JP2010248090A - Oxidation reactor, and method of producing aromatic polycarboxylic acid - Google Patents

Oxidation reactor, and method of producing aromatic polycarboxylic acid Download PDF

Info

Publication number
JP2010248090A
JP2010248090A JP2009096516A JP2009096516A JP2010248090A JP 2010248090 A JP2010248090 A JP 2010248090A JP 2009096516 A JP2009096516 A JP 2009096516A JP 2009096516 A JP2009096516 A JP 2009096516A JP 2010248090 A JP2010248090 A JP 2010248090A
Authority
JP
Japan
Prior art keywords
reactor
oxidation
aromatic polycarboxylic
polycarboxylic acid
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009096516A
Other languages
Japanese (ja)
Other versions
JP5168216B2 (en
Inventor
Ken Kawai
建 川合
Masashi Yabuno
雅志 薮野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2009096516A priority Critical patent/JP5168216B2/en
Publication of JP2010248090A publication Critical patent/JP2010248090A/en
Application granted granted Critical
Publication of JP5168216B2 publication Critical patent/JP5168216B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxidation reactor for industrially producing a high-quality aromatic polycarboxylic acid at a high yield capable of suppressing quick and uniform mixing of raw materials, the by-production of a compound of a high boiling point, and the production of an intermediate, upon oxidizing polymethylbenzaldehyde in a liquid phase by air, and a method of producing an aromatic polycarboxylic acid. <P>SOLUTION: The reactor for use in liquid-phase oxidation including a jacket 18 disposed on the circumference of the body of the reactor, an agitation shaft 4 of a concentric agitation type disposed inside the body of the reactor, with a pair of agitation blades 2 attached thereto and with a rotary atomizer 3 attached to the bottom thereof, and a pair of partitioning discs 1 dividing the inner space of the reactor into three sections A, B, and C, is characterized in that the section A is equipped with a feed port 5 for feeding a catalyst and a solvent thereinto, the section B is equipped with a feed port 6 for feeding raw materials thereinto, and the section C is equipped with a feed port 7 for feeding molecular oxygen thereinto and a discharge port 8 for discharging a reaction liquid therefrom. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、酸化反応器と、この酸化反応器を用いてポリメチルベンズアルデヒドの液相空気酸化により芳香族ポリカルボン酸を製造する方法に関するものである。     The present invention relates to an oxidation reactor and a method for producing an aromatic polycarboxylic acid by liquid phase air oxidation of polymethylbenzaldehyde using this oxidation reactor.

従来、臭化物イオンおよび重金属(例えばマンガン)イオンを触媒、水を溶媒にして分子状酸素を用いて液相酸化して2,4-ジメチルベンズアルデヒドや2,4,5-トリメチルベンズアルデヒドから芳香族ポリカルボン酸を製造する技術、また、2,4-ジメチルベンズアルデヒド、2,5-ジメチルベンズアルデヒド、3,4-ジメチルベンズアルデヒド、2,4-ジメチル安息香酸、2,5-ジメチル安息香酸、3,4-ジメチル安息香酸からトリメリット酸を製造する技術は多数知られていた(例えば、特許文献1と2参照)。     Conventionally, aromatic polycarboxylic acid from 2,4-dimethylbenzaldehyde and 2,4,5-trimethylbenzaldehyde by bromide ion and heavy metal (eg manganese) ion as catalyst, water as solvent and molecular phase oxidation with molecular oxygen. Technology for producing acid, and 2,4-dimethylbenzaldehyde, 2,5-dimethylbenzaldehyde, 3,4-dimethylbenzaldehyde, 2,4-dimethylbenzoic acid, 2,5-dimethylbenzoic acid, 3,4-dimethyl Many techniques for producing trimellitic acid from benzoic acid have been known (see, for example, Patent Documents 1 and 2).

一方、ポリアルキルベンズアルデヒドを分子状酸素により液相酸化する際、分子状酸素の吹き込み手段としてロータリーアトマイザーを用いてポリアルキル安息香酸を製造する技術も開示されている(特許文献3参照。)。しかし、それらの反応器の構造は一般的な完全混合式あり、反応器に供給した原料が反応器内ですばやく均一に混合され、反応器内の組成と抜き出し流体の組成が等しくなるという欠点があった。     On the other hand, a technique for producing polyalkylbenzoic acid using a rotary atomizer as a means for blowing molecular oxygen when liquid phase oxidation of polyalkylbenzaldehyde with molecular oxygen is also disclosed (see Patent Document 3). However, the structure of these reactors is a general complete mixing type, and the raw material supplied to the reactor is quickly and uniformly mixed in the reactor, so that the composition in the reactor is equal to the composition of the extracted fluid. there were.

また、従来技術の完全混合式では、ポリメチルベンズアルデヒドを原料に用いて高純度の芳香族ポリカルボン酸を製造する際、初期の酸化反応における高沸点化合物の副生を抑制し、中間体の生成を抑制させ、目的物の収率を向上させる具体的な手段は示されていない。     Also, in the case of producing a high-purity aromatic polycarboxylic acid using polymethylbenzaldehyde as a raw material, the complete mixing system of the prior art suppresses by-product formation of high-boiling compounds in the initial oxidation reaction, thereby generating intermediates. No specific means for suppressing the above and improving the yield of the target product is shown.

特公昭58−2222号公報Japanese Patent Publication No.58-2222 特開2002−3440号公報Japanese Patent Laid-Open No. 2002-3440 特公昭56−8816号公報Japanese Patent Publication No. 56-8816

本発明の目的は、ポリメチルベンズアルデヒドを原料として液相空気酸化した場合に、従来技術において、原料のすばやい均一混合の抑制、該抑制による高沸点化合物の副生や中間体の生成を抑制し、高収率で高品質の芳香族ポリカルボン酸を工業的に製造できる酸化反応器および該反応器を用いた芳香族ポリカルボン酸の製造方法を提供することにある。   The object of the present invention is to suppress the rapid and uniform mixing of raw materials in the prior art when liquid phase air oxidation is performed using polymethylbenzaldehyde as a raw material, to suppress the production of by-products and intermediates of high-boiling compounds due to the suppression, An object of the present invention is to provide an oxidation reactor capable of industrially producing a high-quality aromatic polycarboxylic acid with high yield and a method for producing an aromatic polycarboxylic acid using the reactor.

本発明者らは、ポリメチルベンズアルデヒドを原料とした分子状酸素を用いる水溶媒
中での液相空気酸化について、従来の完全混合式でポリメチルベンズアルデヒドを酸化する場合、一番酸化されやすい官能基であるホルミル基は、選択性良くポリメチル安息香酸にすることは難しく、高沸点化合物が生成する等の不具合が生じ、最終的に芳香族ポリカルボン酸を効率良く製造できない問題点に注目し鋭意研究を重ねた結果、2枚の仕切り円板(1)により反応器内部空間を区画(A)、区画(B)、および区画(C)に分画し、区画(A)には触媒と溶媒の仕込み口(5)を備え、区画(B)には原料の仕込み口(6)を備え、区画(C)には分子状酸素の仕込み口(7)と反応液抜き出し口(8)を備えていることを特徴とする液相酸化用の反応器である。
The present inventors, for liquid phase air oxidation in an aqueous solvent using molecular oxygen from polymethylbenzaldehyde as a raw material, when oxidizing polymethylbenzaldehyde in the conventional complete mixing formula, the functional group most easily oxidized The formyl group is difficult to convert to polymethylbenzoic acid with good selectivity, resulting in problems such as the formation of high-boiling compounds, and finally earnest research focusing on the problems that aromatic polycarboxylic acids cannot be produced efficiently. As a result, the reactor internal space is divided into compartment (A), compartment (B), and compartment (C) by two partitioning discs (1). In compartment (A), the catalyst and solvent are separated. It is provided with a charging port (5), the compartment (B) is provided with a raw material charging port (6), and the compartment (C) is provided with a molecular oxygen charging port (7) and a reaction liquid outlet (8). Liquid phase oxidation characterized by It is of the reactor.

すなわち本発明は、
[A]反応器本体と、
該反応器本体の周囲にジャケット(18)を有し、該反応器本体の内部に、中心攪拌式の撹拌軸(4)を有し、該撹拌軸(4)に2個の攪拌翼(2)が連結されてあり、かつ、該撹拌軸(4)の底部にロータリーアトマイザー(3)が連結されており、該反応器の内部空間を2枚の仕切り円板(1)により、区画(A)、区画(B)および区画(C)の3区画に分画し、区画(A)には触媒と溶媒の仕込み口(5)を備え、区画(B)には原料の仕込み口(6)を備え、区画(C)には分子状酸素の仕込み口(7)と反応液抜き出し口(8)を備えていることを特徴とする液相酸化用の反応器。
[B]仕切り円板(1)の下面と酸化反応器の最底面との縦方向の距離が、0.9×D〜1.5×D(mm)(Dは酸化反応器の内径(mm))、仕切り円板(1)の下面と酸化反応器の最底面との縦方向の距離が2.1×D〜2.8×D(mm)(Dは前記と同じ)である[A]に記載の反応器。
[C]前記撹拌軸(4)と2枚の仕切り円板(1)との横方向距離(クリアランス)が、共に0.01×D〜0.04×D(mm)(Dは前記と同じ)である[A]に記載の反応器。
[D]前記反応器の内面と2枚の仕切り円板(1)との横方向距離(クリアランス)が、共に0.01×D〜0.04×D(mm)(Dは前記と同じ)である[A]に記載の反応器。
[E]前記ロータリーアトマイザー(3)は、中心攪拌式の攪拌軸(4)との連結により回転し、かつ、分子状酸素の仕込み口(7)の上方に位置している[A]に記載の反応器。
[F]前記ジャケット(18)が、反応器の加温手段の機能を有する請求項1に記載の反応器。
[G]ポリメチルベンズアルデヒドを液相酸化反応により、芳香族ポリカルボン酸を製造する製造方法において、反応器が[A]〜[F]のいずれか1項に記載の液相酸化用の反応器であることを特徴とする芳香族ポリカルボン酸の製造法。
[H]芳香族ポリカルボン酸がトリメリット酸またはピロメリット酸である[G]に記載の高純度芳香族ポリカルボン酸の製造法。
That is, the present invention
[A] the reactor body;
A jacket (18) is provided around the reactor body, a central stirring type stirring shaft (4) is provided inside the reactor body, and two stirring blades (2) are provided on the stirring shaft (4). ) And a rotary atomizer (3) is connected to the bottom of the stirring shaft (4), and the internal space of the reactor is divided into two compartments (A) by two partition disks (1). ), Compartment (B) and compartment (C), and compartment (A) is provided with catalyst and solvent inlets (5), and compartment (B) is charged with raw materials (6). A reactor for liquid phase oxidation, wherein the compartment (C) is provided with a molecular oxygen charging port (7) and a reaction liquid outlet port (8).
[B] The vertical distance between the lower surface of the partition disk (1) and the bottom surface of the oxidation reactor is 0.9 × D to 1.5 × D (mm) (D is the inner diameter of the oxidation reactor (mm) )), The vertical distance between the lower surface of the partition disk (1) and the bottom surface of the oxidation reactor is 2.1 × D to 2.8 × D (mm) (D is the same as above) [A ] The reactor as described in.
[C] The lateral distance (clearance) between the stirring shaft (4) and the two partition disks (1) is 0.01 × D to 0.04 × D (mm) (D is the same as above) The reactor according to [A].
[D] The lateral distance (clearance) between the inner surface of the reactor and the two partition disks (1) is 0.01 × D to 0.04 × D (mm) (D is the same as above). The reactor according to [A].
[E] The rotary atomizer (3) is rotated by being connected to a central stirring type stirring shaft (4), and is positioned above the molecular oxygen charging port (7). Reactor.
[F] The reactor according to claim 1, wherein the jacket (18) functions as a heating means of the reactor.
[G] In the production method for producing an aromatic polycarboxylic acid by liquid phase oxidation reaction of polymethylbenzaldehyde, the reactor is the reactor for liquid phase oxidation according to any one of [A] to [F] A process for producing an aromatic polycarboxylic acid, characterized in that
[H] The method for producing a high-purity aromatic polycarboxylic acid according to [G], wherein the aromatic polycarboxylic acid is trimellitic acid or pyromellitic acid.

従来の完全混合式の酸化反応器構造に比べ、本発明による3個の区画を有する分画酸化式の酸化反応器を用いることにより、初期の段階でのホルミル基の酸化が適正に行われることにより、その後、残りの官能基の酸化反応を選択性よく酸化させることが可能となり高収率で、芳香族ポリカルボン酸を得ることができる。   Compared to the conventional complete mixing type oxidation reactor structure, by using the fractionation type oxidation reactor having three compartments according to the present invention, the oxidation of the formyl group at the initial stage is performed properly. Then, the oxidation reaction of the remaining functional groups can be oxidized with high selectivity, and an aromatic polycarboxylic acid can be obtained in high yield.

ポリメチルベンズアルデヒドを原料として水溶媒中、臭化物イオンと重金属(例えばマンガン)イオンを触媒(以下、触媒と略すこともある)に用い、液相にて空気酸化をする際に、本発明の3個の区画を有する分画酸化式の酸化反応器を用いることにより、逐次酸化反応と、触媒および溶媒を反応器上部から導入し、反応液を反応器下部から抜き出すことで押し出し式酸化反応が可能となる。また、ロータリーアトマイザーを用いることで高度に分散された分子状酸素の吹き込みを可能とし、且つ、空気導入位置、原料導入位置、触媒と溶媒導入位置を適正化することで工業的に高収率の芳香族ポリカルボン酸を製造することができる。   When polymethylbenzaldehyde is used as a raw material and bromide ions and heavy metal (eg, manganese) ions are used as catalysts (hereinafter sometimes abbreviated as “catalyst”) in an aqueous solvent and air oxidation is performed in the liquid phase, By using a fractional oxidation type oxidation reactor having the following sections, it is possible to perform a sequential oxidation reaction and an extrusion type oxidation reaction by introducing a catalyst and a solvent from the upper part of the reactor and withdrawing the reaction liquid from the lower part of the reactor. Become. In addition, the use of a rotary atomizer enables the highly dispersed molecular oxygen to be blown, and by optimizing the air introduction position, the raw material introduction position, the catalyst and solvent introduction position, an industrially high yield. Aromatic polycarboxylic acids can be produced.

以下に、本発明について詳しく説明する。
従来の完全混合式酸化反応器に比べ、3個の区画を有する酸化反応器を用いた場合、分画式酸化反応と、触媒および溶媒を反応器上部から導入し、反応液を反応器下部から抜き出すことで押し出し式酸化反応が可能となり、原料のホルミル基が最適に酸化する事と目的物への選択的反応が最適に進むことで、高沸点物質および中間体の生成が減少し、その結果、高収率かつ、副生成物の少ない高品質の高純度芳香族ポリカルボン酸を工業的に製造できる酸化反応器を見いだし本発明に到達した。
The present invention is described in detail below.
Compared with the conventional fully mixed oxidation reactor, when an oxidation reactor having three compartments is used, a fractional oxidation reaction, a catalyst and a solvent are introduced from the upper part of the reactor, and a reaction solution is introduced from the lower part of the reactor. Extraction enables the extrusion-type oxidation reaction, and the optimal formyl group oxidation of the raw material and the selective reaction to the target product proceed optimally, resulting in a decrease in the formation of high-boiling substances and intermediates. The inventors have found an oxidation reactor capable of industrially producing a high-quality, high-purity aromatic polycarboxylic acid with a high yield and few by-products, and have reached the present invention.

従来の完全混合式では、ポリメチルベンズアルデヒドを酸化する場合、一番酸化されやすい官能基はホルミル基であるが、選択性良くポリメチル安息香酸にすることは難しく、高沸点化合物が副生する等の不具合が生じ、最終的に芳香族ポリカルボン酸を効率良く得ることはできない。また、原料のポリメチルベンズアルデヒドと空気を同じ高さ位置から供給すると、酸化反応が選択的に進行せず、且つ高沸点化合物が多く生成し、目的物の芳香族ポリカルボン酸の収率が低下する。     In the conventional complete mixing formula, when polymethylbenzaldehyde is oxidized, the functional group that is most easily oxidized is a formyl group, but it is difficult to make polymethylbenzoic acid with good selectivity, and a high-boiling compound is by-produced. A malfunction occurs, and it is impossible to finally obtain an aromatic polycarboxylic acid efficiently. In addition, if the raw material polymethylbenzaldehyde and air are supplied from the same height position, the oxidation reaction does not proceed selectively and many high-boiling compounds are produced, resulting in a decrease in the yield of the target aromatic polycarboxylic acid. To do.

本発明の仕切り円板を設けることにより分画式酸化反応と、触媒および溶媒を反応器上部から導入し、反応液を反応器下部から抜き出すことで押し出し式酸化反応が可能となり、分子状酸素の吹き込み口付近のポリメチルベンズアルデヒド濃度を低めに制御することによりホルミル基の酸化が選択的に進行し、初期の段階であるポリメチル安息香酸を選択性良く生成させつつ更なる酸化を進行させることで、高純度芳香族ポリカルボン酸を製造することが出来る。     By providing the partition disk of the present invention, the fractionation type oxidation reaction, the catalyst and the solvent are introduced from the upper part of the reactor, and the reaction liquid is withdrawn from the lower part of the reactor. By controlling the polymethylbenzaldehyde concentration in the vicinity of the inlet to be low, the oxidation of the formyl group selectively proceeds, and further oxidation proceeds while generating polymethylbenzoic acid, which is the initial stage, with high selectivity. A high purity aromatic polycarboxylic acid can be produced.

酸化反応器最低面(0D)について、図1により説明する。
酸化反応器下部の構造が、簡単であるが内圧に弱い平鏡板構造と若干複雑ではあるが内圧に強い半だ円体形鏡構造の2タイプを基準とする。すなわち、酸化反応器最低面の0Dは、平鏡板構造の場合は反応器低板の内面、半だ円体形鏡構造は下部タンジェンシャルライン(TL)の位置とする。下部タンジェンシャルラインとは、反応器の直胴部と下部半だ円体形鏡部の境界線のことを言う。
The lowest surface (0D) of the oxidation reactor will be described with reference to FIG.
The structure of the lower part of the oxidation reactor is based on two types: a simple mirror plate structure that is weak against internal pressure, and a semi-ellipsoidal mirror structure that is slightly complicated but resistant to internal pressure. That is, 0D on the lowest surface of the oxidation reactor is the position of the inner surface of the reactor lower plate in the case of the flat mirror plate structure, and the position of the lower tangential line (TL) in the semi-elliptical mirror structure. The lower tangential line refers to the boundary line between the straight body of the reactor and the lower semicircular mirror.

酸化反応器の構造を図2により説明する。
本発明の酸化反応器は、反応器本体と、該反応器本体の周囲にジャケット(18)を有し、該反応器本体の内部に、中心攪拌式の撹拌軸(4)を有し、該撹拌軸(4)に2個の攪拌翼(2)が連結されてあり、かつ、該撹拌軸(4)の底部にロータリーアトマイザー(3)が連結されてあり、該反応器の内部空間を2枚の仕切り円板(1)により、区画(A)、区画(B)および区画(C)の3区画に分け、区画(A)には触媒と溶媒の仕込み口(5)を備え、区画(B)には原料の仕込み口(6)を備え、区画(C)には分子状酸素の仕込み口(7)と反応液抜き出し口(8)を備えている液相酸化用の反応器である。
The structure of the oxidation reactor will be described with reference to FIG.
The oxidation reactor of the present invention has a reactor main body, a jacket (18) around the reactor main body, a central stirring type stirring shaft (4) inside the reactor main body, Two stirring blades (2) are connected to the stirring shaft (4), and a rotary atomizer (3) is connected to the bottom of the stirring shaft (4). The partition disk (1) is divided into three sections, that is, a section (A), a section (B), and a section (C). The section (A) is provided with a catalyst and solvent charging port (5). B) is a reactor for liquid phase oxidation having a raw material charging port (6) and a compartment (C) having a molecular oxygen charging port (7) and a reaction liquid outlet (8). .

酸化反応器の寸法を図3により説明する。[1]〜[5]に、各パーツの詳細寸法を記載する。
[1]反応器の最底面(0D)から上側の距離に、仕切り円板P−1(但し、P−1=0.9×D〜1.5×D、Dは酸化反応器の内径(mm)。)及び、仕切り円板P−2(但し、P−2=2.1×D〜2.8×D、Dは前記と同じ。)を設ける。仕切り円板は、攪拌軸との間にクリアランスα1(α1=0.01×D〜0.04×D、Dは前記と同じ。)を持たせ、反応器胴側との間にクリアランスα2(α2=0.01×D〜0.04×D、Dは前記と同じ。)を持たせる分画式酸化反応器の構造とする。
[2]反応器の最底面(0D)から上側の距離に、分子状酸素の吹き込み手段としてロータリーアトマイザーを特定範囲位置R−1(但し、R−1=0.3×D〜0.8×D、Dは前記と同じ。)を設けた分割式酸化反応器の構造とする。
[3]酸化反応器の最底面(0D)から上側の距離に、攪拌翼を特定範囲位置C−1と
C−2(但し、C−1=1.4×D〜3.0×D、C−2=2.7×D〜3.3×D、Dは前記と同じ。)を設けた中心攪拌式の酸化反応器である。
[4]酸化反応器の最底面(0D)から上側の距離に、特定範囲位置N−1からローターアトマイザーの下部に空気を導入し、特定範囲位置N−2から原料のポリメチルベンズアルデヒドを導入し、特定範囲位置N−3から触媒と溶媒を導入する。(但し、N−1=0.3×D〜0.8×D、N−2=1.4×D〜3.0×D、N−3=2.7×D〜3.3×D、Dは前記と同じ。)生成した酸化反応液は酸化反応器の最底部(0D)より抜き出す。
[5]仕切り円板を設けて分画酸化及び適度な押し出し流れ酸化反応を可能とし、ロー
タリーアトマイザーを用いて高度に分散された分子状酸素の吹き込みを可能とし、空気導入位置、原料導入位置、触媒と溶媒の導入位置の最適化を図ることで、高収率の芳香族ポリカルボン酸の製造法を特徴とする。
The dimensions of the oxidation reactor will be described with reference to FIG. The detailed dimensions of each part are described in [1] to [5].
[1] A partition disk P-1 (where P-1 = 0.9 × D to 1.5 × D, where D is the inner diameter of the oxidation reactor (0D) above the bottom surface (0D) of the reactor) mm).) and a partition disk P-2 (where P-2 = 2.1 × D to 2.8 × D, D is the same as described above). The partition disk has a clearance α1 (α1 = 0.01 × D to 0.04 × D, D is the same as described above) between the stirring shaft and the clearance α2 ( α2 = 0.01 × D to 0.04 × D, where D is the same as described above).
[2] At a distance above the bottom surface (0D) of the reactor, a rotary atomizer as a molecular oxygen blowing means is placed in a specific range position R-1 (where R-1 = 0.3 × D to 0.8 ×). D and D are the same as described above).
[3] At a distance above the bottom surface (0D) of the oxidation reactor, the stirring blades are moved to specific range positions C-1 and C-2 (where C-1 = 1.4 × D to 3.0 × D, C-2 = 2.7 × D to 3.3 × D, where D is the same as described above).
[4] Air is introduced from the specific range position N-1 to the lower part of the rotor atomizer at a distance above the bottom surface (0D) of the oxidation reactor, and the raw material polymethylbenzaldehyde is introduced from the specific range position N-2. The catalyst and the solvent are introduced from the specific range position N-3. (However, N-1 = 0.3 × D to 0.8 × D, N-2 = 1.4 × D to 3.0 × D, N-3 = 2.7 × D to 3.3 × D , D is the same as described above.) The produced oxidation reaction liquid is extracted from the bottom (0D) of the oxidation reactor.
[5] A partition disk is provided to enable fractional oxidation and moderate extrusion flow oxidation reaction, and to allow highly dispersed molecular oxygen to be blown using a rotary atomizer, air introduction position, raw material introduction position, It features a method for producing high yield aromatic polycarboxylic acids by optimizing the catalyst and solvent introduction positions.

例えば本発明における酸化反応器の一例を図4に示すが、縦型反応器であり内部には空間を3分割に仕切る仕切り円板(1)を有し、上から1番目の空間部に触媒と溶媒の仕込み口(5)、上から2番目の空間部に原料仕込み口(6)が水平方向に口を付けた格好で附属している。また反応器の底部には空気吹き込み口(7)が後述するロータリーアトマイザー(3)の下面近くに口を付けた格好で、反応液抜き出し口(8)が底面の面に合わせた格好で附属している。反応器外側には加熱用ジャケット(18)が附属している。また反応器を上面から見て中心に、垂直方向に攪拌軸(4)を有しその攪拌軸の最下部にロータリーアトマイザー(3)、その上垂直方向に、それぞれの空間部に収まる格好で攪拌翼(2)を有している。   For example, FIG. 4 shows an example of an oxidation reactor according to the present invention, which is a vertical reactor, and has a partition disk (1) for partitioning the space into three parts, and a catalyst in the first space part from the top. And the solvent charging port (5), and the raw material charging port (6) is attached to the second space from the top in the horizontal direction. In addition, the bottom of the reactor has an air blowing port (7) attached near the lower surface of the rotary atomizer (3), which will be described later, and a reaction liquid outlet (8) attached to the bottom surface. ing. A heating jacket (18) is attached to the outside of the reactor. In addition, the reactor has a stirring shaft (4) in the vertical direction at the center when viewed from above, and a rotary atomizer (3) at the bottom of the stirring shaft. It has wings (2).

攪拌翼は剪断型、吐出型の何れでも良い。具体的にはタービン翼(図5)、傾斜パドル翼(図6)、パドル翼(図7)の何れも用いることが可能であるが好ましくはタービン翼を用いると効果が大きい。また羽根の枚数については特に制約はない。   The stirring blade may be either a shearing type or a discharge type. Specifically, any of turbine blades (FIG. 5), inclined paddle blades (FIG. 6), and paddle blades (FIG. 7) can be used, but it is preferable to use turbine blades. There are no particular restrictions on the number of blades.

前記ロータリーアトマイザーは特公昭43−13121号公報に開示されている如きものである。すなわち、側壁に気体送出口を穿たない密実、中空または有底の円筒体を回転しえるようにしたローターを反応器底部に設置し、ローターの下方付近に気体送入口を設置してなる接触装置であり、ローター付近に送入された気体を捕捉、回転の剪断力によって微細化して液体中に放出させる。   The rotary atomizer is as disclosed in Japanese Patent Publication No. 43-13121. In other words, a rotor that can rotate a solid, hollow or bottomed cylindrical body that does not have a gas delivery port on the side wall is installed at the bottom of the reactor, and a gas delivery port is installed near the lower part of the rotor. It is a contact device that captures the gas sent in the vicinity of the rotor, refines it by the rotational shear force, and releases it into the liquid.

本発明におけるローターの側面、上面および分解図を図8〜図11に示す。
例えば、下部より入った空気を集め水平方向に出す空気収集、吹き出し駒(図11)とその空気を噴霧させる空気拡散筒(図10)を組み合わせたものが図8となる。更に詳細には、空気収集、吹き出し駒は円錐台形の上面垂直方向に円柱を付けた様な格好で、例えるなら三角フラスコの様な形状をしている。その中は空洞部になっており、円柱部の空洞(図11)の(20)の攪拌軸の差し込み口は攪拌軸の直径と合っている。また駒の垂直方向中央付近には、空気が抜ける吹き出し口(図11)の(15)を有している。従って下部の空気収集口(図11)の(16)から入った空気はその空洞部を経由して水平方向に抜け、垂直方向上部には抜けない。抜き出た空気は空気拡散筒へ送られるが、空気拡散筒の上面は円周方向から中心に向かいある幅を有する上板(図8)の(11)を有する。従ってすぐには垂直方向には抜けず、回転の遠心力によりスリットを経由して噴霧状となって抜ける。
The side, top and exploded views of the rotor in the present invention are shown in FIGS.
For example, FIG. 8 shows a combination of air collecting and blowing pieces (FIG. 11) that collect air that has entered from the lower part and that is discharged horizontally, and an air diffusion cylinder (FIG. 10) that sprays the air. More specifically, the air collecting and blowing piece looks like a circular truncated cone with a cylindrical shape in the vertical direction on the upper surface, for example, a shape like an Erlenmeyer flask. The inside is a hollow portion, and the insertion port of the stirring shaft (20) in the hollow portion of the cylindrical portion (FIG. 11) matches the diameter of the stirring shaft. Further, in the vicinity of the center in the vertical direction of the piece, there is a blowout port (15) (FIG. 11) through which air escapes. Therefore, the air that has entered from (16) of the lower air collection port (FIG. 11) escapes in the horizontal direction via the cavity, and does not escape to the upper part in the vertical direction. The extracted air is sent to the air diffusion cylinder, and the upper surface of the air diffusion cylinder has an upper plate (11) having a width from the circumferential direction to the center (FIG. 8). Therefore, it does not come off in the vertical direction immediately, and it comes off in the form of a spray through the slit by the centrifugal force of rotation.

原料の仕込み口は反応器の最底面から上側に距離d(mm)(但しd=1.2×D〜2.5×D)だけ離れた位置に開口していることが好ましい。反応器の最底面つまり反応器下方にある気体送入口に近い部分に開口しているとホルミル基の酸化がうまく進行せず、高沸点化合物が副生するなどの不具合が生じる。また、開口位置が液面高さと同等の高さにある場合、つまり気液界面付近であると気相部にあると酸化剤である空気と原料が直接接触することがあるため、ホルミル基の酸化が選択的に進行しない。   It is preferable that the raw material charging port is opened at a position separated by a distance d (mm) (where d = 1.2 × D to 2.5 × D) from the bottom surface of the reactor. If it opens to the bottom of the reactor, that is, the portion near the gas inlet located under the reactor, the oxidation of the formyl group does not proceed well, and problems such as the formation of by-products of high boiling point occur. In addition, when the opening position is at the same height as the liquid level, that is, near the gas-liquid interface, if it is in the gas phase, the oxidant air and the raw material may be in direct contact with each other. Oxidation does not proceed selectively.

仕切り円板については2枚以上であれば、枚数や形状を特に制約するものではないが、段間隔が塔型反応器の直径の2倍を超えない様にすることが好ましく、また最上板の設置位置は反応器の最底面から上側に距離β(mm)(但し、βは原料のポリメチルベンズアルデヒド、触媒、溶媒を含む全液量の、静置時における反応液液面(9)の高さ)を超えないことが好ましい。また形状についても特に制約はないが、攪拌軸の端面との間及び反応器内面との間が、空間部であるドーナツ状の円盤であることが好ましく、攪拌軸の端面との間に0.01×D〜0.04×D(mm)、反応器内面との間に0.01×D〜0.04×D(mm)の横方向距離(クリアランス)を持たせることが好ましい。   There are no particular restrictions on the number or shape of the partition disks as long as they are two or more, but it is preferable that the step spacing does not exceed twice the diameter of the tower reactor. The installation position is a distance β (mm) from the bottom of the reactor to the upper side (where β is the height of the reaction liquid level (9) at the time of standing of the total liquid volume including the raw material polymethylbenzaldehyde, catalyst and solvent) It is preferable not to exceed. Also, the shape is not particularly limited, but it is preferably a donut-shaped disk that is a space between the end surface of the stirring shaft and the inner surface of the reactor. It is preferable to provide a lateral distance (clearance) of 0.01 × D to 0.04 × D (mm) between 01 × D and 0.04 × D (mm) and the inner surface of the reactor.

但し、反応器の上方にある原料供給口から供給されるポリメチルベンズアルデヒドが反応器の下方にある気体送入口から出た空気により酸化される際、2個以上の仕切り板を設けることにより空気濃度勾配を持たせることで徐々に酸化を進行させ、ホルミル基を選択的に酸化させることが目的のため、枚数や形状については、上述した仕様に特に制約されない。   However, when polymethylbenzaldehyde supplied from the raw material supply port located above the reactor is oxidized by the air exiting from the gas inlet located below the reactor, the air concentration can be increased by providing two or more partition plates. For the purpose of gradually oxidizing by providing a gradient to selectively oxidize the formyl group, the number and shape are not particularly limited by the specifications described above.

本発明では、工業的に充分な収率の芳香族ポリカルボン酸を製造することができる。
例えば2,4-ジメチルベンズアルデヒドを水溶媒で連続式に液相空気酸化する際に、仕切り円板を設けた分画酸化式反応および、空気送入口をロータリーアトマイザーとしない従来の完全混合式の酸化反応器を用いると高沸点化合物の収率が10%程度になる。しかし、仕切り円板を設け分画式酸化反応および、空気送入手段としてロータリーアトマイザー設けて分子状酸素の吹き込みおよび、原料供給口を反応器最底面から上側に距離d(mm)(但しd=1.2×D〜2.5×D(mm))だけ離れた位置に開口させた塔型反応器を用いることにより高沸点化合物の収率が5%以下の収率に減少する。
In the present invention, an aromatic polycarboxylic acid having an industrially sufficient yield can be produced.
For example, when 2,4-dimethylbenzaldehyde is continuously liquid-phase air-oxidized with an aqueous solvent, a fractional oxidation-type reaction with a partition disk and a conventional fully-mixed oxidation without an air inlet as a rotary atomizer When the reactor is used, the yield of the high boiling point compound is about 10%. However, a partition disk is provided, a fractionation type oxidation reaction, a rotary atomizer is provided as an air feeding means, molecular oxygen is blown, and the raw material supply port is located at a distance d (mm) upward from the bottom surface of the reactor (d = By using a column reactor opened at a position separated by 1.2 × D to 2.5 × D (mm)), the yield of the high boiling point compound is reduced to 5% or less.

原料にポリメチルベンズアルデヒドを用いる場合、3個の区画を有する分画酸化式および、触媒と溶媒を反応器上部から導入し、反応液を反応器下部からに抜き出すことでの押し出し式の酸化反応器をもちいることにより、原料のホルミル基が最適に酸化する事と目的物への選択的反応が最適に進むことで、高沸点物質および中間体の生成が減少し、高収率かつ、副生成物の少ない高品質の高純度芳香族ポリカルボン酸の工業的な製造が達成される。 When polymethylbenzaldehyde is used as a raw material, a fractionation oxidation type having three compartments and an extrusion type oxidation reactor in which a catalyst and a solvent are introduced from the upper part of the reactor and a reaction liquid is extracted from the lower part of the reactor. As a result, the formyl group of the raw material is optimally oxidized and the selective reaction to the target product is optimally progressed to reduce the production of high-boiling substances and intermediates. Industrial production of high-quality, high-purity aromatic polycarboxylic acids with few products is achieved.

酸化原料のポリメチルベンズアルデヒドには2-メチルベンズアルデヒド、3-メチルベンズアルデヒド、4-メチルベンズアルデヒド、2,4-ジメチルベンズアルデヒド、2,5-ジメチルベンズアルデヒド、2,4,5-トリメチルベンズアルデヒド、2,4,6-トリメチルベンズアルデヒド等が挙げられる。   Polymethylbenzaldehyde, the raw material for oxidation, includes 2-methylbenzaldehyde, 3-methylbenzaldehyde, 4-methylbenzaldehyde, 2,4-dimethylbenzaldehyde, 2,5-dimethylbenzaldehyde, 2,4,5-trimethylbenzaldehyde, 2,4, Examples include 6-trimethylbenzaldehyde.

触媒に用いる金属はコバルト、マンガン、セリウムのうち少なくとも1つの金属を含み、各々単独でも混合物でも使用できる。また、これらの金属はどの様な形態で使用しても構わず、有機塩・無機塩でも構わないが水溶媒中にイオンとして存在することが望ましく、より好ましくは臭化物塩、具体的には、臭化コバルト、臭化マンガン、臭化セリウムである。触媒に用いる臭素は臭化物塩からの臭素に追加して、臭化水素酸を用いることが好ましい。   The metal used for the catalyst contains at least one of cobalt, manganese, and cerium, and each can be used alone or in a mixture. These metals may be used in any form, and may be an organic salt or an inorganic salt, but are preferably present as ions in an aqueous solvent, more preferably a bromide salt, specifically, Cobalt bromide, manganese bromide, cerium bromide. The bromine used for the catalyst is preferably hydrobromic acid in addition to the bromine from the bromide salt.

触媒の金属量は、水溶媒に対して0.05〜1重量%の範囲で行われるが、より好ましくは0.1〜0.5重量%である。臭素は水溶媒に対して1〜5重量%の範囲で行われるが、1.5〜4重量%がより好ましい。   The amount of metal in the catalyst is 0.05 to 1% by weight, more preferably 0.1 to 0.5% by weight, based on the aqueous solvent. Bromine is used in an amount of 1 to 5% by weight based on the aqueous solvent, but more preferably 1.5 to 4% by weight.

酸化方式は連続式が好ましいが、多段連続方式が好ましく、2段連続方式がより好ましい。その際、臭素添加は2段階に分け、第2段階に添加する臭素量を全臭素量の5〜50重量%とすることが好ましい。この範囲での臭化物イオンの追加供給により、酸化反応速度が向上すると共に系内にある有機臭素化合物が分解されて減少し、酸化中間体の生成量が減少する。また1段階目には図2の反応器を用いることが好ましい。1段階目に図2の反応器を用いることによりポリメチルベンズアルデヒドからポリメチル安息香酸への酸化が選択的に進行し、芳香族ポリカルボン酸が高収率で得られる。   The oxidation method is preferably a continuous method, but a multistage continuous method is preferable, and a two-stage continuous method is more preferable. In that case, bromine addition is divided into two stages, and the bromine amount added in the second stage is preferably 5 to 50% by weight of the total bromine amount. By the additional supply of bromide ions within this range, the oxidation reaction rate is improved, and the organic bromine compound in the system is decomposed and reduced, thereby reducing the amount of oxidized intermediate produced. In the first stage, it is preferable to use the reactor shown in FIG. By using the reactor of FIG. 2 in the first stage, oxidation of polymethylbenzaldehyde to polymethylbenzoic acid proceeds selectively, and an aromatic polycarboxylic acid is obtained in high yield.

溶媒に用いる水は、蒸留水、イオン交換水、膜ろ過した水など純水であれば特に限定されないが、より好ましくはポリッシャー付純水製造装置で得られる水である。また重量は、原料のポリメチルベンズアルデヒドの重量に対し、重量比で1〜8倍の範囲で使用することが好ましく、ポリジメチルベンズアルデヒドに対して、重量比で1〜6倍の範囲で使用することがより好ましい。   The water used for the solvent is not particularly limited as long as it is pure water such as distilled water, ion-exchanged water, or membrane-filtered water, but more preferably water obtained by a pure water production apparatus with a polisher. The weight is preferably used in a range of 1 to 8 times by weight with respect to the weight of the raw material polymethylbenzaldehyde, and in a range of 1 to 6 times by weight with respect to polydimethylbenzaldehyde. Is more preferable.

2段階の酸化反応の場合、第1段階、第2段階の各々の反応温度は200〜250℃であり、好ましくは210〜230℃である。   In the case of a two-stage oxidation reaction, the reaction temperature of each of the first stage and the second stage is 200 to 250 ° C, preferably 210 to 230 ° C.

ポリメチルベンズアルデヒドを原料として水溶媒中、臭化物イオンおよび重金属(例えばマンガン)イオンを触媒に用い、液相にて、空気酸化で芳香族ポリカルボン酸を製造する場合、酸化されやすさから、初期の段階でホルミル基が酸化されポリメチル安息香酸が生成する。しかしこの際、反応条件を適切に制御しないと、空気中の酸素を適正に吸収されず、高沸点化合物が生成するなどポリカルボン酸への酸化が選択的に進行しない。つまり、ポリメチルベンズアルデヒドを原料として芳香族ポリカルボン酸を製造するにはポリメチル安息香酸を生成させる初期の酸化反応の段階が重要である。   When an aromatic polycarboxylic acid is produced by air oxidation in a liquid phase using bromide ions and heavy metal (for example, manganese) ions in a water solvent as a raw material using polymethylbenzaldehyde as a raw material, In the stage, the formyl group is oxidized to produce polymethylbenzoic acid. However, in this case, unless the reaction conditions are appropriately controlled, oxygen in the air is not properly absorbed, and oxidation to polycarboxylic acid does not proceed selectively, such as formation of a high boiling point compound. That is, in order to produce an aromatic polycarboxylic acid using polymethylbenzaldehyde as a raw material, an initial oxidation reaction stage for producing polymethylbenzoic acid is important.

本発明は、初期の段階でのホルミル基の酸化を選択よく進める手段として3個の区画を有する分画酸化式の酸化反応器の発明である。また、本発明は該酸化反応器を使用し、コバルト、マンガン、セリウムのうち少なくとも1つの金属と臭素から成る触媒、分子状酸素を使用し、水を溶媒としてポリメチルベンズアルデヒドから芳香族ポリカルボン酸製造する方法の発明である。具体的には、仕切り円板を用いた分画酸化反応および触媒と溶媒を反応器上部から導入し、反応液を反応器下部からに抜き出す押し出し酸化反応、分子状酸素の吹き込み手段としてのロータリーアトマイザーとその位置、特定の位置に開口している原料供給口及び触媒と溶媒の供給口を設けている反応器を用いる連続式の液相空気酸化の酸化反応器の発明である。   The present invention is an invention of a fractional oxidation type oxidation reactor having three compartments as a means for selectively advancing the oxidation of formyl groups at an early stage. In addition, the present invention uses the oxidation reactor, uses a catalyst composed of at least one of cobalt, manganese and cerium and bromine, molecular oxygen, and polymethylbenzaldehyde as an aromatic polycarboxylic acid using water as a solvent. It is an invention of a manufacturing method. Specifically, a fractional oxidation reaction using a partition disk, an extrusion oxidation reaction in which a catalyst and a solvent are introduced from the upper part of the reactor, and a reaction solution is drawn out from the lower part of the reactor, a rotary atomizer as a means for blowing molecular oxygen And a position, a raw material supply port opened at a specific position, and a reactor provided with a catalyst and solvent supply port, which is an invention of an oxidation reactor for continuous liquid phase air oxidation.

次に実施例によって、本発明を具体的に説明する。なお、本発明は、これらの実施例により制限されるものではない。実施例及び比較例においては以下に記載した3種類の反応器を使用し、反応生成物を以下の条件にてガスクロマトグラフィー装置(GC装置)を用いて分析を行った。   Next, the present invention will be described specifically by way of examples. In addition, this invention is not restrict | limited by these Examples. In Examples and Comparative Examples, the three types of reactors described below were used, and the reaction products were analyzed using a gas chromatography apparatus (GC apparatus) under the following conditions.

反応に用いた反応器
<反応器A(図12)>
内径(D)80mm、高さ(H)450mmのジルコニウム製耐圧円筒容器で、反応器の最底面から上側に98mmと196mmの位置に、攪拌軸側と側面側に各々2mmのクリアランスを持たせた仕切り円板(直径76mm、軸廻りの空間部が直径16mmであるドーナツ状の円盤)を設け、中心攪拌式の攪拌軸に反応器の最底面から49mm上の位置に外径35mm、高さ20mmのローターを有するロータリーアトマイザーと開口している空気供給ノズル、反応器の最底面から147mmと245mmの位置にタービン翼、反応器の最底面から上側に147mmだけ離れた位置に開口している原料供給ノズル、反応器の最底面から上側に245mmの位置に開口している触媒と溶媒の供給ノズルを備えた分画酸化式反応器。
<反応器B(図13)>
内径80mm、高さ450mmのジルコニウム製耐圧円筒容器で、反応器の最底面から上側に98mmと196mmの位置に、攪拌軸側と側面側に各々2mmのクリアランスを持たせた仕切り円板(直径76mm、軸廻りの空間部が直径16mmであるドーナツ状の円盤)を設け、中心攪拌式の攪拌軸に反応器の最底面から49mm上の位置に外径35mm、高さ20mmのローターを有するロータリーアトマイザーと開口している空気供給口、反応器の最底面から147mmの位置にタービン翼と245mmの位置にパドル翼、反応器の最底面から上側に147mmだけ離れた位置に開口している原料供給口、反応器の最底面から上側に245mmの位置に開口している触媒と溶媒の供給口を備えた分画酸化式反応器。
<反応器C(図14)>
内径80mm、高さ450mmのジルコニウム製耐圧円筒容器で、反応器の最底面から上に49mmの位置に開口した空気供給ノズルとタービン翼、反応器最底面から147mmと245mmの位置にタービン翼、反応器の最底面から上側に147mmだけ離れた位置に開口している原料供給口と触媒と溶媒の供給口を備えた塔型完全混合式反応器。
Reactor used for reaction <Reactor A (FIG. 12)>
Zirconium pressure-resistant cylindrical container having an inner diameter (D) of 80 mm and a height (H) of 450 mm, with a clearance of 2 mm on the stirring shaft side and side surface side at positions 98 mm and 196 mm above the bottom surface of the reactor. A partition disk (a donut-shaped disk having a diameter of 76 mm and a space around the shaft of 16 mm in diameter) is provided, and a central stirring type stirring shaft is provided with an outer diameter of 35 mm and a height of 20 mm at a position 49 mm above the bottom surface of the reactor. A rotary atomizer with a rotor of the above and an air supply nozzle that is open, turbine blades at positions 147 mm and 245 mm from the bottom surface of the reactor, and a raw material supply that is open 147 mm above the bottom surface of the reactor A fractional oxidation reactor comprising a nozzle and a catalyst and solvent supply nozzle that opens at a position of 245 mm above the bottom surface of the reactor.
<Reactor B (FIG. 13)>
A pressure-resistant cylindrical vessel made of zirconium with an inner diameter of 80 mm and a height of 450 mm, a partition disk (diameter of 76 mm with a clearance of 98 mm and 196 mm on the upper side from the bottom surface of the reactor and a clearance of 2 mm on the stirring shaft side and the side surface side, respectively. And a rotary atomizer having a rotor with an outer diameter of 35 mm and a height of 20 mm at a position 49 mm above the bottom surface of the reactor on a central stirring type stirring shaft. Open air supply port, turbine blade at 147 mm from the bottom surface of the reactor, paddle blade at 245 mm, and raw material supply port at 147 mm above the bottom surface of the reactor A fractional oxidation reactor equipped with a catalyst and solvent supply port opened at a position of 245 mm above the bottom surface of the reactor.
<Reactor C (FIG. 14)>
A zirconium pressure-resistant cylindrical vessel with an inner diameter of 80 mm and a height of 450 mm, an air supply nozzle and a turbine blade opened at a position of 49 mm above the bottom surface of the reactor, a turbine blade and a reaction at positions of 147 mm and 245 mm from the bottom surface of the reactor A tower-type fully mixed reactor equipped with a raw material supply port and a catalyst and solvent supply port which are opened upward by 147 mm from the bottom surface of the reactor.

反応生成物の分析
機種:Agilent 6890N(Agilent Technologies社製)
使用カラム:DB−1(Agilent Technologies社製)
分析条件:Injection Temp 300℃
Detector Temp 300℃
カラム温度:100℃、3分保持→5℃/分で280℃まで昇温→280℃、35分保持
検出器:水素炎イオン化検出器(FID)
分析方法:耐熱ガラス試験管に反応液1gを採取し(精評する)、メタノール3gを加えて希釈し、更に塩酸トリエチルアミン3gとリン酸トリメチル10mlを加える。その混合液を180℃で、40分間加熱することによりメチルエステル化処理する。処理液を冷却して室温としたのち、その液にクロロホルム20mlを加え、更にGC分析の内部標準物質であるトリフェニルメタン0.1gを加えて(精評する)均一に溶解させる。このクロロホルム溶液に水200mlを加えて液−液分配処理を行い(2回)、静置して得られたクロロホルム層をGC装置にて分析する。
Model for analysis of reaction products: Agilent 6890N (manufactured by Agilent Technologies)
Column used: DB-1 (manufactured by Agilent Technologies)
Analysis conditions: Injection Temp 300 ° C
Detector Temp 300 ° C
Column temperature: 100 ° C., 3 minutes hold → Temperature rise to 280 ° C. at 5 ° C./minute→280° C., hold for 35 minutes Detector: Hydrogen flame ionization detector (FID)
Analysis method: Collect 1 g of the reaction solution in a heat-resistant glass test tube (examine), dilute by adding 3 g of methanol, and add 3 g of triethylamine hydrochloride and 10 ml of trimethyl phosphate. The mixed solution is subjected to methyl esterification treatment by heating at 180 ° C. for 40 minutes. After cooling the treatment liquid to room temperature, 20 ml of chloroform is added to the liquid, and 0.1 g of triphenylmethane, which is an internal standard substance for GC analysis, is added (examined) and dissolved uniformly. 200 ml of water is added to this chloroform solution to perform a liquid-liquid partitioning treatment (twice), and the chloroform layer obtained by standing is analyzed with a GC apparatus.

<実施例1>反応器Aによるトリメリット酸の製造
反応器Aに還流冷却器、攪拌装置、加熱装置及び原料送入口、触媒液送入口、底部空気吹き込み口、反応物排出口を備えた内容積2Lのジルコニウム製酸化反応器を接続した連続2段式反応器を用いて2,4-ジメチルベンズアルデヒドの液相空気酸化を行った。
ポリッシャー付純水製造装置で得られた水1422質量部、臭化水素酸水溶液(試薬:和光純薬工業株式会社製、HBr47.0〜49.0質量%)37.4質量部、MnBr・4HO(試薬:三津和薬品株式会社製)30.5質量部をこの比率で混合し、触媒液Aを調製した(臭化物イオン濃度2.3重量%、マンガンイオン濃度0.39重量%)。また、水55.7質量部および臭化水素酸水溶液(試薬:和光純薬工業株式会社製、HBr47.0〜49.0質量%)4.3質量部をこの比率で混合し、触媒液Bを調製した(臭化物イオン濃度3.4重量%)。
1段目の反応器に触媒液Aを1490g仕込み、2段目の反応器に触媒液Aを1000g仕込んだ。各反応器のガス導入口から窒素を圧入し、1MPaに昇圧した。また、加熱装置でそれぞれ220℃まで昇温し、反応中は該温度を維持した。
ついで1段目反応器に2,4-ジメチルベンズアルデヒドを200g/hの割合で、触媒液A(反応器仕込み液と同一組成)を750g/hの割合で別々に供給した。2,4-ジメチルベンズアルデヒドの供給と同時にロータリーアトマイザーのローターを回転させ底部ガス吹き込み口から空気の送入を開始し反応器よりの排ガス中の酸素を2.5%に保つように流量を制御した。ついで1段目反応器中の液面を一定に保ちつつ、1段目反応器より2段目反応器への液移送を開始し、同時に2段目反応器に触媒液Bを60g/hの割合で供給し、ガス導入口から空気の送入を開始し反応器よりの排ガス中の酸素濃度を4.5容量%に保つように流量を制御した。2段目反応器中の液面を一定に保つように2段目反応器より反応生成物を抜き出した。この間、反応器の圧力は1段目が3.2MPa、2段目が2.9MPaに保った。水溶媒の量は2,4-ジメチルベンズアルデヒドに対し重量比で3.9倍であり、第2段階への臭化物イオン供給量は臭化物イオン全供給量の10.5%であった。反応器中の組成が定常になった後、得られた反応生成液をメチルエステル化した後、GC分析を行った。その結果、モル比でトリメリット酸の収率は91.6%、高沸点化合物の収率は4.8%であった。結果を表1に示す。
<Example 1> Production of trimellitic acid by reactor A Contents of reactor A provided with a reflux condenser, a stirrer, a heating device and a raw material inlet, a catalyst liquid inlet, a bottom air inlet, and a reactant outlet Liquid phase air oxidation of 2,4-dimethylbenzaldehyde was performed using a continuous two-stage reactor connected to a 2 L zirconium oxidation reactor.
1422 parts by mass of water obtained by a pure water production apparatus with a polisher, 37.4 parts by mass of a hydrobromic acid aqueous solution (reagent: manufactured by Wako Pure Chemical Industries, Ltd., HBr 47.0-49.0% by mass), MnBr 2. Catalyst solution A was prepared by mixing 30.5 parts by mass of 4H 2 O (reagent: manufactured by Mitsuwa Pharmaceutical Co., Ltd.) at this ratio (bromide ion concentration 2.3 wt%, manganese ion concentration 0.39 wt%). . Further, 55.7 parts by mass of water and 4.3 parts by mass of a hydrobromic acid aqueous solution (reagent: manufactured by Wako Pure Chemical Industries, Ltd., HBr 47.0-49.0% by mass) were mixed at this ratio, and catalyst solution B Was prepared (bromide ion concentration 3.4 wt%).
1490 g of catalyst solution A was charged into the first-stage reactor, and 1000 g of catalyst solution A was charged into the second-stage reactor. Nitrogen was injected from the gas inlet of each reactor and the pressure was increased to 1 MPa. Moreover, each temperature was raised to 220 ° C. with a heating device, and the temperature was maintained during the reaction.
Subsequently, 2,4-dimethylbenzaldehyde was separately supplied to the first stage reactor at a rate of 200 g / h, and catalyst solution A (same composition as the reactor charge solution) was separately supplied at a rate of 750 g / h. Simultaneously with the supply of 2,4-dimethylbenzaldehyde, the rotor of the rotary atomizer was rotated to start air feeding from the bottom gas inlet, and the flow rate was controlled to keep the oxygen in the exhaust gas from the reactor at 2.5%. . Next, while maintaining the liquid level in the first stage reactor constant, liquid transfer from the first stage reactor to the second stage reactor was started, and at the same time, 60 g / h of catalyst liquid B was fed into the second stage reactor. The gas was supplied at a rate, and air flow was started from the gas inlet, and the flow rate was controlled so as to keep the oxygen concentration in the exhaust gas from the reactor at 4.5% by volume. The reaction product was extracted from the second stage reactor so that the liquid level in the second stage reactor was kept constant. During this time, the pressure in the reactor was maintained at 3.2 MPa for the first stage and 2.9 MPa for the second stage. The amount of the aqueous solvent was 3.9 times by weight with respect to 2,4-dimethylbenzaldehyde, and the supply amount of bromide ions to the second stage was 10.5% of the total supply amount of bromide ions. After the composition in the reactor became steady, the obtained reaction product solution was methyl esterified, and then GC analysis was performed. As a result, the yield of trimellitic acid in terms of molar ratio was 91.6%, and the yield of the high boiling point compound was 4.8%. The results are shown in Table 1.

Figure 2010248090
Figure 2010248090

<実施例2>反応器Aによるピロメリット酸の製造
反応器Aに還流冷却器、攪拌装置、加熱装置及び原料送入口、触媒液送入口、底部空気吹き込み口、反応物排出口を備えた内容積2Lのジルコニウム製酸化反応器を接続した連続2段式反応器を用いて2,4,5-トリメチルベンズアルデヒドの液相空気酸化を行った。
ポリッシャー付純水製造装置で得られた水1433質量部、臭化水素酸水溶液(試薬:和光純薬工業株式会社製、HBr47.0〜49.0質量%)32.7質量部、MnBr・4HO(試薬:三津和薬品株式会社製)34.5質量部および50質量%FeBr水溶液(試薬:三津和薬品株式会社製、Fe含有量として9.4質量%)0.21質量部をこの比率で混合し、触媒液Aを調製した(臭化物イオン濃度2.3重量%、マンガンイオン濃度0.44重量%、鉄イオン濃度13ppm)。また、水55.7質量部および臭化水素酸水溶液(試薬:和光純薬工業株式会社製、HBr47.0〜49.0質量%)4.3質量部をこの比率で混合し、触媒液Bを調製した(臭化物イオン濃度3.4重量%)。
1段目の反応器に触媒液Aを1500g仕込み、2段目の反応器に触媒液Aを1000g仕込んだ。各反応器のガス導入口から窒素を圧入し、1MPaに昇圧した。また、加熱装置でそれぞれ220℃まで昇温し、反応中は該温度を維持した。
ついで1段目反応器に2,4,5−トリメチルベンズアルデヒドを145g/hの割合で、触媒液A(反応器仕込み液と同一組成)を800g/hの割合で別々に供給した以外は実施例1と同様に反応を行った。水溶媒の量は2,4,5−トリメチルベンズアルデヒドに対し重量比で5.8倍であり、第2段階への臭化物イオン供給量は臭化物イオン全供給量の10.0%であった。反応器中の組成が定常になった後、得られた反応生成液をメチルエステル化した後、GC分析を行った。その結果、モル比でピロメリット酸の収率は81.8%、高沸点化合物の収率は4.2%であった。結果を表2に示す。
<Example 2> Production of pyromellitic acid by reactor A Contents of reactor A provided with a reflux condenser, a stirrer, a heating device and a raw material inlet, a catalyst liquid inlet, a bottom air inlet, and a reactant outlet Liquid phase air oxidation of 2,4,5-trimethylbenzaldehyde was carried out using a continuous two-stage reactor connected with a 2 liter zirconium oxidation reactor.
1433 parts by mass of water obtained by a pure water production apparatus with a polisher, hydrobromic acid aqueous solution (reagent: Wako Pure Chemical Industries, Ltd., HBr 47.0-49.0% by mass) 32.7 parts by mass, MnBr 2. 34.5 parts by mass of 4H 2 O (reagent: manufactured by Mitsuwa Pharmaceutical Co., Ltd.) and 50% by mass FeBr 3 aqueous solution (reagent: manufactured by Mitsuwa Chemicals Co., Ltd., 9.4% by mass as Fe content) 0.21 parts by mass Were mixed at this ratio to prepare catalyst solution A (bromide ion concentration 2.3 wt%, manganese ion concentration 0.44 wt%, iron ion concentration 13 ppm). Further, 55.7 parts by mass of water and 4.3 parts by mass of a hydrobromic acid aqueous solution (reagent: manufactured by Wako Pure Chemical Industries, Ltd., HBr 47.0-49.0% by mass) were mixed at this ratio, and catalyst solution B Was prepared (bromide ion concentration 3.4 wt%).
The first-stage reactor was charged with 1500 g of catalyst solution A, and the second-stage reactor was charged with 1000 g of catalyst liquid A. Nitrogen was injected from the gas inlet of each reactor and the pressure was increased to 1 MPa. Moreover, each temperature was raised to 220 ° C. with a heating device, and the temperature was maintained during the reaction.
Then, Example 1 was carried out except that 2,4,5-trimethylbenzaldehyde was separately supplied to the first stage reactor at a rate of 145 g / h and catalyst solution A (same composition as the reactor charged solution) was separately supplied at a rate of 800 g / h. The reaction was carried out in the same manner as in 1. The amount of the aqueous solvent was 5.8 times by weight with respect to 2,4,5-trimethylbenzaldehyde, and the supply amount of bromide ions to the second stage was 10.0% of the total supply amount of bromide ions. After the composition in the reactor became steady, the obtained reaction product solution was methyl esterified, and then GC analysis was performed. As a result, the yield of pyromellitic acid by molar ratio was 81.8%, and the yield of the high boiling point compound was 4.2%. The results are shown in Table 2.

<実施例3>反応器Bによるトリメリット酸の製造
反応器Aの代わりに反応器Bを用いた以外は実施例1と同様に反応を行い、反応生成物をGC分析した。その結果、モル比でトリメリット酸は90.2%、高沸点化合物は5.9%の収率で得られた。結果を表1に示す。
<Example 3> Production of trimellitic acid using reactor B Except that reactor B was used instead of reactor A, the reaction was carried out in the same manner as in Example 1, and the reaction product was subjected to GC analysis. As a result, trimellitic acid was obtained in a molar ratio of 90.2%, and a high boiling point compound was obtained in a yield of 5.9%. The results are shown in Table 1.

<実施例4>反応器Bによるピロメリット酸の製造
反応器Aの代わりに反応器Bを用いた以外は実施例2と同様に反応を行い、反応生成物をGC分析した。その結果、モル比でピロメリット酸は81.2%、高沸点化合物は4.8%の収率で得られた。結果を表2に示す。
<Example 4> Production of pyromellitic acid using reactor B Except that reactor B was used instead of reactor A, the reaction was carried out in the same manner as in Example 2, and the reaction product was subjected to GC analysis. As a result, pyromellitic acid was obtained in a molar ratio of 81.2%, and a high boiling point compound was obtained in a yield of 4.8%. The results are shown in Table 2.

<比較例1>反応器Cによるトリメリット酸の製造
反応器Aの代わりに反応器Cを用いた以外は実施例1と同様に反応を行い、反応生成物をGC分析した。その結果、モル比でトリメリット酸は85.3%、高沸点化合物は9.6%の収率で得られた。結果を表1に示す。
<Comparative Example 1> Production of trimellitic acid using reactor C Except that the reactor C was used instead of the reactor A, the reaction was carried out in the same manner as in Example 1, and the reaction product was subjected to GC analysis. As a result, the trimellitic acid was obtained in a molar ratio of 85.3%, and the high boiling point compound was obtained in a yield of 9.6%. The results are shown in Table 1.

<比較例2>反応器Cによるピロメリット酸の製造
反応器Aの代わりに反応器Cを用いた以外は実施例2と同様に反応を行い、反応生成物をGC分析した。その結果、モル比でピロメリット酸は74.1%、高沸点化合物は9.7%の収率で得られた。結果を表2に示す。
<Comparative example 2> Production of pyromellitic acid using reactor C Except that the reactor C was used instead of the reactor A, the reaction was carried out in the same manner as in Example 2, and the reaction product was subjected to GC analysis. As a result, pyromellitic acid was obtained in a molar ratio of 74.1%, and a high boiling point compound was obtained in a yield of 9.7%. The results are shown in Table 2.

何れの比較例1〜2も実施例1〜4に比べてトリメリット酸及びピロメリット酸の収率が低いことが分かる。   It can be seen that any of Comparative Examples 1 and 2 has a lower yield of trimellitic acid and pyromellitic acid than Examples 1 to 4.

Figure 2010248090
Figure 2010248090

本発明のポリメチルベンズアルデヒドを原料にした場合、中心攪拌式の攪拌羽根と、酸化反応を分割する手段の仕切り円板、分子状酸素の吹き込み手段として反応器底部にロータリーアトマイザーを設け、反応器の最底面から上側にd(但し、d=1.2×D〜2.5×D)だけ離れた位置に開口している原料供給口と反応器最底面から上側にe(但し、e=2.5×D〜3.7×D)の位置に開口している触媒と溶媒の供給口を設けている分画式反応器を用いないと芳香族ポリカルボン酸を満足な収率で得ることが出来ず、高沸点化合物の収率も10%程度に上昇する。一方、本発明の塔型分画酸化式反応器を使用した場合、芳香族ポリカルボン酸の収率が良く、高沸点化合物の収率も低くなることが分かる。   When the polymethylbenzaldehyde of the present invention is used as a raw material, a central stirring type stirring blade, a partition disk for means for dividing the oxidation reaction, a rotary atomizer at the bottom of the reactor as means for blowing molecular oxygen, The raw material supply port opened at a position separated by d (provided that d = 1.2 × D to 2.5 × D) from the bottom to the top and e from the bottom of the reactor (note that e = 2) Aromatic polycarboxylic acid can be obtained in a satisfactory yield without using a fractional reactor equipped with a catalyst opening at a position of 5 × D to 3.7 × D) and a solvent supply port. Thus, the yield of high boiling point compounds increases to about 10%. On the other hand, it can be seen that when the tower-type fractional oxidation reactor of the present invention is used, the yield of aromatic polycarboxylic acid is good and the yield of high-boiling compounds is also low.

酸化反応器の基準寸法及び記号名称Standard dimensions and symbol name of oxidation reactor 塔型酸化反応器の構造Structure of tower type oxidation reactor 本発明における芳香族ポリカルボン酸の酸化反応器の一例An example of an aromatic polycarboxylic acid oxidation reactor in the present invention 本発明における芳香族ポリカルボン酸の酸化反応器の一例An example of an aromatic polycarboxylic acid oxidation reactor in the present invention タービン翼Turbine blade 傾斜パドル翼Inclined paddle wing パドル翼 1Paddle wing 1 ローター側面図Rotor side view 図8の上面図Top view of FIG. ローター分解図(空気拡散筒)Rotor exploded view (air diffusion cylinder) ローター分解図(空気収集、吹き出し駒)Rotor exploded view (air collection, blowing piece) 反応器構造の一例Example of reactor structure 反応器構造の一例Example of reactor structure 反応器構造の一例Example of reactor structure

A…… 区画(A)(反応液面とP−2の間)
B…… 区画(B)(P−1とP−2の間)
C…… 区画(C)(反応器最底面とP−1の間)
1…… 仕切り円板(下がP−1、上がP−2)
2…… 攪拌翼
3…… ロータリーアトマイザー
4…… 中心攪拌式の攪拌軸
5…… 触媒と溶媒の仕込み口
6…… 原料仕込み口
7…… 空気吹き込み口
8…… 反応液抜き出し口
9…… 反応液液面
10…… 空気収集、吹き出し駒
11…… 上板
12…… 下板
13…… 空気拡散筒
14…… スリット
15…… 空気噴出し口
16…… 空気収集口
17…… タービン翼
18…… ジャケット
19…… パドル翼
20……回転差し込み口
A ... Section (A) (between the reaction liquid level and P-2)
B ... Section (B) (between P-1 and P-2)
C ... Section (C) (between bottom of reactor and P-1)
1 ... Partition disk (bottom is P-1, top is P-2)
2 ... Stirring blade 3 ... Rotary atomizer 4 ... Central stirring type stirring shaft 5 ... Catalyst and solvent charging port 6 ... Raw material charging port 7 ... Air blowing port 8 ... Reaction liquid outlet port 9 ... Reaction liquid level 10 …… Air collection, blowing piece 11 …… Upper plate 12 …… Lower plate 13 …… Air diffusion cylinder 14 …… Slit 15 …… Air ejection port 16 …… Air collection port 17 …… Turbine blade 18 ... Jacket 19 ... Paddle blade 20 ... Rotating slot

Claims (8)

反応器本体と、
該反応器本体の周囲にジャケット(18)を有し、該反応器本体の内部に、中心攪拌式の撹拌軸(4)を有し、該撹拌軸(4)に2個の攪拌翼(2)が連結されてあり、かつ、該撹拌軸(4)の底部にロータリーアトマイザー(3)が連結されており、該反応器の内部空間を2枚の仕切り円板(1)により、区画(A)、区画(B)および区画(C)の3区画に分画し、区画(A)には触媒と溶媒の仕込み口(5)を備え、区画(B)には原料の仕込み口(6)を備え、区画(C)には分子状酸素の仕込み口(7)と反応液抜き出し口(8)を備えていることを特徴とする液相酸化用の反応器。
A reactor body;
A jacket (18) is provided around the reactor body, a central stirring type stirring shaft (4) is provided inside the reactor body, and two stirring blades (2) are provided on the stirring shaft (4). ) And a rotary atomizer (3) is connected to the bottom of the stirring shaft (4), and the internal space of the reactor is divided into two compartments (A) by two partition disks (1). ), Compartment (B) and compartment (C), and compartment (A) is provided with catalyst and solvent inlets (5), and compartment (B) is charged with raw materials (6). A reactor for liquid phase oxidation, wherein the compartment (C) is provided with a molecular oxygen charging port (7) and a reaction liquid outlet port (8).
仕切り円板(1)の下面と反応器の最底面との縦方向の距離が、0.9×D〜1.5×D(mm)(Dは反応器の内径(mm))、仕切り円板(1)の下面と酸化反応器の最底面との縦方向の距離が2.1×D〜2.8×D(mm)(Dは前記と同じ)である請求項1に記載の反応器。   The vertical distance between the lower surface of the partition disk (1) and the bottom surface of the reactor is 0.9 × D to 1.5 × D (mm) (D is the inner diameter of the reactor (mm)), the partition circle The reaction according to claim 1, wherein the longitudinal distance between the lower surface of the plate (1) and the bottom surface of the oxidation reactor is 2.1 x D to 2.8 x D (mm) (D is the same as above). vessel. 前記撹拌軸(4)の端面と2枚の仕切り円板(1)の端面との横方向の距離(クリアランス)が、共に0.01×D〜0.04×D(mm)(Dは前記と同じ)である請求項1に記載の反応器。   The lateral distance (clearance) between the end face of the stirring shaft (4) and the end face of the two partition disks (1) is 0.01 × D to 0.04 × D (mm) The reactor according to claim 1. 前記反応器の内面の端面と2枚の仕切り円板(1)の端面との横方向の距離(クリアランス)が、共に0.01×D〜0.04×D(mm)(Dは前記と同じ)である請求項1に記載の反応器。   The lateral distance (clearance) between the end face of the inner surface of the reactor and the end faces of the two partition disks (1) is 0.01 × D to 0.04 × D (mm) (D is the above) The reactor according to claim 1, which is the same. 前記ロータリーアトマイザー(3)は、中心攪拌式の撹拌軸(4)との連結により回転し、かつ、分子状酸素の仕込み口(7)の上方に位置している請求項1に記載の反応器。   The reactor according to claim 1, wherein the rotary atomizer (3) is rotated by being connected to a central stirring type stirring shaft (4) and is located above a molecular oxygen charging port (7). . 前記ジャケット(18)が、反応器の加温または保温の手段の機能を有する請求項1に記載の反応器。   The reactor according to claim 1, wherein the jacket (18) functions as a means for warming or keeping warm of the reactor. ポリメチルベンズアルデヒドを原料とする液相酸化反応により、芳香族ポリカルボン酸を製造する製造方法において、請求項1〜6のいずれか1項に記載の液相酸化用の反応器を使用することを特徴とする芳香族ポリカルボン酸の製造法。   In the manufacturing method which manufactures aromatic polycarboxylic acid by the liquid phase oxidation reaction which uses polymethylbenzaldehyde as a raw material, it is using the reactor for liquid phase oxidation of any one of Claims 1-6. A method for producing an aromatic polycarboxylic acid. 芳香族ポリカルボン酸がトリメリット酸またはピロメリット酸である請求項7に記載の芳香族ポリカルボン酸の製造法。










The method for producing an aromatic polycarboxylic acid according to claim 7, wherein the aromatic polycarboxylic acid is trimellitic acid or pyromellitic acid.










JP2009096516A 2009-04-10 2009-04-10 Oxidation reactor and process for producing aromatic polycarboxylic acids Expired - Fee Related JP5168216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009096516A JP5168216B2 (en) 2009-04-10 2009-04-10 Oxidation reactor and process for producing aromatic polycarboxylic acids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009096516A JP5168216B2 (en) 2009-04-10 2009-04-10 Oxidation reactor and process for producing aromatic polycarboxylic acids

Publications (2)

Publication Number Publication Date
JP2010248090A true JP2010248090A (en) 2010-11-04
JP5168216B2 JP5168216B2 (en) 2013-03-21

Family

ID=43310896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009096516A Expired - Fee Related JP5168216B2 (en) 2009-04-10 2009-04-10 Oxidation reactor and process for producing aromatic polycarboxylic acids

Country Status (1)

Country Link
JP (1) JP5168216B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115041118A (en) * 2022-05-30 2022-09-13 李静 Reation kettle with thermal-insulated insulation construction

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843339B1 (en) * 1970-03-27 1973-12-18
JPS5223035A (en) * 1975-08-12 1977-02-21 Mitsubishi Gas Chem Co Inc Production of alkylbenzoic acids
JPH03220157A (en) * 1989-11-29 1991-09-27 Amoco Corp Oxidation of alkylaromatic compound
JPH093001A (en) * 1995-06-19 1997-01-07 Nkk Corp Production of naphthalenedicarboxylic acid and reactor
JPH09194426A (en) * 1996-01-16 1997-07-29 Boc Group Inc:The Production of aromatic polycarboxylic acid
JPH09194425A (en) * 1995-12-29 1997-07-29 Praxair Technol Inc Production of terephthalic acid having excellent optical property by oxidizing para-xylene using pure oxygen or almost pure oxygen as oxidizing agent
JPH1176796A (en) * 1997-09-08 1999-03-23 Nippon Steel Chem Co Ltd Reaction method and device therefor
JP2002003440A (en) * 2000-06-27 2002-01-09 Mitsubishi Gas Chem Co Inc Method for manufacturing aromatic polycarboxylic acid
JP2003002862A (en) * 2001-06-22 2003-01-08 Daicel Chem Ind Ltd Oxidizing method and reaction apparatus
WO2006095568A1 (en) * 2005-03-07 2006-09-14 Daicel Chemical Industries, Ltd. Process for oxidation of organic compounds

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843339B1 (en) * 1970-03-27 1973-12-18
JPS5223035A (en) * 1975-08-12 1977-02-21 Mitsubishi Gas Chem Co Inc Production of alkylbenzoic acids
JPH03220157A (en) * 1989-11-29 1991-09-27 Amoco Corp Oxidation of alkylaromatic compound
JPH093001A (en) * 1995-06-19 1997-01-07 Nkk Corp Production of naphthalenedicarboxylic acid and reactor
JPH09194425A (en) * 1995-12-29 1997-07-29 Praxair Technol Inc Production of terephthalic acid having excellent optical property by oxidizing para-xylene using pure oxygen or almost pure oxygen as oxidizing agent
JPH09194426A (en) * 1996-01-16 1997-07-29 Boc Group Inc:The Production of aromatic polycarboxylic acid
JPH1176796A (en) * 1997-09-08 1999-03-23 Nippon Steel Chem Co Ltd Reaction method and device therefor
JP2002003440A (en) * 2000-06-27 2002-01-09 Mitsubishi Gas Chem Co Inc Method for manufacturing aromatic polycarboxylic acid
JP2003002862A (en) * 2001-06-22 2003-01-08 Daicel Chem Ind Ltd Oxidizing method and reaction apparatus
WO2006095568A1 (en) * 2005-03-07 2006-09-14 Daicel Chemical Industries, Ltd. Process for oxidation of organic compounds

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115041118A (en) * 2022-05-30 2022-09-13 李静 Reation kettle with thermal-insulated insulation construction

Also Published As

Publication number Publication date
JP5168216B2 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
Yang et al. Ionic liquid [OMIm][OAc] directly inducing oxidation cleavage of the β-O-4 bond of lignin model compounds
CN109574779B (en) Method for producing 2-alkyl anthracene
Hirai et al. Formal total synthesis of (−)‐Taxol through Pd‐catalyzed eight‐membered carbocyclic ring formation
Fazaeli et al. A heterogeneous catalyst for efficient and green synthesis of 2-arylbenzothiazoles and 2-arylbenzimidazoles
WO2009003054A1 (en) Method of producing ethyl acetate
Yasmin et al. Stereospecific synthesis of resorcin [4] arenes and pyrogallol [4] arenes in dynamic thin films
CN106029196B (en) Extraction tower and method for the extracted component from fluid
JP2010536816A (en) Method and apparatus for oxidizing organic compounds
CA2794681C (en) Process for the production of anhydrides
US7919645B2 (en) High shear system and process for the production of acetic anhydride
CN106607004A (en) Circulation mixer and application thereof
JP5168216B2 (en) Oxidation reactor and process for producing aromatic polycarboxylic acids
Ho et al. Angled Vortex Fluidic Mediated Multicomponent Photocatalytic and Transition Metal‐Catalyzed Reactions
US8461377B2 (en) High shear process for aspirin production
EP1390327B1 (en) Fischer-tropsch process in the presence of a coolant introduced into the reactor system
WO2009002735A1 (en) High shear process for the production of cumene hydroperoxide
NO179745B (en) Method and apparatus for catalytic conversion of oxygen-containing hydrocarbons
WO2020256880A1 (en) Rotating packed bed reactors and methods thereof
CN113248461B (en) Preparation method of hydroxyl oxygen heterocyclic alkane derivative
CN103896749B (en) A kind of method preparing formaldehyde co-production dimethoxym ethane
US7012102B2 (en) Fischer-tropsch process
CN109180636B (en) Device and method for synthesizing trioxymethylene by coupling extraction and catalysis technology
CN111233693A (en) Production method and system of 3-N, N-dihydroxyethyl aminoacetanilide
CN113912568B (en) Method for preparing propylene oxide capable of increasing limiting oxygen content
US9120720B2 (en) Process for making ethanolamines

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees