump P is operated, the air solenoid valve SV4-1 is turned on (opened), the first switching valve SV5 is placed on the infrared gas sensor 70 and the catalytic combustion gas sensor DS side, and the second changeover valve SV4-2. Is switched to the air exhaust side (see “NO” in FIG. 2), and air is introduced into the contact combustion gas sensor DS for 38 seconds. The air introduced into the contact combustion type gas sensor DS comes into contact with the contact combustion type gas sensor DS, and is then discharged into the atmosphere through the exhaust pipe 51, the junction pipe 53, and the second switching valve SV4-2.
The zero adjustment is performed by the control unit 60 setting the measured value to zero (that is, resetting the measured value) when the output of the catalytic combustion type gas sensor DS is stabilized during the air introduction.
After the zero adjustment (that is, after 38 seconds), the air solenoid valve SV4-1 is closed.

(21’)上記エア用電磁弁SV4−1を閉じるとともに,ステップST21’で,採気管21(CH.1)の電磁弁SV1をON(開)し,かつ,第2切換弁SV4−2を燻蒸ガス戻し管54側に切り替えて,20秒間,採気管21を通じて燻蒸庫C内の燻蒸ガスGを接触燃焼式ガスセンサDSへ導入して燻蒸ガスG中の酸化エチレン濃度の測定を行う。
なお,赤外線式ガスセンサ70にも燻蒸ガスGは導入されるが,上記第1測定値が得られた後(ステップST20以降は),赤外線式ガスセンサ70による測定は行わない(モード切替スイッチ90が燻蒸モードになっているとき,赤外線式ガスセンサ70の信号は制御部60において無視される)。
接触燃焼式ガスセンサDSによる酸化エチレンの濃度測定値は,制御部60が,燻蒸ガスGの導入中において,接触燃焼式ガスセンサDSの出力が安定した時点で,ガス濃度計算を行うことによって得られる。
このステップST21’では,上のようにして接触燃焼式ガスセンサDSにて得られた第1回目の測定値を第2測定値とし,この第2測定値で前記第1測定値を割った値を補正値として記憶手段80に記憶させる。
上のようにして接触燃焼式ガスセンサDSにて得られた第1回目の測定値が,例えば1.3%であったとしたら,この測定値=1.3%を第2測定値とし,この第2測定値=1.3%で前記第1測定値(例えば1.5%)を割った値である1.153846154を補正値として記憶手段80に記憶させる。
またこのステップST21’では,上記第1回目の測定値に上記補正値を乗じた1.5%を,燻蒸庫C内におけるガス濃度値として表示部(60)に表示させる。これによって,燻蒸庫C内の上部における酸化エチレン濃度(すなわち殺菌・殺虫能力)を把握することができる。
接触燃焼式ガスセンサDSへ導入された燻蒸ガスGは,先と同様,燻蒸庫C内(燻蒸庫Cの上部)へ戻される。
上記濃度測定後(電磁弁SV1をONしてから20秒経過後),採気管21(CH.1)の電磁弁SV1を閉じる(OFFする)。
(21 ') The air solenoid valve SV4-1 is closed, and in step ST21', the solenoid valve SV1 of the sampling tube 21 (CH.1) is turned on (opened), and the second switching valve SV4-2 is turned on. By switching to the fumigation gas return pipe 54 side, the fumigation gas G in the fumigation chamber C is introduced into the contact combustion type gas sensor DS through the air sampling pipe 21 for 20 seconds, and the ethylene oxide concentration in the fumigation gas G is measured.
The fumigation gas G is also introduced into the infrared gas sensor 70, but after the first measurement value is obtained (after step ST20), measurement by the infrared gas sensor 70 is not performed (the mode changeover switch 90 is not fumigated). When in the mode, the signal from the infrared gas sensor 70 is ignored by the controller 60).
The measured value of ethylene oxide concentration by the catalytic combustion type gas sensor DS is obtained by the control unit 60 performing gas concentration calculation when the output of the catalytic combustion type gas sensor DS is stabilized during the introduction of the fumigation gas G.
In this step ST21 ′, the first measurement value obtained by the catalytic combustion type gas sensor DS as described above is set as the second measurement value, and a value obtained by dividing the first measurement value by the second measurement value is obtained. It is stored in the storage means 80 as a correction value.
If the first measured value obtained by the catalytic combustion type gas sensor DS as described above is 1.3%, for example, this measured value = 1.3% is set as the second measured value. 2. The measured value = 1.35486154, which is a value obtained by dividing the first measured value (for example, 1.5%) by 1.3%, is stored in the storage unit 80 as a correction value.
In step ST21 ′, 1.5% obtained by multiplying the first measured value by the correction value is displayed on the display unit (60) as a gas concentration value in the fumigation chamber C. Thereby, the ethylene oxide concentration (namely, sterilization / insecticidal ability) in the upper part in the fumigation warehouse C can be grasped.
The fumigation gas G introduced into the catalytic combustion type gas sensor DS is returned to the fumigation warehouse C (upper part of the fumigation warehouse C) as before.
After the concentration measurement (20 seconds after the electromagnetic valve SV1 is turned on), the electromagnetic valve SV1 of the sampling tube 21 (CH.1) is closed (turned OFF).

なお,このステップST21’は,接触燃焼式ガスセンサDSによる第1回目の測定時にのみ実行され,第2回目以降の測定時には実行されない。第2回目以降の測定時には,ステップST21が実行される。
ステップST21がステップST21’と異なる点は,補正値を算出せず,したがってまた補正値を記憶させない点にあり,その他の点に変わりはない。
This step ST21 ′ is executed only at the first measurement by the catalytic combustion type gas sensor DS, and is not executed at the second and subsequent measurements. Step ST21 is executed during the second and subsequent measurements.
Step ST21 is different from step ST21 ′ in that the correction value is not calculated and therefore the correction value is not stored, and other points are not changed.

(22)上記電磁弁SV1を閉じるとともに,ステップST22で,ポンプPを2秒間停止させる。 (22) The electromagnetic valve SV1 is closed and the pump P is stopped for 2 seconds in step ST22.

(23)ステップST23でポンプPを作動させるとともに,ステップST20同様,エア用電磁弁SV4−1をON(開)し,かつ,第2換弁SV4−2をエア排気側(図2中「NO」参照)に切り替えて,38秒間エアを接触燃焼式ガスセンサDSへ導入し,ゼロ調整を行った後,エア用電磁弁SV4−1を閉じる。なお,接触燃焼式ガスセンサDSへ導入されたエアは,排気管51,合流管53,および第2切換弁SV4−2を経て大気中へ排出される。 (23) The pump P is operated in step ST23, the air solenoid valve SV4-1 is turned on (opened), and the second valve SV4-2 is turned on the air exhaust side ("NO" in FIG. 2) as in step ST20. The air solenoid valve SV4-1 is closed after air is introduced into the contact combustion gas sensor DS for 38 seconds and zero adjustment is performed. The air introduced into the catalytic combustion gas sensor DS is discharged into the atmosphere through the exhaust pipe 51, the junction pipe 53, and the second switching valve SV4-2.

(24)上記エア用電磁弁SV4−1を閉じるとともに,ステップST24で,採気管22(CH.2)の電磁弁SV2をON(開)し,かつ,第2切換弁SV4−2を燻蒸ガス戻し管54側に切り替えて,20秒間採気管22を通じて燻蒸庫C内の燻蒸ガスGを接触燃焼式ガスセンサDSへ導入して燻蒸ガスG中の酸化エチレン濃度の測定を先と同様に行う。
そして,その測定値に,上記ステップST21’で得られた補正値(=1.153846154)を乗じた値を算出し,その値を燻蒸庫C内におけるガス濃度値として表示部(60)に表示させる。これによって,燻蒸庫C内の中程における酸化エチレン濃度(すなわち殺菌・殺虫能力)を把握することができる。
なお,接触燃焼式ガスセンサDSへ導入された燻蒸ガスGは,先と同様燻蒸庫C内へ戻される。
上記濃度測定後(電磁弁SV2をONしてから20秒経過後),採気管22(CH.2)の電磁弁SV2を閉じる(OFFする)。
(25)上記電磁弁SV2を閉じるとともに,ステップST13で,ポンプPを2秒間停止させる。
(24) The air solenoid valve SV4-1 is closed, and in step ST24, the solenoid valve SV2 of the sampling tube 22 (CH.2) is turned on (opened), and the second switching valve SV4-2 is turned on as a fumigation gas. Switching to the return pipe 54 side, the fumigation gas G in the fumigation chamber C is introduced into the contact combustion type gas sensor DS through the air sampling pipe 22 for 20 seconds, and the ethylene oxide concentration in the fumigation gas G is measured in the same manner as before.
Then, a value obtained by multiplying the measured value by the correction value (= 1.15346154) obtained in step ST21 ′ is calculated, and the value is displayed on the display unit (60) as a gas concentration value in the fumigation chamber C. Let Thereby, the ethylene oxide concentration (that is, sterilization / insecticidal ability) in the middle of the fumigation warehouse C can be grasped.
Note that the fumigation gas G introduced into the catalytic combustion type gas sensor DS is returned to the fumigation chamber C as before.
After the concentration measurement (20 seconds after the solenoid valve SV2 is turned on), the solenoid valve SV2 of the air sampling tube 22 (CH.2) is closed (turned off).
(25) The electromagnetic valve SV2 is closed and the pump P is stopped for 2 seconds in step ST13.

(26)ステップST26でポンプPを作動させるとともに,ステップST20同様,エア用電磁弁SV4−1をON(開)し,かつ,第2換弁SV4−2をエア排気側(図2中「NO」参照)に切り替えて,38秒間エアを接触燃焼式ガスセンサDSへ導入し,ゼロ調整を行った後,エア用電磁弁SV4−1を閉じる。なお,接触燃焼式ガスセンサDSへ導入されたエアは,大気中へ排出される。 (26) In step ST26, the pump P is operated, and similarly to step ST20, the air solenoid valve SV4-1 is turned on (opened), and the second valve SV4-2 is turned on the air exhaust side ("NO" in FIG. 2). The air solenoid valve SV4-1 is closed after air is introduced into the contact combustion gas sensor DS for 38 seconds and zero adjustment is performed. Note that the air introduced into the catalytic combustion type gas sensor DS is discharged into the atmosphere.

(27)上記エア用電磁弁SV4−1を閉じるとともに,ステップST27で,採気管23(CH.3)の電磁弁SV3をON(開)し,かつ,第2切換弁SV4−2を燻蒸ガス戻し管54側に切り替えて,20秒間採気管23を通じて燻蒸庫C内の燻蒸ガスGを接触燃焼式ガスセンサDSへ導入して燻蒸ガスG中の酸化エチレン濃度の測定を先と同様に行う。
そして,その測定値に,上記ステップST21’で得られた補正値(=1.153846154)を乗じた値を算出し,その値を燻蒸庫C内におけるガス濃度値として表示部(60)に表示させる。これによって,燻蒸庫C内の下部における酸化エチレン濃度(すなわち殺菌・殺虫能力)を把握することができる。
なお,接触燃焼式ガスセンサDSへ導入された燻蒸ガスGは,先と同様燻蒸庫C内へ戻される。
上記濃度測定後(電磁弁SV3をONしてから20秒経過後),採気管23(CH.3)の電磁弁SV3を閉じる(OFFする)。
(28)上記電磁弁SV3を閉じるとともに,ステップST28で,ポンプPを2秒間停止させる。
(27) The air solenoid valve SV4-1 is closed, and in step ST27, the solenoid valve SV3 of the air sampling tube 23 (CH.3) is turned on (opened), and the second switching valve SV4-2 is turned on as fumigation gas. Switching to the return pipe 54 side, the fumigation gas G in the fumigation chamber C is introduced into the contact combustion gas sensor DS through the air sampling pipe 23 for 20 seconds, and the ethylene oxide concentration in the fumigation gas G is measured in the same manner as before.
Then, a value obtained by multiplying the measured value by the correction value (= 1.15346154) obtained in step ST21 ′ is calculated, and the value is displayed on the display unit (60) as a gas concentration value in the fumigation chamber C. Let Thereby, the ethylene oxide concentration (namely, sterilization / insecticidal ability) in the lower part in the fumigation warehouse C can be grasped.
Note that the fumigation gas G introduced into the catalytic combustion type gas sensor DS is returned to the fumigation chamber C as before.
After the concentration measurement (20 seconds after the solenoid valve SV3 is turned on), the solenoid valve SV3 of the air sampling tube 23 (CH.3) is closed (turned off).
(28) The electromagnetic valve SV3 is closed and the pump P is stopped for 2 seconds in step ST28.

以上のステップST20〜ST28で接触燃焼式ガスセンサDSおよび補正値を用いた1回(1サイクル)の測定動作が終了するが,上記ステップ28が終了した時点では,接触燃焼式ガスセンサDSに燻蒸ガスGが導入されたままであるので,これを放置すると,接触燃焼式ガスセンサDSが燻蒸ガスGに含まれるHFC134a(触媒毒)との接触によって,感度低下を来す。   In the above steps ST20 to ST28, the one-time (one cycle) measurement operation using the catalytic combustion type gas sensor DS and the correction value is completed. Therefore, if this is left unattended, the contact combustion gas sensor DS comes into contact with the HFC 134a (catalyst poison) contained in the fumigation gas G, resulting in a decrease in sensitivity.

そこで,この実施の形態では,以下のステップST29で掃気動作を行う。すなわち,
(29)ステップST29で,ポンプPを作動させるとともに,エア用電磁弁SV4−1をON(開)し,かつ,第2換弁SV4−2をエア排気側(図2中「NO」参照)に切り替えて,38秒間エアを接触燃焼式ガスセンサDSへ導入して接触燃焼式ガスセンサDSのガスチャンバDS1内(図5参照)および温度補償素子CSのガスチャンバCS1内を掃気する。上記チャンバ内を掃気したエアは,排気管51,合流管53,および第2切換弁SV4−2を経て大気中へ排出される。
なお,上記掃気動作後,ポンプPを停止させるとともに,エア用電磁弁SV4−1を閉じる。
Therefore, in this embodiment, the scavenging operation is performed in the following step ST29. That is,
(29) In step ST29, the pump P is operated, the air solenoid valve SV4-1 is turned on (opened), and the second replacement valve SV4-2 is set to the air exhaust side (see “NO” in FIG. 2). After switching, air is introduced into the contact combustion gas sensor DS for 38 seconds to scavenge the gas chamber DS1 (see FIG. 5) of the contact combustion gas sensor DS and the gas chamber CS1 of the temperature compensation element CS. The air scavenged in the chamber is discharged to the atmosphere through the exhaust pipe 51, the junction pipe 53, and the second switching valve SV4-2.
After the scavenging operation, the pump P is stopped and the air solenoid valve SV4-1 is closed.

(30)その後,ステップST30で上記ステップST20〜ステップST28で得られた測定結果,すなわち,補正値により補正されたガス濃度値とその測定時刻とをプリンタでプリントアウトさせる。 (30) Thereafter, in step ST30, the measurement results obtained in steps ST20 to ST28, that is, the gas concentration value corrected by the correction value and the measurement time are printed out by the printer.

(31)ステップST31で待機状態に入る。
待機状態においては,ユーザーが設定した待機時間,上記測定動作が停止される。
待機時間は,例えば60分ごとに上記測定動作を行う場合には,60分から測定動作に要する時間(例えば7分)を引いた値(53分)が設定される。
(31) The standby state is entered in step ST31.
In the standby state, the measurement operation is stopped for the standby time set by the user.
For example, when the measurement operation is performed every 60 minutes, the standby time is set to a value (53 minutes) obtained by subtracting the time required for the measurement operation (for example, 7 minutes) from 60 minutes.

待機時間が経過した後,ステップST32〜37で採気管21,22,23内のガス置換を行う。このガス置換動作は,前述したステップST2〜7による動作と同一であるので,その説明は省略する。
ステップST32〜37の動作により,採気管21,22,23内のガスは,1サイクル経過後(上記の例では60分経過後)の燻蒸ガスGで満たされる。
その後,上記ステップST20以降の制御を繰り返す。例えば,24時間の測定が必要な場合には,24時間経過するまで繰り返す。
その後,前述した排気行程がなされ,燻蒸作業が終了する。
After the standby time has elapsed, gas replacement in the sampling tubes 21, 22, and 23 is performed in steps ST32 to ST37. Since this gas replacement operation is the same as the operation in steps ST2 to ST7 described above, description thereof is omitted.
By the operation of steps ST32 to 37, the gas in the sampling tubes 21, 22, and 23 is filled with the fumigation gas G after one cycle has elapsed (in the above example, after 60 minutes have elapsed).
Thereafter, the control after step ST20 is repeated. For example, if measurement for 24 hours is required, repeat until 24 hours have passed.
Thereafter, the exhaust stroke described above is performed, and the fumigation work is completed.

以上のような燻蒸ガス濃度測定方法ないし燻蒸ガス濃度測定装置1によれば次のような作用効果が得られる。
(a)燻蒸ガスGを燻蒸庫C内に入れた後,先ず赤外線式ガスセンサ70にて燻蒸庫C内における殺菌・殺虫用ガスの濃度を測定して第1測定値を得るから(ステップST9参照),殺菌・殺虫用ガスの希釈用ガスに対する相対濃度が高い初期段階において,赤外線式ガスセンサ70にて正確に第1測定値を得ることができる。赤外線式ガスセンサは,ガス感度の安定性および再現性に優れているから,燻蒸作業を長期に亘って何度行ったとしても,第1測定値は,その度ごとに正確に得ることができる。
次いで,接触燃焼式ガスセンサ70にて燻蒸庫内における殺菌・殺虫用ガスの濃度を測定して第2測定値を得るとともに,第1測定値を第2測定値で割った補正値を得るが,このとき,接触燃焼式ガスセンサDSの感度が仮に低下していたとしても,上記第1測定値は正確に得られているから,補正値自体は正確に得ることができる(ステップST21’参照)。
その後,経時的に,接触燃焼式ガスセンサDSにて燻蒸庫内における殺菌・殺虫用ガスの濃度を間欠的に繰り返し測定し,その測定値に前記補正値を乗じた値を,燻蒸庫内におけるガス濃度値として間欠的に繰り返し得るから,仮に,接触燃焼式ガスセンサの感度が長期運用により低下していたとしても,燻蒸庫内における殺菌・殺虫用ガスの濃度を経時的に正確に測定することが可能となる(ステップST20〜30参照)。
上記の補正は,燻蒸作業が行われる度になされるから,長期に亘って,正確なガス濃度測定を行うことが可能となる。
(b)赤外線式ガスセンサ70による測定は,燻蒸庫内空間の上下方向において2以上の箇所(この実施の形態では上中下の3箇所)で行い,それらの測定値が一致したとき,該測定値を第1測定値とするから(ステップST17参照),第1測定値を,より正確に得ることができ,したがって,より正確な補正値を得ることができる。
(c)第2測定値自体に関しても,前記補正値を乗じて,燻蒸庫内におけるガス濃度値を得るから,接触燃焼式ガスセンサDSによる初回の測定値である第2測定値を,補正値を得るためだけでなく,接触燃焼式ガスセンサDSに基づく初回のガス濃度値を得るのに利用できる。
(d)赤外線式ガスセンサ70に燻蒸庫内の燻蒸ガスを導入する導入経路と,接触燃焼式ガスセンサDSに燻蒸庫内の燻蒸ガスを導入する導入経路とを,共通の導入経路(燻蒸ガス導入管20およびこれに介装された弁SV1〜3,フィルタ24,弁25,ポンプP,弁SV5)で構成したので,前記補正値をより正確に得ることができる。
仮に,赤外線式ガスセンサ70に燻蒸庫内の燻蒸ガスを導入する導入経路と,接触燃焼式ガスセンサDSに燻蒸庫内の燻蒸ガスを導入する導入経路とを,個別に構成したとすると,赤外線式ガスセンサ70に導入される燻蒸ガスの状態(例えば,温度や混合状態)と,接触燃焼式ガスセンサDSに導入される燻蒸ガスの状態との間に大きな差異が生じるおそれが生じ,前記補正値を正確に得ることができなくなるおそれが大きくなる。
これに対し,この実施の形態によれば,赤外線式ガスセンサ70に燻蒸庫内の燻蒸ガスを導入する導入経路と,接触燃焼式ガスセンサDSに燻蒸庫内の燻蒸ガスを導入する導入経路とを共通の導入経路で構成したので,赤外線式ガスセンサ70に導入される燻蒸ガスの状態と,接触燃焼式ガスセンサDSに導入される燻蒸ガスの状態との間に大きな差異が生じないか生じたとしてもその差異は著しく小さくなる。したがって,前記補正値をより正確に得ることができる。
According to the fumigation gas concentration measuring method or the fumigation gas concentration measuring apparatus 1 as described above, the following effects can be obtained.
(A) After the fumigation gas G is put into the fumigation chamber C, the concentration of the sterilizing / insecticidal gas in the fumigation chamber C is first measured by the infrared gas sensor 70 to obtain the first measured value (see step ST9). ), At the initial stage where the relative concentration of the sterilizing / insecticidal gas to the diluting gas is high, the infrared gas sensor 70 can accurately obtain the first measured value. Since the infrared gas sensor is excellent in stability and reproducibility of gas sensitivity, the first measurement value can be obtained accurately every time no matter how many times fumigation work is performed.
Next, the contact combustion gas sensor 70 measures the concentration of the sterilizing / insecticidal gas in the fumigation chamber to obtain a second measured value, and obtains a corrected value obtained by dividing the first measured value by the second measured value. At this time, even if the sensitivity of the catalytic combustion gas sensor DS is lowered, the correction value itself can be obtained accurately because the first measurement value is obtained accurately (see step ST21 ′).
Thereafter, the concentration of the sterilizing / insecticidal gas in the fumigation chamber is measured intermittently and repeatedly with the contact combustion gas sensor DS, and the value obtained by multiplying the measured value by the correction value is determined as the gas in the fumigation chamber. Since the concentration value can be repeated intermittently, even if the sensitivity of the catalytic combustion type gas sensor has decreased due to long-term operation, it is possible to accurately measure the concentration of the sterilizing / insecticidal gas in the fumigation chamber over time. This is possible (see steps ST20-30).
Since the above correction is made every time fumigation is performed, accurate gas concentration measurement can be performed over a long period of time.
(B) Measurement by the infrared gas sensor 70 is performed at two or more locations in the vertical direction of the space inside the fumigation chamber (in this embodiment, three locations at the upper, middle, and lower locations). Since the value is the first measurement value (see step ST17), the first measurement value can be obtained more accurately, and thus a more accurate correction value can be obtained.
(C) Since the second measurement value itself is also multiplied by the correction value to obtain the gas concentration value in the fumigation chamber, the second measurement value, which is the first measurement value by the catalytic combustion type gas sensor DS, is used as the correction value. It can be used not only for obtaining but also for obtaining an initial gas concentration value based on the catalytic combustion type gas sensor DS.
(D) The introduction path for introducing the fumigation gas in the fumigation chamber into the infrared gas sensor 70 and the introduction path for introducing the fumigation gas in the fumigation chamber into the contact combustion type gas sensor DS are shared by a common introduction path (fumigation gas introduction pipe). 20 and the valves SV1 to SV3, the filter 24, the valve 25, the pump P, and the valve SV5) interposed therein, the correction value can be obtained more accurately.
Assuming that the introduction path for introducing the fumigation gas in the fumigation chamber into the infrared gas sensor 70 and the introduction path for introducing the fumigation gas in the fumigation chamber into the contact combustion type gas sensor DS are configured separately, the infrared gas sensor 70 may cause a large difference between the state of the fumigation gas introduced into 70 (for example, temperature and mixed state) and the state of the fumigation gas introduced into the catalytic combustion type gas sensor DS. The risk of not being able to be obtained increases.
On the other hand, according to this embodiment, the introduction path for introducing the fumigation gas in the fumigation chamber into the infrared gas sensor 70 and the introduction path for introducing the fumigation gas in the fumigation chamber into the contact combustion type gas sensor DS are common. Therefore, even if there is a big difference between the state of the fumigation gas introduced into the infrared gas sensor 70 and the state of the fumigation gas introduced into the catalytic combustion type gas sensor DS The difference is significantly reduced. Therefore, the correction value can be obtained more accurately.

以上,本発明の実施の形態について説明したが,本発明は上記の実施の形態に限定されるものではなく,本発明の要旨の範囲内において適宜変形実施可能である。
例えば,使用する燻蒸ガスは「エキヒューム」に限らず,殺菌・殺虫性および可燃性ならびに赤外線吸収性を有する殺菌・殺虫用ガスと,この殺菌・殺虫用ガスよりも弱い赤外線吸収性を有しかつ触媒毒として作用する希釈用ガスとを含む燻蒸ガスを使用する場合には,本発明を適用し得る。
なお,この実施の形態では,第1測定値を第2測定値で割った値を補正値として得,接触燃焼式ガスセンサDSにて得られた測定値に該補正値を乗じた値をガス濃度値として得るようにしたが,第2測定値を第1測定値で割った値を補正値として用い,接触燃焼式ガスセンサDSにて得られた測定値を該補正値で割っても同一の結果が得られるから,両者は実質的に同一であり,したがって,請求項1はそのように読み替えることが可能である。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and can be appropriately modified within the scope of the gist of the present invention.
For example, the fumigation gas used is not limited to “exfume”, and has a sterilizing / insecticidal and flammable and infrared absorbing sterilizing / insecticing gas and an infrared absorbing property weaker than this sterilizing / insecticidal gas and The present invention can be applied when using a fumigation gas containing a diluent gas that acts as a catalyst poison.
In this embodiment, a value obtained by dividing the first measurement value by the second measurement value is obtained as a correction value, and a value obtained by multiplying the measurement value obtained by the catalytic combustion type gas sensor DS by the correction value is used as the gas concentration. Although the value obtained by dividing the second measured value by the first measured value is used as a correction value, the same result can be obtained by dividing the measured value obtained by the catalytic combustion type gas sensor DS by the corrected value. Thus, the two are substantially the same, so that claim 1 can be read as such.

C 燻蒸庫
1 燻蒸ガス濃度測定装置
M1 第1測定手段
M2 第2測定手段
20 燻蒸ガス導入管(導入経路)
60 制御部
70 赤外線式ガスセンサ
DS 接触燃焼式ガスセンサ
C Fumigation chamber 1 Fumigation gas concentration measuring device M1 First measurement means M2 Second measurement means 20 Fumigation gas introduction pipe (introduction route)
60 Control Unit 70 Infrared Gas Sensor DS Contact Combustion Gas Sensor

Claims (5)

燻蒸庫内に燻蒸対象物を収納し,殺菌・殺虫性および可燃性ならびに赤外線吸収性を有する殺菌・殺虫用ガスと,この殺菌・殺虫用ガスよりも弱い赤外線吸収性を有しかつ触媒毒として作用する希釈用ガスと,を含む燻蒸ガスを燻蒸庫内に入れて燻蒸対象物を燻蒸するに際し,
燻蒸ガスを燻蒸庫内に入れた後,先ず赤外線式ガスセンサにて燻蒸庫内における前記殺菌・殺虫用ガスの濃度を測定して第1測定値を得,次いで,接触燃焼式ガスセンサにて燻蒸庫内における前記殺菌・殺虫用ガスの濃度を測定して第2測定値を得るとともに,前記第1測定値を第2測定値で割った補正値を得,その後,経時的に,前記接触燃焼式ガスセンサにて燻蒸庫内における前記殺菌・殺虫用ガスの濃度を間欠的に繰り返し測定し,その測定値に前記補正値を乗じた値を,燻蒸庫内におけるガス濃度値として間欠的に繰り返し得ることを特徴とする燻蒸ガス濃度測定方法。
Fumigation objects are stored in a fumigation chamber, and sterilizing / insecticidal and flammable and infrared absorbing gas with sterilizing / insecticidal properties, and a weaker infrared absorbing property than this sterilizing / insecticidal gas and as a catalyst poison When fumigating the fumigation object by putting the fumigation gas containing the working dilution gas into the fumigation chamber,
After the fumigation gas is put in the fumigation chamber, first, the concentration of the sterilizing and insecticidal gas in the fumigation chamber is measured with an infrared gas sensor to obtain a first measured value, and then the fumigation chamber with a contact combustion type gas sensor. The concentration of the gas for sterilization / insecticide is measured to obtain a second measured value, and a correction value obtained by dividing the first measured value by the second measured value is obtained. The gas sensor can intermittently repeatedly measure the concentration of the sterilizing / insecticidal gas in the fumigation chamber, and multiply the measured value by the correction value to intermittently repeat the gas concentration value in the fumigation chamber. A method for measuring fumigation gas concentration.
前記赤外線式ガスセンサによる測定は,燻蒸庫内空間の上下方向において2以上の箇所で行い,それらの測定値が一致したとき,該測定値を前記第1測定値とすることを特徴とする請求項1記載の燻蒸ガス濃度測定方法。   The measurement by the infrared gas sensor is performed at two or more locations in the vertical direction of the space inside the fumigation chamber, and when the measured values coincide with each other, the measured value is set as the first measured value. The fumigation gas concentration measuring method according to 1. 前記第2測定値自体に関しても,前記補正値を乗じて,燻蒸庫内におけるガス濃度値を得ることを特徴とする請求項1または2記載の燻蒸ガス濃度測定方法。   3. The fumigation gas concentration measurement method according to claim 1, wherein the second measurement value itself is also multiplied by the correction value to obtain a gas concentration value in the fumigation chamber. 請求項1記載の燻蒸ガス濃度測定方法を用いたガス濃度測定装置であって,
燻蒸庫内の燻蒸ガスを赤外線式ガスセンサに導入して燻蒸ガス中の殺菌・殺虫用ガスの濃度を測定して前記第1測定値を得る第1測定手段と,
燻蒸庫内の燻蒸ガスを接触燃焼式ガスセンサに導入して燻蒸ガス中の殺菌・殺虫用ガスの濃度を測定して前記第2測定値を得る第2測定手段と,
前記第1測定値を前記第2測定値で割って前記補正値を得るとともに,その補正値を記憶し,その後の前記第2測定手段による測定値に前記補正値を乗じた値を,燻蒸庫内におけるガス濃度値として得る制御部と,
を備えていることを特徴とする燻蒸ガス濃度測定装置。
A gas concentration measuring apparatus using the fumigation gas concentration measuring method according to claim 1,
First measuring means for obtaining the first measured value by introducing the fumigation gas in the fumigation chamber into an infrared gas sensor and measuring the concentration of the sterilizing / insecticidal gas in the fumigation gas;
Second measuring means for obtaining the second measured value by introducing the fumigation gas in the fumigation chamber into a contact combustion type gas sensor and measuring the concentration of the sterilizing / insecticidal gas in the fumigation gas;
The first measurement value is divided by the second measurement value to obtain the correction value, the correction value is stored, and the value obtained by multiplying the measurement value obtained by the second measurement means by the correction value is then stored in the fumigation chamber. A control unit for obtaining a gas concentration value in the inside,
A fumigation gas concentration measuring device comprising:
前記赤外線式ガスセンサに燻蒸庫内の燻蒸ガスを導入する導入経路と,前記接触燃焼式ガスセンサに燻蒸庫内の燻蒸ガスを導入する導入経路とを,共通の導入経路で構成したことを特徴とする請求項4記載の燻蒸ガス濃度測定装置。   The introduction path for introducing the fumigation gas in the fumigation chamber into the infrared gas sensor and the introduction path for introducing the fumigation gas in the fumigation chamber into the catalytic combustion type gas sensor are configured by a common introduction path. The fumigation gas concentration measuring device according to claim 4.
JP2009096043A 2009-04-10 2009-04-10 Fumigation gas concentration measurement method and fumigation gas concentration measurement device using the method Active JP4975055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009096043A JP4975055B2 (en) 2009-04-10 2009-04-10 Fumigation gas concentration measurement method and fumigation gas concentration measurement device using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009096043A JP4975055B2 (en) 2009-04-10 2009-04-10 Fumigation gas concentration measurement method and fumigation gas concentration measurement device using the method

Publications (2)

Publication Number Publication Date
JP2010249528A true JP2010249528A (en) 2010-11-04
JP4975055B2 JP4975055B2 (en) 2012-07-11

Family

ID=43312047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009096043A Active JP4975055B2 (en) 2009-04-10 2009-04-10 Fumigation gas concentration measurement method and fumigation gas concentration measurement device using the method

Country Status (1)

Country Link
JP (1) JP4975055B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016223640A (en) * 2015-05-27 2016-12-28 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Refrigerating air conditioner
JP2018149509A (en) * 2017-03-14 2018-09-27 大陽日酸株式会社 Ethylene oxide removal method
JP2018149508A (en) * 2017-03-14 2018-09-27 大陽日酸株式会社 Ethylene oxide removal method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61203967A (en) * 1985-03-06 1986-09-09 住友精化株式会社 Sterilizing gas monitoring system
JP2005321216A (en) * 2004-05-06 2005-11-17 Tokyo Gas Co Ltd Combustible gas concentration measuring instrument
JP2007256131A (en) * 2006-03-24 2007-10-04 Tokaseiki Co Ltd Concentration measuring instrument for fumigation gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61203967A (en) * 1985-03-06 1986-09-09 住友精化株式会社 Sterilizing gas monitoring system
JP2005321216A (en) * 2004-05-06 2005-11-17 Tokyo Gas Co Ltd Combustible gas concentration measuring instrument
JP2007256131A (en) * 2006-03-24 2007-10-04 Tokaseiki Co Ltd Concentration measuring instrument for fumigation gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016223640A (en) * 2015-05-27 2016-12-28 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Refrigerating air conditioner
JP2018149509A (en) * 2017-03-14 2018-09-27 大陽日酸株式会社 Ethylene oxide removal method
JP2018149508A (en) * 2017-03-14 2018-09-27 大陽日酸株式会社 Ethylene oxide removal method

Also Published As

Publication number Publication date
JP4975055B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
US7640782B2 (en) Vaporized hydrogen peroxide probe calibration rig
CN110501462B (en) Method for compensating for long term sensitivity drift of an electrochemical gas sensor exposed to nitric oxide
CN103380374B (en) Method for measuring breath alcohol concentration and apparatus therefor
Kader Methods of gas mixing, sampling and analysis
US7845206B2 (en) System, apparatus and method for dispensing chemical vapor
WO2016169669A1 (en) Process of testing an electronic smoking device
US3665748A (en) Portable trace moisture generator for calibration of moisture analyzers
WO2010025601A1 (en) Self-calibrating gas sensor
JP2006346481A (en) Method and apparatus for calibration of instruments that monitor concentration of sterilant in system
JP4975055B2 (en) Fumigation gas concentration measurement method and fumigation gas concentration measurement device using the method
JP2006078476A (en) Method of evaluating storage life of product inside package
EP3156778A1 (en) Leak detection
JP2015520399A (en) Breath alcohol calibration device with cartridge
JP2007510131A (en) Method for determining gas injection amount in isotope gas analysis, and method and apparatus for isotope gas analysis measurement
JP2004347601A (en) Combustible gas detector having circulation sensor container, and combustible gas measuring method
JPS62293147A (en) Integrated sensor and controller
BRAVDO Photosynthesis, transpiration, leaf stomatal and mesophyll resistance measurements by the use of a ventilated diffusion porometer
US20100327167A1 (en) Spectroscopic gas sensor and method for ascertaining an alcohol concentration in a supplied air volume, in particular an exhaled volume
JP4849924B2 (en) Fumigation gas concentration measuring device
JPS61128150A (en) Device for measuring xenon concentration
Swan et al. The validation and measurement uncertainty of an automated gas chromatograph for marine studies of atmospheric dimethylsulfide
US5984868A (en) Device for measuring an absorbed dose of gas by skin and method therefor
Ismail et al. Multiple propane gas flow rates procedure to determine accuracy and linearity of indirect calorimetry systems: An experimental assessment of a method.
WO2021041224A1 (en) Fluorine detection in a gas discharge light source
EP1292826B1 (en) Calibration method compensating for the concentration of water vapor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120410

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4975055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250