JP2010248642A - Generating method of fullerene fiber - Google Patents

Generating method of fullerene fiber Download PDF

Info

Publication number
JP2010248642A
JP2010248642A JP2009096566A JP2009096566A JP2010248642A JP 2010248642 A JP2010248642 A JP 2010248642A JP 2009096566 A JP2009096566 A JP 2009096566A JP 2009096566 A JP2009096566 A JP 2009096566A JP 2010248642 A JP2010248642 A JP 2010248642A
Authority
JP
Japan
Prior art keywords
fullerene
water
aspect ratio
fiber
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009096566A
Other languages
Japanese (ja)
Other versions
JP5435548B2 (en
Inventor
Kayoko Hotta
賀洋子 堀田
Kunichi Miyazawa
薫一 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2009096566A priority Critical patent/JP5435548B2/en
Publication of JP2010248642A publication Critical patent/JP2010248642A/en
Application granted granted Critical
Publication of JP5435548B2 publication Critical patent/JP5435548B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for adjusting an aspect ratio of a fullerene fiber. <P>SOLUTION: In the method for precipitating the fullerene fiber on an interface between a saturated solution in which fullerene is dissolved in a good solvent and a liquid which is a poor solvent against the fullerene, using a method of mixing water into the poor solvent liquid makes the volume of water mixed and the aspect ratio come in a proportional relationship with each other as shown in the diagram, so that the aspect ratio proves to be able to be adjusted according to the volume of water. Also the fullerene fiber proves to be able to be synthesized by using a cheaper solvent without using a high-purity solvent which has been ordinarily used. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、フラーレンファイバーの生成方法、特に、フラーレンを溶解した飽和溶液と前記フラーレンに対して貧溶媒となる液との界面に前記フラーレンからなるナノファイバーを生成させるフラーレンファイバーの生成方法に関する。   The present invention relates to a method for producing fullerene fibers, and more particularly to a method for producing fullerene fibers in which nanofibers comprising the fullerene are produced at the interface between a saturated solution in which fullerene is dissolved and a liquid that is a poor solvent for the fullerene.

従来より、アスペクト比が3以上(非特許文献1参照)のフラーレンファイバーを生成する方法については非特許文献2から5に示されているように各種のものが紹介されている。
しかし、いずれのものも、合成中の照射光、合成温度や溶媒の混合比率などにより調整することが示されているのみであり、従来の方法で、フラーレンファイバーの形状を特徴づけるアスペクト比を変化させるためには、温度と時間のパラメータを変化させて行う成長制御に頼らざるを得ず、結果的には、所望のアスペクト比のものを得るのは偶然に近い確率であった。
Conventionally, various methods for generating fullerene fibers having an aspect ratio of 3 or more (see Non-Patent Document 1) have been introduced as shown in Non-Patent Documents 2 to 5.
However, all of them are only shown to be adjusted by irradiation light during synthesis, synthesis temperature, solvent mixing ratio, etc., and the aspect ratio that characterizes the shape of fullerene fiber is changed by conventional methods. In order to achieve this, it is necessary to rely on growth control performed by changing parameters of temperature and time, and as a result, it is almost a coincidence probability to obtain a desired aspect ratio.

本発明は、このような実情に鑑み、フラーレンファイバーのアスペクト比を確実に調整することができる方法を提供することを目的とする。   In view of such circumstances, the present invention has an object to provide a method capable of reliably adjusting the aspect ratio of a fullerene fiber.

発明1のフラーレンファイバーの生成方法は、貧溶媒液中に水が混合されてなることを特徴とする。
発明2は、発明1のフラーレンファイバーの生成方法において、前記混合される水の分量を、生成されるフラーレンのアスペクト比に比例して調整することを特徴とする。
The method for producing fullerene fibers of the invention 1 is characterized in that water is mixed in a poor solvent liquid.
Invention 2 is characterized in that, in the method for producing fullerene fibers of Invention 1, the amount of the mixed water is adjusted in proportion to the aspect ratio of the produced fullerene.

従来、液−液界面析出法によってフラーレンファイバーを合成するためには、高純度の溶媒を用いており、不純物として含まれる水を、合成において積極的に利用することは考慮しなかった。しかし、本発明によって、少量の水を不純物として含むアルコールを用いて、フラーレンファイバーを効率的に合成できることが可能であることがわかった。
この結果は、高価な高純度溶媒を用いずとも、より安価な低純度の溶媒を用いてフラーレンファイバーを合成することを可能としたものであり、価格を低下させることにより、フラーレンファイバーが社会に普及し、広く利用されるための方法が得られるという効果をもたらした。
さらに、水の量が増加すればアスペクト比が増加する関係にあることを知見するに至り、所望するアスペクト比のフラーレンファイバーを水の量の調整のみにより、容易確実に生成することができるようになった。
Conventionally, in order to synthesize fullerene fibers by a liquid-liquid interface precipitation method, a high-purity solvent is used, and the active use of water contained as an impurity in the synthesis was not considered. However, according to the present invention, it has been found that fullerene fibers can be efficiently synthesized using an alcohol containing a small amount of water as an impurity.
This result makes it possible to synthesize fullerene fibers using cheaper low-purity solvents without using expensive high-purity solvents. It brought about the effect of obtaining a method for widespread and widespread use.
Furthermore, we have come to know that the aspect ratio increases as the amount of water increases, so that fullerene fibers with the desired aspect ratio can be easily and reliably produced by adjusting the amount of water. became.

蒸留水を添加していないIPAを用いて合成し、合成開始24時間後のフラーレンナノファイバーのSEM写真(実験No.a)。SEM photograph (experiment No. a) of fullerene nanofibers synthesized using IPA without adding distilled water and 24 hours after the start of synthesis. 蒸留水添加IPAを用いてのフラーレンファイバーの合成。合成開始24時間後のガラス瓶の写真。Synthesis of fullerene fiber using IPA with distilled water. A photograph of a glass bottle 24 hours after the start of synthesis. 蒸留水添加量のIPAを用いてフラーレンファイバーを合成した時の合成開始24時間後のフラーレンファイバーの長さの平均値と直径の平均値から算出したアスペクト比を示すグラフ。The graph which shows the aspect ratio computed from the average value of the length of fullerene fiber and the average value of a diameter 24 hours after the synthesis | combination start when synthesizing fullerene fiber using IPA of distilled water addition amount. 実験No.eのフラーレンナノファイバーのSEM写真。SEM photograph of fullerene nanofiber of Experiment No.e. 実験No.fのフラーレンナノファイバーのSEM写真。SEM photograph of fullerene nanofiber of experiment No. f. 実験No.gのフラーレンナノファイバーのSEM写真。SEM photograph of fullerene nanofiber of Experiment No.g.

合成時の温度によってフラーレンファイバーの長さが変わるという速度論的研究を行った結果から、高い成長の活性化エネルギーが得られ、そのほとんどは脱溶媒和エネルギーであると考えられる。
今回、一定温度での合成で水を少量添加しただけでフラーレンファイバーの長さが長く成長したことから、水には脱溶媒和を促進させるような触媒作用があると考えられる。また、メタノールと水の混合溶媒では、水−メタノールクラスターを作っているという報告があり、今回用いたIPAと水の混合溶媒においても、クラスターを作っている可能性がある。溶媒の構造が変化したことでフラーレンファイバーの成長が促進されたことの可能性もあり得る。
いずれにしても、明快な理由はわからないが、合成時の温度やフラーレン濃度を一定にしておいても、水の分量により、生成されるフラーレンファイバーのアスペクト比を調整できることを知見するに至った。
下記実施例で用いた良溶媒はトルエン、貧溶媒はIPAであるが、良溶媒としてキシレン、ベンゼン、ピリジン等が使用できることは非特許文献6から8に示され公知の事実であるから、前記トルエンに代えてこれら溶媒を用いることに何らの困難性はない。
また、下記実施例では貧溶媒としてイソプロピルアルコールを用いたが、これと同じく極性溶媒として知られるメタノール、エタノール、ブタノールなどを用いることに何らの困難性はない。
さらに、水の添加によってフラーレンファイバーの成長が促進されたことから、合成が難しいフラーレンの誘導体やC70から成るフラーレンファイバーや中空のフラーレンファイバーの合成におけるアスペクト比の制御においても、本発明を適用でき、水の添加は有効であると考えられる。
水の添加量は、常温(20℃)における合成では、3質量%を上限とするのが適切であるが、反応温度がより高い場合は、直径が小さくなるので、アスペクト比が大きくなる。
また、温度を高くすることは、脱溶媒和プロセスをより速やかに進めることになるので、活性化エネルギーが低下し、より少量の水の添加量で成長が促進されることになると考えられる。温度が高くなると、同じアスペクト比のフラーレンファイバーは、より少量の水を添加したイソプロピルアルコールを用いて合成されると予想される。
フラーレンのアスペクト比と創製温度及び水の添加量は、以下の(式1)に示す関係が成立するものと思われる。
<式1>

From the result of kinetic study that the length of fullerene fiber changes with the temperature at the time of synthesis, high growth activation energy is obtained, most of which is considered to be desolvation energy.
This time, the fullerene fiber grows long just by adding a small amount of water in the synthesis at a constant temperature, so water is considered to have a catalytic action that promotes desolvation. In addition, there is a report that a mixed solvent of methanol and water forms a water-methanol cluster, and there is a possibility that the mixed solvent of IPA and water used this time also forms a cluster. There may be a possibility that the growth of fullerene fibers was promoted by the change in the structure of the solvent.
In any case, although the reason is not clear, the inventors have found that the aspect ratio of the fullerene fiber produced can be adjusted by the amount of water even when the temperature and the fullerene concentration during synthesis are kept constant.
The good solvent used in the following examples is toluene, and the poor solvent is IPA. However, it is known from non-patent documents 6 to 8 that xylene, benzene, pyridine and the like can be used as the good solvent. There is no difficulty in using these solvents instead.
In the following examples, isopropyl alcohol was used as a poor solvent, but there is no difficulty in using methanol, ethanol, butanol, etc., which are known as polar solvents.
Furthermore, since the growth of fullerene fibers was enhanced by the addition of water, even in the control of the aspect ratio in the synthesis of fullerene fibers and hollow fullerene fibers made of synthetic difficult fullerene derivatives and C 70, the present invention can be applied The addition of water is considered effective.
The amount of water added is suitably 3% by mass in the synthesis at normal temperature (20 ° C.), but when the reaction temperature is higher, the diameter becomes smaller and the aspect ratio becomes larger.
In addition, increasing the temperature will advance the desolvation process more rapidly, so that the activation energy is reduced and growth is promoted with a smaller amount of water added. At higher temperatures, fullerene fibers of the same aspect ratio are expected to be synthesized using isopropyl alcohol with a smaller amount of water added.
It is considered that the relationship shown in the following (Formula 1) is established between the aspect ratio of fullerene, the creation temperature, and the amount of water added.
<Formula 1>

60の良溶媒として、トルエン(特級、99.5%、和光純薬(株))を用いた。C60粉末(99.5%、MTR Ltd.)を2.8g/lでトルエンに加えて、30分間超音波処理をした。これを、シリンジフィルター(膜孔450 nm、PuradiscTM; Whatman Inc.,Clifton, NJ, USA)を用いてろ過してC60飽和トルエン溶液を作成した。貧溶媒としてイソプロピルアルコール(IPA、特級、99.7%、和光純薬(株))を用いた。IPAに添加したのは蒸留水(和光純薬(株))である。IPAに添加する水の量は表1に示すように、0、0.4、0.6、0.9、1.3、2.5、3.8、5、6.3、7.5、8.7、9.9、11.2、12.4%(質量%)になるようにした。20°Cに設定した恒温水槽で、C60飽和トルエン溶液4mlを入れたバイアル瓶に、蒸留水を添加したIPA4mlをゆっくり滴下して液−液界面を形成させた。そして手で混合し20°Cに保った恒温器(SANYO MIR−153)中で24時間静置させた。全試薬は、納品されたままのものを用いて、精製は行なわなかった。
図1に、典型的なフラーレンナノファイバーのSEM写真を示す。図2は蒸留水を添加したIPAを用いて合成した24時間後のバイアル瓶の写真である。
図2において、蒸留水添加IPAで合成したものは、蒸留水添加量2.5%以下でフラーレンファイバーの沈殿物が観察された。3.8%以上の蒸留水を添加したIPAを用いて合成したものでは、フラーレンファイバーを作成することはできなかった。図3は蒸留水0〜2.5%添加IPAで合成したフラーレンファイバーを光学顕微鏡で観察し、長さを測定した結果とSEM観察を行って測定した直径の結果から算出したアスペクト比を示す。3%以下、より好ましくは2.5%以下では、蒸留水の添加量が増加するとともにアスペクト比も増加した。


As the good solvent for C 60, toluene (special grade, 99.5%, manufactured by Wako Pure Chemical Industries,) was used. C 60 powder (99.5%, MTR Ltd.) was added to toluene at 2.8 g / l and sonicated for 30 minutes. This syringe filter; created (membrane pores 450 nm, Puradisc TM Whatman Inc., Clifton, NJ, USA) and filtered using a C 60 saturated toluene solution. Isopropyl alcohol (IPA, special grade, 99.7%, Wako Pure Chemical Industries, Ltd.) was used as a poor solvent. Distilled water (Wako Pure Chemical Industries, Ltd.) was added to IPA. As shown in Table 1, the amount of water added to IPA is 0, 0.4, 0.6, 0.9, 1.3, 2.5, 3.8, 5, 6.3, 7.5. , 8.7, 9.9, 11.2, 12.4% (mass%). In a constant temperature water bath set at 20 ° C., 4 ml of IPA added with distilled water was slowly dropped into a vial containing 4 ml of a C 60 saturated toluene solution to form a liquid-liquid interface. And it was left to stand for 24 hours in the thermostat (SANYO MIR-153) which mixed by hand and kept at 20 degreeC. All reagents were used as received and were not purified.
FIG. 1 shows an SEM photograph of a typical fullerene nanofiber. FIG. 2 is a photograph of a vial 24 hours after synthesis using IPA to which distilled water was added.
In FIG. 2, fullerene fiber precipitates were observed when the synthesized water was added with distilled water-added IPA and the amount of distilled water added was 2.5% or less. A fullerene fiber could not be prepared by using IPA synthesized with 3.8% or more of distilled water added. FIG. 3 shows the aspect ratio calculated from the result of observing the fullerene fiber synthesized with IPA added with 0 to 2.5% distilled water with an optical microscope and measuring the length and the diameter measured by SEM observation. At 3% or less, more preferably 2.5% or less, the amount of distilled water added increased and the aspect ratio also increased.


Nanoscience and nanotechnologies : opportunities and uncertainties (The Royal Society & The Royal Academy of Engineering, 2003, http: //www. nanotech. org.uk/ final Report. htm), P.37.Nanoscience and nanotechnologies: opportunities and uncertains (The Royal Society & The Royal, Inc., tw., Http: //www.Nanoscience and nanotechnology, The Royal Academy of Engineering. 37. Chemical Physics Letters 374(2003)279Chemical Physics Letters 374 (2003) 279 Journal of Crystal Growth 274 (2005)617−621Journal of Crystal Growth 274 (2005) 617-621 Diamond & Related Materials 17(2008)529−534Diamond & Related Materials 17 (2008) 529-534 NANO 3(2008)329−333NANO 3 (2008) 329-333 Minato, J.; Miyazawa, K. Carbon 2005, 43, 2837−2841.Minato, J. et al. Miyazawa, K .; Carbon 2005, 43, 2837-2841. M. Sathish,K. Miyazawa,and T. Sasaki, Chem. Mater., 19(2007)2398−2400M.M. Sathish, K .; Miyazawa, and T.M. Sasaki, Chem. Mater. , 19 (2007) 2398-2400 K.Miyazawa,J.Minato, T.Yoshii, M.Fujino and T.Suga, J.Mater.Res. 20[3](2005)688−695K. Miyazawa, J .; Minato, T .; Yoshii, M .; Fujino and T.F. Suga, J .; Mater. Res. 20 [3] (2005) 688-695

Claims (2)

フラーレンを溶解した飽和溶液と前記フラーレンに対して貧溶媒となる液との界面に前記フラーレンからなるナノファイバーを析出させるフラーレンファイバーの生成方法であって、前記貧溶媒液中に水が混合されてなることを特徴とするフラーレンファイバーの生成方法。   A method for producing fullerene fibers in which nanofibers made of fullerene are deposited at an interface between a saturated solution in which fullerene is dissolved and a liquid that is a poor solvent for the fullerene, wherein water is mixed in the poor solvent liquid. A method for producing fullerene fibers, comprising: 請求項1に記載のフラーレンファイバーの生成方法において、前記混合される水の分量を、生成されるフラーレンファイバーのアスペクト比に比例して調整することを特徴とするフラーレンファイバーの生成方法。

The fullerene fiber production method according to claim 1, wherein an amount of the mixed water is adjusted in proportion to an aspect ratio of the fullerene fiber to be produced.

JP2009096566A 2009-04-13 2009-04-13 Generation method of fullerene fiber Expired - Fee Related JP5435548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009096566A JP5435548B2 (en) 2009-04-13 2009-04-13 Generation method of fullerene fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009096566A JP5435548B2 (en) 2009-04-13 2009-04-13 Generation method of fullerene fiber

Publications (2)

Publication Number Publication Date
JP2010248642A true JP2010248642A (en) 2010-11-04
JP5435548B2 JP5435548B2 (en) 2014-03-05

Family

ID=43311281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009096566A Expired - Fee Related JP5435548B2 (en) 2009-04-13 2009-04-13 Generation method of fullerene fiber

Country Status (1)

Country Link
JP (1) JP5435548B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083050A (en) * 2004-08-19 2006-03-30 National Institute Of Advanced Industrial & Technology Liquid-phase synthesis method and use of fullerene nano-whisker/nano-fiber nano-tube
JP2006124266A (en) * 2004-10-01 2006-05-18 National Institute For Materials Science C60 fullerene tube and its manufacturing method
JP2007217248A (en) * 2006-02-17 2007-08-30 National Institute For Materials Science Material-supporting fullerene tube and method of manufacturing the same
WO2009028682A1 (en) * 2007-08-29 2009-03-05 National Institute For Materials Science Substrate having fullerene fine wire and method for manufacture thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083050A (en) * 2004-08-19 2006-03-30 National Institute Of Advanced Industrial & Technology Liquid-phase synthesis method and use of fullerene nano-whisker/nano-fiber nano-tube
JP2006124266A (en) * 2004-10-01 2006-05-18 National Institute For Materials Science C60 fullerene tube and its manufacturing method
JP2007217248A (en) * 2006-02-17 2007-08-30 National Institute For Materials Science Material-supporting fullerene tube and method of manufacturing the same
WO2009028682A1 (en) * 2007-08-29 2009-03-05 National Institute For Materials Science Substrate having fullerene fine wire and method for manufacture thereof
JP2009051708A (en) * 2007-08-29 2009-03-12 National Institute For Materials Science Substrate with thin fullerene wire and method for producing the same

Also Published As

Publication number Publication date
JP5435548B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
Yang et al. Bottom-up fabrication of photoluminescent carbon dots with uniform morphology via a soft–hard template approach
US8518178B2 (en) Silicon carbide nanofiber and fabrication method of silicon carbide nanofiber using emulsion spinning
Su et al. Large-scale synthesis of boron nitride nanotubes with iron-supported catalysts
JP2019178067A (en) Zeta positive hydrogenated nanodiamond powder, zeta positive single digit hydrogenated nanodiamond dispersion, and methods for producing the same
US9676627B2 (en) Growth of silicon and boron nitride nanomaterials on carbon fibers by chemical vapor deposition
JP5958842B2 (en) Method for producing chiral metal oxide structure, and chiral porous structure
US11104989B2 (en) Chemical vapor deposition process to build 3D foam-like structures
Gu et al. One-pot synthesis and control of aqueous soluble and organic soluble carbon dots from a designable waterborne polyurethane emulsion
Roy et al. Time sensitive, temperature and pH responsive photoluminescence behaviour of a melamine containing bicomponent hydrogel
Eiblmeier et al. Bottom-up self-assembly of amorphous core–shell–shell nanoparticles and biomimetic crystal forms in inorganic silica–carbonate systems
Gong et al. Synthesis of highly luminescent fluorinated graphene quantum dots with tunable fluorine coverage and size
Fang et al. The growth and photocatalytic property of ZnO nanofibers synthesized by atom layer deposition using PVP nanofibers as templates
Liu et al. Mesporous 3 C-SiC hollow fibers
Yang et al. Integration of an anti-tumor drug into nanocrystalline assemblies for sustained drug release
JP5435548B2 (en) Generation method of fullerene fiber
JP4500771B2 (en) Fullerene crystal and method for producing the same
Zhao et al. Structural properties and photoluminescence of TiO2 nanofibers were fabricated by electrospinning
Shi et al. Synthesis of AlN porous-shell hollow spheres by a combustion route
JP4035618B2 (en) Fullerene fine wire manufacturing method
Zhu et al. Two-step synthesis of ZnO rod-needle nanostructures using a ZnS source
JP2005343739A (en) Fiber-like fullerene crystal and its producing method
Chen et al. Purification, organophilicity and transparent fluorescent bulk material fabrication derived from hydrophilic carbon dots
Zhu et al. Microwave synthesis of zinc sulfite and porous zinc oxide microrods
Sathish et al. Selective precipitation of tubular-like short fullerene (C 60) whiskers at liquid–liquid interface
Ghasemlou et al. Fluorescent Nanocarbons: From Synthesis and Structure to Cancer Imaging and Therapy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131204

R150 Certificate of patent or registration of utility model

Ref document number: 5435548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees