JP2010247130A - Pretreatment method of nitrogen oxide decomposition - Google Patents

Pretreatment method of nitrogen oxide decomposition Download PDF

Info

Publication number
JP2010247130A
JP2010247130A JP2009102340A JP2009102340A JP2010247130A JP 2010247130 A JP2010247130 A JP 2010247130A JP 2009102340 A JP2009102340 A JP 2009102340A JP 2009102340 A JP2009102340 A JP 2009102340A JP 2010247130 A JP2010247130 A JP 2010247130A
Authority
JP
Japan
Prior art keywords
nitrogen
compound
nitrogen oxide
decomposing
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009102340A
Other languages
Japanese (ja)
Inventor
Shintaro Inasawa
伸太郎 稲沢
Shigehiro Chaen
茂広 茶圓
Taku Isono
卓 磯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2009102340A priority Critical patent/JP2010247130A/en
Publication of JP2010247130A publication Critical patent/JP2010247130A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of efficiently decomposing a nitrogen oxide by removing a strongly-acidic compound poisoning a noble metal catalyst prior to decomposing the nitrogen oxide in exhaust gas in which the strongly-acidic compound and the nitrogen oxide coexist and which is generated in the manufacture process of a nitrogen-containing organic compound including the introduction process of a nitrogen atom to a hydrocarbon compound or the like, using the noble metal catalyst. <P>SOLUTION: In the method of decomposing the nitrogen oxide in the exhaust gas containing the strongly-acidic compound using the noble metal catalyst, before the decomposition treatment, the strongly-acidic compound is removed or reduced by bringing it into contact with metal oxide, metal hydroxide, ammonia, amines, or salt which has the acid radical of an acid compound of weaker acidity than the strongly-acidic compound and is stable in the air. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、強酸性化合物(硫酸、硝酸等)が共存する窒素酸化物の分解処理に関し、特に、貴金属触媒による窒素酸化物の分解を効率的に行うための前処理方法に関する。   The present invention relates to a decomposition treatment of nitrogen oxides in which strong acidic compounds (sulfuric acid, nitric acid, etc.) coexist, and particularly relates to a pretreatment method for efficiently performing decomposition of nitrogen oxides with a noble metal catalyst.

近年、環境問題に対する意識は非常に高く、SOX、NOXなどの酸性化合物の環境への放出は厳しく規制され、一定の効果を果たしてきた。最近では、特に、地球温暖化を抑制することが環境問題の大きな喫緊の課題になっている。 In recent years, awareness of environmental issues has been very high, and the release of acidic compounds such as SO x and NO x into the environment has been strictly regulated and has achieved a certain effect. Recently, in particular, suppressing global warming has become a major urgent issue of environmental problems.

そのため、低炭素社会を目指す動きが顕著であり、石油原料などからの炭酸ガスの発生の抑制が強く求められ、種々の試みが行われている。また、そのような炭酸ガス抑制とは別に温室効果ガスとして、炭酸ガス(CO2 )、メタン(CH4)、亜酸化窒素(N2O)、代替フロン(HFC、PFC、SF6)の6種の化合物類が示されて、それらの発生を抑制することが強く求められている。 For this reason, the movement toward a low-carbon society is remarkable, and suppression of the generation of carbon dioxide from petroleum raw materials is strongly demanded, and various attempts have been made. In addition to such carbon dioxide suppression, as greenhouse gases, carbon dioxide (CO 2 ), methane (CH 4 ), nitrous oxide (N 2 O), and alternative CFCs (HFC, PFC, SF 6 ) 6 Certain compounds have been shown and there is a strong need to suppress their generation.

温室効果ガスである亜酸化窒素は炭酸ガスに比較して約300倍の温暖化効果があり、窒素酸化物中に存在する亜酸化窒素の分解処理は温暖化防止の観点においても対応が強く求められている。   Nitrous oxide, a greenhouse gas, has a warming effect about 300 times that of carbon dioxide gas, and the decomposition treatment of nitrous oxide present in nitrogen oxides is strongly demanded from the viewpoint of preventing global warming. It has been.

亜酸化窒素の分解処理は、通常1000℃を超える温度での熱分解法や触媒を使用した化学分解法で行われるが、熱分解法は酸素が存在し、高濃度亜酸化窒素の場合などに限られ、エネルギーコストも大きいため、化学分解法が採用されることが多い。   Nitrous oxide decomposition treatment is usually performed by a thermal decomposition method at a temperature exceeding 1000 ° C. or a chemical decomposition method using a catalyst, but the thermal decomposition method is used in the case of high concentration nitrous oxide. The chemical decomposition method is often adopted because it is limited and the energy cost is high.

窒素酸化物を化学分解法で処理する場合、通常貴金属触媒が使用されるが、高価であるため、工業プロセスにて発生する窒素酸化物を含む排ガスの処理では貴金属触媒の寿命を延ばすことが極めて重要である。
しかしながら、工業プロセスにて発生する窒素酸化物を含む排ガス中に、硫酸、硝酸、あるいはこれらに由来する強酸性化合物などが存在すると触媒の寿命が低下する。触媒寿命の低下は、例えば排ガス中の硫酸ミストの濃度が数ppm(本明細書においては特に記載がない限り、「ppm」は「体積ppm」を表す。)程度で顕著に認められる。
When treating nitrogen oxides by chemical decomposition methods, noble metal catalysts are usually used, but they are expensive, so it is extremely expensive to treat the exhaust gas containing nitrogen oxides generated in industrial processes. is important.
However, the presence of sulfuric acid, nitric acid, or strongly acidic compounds derived from these in exhaust gas containing nitrogen oxides generated in an industrial process reduces the life of the catalyst. The decrease in the catalyst life is noticeable when, for example, the concentration of sulfuric acid mist in the exhaust gas is several ppm (in this specification, “ppm” represents “volume ppm” unless otherwise specified).

工業プロセスにて発生する排ガス中の強酸性化合物を除去する典型的技術として排煙脱硫法が知られている。例えば、特開2002−35546号公報(特許文献1)には、SO3成分を含むガス中のSO3に由来する硫酸ミストを、粒子径が20μm以下の炭酸水素ナトリウム粉末と炭酸水素ナトリウム粉末の固結防止剤を添加して中和処理する技術が開示されているが、実施例レベルでは炭酸水素ナトリウムによる中和処理後のSO3濃度は、最良の場合でも2ppmあり、本発明の意図する強酸性化合物の除去後に続く亜酸化窒素の分解処理工程における触媒寿命の延長に使用できる技術ではない。特許文献1の技術では、炭酸水素ナトリウム粉末またはその中和反応物も本発明で使用する亜酸化窒素分解触媒の寿命に悪影響をもたらすことは明白である。 As a typical technique for removing strongly acidic compounds in exhaust gas generated in an industrial process, a flue gas desulfurization method is known. For example, Japanese Patent Laid-Open No. 2002-35546 (Patent Document 1) describes a sulfuric acid mist derived from SO 3 in a gas containing an SO 3 component, of sodium hydrogen carbonate powder and sodium hydrogen carbonate powder having a particle size of 20 μm or less. Although a technique for neutralization treatment by adding an anti-caking agent is disclosed, the SO 3 concentration after neutralization treatment with sodium bicarbonate is 2 ppm at the best level in the example level, and is intended by the present invention. It is not a technique that can be used to extend the catalyst life in the nitrous oxide decomposition treatment step that follows the removal of the strongly acidic compound. In the technique of Patent Document 1, it is apparent that sodium hydrogen carbonate powder or a neutralized reaction product thereof also adversely affects the life of the nitrous oxide decomposition catalyst used in the present invention.

特開平5−200283号公報(特許文献2)には、道路トンネル等の排気ガス中に含有される低濃度のNOXとSOXとをアナターザ型チタニアを用いて同時に除去する方法が開示されているが、約3ppmのNOX及び0.5〜1ppmのSOXというごく低濃度のNOXとSOXを除去する方法であり、本発明が意図する比較的高濃度の強酸性化合物及び亜酸化窒素を除去する方法には適さない。 The JP-A 5-200283 (Patent Document 2), discloses a method of removing simultaneously a low concentration of the NO X and SO X contained in the exhaust gas of road tunnel like using Anataza type titania are but a method of removing NO X and SO X in the very low concentrations of about 3ppm of the NO X and 0.5~1ppm of SO X, strongly acidic compounds of relatively high concentration present invention is intended and nitrous oxide It is not suitable for the method of removing nitrogen.

特開2002−35546号公報JP 2002-35546 A 特開平5−200283号公報JP-A-5-200263

窒素酸化物の分解処理に関しては、多くの報告が見られ、亜酸化窒素の分解処理に関しても検討は続けられてきた。病院で麻酔ガスとして使用される亜酸化窒素の分解処理については実用化され、稼働している。しかしながら、含窒素有機化合物などを工業生産する過程で発生する窒素酸化物中の亜酸化窒素の分解処理は実用化に至っていない。その原因については明確でないが、工業生産段階で発生する窒素酸化物中に触媒の被毒をもたらす条件があることが考えられる。   Many reports have been made regarding the decomposition treatment of nitrogen oxides, and studies on the decomposition treatment of nitrous oxide have been continued. The decomposition process of nitrous oxide used as anesthetic gas in hospitals has been put into practical use and is in operation. However, the decomposition treatment of nitrous oxide in nitrogen oxides generated in the process of industrial production of nitrogen-containing organic compounds has not been put into practical use. Although the cause is not clear, it is conceivable that there are conditions that cause catalyst poisoning in nitrogen oxides generated in the industrial production stage.

従って、本発明の課題は、炭化水素化合物への窒素原子の導入工程を含む含窒素有機化合物の製造工程等で生じる強酸性化合物と窒素酸化物が共存する排ガス中の窒素酸化物を貴金属触媒を用いて分解処理するに先立って、貴金属触媒を被毒する強酸性化合物を予め除去した後、窒素酸化物を分解処理する方法を提供することにある。   Accordingly, an object of the present invention is to provide a noble metal catalyst for converting nitrogen oxides in exhaust gas in which a strongly acidic compound and nitrogen oxides coexist in a manufacturing process of a nitrogen-containing organic compound including a step of introducing nitrogen atoms into a hydrocarbon compound. It is an object of the present invention to provide a method of decomposing nitrogen oxides after removing strong acidic compounds that poison noble metal catalysts in advance before decomposing using them.

炭化水素化合物への窒素原子の導入反応では、一般に窒素化合物が反応剤として使用されるが、窒素化合物中に亜酸化窒素等の窒素酸化物が含有していたり、反応工程で窒素化合物から窒素酸化物が生じたりする。   In the introduction reaction of nitrogen atoms into hydrocarbon compounds, nitrogen compounds are generally used as reactants. However, nitrogen compounds contain nitrogen oxides such as nitrous oxide, or nitrogen oxides from nitrogen compounds in the reaction process. Things will occur.

含窒素有機化合物としては、ポリアミド−6の原料モノマーであるε−カプロラクタム、ポリアミド−12の原料モノマーであるラウロラクタムなどのラクラム類、アミド類、アミン類、ニトロ化合物類などが挙げられるが、本発明の方法が対象となる好適な例は、ε−カプロラクタム、ラウロラクタムなどのラクラム類の製造工程で生じる排ガスである。   Examples of the nitrogen-containing organic compound include ε-caprolactam, which is a raw material monomer of polyamide-6, and lacrams such as laurolactam, which is a raw material monomer of polyamide-12, amides, amines, nitro compounds, etc. A preferred example to which the method of the invention is directed is exhaust gas generated in the production process of lacrams such as ε-caprolactam and laurolactam.

例えば、ポリアミド−6の原料であるε−カプロラクタムは、シクロヘキサノンオキシムのベックマン(Beckmann)転位によって製造される。シクロヘキサノンオキシムの製造方法としては、例えば、シクロヘキサノンをヒドロキシルアミンで直接オキシム化する方法、あるいはシクロヘキサンを光照射下で塩化ニトロシル(NOCl)と反応させてオキシムを得る方法等が知られている。これらのオキシムを得る工程、ヒドロキシルアミンを得る工程、HClを硫酸ニトロシルに作用させて塩化ニトロシルを製造する工程等で亜酸化窒素などの窒素酸化物が副生する。オキシムは、またシクロヘキサンに硝酸を用いて液相で、または二酸化窒素を用いて気相でニトロ化を行い、次いで接触水素化して得られるが、この場合も亜酸化窒素などの窒素酸化物の副生は避けられない。ベックマン(Beckmann)転位では、硫酸または発煙硫酸を使用する。従って、排出される亜酸化窒素を含む窒素酸化物を含むガス中にSO3や硫酸ミストの随伴は避けられず、窒素酸化物の分解処理時に使用する前記の触媒被毒の問題が生じる。 For example, ε-caprolactam, which is a raw material for polyamide-6, is produced by the Beckmann rearrangement of cyclohexanone oxime. As a method for producing cyclohexanone oxime, for example, a method in which cyclohexanone is directly oximed with hydroxylamine or a method in which cyclohexane is reacted with nitrosyl chloride (NOCl) under light irradiation to obtain an oxime is known. Nitrogen oxides such as nitrous oxide are by-produced in the step of obtaining these oximes, the step of obtaining hydroxylamine, the step of producing nitrosyl chloride by reacting HCl with nitrosyl sulfate. Oxime is also obtained by nitration in cyclohexane with nitric acid in the liquid phase or with nitrogen dioxide in the gas phase, followed by catalytic hydrogenation, again in this case as a by-product of nitrogen oxides such as nitrous oxide. Life is inevitable. The Beckmann rearrangement uses sulfuric acid or fuming sulfuric acid. Therefore, accompanying the SO 3 or sulfuric acid mist in the gas containing nitrogen oxides including nitrous oxide is unavoidable, and the above-mentioned problem of catalyst poisoning used in the decomposition treatment of nitrogen oxides occurs.

このように、含窒素有機化合物の製造工程から排出されるガス中には、亜酸化窒素などの窒素酸化物が含まれ、この亜酸化窒素等の窒素酸化物の分解、除去は地球の温暖化防止、環境保護の観点から重要である。
しかし、従来、亜酸化窒素ガスを効果的に分解、除去する触媒として知られている貴金属担持触媒系による亜酸化窒素分解、除害方法では、触媒の被毒のため十分な効果が得られなかった。
In this way, nitrogen oxides such as nitrous oxide are contained in the gas discharged from the production process of nitrogen-containing organic compounds, and the decomposition and removal of nitrogen oxides such as nitrous oxide is a global warming. It is important from the viewpoint of prevention and environmental protection.
However, conventional nitrous oxide decomposition and detoxification methods using a noble metal-supported catalyst system, which is known as a catalyst for effectively decomposing and removing nitrous oxide gas, do not provide sufficient effects due to catalyst poisoning. It was.

そこで、本発明者らが鋭意検討した結果、上記排ガス中に亜酸化窒素などの窒素酸化物と共存するSO3や硫酸ミストを一定濃度以下に低減する前処理工程を実施した後に、貴金属担持触媒系による亜酸化窒素の分解処理する工程を行うことによって、貴金属触媒による窒素酸化物の分解除去を効率的に行えることを見出し、本発明を完成した。 Therefore, as a result of intensive studies by the present inventors, after carrying out a pretreatment step of reducing SO 3 and sulfuric acid mist coexisting with nitrogen oxides such as nitrous oxide in the exhaust gas to a certain concentration or less, a noble metal supported catalyst The present inventors have found that nitrogen oxides can be efficiently decomposed and removed by a noble metal catalyst by performing a process of decomposing nitrous oxide using a system.

すなわち、本発明は以下の1〜10の窒素酸化物の分解処理方法を提供する。
1.強酸性化合物を含む排ガス中の窒素酸化物を貴金属触媒を用いて分解処理する方法において、前記分解処理前に強酸性化合物除去材と接触させて強酸性化合物を除去または低減することを特徴とする窒素酸化物の分解処理方法。
2.強酸性化合物除去材が、金属酸化物、金属水酸化物、アンモニア、アミン類、または強酸性化合物より弱酸性の酸化合物の酸基を有する空気中で安定な塩である前項1に記載の窒素酸化物の分解処理方法。
3.貴金属触媒が、白金、パラジウム、ロジウム、オスニウム、ルテニウム及びイリジウムから選択される白金系貴金属の担体担持型触媒である前項1または2に記載の窒素酸化物の分解処理方法。
4.前記酸基がリン酸基または炭酸基である前項2に記載の窒素酸化物の分解処理方法。5.排ガスが、炭化水素化合物への窒素原子の導入工程を含む含窒素有機化合物の製造工程で生じる排ガスである前項1〜4のいずれかに記載の窒素酸化物の分解処理方法。
6.炭化水素化合物への窒素原子の導入工程を含む含窒素有機化合物の製造反応が、シクロヘキサノンオキシムの製造工程とシクロヘキサノンオキシムを硫酸を用いてベックマン(Beckmann)転位する工程を含むε−カプロラクタムの製造反応、またはシクロドデカノンオキシムの製造工程とシクロドデカノンオキシムを硫酸を用いてベックマン(Beckmann)転位する工程を含むラウロラクタムの製造反応である前項5に記載の窒素酸化物の分解処理方法。
7.強酸性化合物が硫酸または硝酸である前項1〜6のいずれかに記載の窒素酸化物の分解処理方法。
8.排ガス中に10ppm〜1000ppmの濃度で含まれる強酸性化合物を、0.1ppm以下の濃度まで除去または低減した後、窒素酸化物を分解処理する前項1〜7のいずれかに記載の窒素酸化物の分解処理方法。
9.窒素酸化物が亜酸化窒素である前項1〜9のいずれかに記載の窒素酸化物の分解処理方法。
10.排ガス中に含まれる窒素酸化物が亜酸化窒素であり、亜酸化窒素をその含有濃度の0.01〜1%まで分解処理する前項1〜9のいずれかに記載の窒素酸化物の分解処理方法。
That is, this invention provides the decomposition | disassembly processing method of the following 1-10 nitrogen oxides.
1. In the method of decomposing nitrogen oxides in exhaust gas containing a strongly acidic compound using a noble metal catalyst, the strongly acidic compound is removed or reduced by contacting with a strongly acidic compound removing material before the decomposition treatment. Nitrogen oxide decomposition method.
2. 2. The nitrogen according to item 1, wherein the strongly acidic compound removing material is a metal oxide, metal hydroxide, ammonia, amines, or a salt that is stable in air having an acid group of a weakly acidic acid compound than the strong acidic compound. Decomposition method of oxide.
3. 3. The method for decomposing nitrogen oxides according to item 1 or 2, wherein the noble metal catalyst is a platinum-based noble metal carrier-supported catalyst selected from platinum, palladium, rhodium, osnium, ruthenium and iridium.
4). 3. The method for decomposing nitrogen oxides according to 2 above, wherein the acid group is a phosphate group or a carbonate group. 5). 5. The method for decomposing nitrogen oxides according to any one of items 1 to 4, wherein the exhaust gas is an exhaust gas generated in a production process of a nitrogen-containing organic compound including a step of introducing a nitrogen atom into a hydrocarbon compound.
6). A reaction for producing a nitrogen-containing organic compound including a step of introducing a nitrogen atom into a hydrocarbon compound, a reaction for producing ε-caprolactam, which comprises a step of producing cyclohexanone oxime and a step of rearranging cyclohexanone oxime with sulfuric acid using Beckmann, 6. The method for decomposing nitrogen oxide according to 5 above, which is a production reaction of laurolactam, comprising a step of producing cyclododecanone oxime and a step of rearranging cyclododecanone oxime using sulfuric acid with Beckmann.
7). 7. The method for decomposing nitrogen oxides according to any one of items 1 to 6, wherein the strongly acidic compound is sulfuric acid or nitric acid.
8). 8. The nitrogen oxide according to any one of 1 to 7 above, wherein a strong acidic compound contained in the exhaust gas at a concentration of 10 ppm to 1000 ppm is removed or reduced to a concentration of 0.1 ppm or less, and then the nitrogen oxide is decomposed. Decomposition method.
9. 10. The method for decomposing nitrogen oxide according to any one of items 1 to 9, wherein the nitrogen oxide is nitrous oxide.
10. The nitrogen oxide decomposition treatment method according to any one of the preceding items 1 to 9, wherein the nitrogen oxide contained in the exhaust gas is nitrous oxide, and the nitrous oxide is decomposed to 0.01 to 1% of its concentration. .

本発明は、硫酸、硝酸などの強酸性化合物が共存する排ガス中の窒素酸化物を、貴金属触媒を用いて分解処理する方法において、強酸性化合物除去材と接触させる前処理工程により強酸性化合物を除去または低減した後、窒素酸化物を分解処理する方法を提供したものである。本発明によれば、窒素酸化物分解触媒の寿命が延長され、含窒素有機化合物などの工業生産過程で発生する窒素酸化物中の亜酸化窒素を効率的に分解除去でき、地球の温暖化防止、環境保護上極めて有用である。   The present invention relates to a method for decomposing nitrogen oxides in exhaust gas coexisting with strongly acidic compounds such as sulfuric acid and nitric acid, using a noble metal catalyst, and the strongly acidic compounds are removed by a pretreatment step in which they are contacted with a strongly acidic compound removing material. A method for decomposing nitrogen oxides after removal or reduction is provided. According to the present invention, the lifetime of a nitrogen oxide decomposition catalyst is extended, and nitrous oxide in nitrogen oxides generated in industrial production processes such as nitrogen-containing organic compounds can be efficiently decomposed and removed, thereby preventing global warming. It is extremely useful for environmental protection.

以下、本発明を詳細に説明する。
本発明で分解除去する対象となる排ガス中の窒素酸化物は、含窒素有機化合物等の工業生産段階において発生するNO(一酸化窒素)、NO2(二酸化窒素)、亜酸化窒素(N2O)、N23(三酸化二窒素)、N24(四酸化二窒素)、N25(五酸化二窒素)等であり、とりわけ温室効果ガスとして指定されている亜酸化窒素である。
Hereinafter, the present invention will be described in detail.
The nitrogen oxides in the exhaust gas to be decomposed and removed in the present invention are NO (nitrogen monoxide), NO 2 (nitrogen dioxide), nitrous oxide (N 2 O) generated in the industrial production stage of nitrogen-containing organic compounds and the like. ), N 2 O 3 (dinitrogen trioxide), N 2 O 4 (dinitrogen tetroxide), N 2 O 5 (dinitrogen pentoxide), etc., and especially nitrous oxide which is designated as a greenhouse gas It is.

含窒素有機化合物等の工業的生産工程は特に限定されないが、例えばアンモニアの酸化反応、アジポニトリルの強酸性化合物による酸化反応、ケト型のオキシムの強酸性化合物によるベックマン転移反応などが挙げられる。これらの生産工程で発生する強酸性化合物が共存する窒素酸化物、特に亜酸化窒素が対象となる。   The industrial production process of nitrogen-containing organic compounds and the like is not particularly limited, and examples thereof include ammonia oxidation reaction, oxidation reaction of adiponitrile with a strongly acidic compound, and Beckmann rearrangement reaction with a keto-type oxime strongly acidic compound. Nitrogen oxides, particularly nitrous oxide, in which strong acidic compounds generated in these production processes coexist are targeted.

上述するアジポニトリルの酸化反応やベックマン転移によるケト型のオキシムからの環状アミド化合物の製造時には、硫酸が使用され、それらが完全には捕捉されずに窒素酸化物に同伴されて排出される。
本発明でいう強酸性化合物とは硝酸、硫酸もしくはそれらに由来する化合物を指す。
In the production of the cyclic amide compound from the keto-type oxime by the oxidation reaction of adiponitrile and Beckmann transition described above, sulfuric acid is used, and these are not completely trapped but are entrained with nitrogen oxides and discharged.
The strongly acidic compound referred to in the present invention refers to nitric acid, sulfuric acid or a compound derived therefrom.

本発明で使用する強酸化性化合物の除去材は、金属酸化物、金属水酸化物、アンモニア、アミン類、または強酸性化合物より弱酸性の酸化合物の酸基を有する空気中で安定な塩から選ばれる。これらは1種を単独で使用してもよいし、2種以上を適宜組み合わせて使用してもよい。これらの中でも強酸性化合物より弱酸性の酸化合物の酸基を有する空気中で安定な塩が好ましい。   The strong oxidizing compound remover used in the present invention is a metal oxide, metal hydroxide, ammonia, amines, or a salt that is stable in air having an acid group of a weakly acidic acid compound than a strong acidic compound. To be elected. These may be used individually by 1 type and may be used in combination of 2 or more types as appropriate. Among these, a salt that is stable in air having an acid group of a weakly acidic acid compound rather than a strongly acidic compound is preferable.

本発明において、窒素酸化物の分解処理に使用される貴金属触媒は、白金系貴金属であり、具体的には、白金、パラジウム、ロジウム、オスニウム、ルテニウム、イリジウムが挙げられ、白金、パラジウム、ロジウムが使用される。   In the present invention, the noble metal catalyst used for the nitrogen oxide decomposition treatment is a platinum-based noble metal, and specifically, platinum, palladium, rhodium, osnium, ruthenium, iridium, and platinum, palladium, rhodium are used. used.

これらの貴金属触媒は、特に担体担持型が好適である。使用される担体の具体例としては、シリカ、アルミナ、ゼオライトが挙げられる。また、アルミナにはマグネシウム、亜鉛、鉄、コバルトなどの金属を導入したものも有効である。   Of these noble metal catalysts, a carrier-supported type is particularly suitable. Specific examples of the carrier used include silica, alumina, and zeolite. In addition, alumina into which a metal such as magnesium, zinc, iron or cobalt is introduced is also effective.

貴金属触媒を用いた窒素酸化物の分解処理は、通常200〜750℃の温度で行われ、400〜600℃の温度が好ましい。   The decomposition treatment of nitrogen oxide using a noble metal catalyst is usually performed at a temperature of 200 to 750 ° C, and a temperature of 400 to 600 ° C is preferable.

また、本発明でいう前記弱酸性の酸化合物の酸基とは、リン酸及び炭酸に由来する酸基である。これらからなる空気中で安定な塩の具体例としては、リン酸ナトリウム、リン酸カリウム、リン酸カルシウム、リン酸マグネシウム、リン酸アルミニウムなどのリン酸塩、及び炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム、炭酸カルシウム、炭酸アルミニウムなどの炭酸塩が挙げられる。   The acid group of the weakly acidic acid compound referred to in the present invention is an acid group derived from phosphoric acid and carbonic acid. Specific examples of the salt that is stable in the air include sodium phosphate, potassium phosphate, calcium phosphate, magnesium phosphate, aluminum phosphate, and the like, and sodium carbonate, potassium carbonate, magnesium carbonate, calcium carbonate. And carbonates such as aluminum carbonate.

さらに、金属酸化物または金属水酸化物を構成する金属としては、ナトリウム、カリウム、マグネシウム、カルシウム、アルミニウムなどが挙げられる。また、ゼオライトのような複合金属塩も好ましい。   Furthermore, sodium, potassium, magnesium, calcium, aluminum etc. are mentioned as a metal which comprises a metal oxide or a metal hydroxide. A composite metal salt such as zeolite is also preferred.

アンモニアガスや炭素数1〜3のアルキル基が1〜3個置換したアミン類も使用できる。上述の炭酸塩、リン酸塩、金属酸化物、金属水酸化物は水和されていてもよく、また、1種に限定されることなく、複数使用することもできる。実際、使用するガスによっては、炭酸塩、リン酸塩、金属酸化物、金属水酸化物、アンモニア、アミン類を適宜組み合わせて使用することが好ましいことがある。   Ammonia gas and amines substituted with 1 to 3 alkyl groups having 1 to 3 carbon atoms can also be used. The carbonates, phosphates, metal oxides, and metal hydroxides described above may be hydrated, and are not limited to one type, and a plurality of them can be used. In fact, depending on the gas used, it may be preferable to use an appropriate combination of carbonate, phosphate, metal oxide, metal hydroxide, ammonia, and amines.

本発明により、貴金属触媒を使用する分解処理前に予め強酸性化合物より弱酸性の酸化合物の酸基を有する空気中で安定な塩で処理すると強酸性化合物により塩が分解することがあり、その際、炭酸塩の場合には炭酸ガスが発生することがある。本発明の目的である地球温暖化抑制の見地からは、ホタテ貝などの貝殻またはそれに由来するものを使用することが好ましい。使用できる貝殻は特に限定されないが、ホタテのほか、カキ、アサリ、シジミ、イガイなどを例示できる。   According to the present invention, when a treatment with a stable salt in the air having an acid group of a weakly acidic acid compound than a strong acid compound is performed in advance before the decomposition treatment using the noble metal catalyst, the salt may be decomposed by the strong acid compound. In the case of carbonate, carbon dioxide gas may be generated. From the standpoint of suppressing global warming, which is the object of the present invention, it is preferable to use shells such as scallops or those derived therefrom. The shells that can be used are not particularly limited, but examples include oysters, clams, swordfish, and mussels.

分解処理に先立つ本発明でいう安定な化合物と排ガスとの接触は、通常粉末状の安定な化合物を用いて行われ、安定な化合物を多孔状の形状にしたり、粒子径を調整したりして、カラムに充てんした際のガスの圧力損失を制御し、接触頻度を制御する。そのためには、一般的には、5mm〜15mm程度の大きさとして使用する。   The contact between the stable compound and the exhaust gas in the present invention prior to the decomposition treatment is usually performed using a powdery stable compound, and the stable compound is formed into a porous shape or the particle diameter is adjusted. Controls the pressure loss of gas when the column is packed and the contact frequency. For that purpose, it is generally used as a size of about 5 mm to 15 mm.

また、本発明でいう安定な化合物は、溶媒を使用して溶液または懸濁液としてガスと接触させることも可能である。特に、多量の水とともに使用することが好ましい。カラムに微量の水を常時流し、安定な化合物の表面を湿らせた状態でガスを流通させることは非常に有効である。これは、水に吸収されたガス成分が該安定な化合物と有効に接触し、更に常に該安定な化合物の新しい表面が出来ることによると思われる。   Moreover, the stable compound as used in the field of this invention can also be made to contact with gas as a solution or suspension using a solvent. It is particularly preferable to use it with a large amount of water. It is very effective to allow a small amount of water to constantly flow through the column and circulate the gas in a state where the surface of a stable compound is moistened. This is believed to be due to the fact that the gas component absorbed in the water is in effective contact with the stable compound and always creates a new surface of the stable compound.

なお、上記の水を使用して強酸性化合物の除去を図る際には、次工程(窒素酸化物分解処理工程)で使用する貴金属触媒に与える水(水蒸気)の影響を避けるために、水温を高くとも15℃、好ましくは高くとも10℃、特に好ましくは5℃を越えないようにすることが好ましい。   When removing strongly acidic compounds using the above water, the water temperature should be adjusted to avoid the influence of water (steam) on the noble metal catalyst used in the next step (nitrogen oxide decomposition treatment step). It is preferred not to exceed 15 ° C., preferably at most 10 ° C., particularly preferably 5 ° C. at the highest.

水温の制御が充分にできない場合は、シリカゲル、ゼオライト、アルミナのような吸水剤と接触させて乾燥することが望ましい。   If the water temperature cannot be controlled sufficiently, it is desirable to dry it in contact with a water-absorbing agent such as silica gel, zeolite, or alumina.

本発明で窒素酸化物を分解除去する対象となる排ガス中の強酸性化合物の濃度には特に制限はないが、10〜1000ppmが好ましく、特に50〜200ppmが好ましい。除去材等と接触させることによって、強酸性化合物を0.1ppm以下に除去または低減させることが好ましく、0.01ppm以下に除去または削減させることが特に好ましい。 なお、本発明において、ガス中の強酸性化合物の濃度の測定は、100ppm以下の低濃度の場合にはイオンクロマトグラフ法、100ppmを超える高濃度領域では中和滴定法を使用して行うことができる。具体的な方法は、一般的な化学実験操作法に準じて行うことができる。例えば、硫黄酸化物の測定の場合、JIS K0103に従って測定される。   Although there is no restriction | limiting in particular in the density | concentration of the strongly acidic compound in the waste gas used as the object which decomposes | disassembles and removes nitrogen oxides by this invention, 10-1000 ppm is preferable and 50-200 ppm is especially preferable. It is preferable to remove or reduce the strongly acidic compound to 0.1 ppm or less by contacting with a removing material or the like, and it is particularly preferable to remove or reduce to 0.01 ppm or less. In the present invention, the measurement of the concentration of the strongly acidic compound in the gas may be carried out using an ion chromatographic method in the case of a low concentration of 100 ppm or less and a neutralization titration method in a high concentration region exceeding 100 ppm. it can. A specific method can be performed according to a general chemical experiment method. For example, in the case of measuring sulfur oxide, it is measured according to JIS K0103.

前処理により強酸性化合物を除去または低減した排ガス中の亜酸化窒素を含む窒素酸化物を従来知られている貴金属触媒を用いる方法により分解処理する。
本発明の方法によれば排ガスに含まれる亜酸化窒素をその含有濃度の0.01〜1%まで分解処理することが出来る(含有濃度範囲要確認)。
Nitrogen oxides containing nitrous oxide in exhaust gas from which strongly acidic compounds have been removed or reduced by pretreatment are decomposed by a method using a conventionally known noble metal catalyst.
According to the method of the present invention, nitrous oxide contained in the exhaust gas can be decomposed to 0.01 to 1% of the content concentration (confirmation of the content concentration range).

以下、触媒調製例、強酸性化合物除去材である安定な化合物例、実施例及び比較例を挙げて説明するが、本発明は下記の例に限定されるものではない。   Hereinafter, examples of catalyst preparation, examples of stable compounds that are strongly acidic compound removing materials, examples and comparative examples will be described, but the present invention is not limited to the following examples.

触媒調製例1:
21.4%硝酸ロジウム水溶液1.32gに1.84gの蒸留水を混合し、シリカ担体22.04gを加え全量含浸させた後、90℃のオイルバスで蒸発乾固させた。得られた担体を、空気中110℃で12時間乾燥させた後、空気中650℃で2時間焼成処理して、ロジウムを5質量%担持した触媒を得た。
Catalyst preparation example 1:
1.84 g of distilled water was mixed with 1.32 g of a 21.4% rhodium nitrate aqueous solution, and 22.04 g of silica support was added and impregnated in total, and then evaporated to dryness in an oil bath at 90 ° C. The obtained carrier was dried in air at 110 ° C. for 12 hours and then calcined in air at 650 ° C. for 2 hours to obtain a catalyst supporting 5% by mass of rhodium.

触媒調製例2:
硝酸亜鉛0.208g及び硝酸アルミニウム0.54gを蒸留水4.94gに溶解し、シリカ担体4.0gを加え全量含浸させた後、90℃のオイルバスで蒸発乾固させた。得られた担体を空気中110℃で12時間乾燥させた後、空気中650℃で3時間焼成処理して、スピネル型結晶性複合酸化物シリカ触媒前駆体を得た。21.4%硝酸ロジウム水溶液2.59gに2.35gの蒸留水を混合し、前記前駆体を加え全量含浸させた後、90℃のオイルバスで蒸発乾固させた。得られた担体を、空気中120℃で12時間乾燥させた後、空気中400℃で3時間水素還元を行い、ロジウムを5質量%担持した触媒を得た。
Catalyst preparation example 2:
Zinc nitrate (0.208 g) and aluminum nitrate (0.54 g) were dissolved in distilled water (4.94 g), and silica support (4.0 g) was added and impregnated in total, and then evaporated to dryness in an oil bath at 90 ° C. The obtained support was dried in air at 110 ° C. for 12 hours and then calcined in air at 650 ° C. for 3 hours to obtain a spinel-type crystalline composite oxide silica catalyst precursor. 2.35 g of distilled water was mixed with 2.59 g of a 21.4% rhodium nitrate aqueous solution, the precursor was added and impregnated in whole, and then evaporated to dryness in a 90 ° C. oil bath. The obtained carrier was dried in air at 120 ° C. for 12 hours and then subjected to hydrogen reduction in air at 400 ° C. for 3 hours to obtain a catalyst carrying 5% by mass of rhodium.

触媒調製例3:
シリカ担体の代わりにシリカアルミナ担体4.0gを用いたこと以外は実施例2と同様にしてロジウムを5質量%を担持した触媒を得た。
Catalyst preparation example 3:
A catalyst supporting 5% by mass of rhodium was obtained in the same manner as in Example 2 except that 4.0 g of silica alumina support was used instead of the silica support.

安定な化合物例1:
熱乾燥後、粉砕したホタテ貝殻(平均サイズ3mm)をガラス管に充填し、両端をガラスフィルターで押えた。充填カラムは、後述の実施例で通す排ガスの平均滞留時間が5秒となるように調整した。
Stable compound example 1:
After heat drying, crushed scallop shells (average size 3 mm) were filled into glass tubes, and both ends were pressed with glass filters. The packed column was adjusted so that the average residence time of the exhaust gas passed through in Examples described later was 5 seconds.

安定な化合物例2:
酸化マグネシウム水和物(平均粒径4mm)をガラスに充填し、両端をガラスフィルターで押えた。充填カラムは後述の実施例で通す排ガスの平均滞留時間が5秒となるように調整した。
Stable compound example 2:
Magnesium oxide hydrate (average particle size 4 mm) was filled in glass, and both ends were pressed with glass filters. The packed column was adjusted so that the average residence time of the exhaust gas passed in the examples described later was 5 seconds.

安定な化合物例3:
プラスチック製充填材を縦型カラムに充填し、下端を該充填材が落下しないメッシュの樹脂フィルターで押え、カラムに水酸化ナトリウム水溶液(0.05N)を流した。充填カラムを後述の実施例で通す排ガスの平均滞留時間が5秒となるように調整した。
Stable compound example 3:
A plastic packing material was packed into a vertical column, the lower end was pressed with a mesh resin filter that did not drop the packing material, and an aqueous sodium hydroxide solution (0.05 N) was passed through the column. It adjusted so that the average residence time of the waste gas which let a packed column pass in the below-mentioned Example might be 5 second.

実施例1:
触媒調製例1で得られた触媒を42〜80メッシュに整粒した後、石英反応管に充填し、反応器とした。空間速度を毎時1万リットルとして、ガス組成が体積比でN2O/O2/He=5/5/90の混合ガスに硫酸ミストを150ppmになるように混合した反応ガスを、安定な化合物例1をセットした所に通し、硫酸ミストを0.1ppm以下にした後、電気炉に入れて反応温度を400℃にセットした反応器に供給した。20日間の連続運転後の反応器の入口と出口の亜酸化窒素量をガスクロマトグラフィーで測定した。その結果、出口濃度は入口濃度の0.2%であった。
Example 1:
The catalyst obtained in Catalyst Preparation Example 1 was sized to 42 to 80 mesh and then filled in a quartz reaction tube to obtain a reactor. A stable compound obtained by mixing a reaction gas with a space velocity of 10,000 liters per hour and mixing a sulfuric acid mist of 150 ppm in a mixed gas having a gas composition of N 2 O / O 2 / He = 5/5/90 by volume. After passing through the place where Example 1 was set, the sulfuric acid mist was reduced to 0.1 ppm or less, and then it was put into an electric furnace and supplied to a reactor whose reaction temperature was set to 400 ° C. The amount of nitrous oxide at the inlet and outlet of the reactor after continuous operation for 20 days was measured by gas chromatography. As a result, the outlet concentration was 0.2% of the inlet concentration.

実施例2:
触媒調製例2で得られた触媒及び安定な化合物例2を実施例1と同様にして以下のように実施した。すなわち、空間速度を毎時1万リットルとして、ガス組成が体積比でN2O/O2/He=5/5/90の混合ガスに硫酸ミストを100ppmになるように混合した反応ガスを安定な化合物例2をセットした所に通し、硫酸ミストを0.1ppm以下にした後、電気炉に入れて反応温度を400℃にセットした反応器に供給した。20日間の連続運転後の反応器の入口と出口の亜酸化窒素量をガスクロマトグラフィーで測定した。その結果、出口濃度は入口濃度の0.3%であった。
Example 2:
The catalyst obtained in Catalyst Preparation Example 2 and stable compound example 2 were prepared in the same manner as in Example 1 as follows. That is, a reaction gas obtained by mixing a sulfuric acid mist to 100 ppm with a mixed gas having a space velocity of 10,000 liters per hour and a gas composition of N 2 O / O 2 / He = 5/5/90 in a volume ratio is stable. After passing through the place where Compound Example 2 was set, the sulfuric acid mist was reduced to 0.1 ppm or less, and the mixture was then placed in an electric furnace and supplied to a reactor set at a reaction temperature of 400 ° C. The amount of nitrous oxide at the inlet and outlet of the reactor after continuous operation for 20 days was measured by gas chromatography. As a result, the outlet concentration was 0.3% of the inlet concentration.

実施例3:
触媒調製例3及び安定な化合物例3で得られた触媒を実施例1と同様にして以下のように実施した。すなわち、空間速度を毎時1万リットルとして、ガス組成が体積比でN2O/O2/He=0.5/0.5/99の混合ガスに硫酸ミストを50ppmになるように混合した反応ガスを安定な化合物例3をセットした所に通し、硫酸ミストを0.1ppm以下にした後、電気炉に入れて反応温度を400℃にセットした反応器に供給した。20日間の連続運転後の反応器の入口と出口の亜酸化窒素量をガスクロマトグラフィーで測定した。その結果、出口濃度は入口濃度の0.1%であった。
Example 3:
The catalyst obtained in Catalyst Preparation Example 3 and Stable Compound Example 3 was carried out in the same manner as in Example 1 as follows. That is, a reaction in which a space velocity was 10,000 liters and a sulfuric acid mist was mixed at 50 ppm with a mixed gas having a gas composition of N 2 O / O 2 /He=0.5/0.5/99 by volume. The gas was passed through the place where the stable compound example 3 was set, and the sulfuric acid mist was reduced to 0.1 ppm or less, and then was put into an electric furnace and supplied to a reactor set at a reaction temperature of 400 ° C. The amount of nitrous oxide at the inlet and outlet of the reactor after continuous operation for 20 days was measured by gas chromatography. As a result, the outlet concentration was 0.1% of the inlet concentration.

実施例4:
触媒調製例3及び安定な化合物例3で得られた触媒を実施例1と同様にして以下のように実施した。すなわち、空間速度を毎時1万リットルとして、ガス組成が体積比でN2O/O2/He=5/5/90の混合ガスに60%濃度硝酸水を80ppmになるように混合した反応ガスを安定な化合物例3をセットした所に通し、硫酸ミストを0.1ppm以下にした後、電気炉に入れて反応温度を400℃にセットした反応器に供給した。20日間の連続運転後の反応器の入口と出口の亜酸化窒素量をガスクロマトグラフィーで測定した。その結果、出口濃度は入口濃度の0.05%であった。
Example 4:
The catalyst obtained in Catalyst Preparation Example 3 and Stable Compound Example 3 was carried out in the same manner as in Example 1 as follows. That is, a reaction gas in which a space velocity is set to 10,000 liters per hour, and a mixed gas having a gas composition of N 2 O / O 2 / He = 5/5/90 in a volume ratio is mixed with 60% concentration nitric acid so as to be 80 ppm. Was passed through a place where the stable Compound Example 3 was set, and the sulfuric acid mist was reduced to 0.1 ppm or less, and then put into an electric furnace and supplied to a reactor set at a reaction temperature of 400 ° C. The amount of nitrous oxide at the inlet and outlet of the reactor after continuous operation for 20 days was measured by gas chromatography. As a result, the outlet concentration was 0.05% of the inlet concentration.

比較例1:
実施例1において、安定な化合物例1を使用しなかったこと以外は同様にして20日間の連続運転後の反応器の入口と出口の亜酸化窒素量をガスクロマトグラフィーで測定した。その結果、出口濃度は入口濃度の78%であった。
Comparative Example 1:
In Example 1, the amount of nitrous oxide at the inlet and outlet of the reactor after continuous operation for 20 days was measured by gas chromatography in the same manner except that the stable compound example 1 was not used. As a result, the outlet concentration was 78% of the inlet concentration.

比較例2:
実施例2において、安定な化合物例2を使用しなかったこと以外は同様にして反応器の入口と出口の亜酸化窒素量をガスクロマトグラフィーで測定した。その結果、20日間の連続運転後の反応器の出口濃度は入口濃度の88%であった。
Comparative Example 2:
In Example 2, the amount of nitrous oxide at the inlet and outlet of the reactor was measured by gas chromatography in the same manner except that the stable compound example 2 was not used. As a result, the outlet concentration of the reactor after continuous operation for 20 days was 88% of the inlet concentration.

比較例3:
実施例3において、安定な化合物例3を使用しなかったこと以外は同様にして反応器の入口と出口の亜酸化窒素量をガスクロマトグラフィーで測定した。その結果、20日間の連続運転後の反応器の出口濃度は入口濃度の78%であった。
Comparative Example 3:
In Example 3, the amount of nitrous oxide at the inlet and outlet of the reactor was measured by gas chromatography in the same manner except that the stable compound example 3 was not used. As a result, the reactor outlet concentration after 20 days of continuous operation was 78% of the inlet concentration.

比較例4:
実施例4において、安定な化合物例3を使用しなかったこと以外は同様にして反応器の入口と出口の亜酸化窒素量をガスクロマトグラフィーで測定した。その結果、20日間の連続運転後の反応器の出口濃度は入口濃度の70%であった。
Comparative Example 4:
In Example 4, the amount of nitrous oxide at the inlet and outlet of the reactor was measured by gas chromatography in the same manner except that the stable compound example 3 was not used. As a result, the outlet concentration of the reactor after 20 days of continuous operation was 70% of the inlet concentration.

以上の実施例1〜4及び比較例1〜4の結果より、ガス中の窒素酸化物を貴金属触媒を用いて分解処理するに先立って、ガス中の強酸性化合物を除去した本発明の実施例では比較例に比べて、効果的に窒素酸化物が分解除去されていることが明らかである。   From the results of Examples 1 to 4 and Comparative Examples 1 to 4 described above, the embodiment of the present invention in which the strongly acidic compound in the gas was removed prior to the decomposition of the nitrogen oxide in the gas using the noble metal catalyst. Thus, it is clear that nitrogen oxides are effectively decomposed and removed as compared with the comparative example.

Claims (10)

強酸性化合物を含む排ガス中の窒素酸化物を貴金属触媒を用いて分解処理する方法において、前記分解処理前に強酸性化合物除去材と接触させて強酸性化合物を除去または低減することを特徴とする窒素酸化物の分解処理方法。   In the method of decomposing nitrogen oxides in exhaust gas containing a strongly acidic compound using a noble metal catalyst, the strongly acidic compound is removed or reduced by contacting with a strongly acidic compound removing material before the decomposition treatment. Nitrogen oxide decomposition method. 強酸性化合物除去材が、金属酸化物、金属水酸化物、アンモニア、アミン類、または強酸性化合物より弱酸性の酸化合物の酸基を有する空気中で安定な塩である請求項1に記載の窒素酸化物の分解処理方法。   The strongly acidic compound removing material is a metal oxide, metal hydroxide, ammonia, amines, or a salt that is stable in air having an acid group of a weakly acidic acid compound than a strongly acidic compound. Nitrogen oxide decomposition method. 貴金属触媒が、白金、パラジウム、ロジウム、オスニウム、ルテニウム及びイリジウムから選択される白金系貴金属の担体担持型触媒である請求項1または2に記載の窒素酸化物の分解処理方法。   The method for decomposing and treating nitrogen oxides according to claim 1 or 2, wherein the noble metal catalyst is a platinum-based noble metal carrier-supported catalyst selected from platinum, palladium, rhodium, osnium, ruthenium and iridium. 前記酸基がリン酸基または炭酸基である請求項2に記載の窒素酸化物の分解処理方法。   The method for decomposing a nitrogen oxide according to claim 2, wherein the acid group is a phosphate group or a carbonate group. 排ガスが、炭化水素化合物への窒素原子の導入工程を含む含窒素有機化合物の製造工程で生じる排ガスである請求項1〜4のいずれかに記載の窒素酸化物の分解処理方法。   The method for decomposing nitrogen oxides according to any one of claims 1 to 4, wherein the exhaust gas is an exhaust gas generated in a production process of a nitrogen-containing organic compound including a step of introducing nitrogen atoms into a hydrocarbon compound. 炭化水素化合物への窒素原子の導入工程を含む含窒素有機化合物の製造反応が、シクロヘキサノンオキシムの製造工程とシクロヘキサノンオキシムを硫酸を用いてベックマン(Beckmann)転位する工程を含むε−カプロラクタムの製造反応、またはシクロドデカノンオキシムの製造工程とシクロドデカノンオキシムを硫酸を用いてベックマン(Beckmann)転位する工程を含むラウロラクタムの製造反応である前項5に記載の窒素酸化物の分解処理方法。   A reaction for producing a nitrogen-containing organic compound including a step of introducing a nitrogen atom into a hydrocarbon compound, a reaction for producing ε-caprolactam, which comprises a step of producing cyclohexanone oxime and a step of rearranging cyclohexanone oxime with sulfuric acid using Beckmann, 6. The method for decomposing nitrogen oxide according to 5 above, which is a production reaction of laurolactam, comprising a step of producing cyclododecanone oxime and a step of rearranging cyclododecanone oxime using sulfuric acid with Beckmann. 強酸性化合物が硫酸または硝酸である請求項1〜6のいずれかに記載の窒素酸化物の分解処理方法。   The method for decomposing nitrogen oxides according to claim 1, wherein the strongly acidic compound is sulfuric acid or nitric acid. 排ガス中に10ppm〜1000ppmの濃度で含まれる強酸性化合物を、0.1ppm以下の濃度まで除去または低減した後、窒素酸化物を分解処理する請求項1〜7のいずれかに記載の窒素酸化物の分解処理方法。   The nitrogen oxide according to any one of claims 1 to 7, wherein the nitrogen oxide is decomposed after removing or reducing a strongly acidic compound contained in the exhaust gas at a concentration of 10 ppm to 1000 ppm to a concentration of 0.1 ppm or less. Decomposition method. 窒素酸化物が亜酸化窒素である請求項1〜9のいずれかに記載の窒素酸化物の分解処理方法。   The method for decomposing a nitrogen oxide according to any one of claims 1 to 9, wherein the nitrogen oxide is nitrous oxide. 排ガス中に含まれる窒素酸化物が亜酸化窒素であり、亜酸化窒素をその含有濃度の0.01〜1%まで分解処理する請求項1〜9のいずれかに記載の窒素酸化物の分解処理方法。   The nitrogen oxide contained in the exhaust gas is nitrous oxide, and the nitrogen oxide decomposition treatment according to any one of claims 1 to 9, wherein nitrous oxide is decomposed to 0.01 to 1% of its concentration. Method.
JP2009102340A 2009-04-20 2009-04-20 Pretreatment method of nitrogen oxide decomposition Pending JP2010247130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009102340A JP2010247130A (en) 2009-04-20 2009-04-20 Pretreatment method of nitrogen oxide decomposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009102340A JP2010247130A (en) 2009-04-20 2009-04-20 Pretreatment method of nitrogen oxide decomposition

Publications (1)

Publication Number Publication Date
JP2010247130A true JP2010247130A (en) 2010-11-04

Family

ID=43310096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009102340A Pending JP2010247130A (en) 2009-04-20 2009-04-20 Pretreatment method of nitrogen oxide decomposition

Country Status (1)

Country Link
JP (1) JP2010247130A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105381657A (en) * 2014-09-03 2016-03-09 Lg电子株式会社 composition for removing harmful gas, preparing method therefor, filter apparatus, and air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105381657A (en) * 2014-09-03 2016-03-09 Lg电子株式会社 composition for removing harmful gas, preparing method therefor, filter apparatus, and air conditioner
WO2016036022A1 (en) * 2014-09-03 2016-03-10 주식회사 엘지전자 Composition for removing harmful gas, preparing method therefor, filter, and air conditioner comprising same
KR20160028177A (en) * 2014-09-03 2016-03-11 엘지전자 주식회사 Composition for removing harmful gas, a producing method thereof,a filter and an air conditioner comprising the same
KR102270611B1 (en) * 2014-09-03 2021-06-30 엘지전자 주식회사 Composition for removing harmful gas, a producing method thereof,a filter and an air conditioner comprising the same

Similar Documents

Publication Publication Date Title
Long et al. Temperature-programmed desorption/surface reaction (TPD/TPSR) study of Fe-exchanged ZSM-5 for selective catalytic reduction of nitric oxide by ammonia
JP3269456B2 (en) Method for decomposing fluorine-containing compound, catalyst and decomposition apparatus
US6682710B1 (en) Catalytic reduction of nitrous oxide content in gases
US7070746B1 (en) Process for nitrous oxide purification
CN107649176B (en) Catalyst for catalytic hydrolysis of hydrogen cyanide and preparation method thereof
JP5244121B2 (en) Method for isolating N2O
KR101522277B1 (en) Removal Method of Nitrous Oxide Gas from Semiconductor Exhausted Gas with Catalytic Reactior
KR100746528B1 (en) Process and Catalyst for Decomposing Perfluoro Compound, and Apparatus for Treating Perfluoro Compound
KR100843925B1 (en) Process for the production of cyclohexanone oxime
JPH04219308A (en) Production of formed active coke for desulfurization and denitration having high denitration performance
JP2010247130A (en) Pretreatment method of nitrogen oxide decomposition
JP2012050969A (en) Catalyst for decomposing nitrous oxide and method for cleaning nitrous oxide-containing gas by using the same
JP3368820B2 (en) Method for treating fluorine compound-containing gas and catalyst
JP6379339B2 (en) Gas purification method
JP4246584B2 (en) Method for purifying ammonia-containing exhaust gas and ammonia-containing wastewater
KR101392805B1 (en) Absorption material for removing PFC and acid gas
JPH074506B2 (en) Exhaust gas purification method
KR100684201B1 (en) Method for the abatement of waste gas comprising fluorine and its adsorption column device
JP2009078237A (en) Treating method for exhaust gas from semiconductor and liquid crystal manufacturing apparatus
JP2010240537A (en) Method for decomposing nitrogen oxide
JPH0457368B2 (en)
JP2002370013A (en) Decomposition treatment agent of sulfur fluoride and decomposition treatment method using the same
JP5498169B2 (en) Method for removing NO and N2O from a gas mixture
JP2013056295A (en) Method for regeneration of nitrous oxide decomposition catlyst
KR100338322B1 (en) Method for purifying hf gas produced from semiconductor manufacturing process