JP2010245070A - Electric double-layer capacitor - Google Patents

Electric double-layer capacitor Download PDF

Info

Publication number
JP2010245070A
JP2010245070A JP2009088582A JP2009088582A JP2010245070A JP 2010245070 A JP2010245070 A JP 2010245070A JP 2009088582 A JP2009088582 A JP 2009088582A JP 2009088582 A JP2009088582 A JP 2009088582A JP 2010245070 A JP2010245070 A JP 2010245070A
Authority
JP
Japan
Prior art keywords
electric double
layer capacitor
double layer
electrolytic solution
polarizable electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009088582A
Other languages
Japanese (ja)
Inventor
Satoru Tsumeda
覚 爪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2009088582A priority Critical patent/JP2010245070A/en
Publication of JP2010245070A publication Critical patent/JP2010245070A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric double-layer capacitor which is used at ≥85°C and whose life is prolonged. <P>SOLUTION: Zeolite is added to an electrolyte, the moisture content of the electrolyte is ≤40 ppm, and the moisture content of a polarizable electrode is ≤150 ppm for the weight of the polarizable electrode, so that the zeolite adsorbs water in the electrolyte and deterioration in the electrolyte is suppressed by suppressing reaction between water in the electrolyte and a current collector to provide the electric double-layer capacitor which is used at ≥85°C and has long-life characteristics. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、非水電解液を用いた電気二重層キャパシタに関する。
に関する。
The present invention relates to an electric double layer capacitor using a non-aqueous electrolyte.
About.

電気二重層キャパシタは、例えばアルミニウムである金属箔の表面に分極性電極層(例えばカ−ボン層)を設けた分極性電極間にセパレ−タを介在させて巻回し、または積層したキャパシタセルに電解液を含浸し、このキャパシタセルを金属ケ−ス内に収納して、開口端部を密封した構造を有する。     An electric double layer capacitor is formed by winding or laminating a separator between a polarizable electrode in which a polarizable electrode layer (for example, a carbon layer) is provided on the surface of a metal foil made of, for example, aluminum. It is impregnated with an electrolytic solution, the capacitor cell is housed in a metal case, and the opening end is sealed.

以上の電気二重層キャパシタは、高容量で長期信頼性に優れたものが要求され、従来の電気二重層キャパシタの電解液に、プロピレンカーボネートなどのカーボネート系溶媒を使用することが行われている。これによれば、高容量で、しかも高温負荷に優れる電気二重層キャパシタを得ることができる。   The electric double layer capacitor described above is required to have a high capacity and excellent long-term reliability, and a carbonate-based solvent such as propylene carbonate is used as an electrolytic solution of a conventional electric double layer capacitor. According to this, an electric double layer capacitor having a high capacity and excellent in high temperature load can be obtained.

ところが、カーボネート系溶媒を用いた電解液では、高温下では溶媒の分解により一酸化炭素(CO)ガスが発生するため、分極性電極や電解液等を収容している容器の内圧が上昇するという問題が生じる。このため、60℃が限界であり、70〜85℃というさらなる高温使用には対応することができないという問題点があった。これに対して、γ−ブチロラクトンを用いて70℃使用を可能にしようという試みがある。(特許文献1)。   However, in an electrolytic solution using a carbonate-based solvent, carbon monoxide (CO) gas is generated due to decomposition of the solvent at a high temperature, so that the internal pressure of the container containing the polarizable electrode, the electrolytic solution, etc. increases. Problems arise. For this reason, 60 degreeC is a limit and there existed a problem that it cannot respond to the further high temperature use of 70-85 degreeC. On the other hand, there is an attempt to enable use at 70 ° C. using γ-butyrolactone. (Patent Document 1).

特開2001−217150号公報JP 2001-217150 A

しかしながら、さらに85℃使用を可能にしようとすると特性の劣化を抑えることができない。また、カーボネート系溶媒を用いた電解液においても、寿命特性の向上が求められていた。そこで、本発明は、この問題を解決し、85℃以上での使用が可能となり、さらに長寿命化も可能な電気二重層キャパシタを提供することを目的とする。   However, if further use at 85 ° C. is attempted, deterioration of characteristics cannot be suppressed. In addition, an improvement in life characteristics has been demanded for an electrolytic solution using a carbonate-based solvent. Accordingly, an object of the present invention is to solve this problem and to provide an electric double layer capacitor that can be used at a temperature of 85 ° C. or higher and can have a longer life.

上記の課題を解決するために、本発明は非水電解液と両極に集電体と分極性電極からなる電極を用いた電気二重層キャパシタにおいて、非水電解液にゼオライトを添加したことを特徴とする。   In order to solve the above-mentioned problems, the present invention is characterized in that a zeolite is added to a non-aqueous electrolyte in an electric double layer capacitor using a non-aqueous electrolyte and an electrode composed of a current collector and a polarizable electrode at both electrodes. And

また、電解液の溶媒がγ−ブチロラクトンを主体とし、かつ、電解液中の水分含有率が40ppm以下であり、分極性電極の水分含有率が分極性電極の重量に対して150ppm以下であることを特徴とする。   Further, the solvent of the electrolytic solution is mainly γ-butyrolactone, the water content in the electrolytic solution is 40 ppm or less, and the water content of the polarizable electrode is 150 ppm or less with respect to the weight of the polarizable electrode. It is characterized by.

さらに、電解液の溶媒がスルホランまたはその誘導体を主体とし、かつ、電解液中の水分含有率が40ppm以下であり、分極性電極の水分含有率が分極性電極の重量に対して150ppm以下であることを特徴とする。   Further, the solvent of the electrolytic solution is mainly sulfolane or a derivative thereof, the water content in the electrolytic solution is 40 ppm or less, and the water content of the polarizable electrode is 150 ppm or less with respect to the weight of the polarizable electrode. It is characterized by that.

また、電解液の溶媒がプロピレンカーボネイトを主体とし、かつ、電解液中の水分含有率が40ppm以下であり、分極性電極の水分含有率が分極性電極の重量に対して150ppm以下であることを特徴とする。   Further, the solvent of the electrolytic solution is mainly composed of propylene carbonate, the water content in the electrolytic solution is 40 ppm or less, and the water content of the polarizable electrode is 150 ppm or less with respect to the weight of the polarizable electrode. Features.

本発明は電解液にゼオライトを添加しているので、ゼオライトが電解液中の水分を吸着して、電解液中の水分と集電体との反応を抑制することによって、電解液の劣化を抑制し、85℃以上での使用が可能となり、さらに長寿命特性を実現するという効果を有する。   In the present invention, since zeolite is added to the electrolyte, the zeolite adsorbs moisture in the electrolyte and suppresses the reaction between the moisture in the electrolyte and the current collector, thereby suppressing the deterioration of the electrolyte. In addition, it can be used at 85 ° C. or higher, and has an effect of realizing long life characteristics.

本発明の実施例1〜4、比較例1に係る容量の寿命特性を示す図である。It is a figure which shows the lifetime characteristic of the capacity | capacitance which concerns on Examples 1-4 of this invention, and the comparative example 1. FIG. 本発明の実施例1〜4、比較例1に係る内部抵抗の寿命特性を示す図である。It is a figure which shows the lifetime characteristic of the internal resistance which concerns on Examples 1-4 of this invention, and the comparative example 1. FIG. 本発明の実施例5〜8、比較例2に係る容量の寿命特性を示す図である。It is a figure which shows the lifetime characteristic of the capacity | capacitance which concerns on Examples 5-8 and Comparative Example 2 of this invention. 本発明の実施例5〜8、比較例2に係る内部抵抗の寿命特性を示す図である。It is a figure which shows the lifetime characteristic of the internal resistance which concerns on Examples 5-8 of this invention, and the comparative example 2. FIG. 本発明の実施例9〜12、比較例3に係る容量の寿命特性を示す図である。It is a figure which shows the lifetime characteristic of the capacity | capacitance which concerns on Examples 9-12 and Comparative Example 3 of this invention. 本発明の実施例9〜12、比較例3に係る内部抵抗の寿命特性を示す図である。It is a figure which shows the lifetime characteristic of the internal resistance which concerns on Examples 9-12 of this invention, and the comparative example 3. FIG.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明において、電気二重層キャパシタはアルミニウムからなる金属集電体箔に分極性電極層を形成した電極をセパレータを介して対向させてキャパシタセルを作製し、このキャパシタセルに電解液を含浸して、電気二重層キャパシタとしたものである。   In the present invention, an electric double layer capacitor is produced by making a capacitor cell by facing a metal current collector foil made of aluminum with a polarizable electrode layer facing through a separator, and impregnating the capacitor cell with an electrolyte. An electric double layer capacitor is obtained.

以上の本発明の電解液にはゼオライトが添加されている。   Zeolite is added to the electrolytic solution of the present invention.

本発明に用いるゼオライトは、 本発明に用いるゼオライトは、アルミニウム、ケイ素、酸素の四面体が頂点を共有してつくる三次元網目構造を有する物質で、網目構造の中に水を吸着する。網目構造の中の細孔の径は4.1Å、粒径は2.5μm以下のものが好ましい。また、電解液中の添加量は1〜5wt%が好ましい。   The zeolite used in the present invention is a substance having a three-dimensional network structure formed by aluminum, silicon and oxygen tetrahedrons sharing a vertex, and adsorbs water in the network structure. The pore diameter in the network structure is preferably 4.1 mm, and the particle diameter is preferably 2.5 μm or less. Moreover, the addition amount in electrolyte solution has preferable 1-5 wt%.

電極に用いる金属集電体箔としては、アルミニウム箔またはアルミニウムエッチング箔を用いる。アルミニウ箔としては純度99.9%以上の高純度のアルミニウムを用いる。その厚さとしては、通常10〜50μm程度の厚さのアルミニウム箔を用いる。   As the metal current collector foil used for the electrode, an aluminum foil or an aluminum etching foil is used. As the aluminum foil, high-purity aluminum having a purity of 99.9% or more is used. As the thickness, an aluminum foil having a thickness of about 10 to 50 μm is usually used.

この金属集電体箔に、例えば活性炭粉末と導電助剤とバインダと、有機溶剤または水などの溶媒とを混合してなるペーストを塗布する。または、ぺーストをシート状に成形して、このシートを集電体に圧接して分極性電極とする。   For example, a paste obtained by mixing activated carbon powder, a conductive additive, a binder, and a solvent such as an organic solvent or water is applied to the metal current collector foil. Alternatively, the paste is formed into a sheet shape, and this sheet is pressed against a current collector to form a polarizable electrode.

活性炭の原料は、植物系の木材、のこくず、ヤシ殻、パルプ廃液、化石燃料系の石炭、石油重質油、或いはそれらを熱分解した石炭及び石油系ピッチ、石油コークス等である。活性炭は、これらの原料を炭化後、賦活処理して得られる。
導電助剤としては、伝導性を有する炭素材料である、カーボンブラック、グラファイトを用いることができる。前記カーボンブラックとしては、例えば、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、サーマルブラック等が挙げられ、これらの中でも、ケッチェンブラックが好ましい。グラファイトとしては、例えば、天然グラファイト、人造グラファイト等が挙げられる。
バインダとしては、通常用いられるものであればいずれであってもよく、例えばフッ素系ゴム、ジエン系ゴム、スチレン系ゴム等のゴム類、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどの含フッ素ポリマー、その他、ポリオレフィン樹脂、アクリル樹脂、ニトリル樹脂、ポリエステル樹脂、フェノール樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂、エポキシ樹脂などを挙げることができる。
この電極をセパレータを介して対向させてキャパシタセルを作製し、このキャパシタセルに電解液を含浸して、電気二重層キャパシタとする。
The raw material of the activated carbon is plant-based wood, sawdust, coconut husk, pulp waste liquid, fossil fuel-based coal, heavy petroleum oil, or coal and petroleum-based pitch, petroleum coke obtained by pyrolyzing them. Activated carbon is obtained by carbonizing these raw materials and then activating them.
As the conductive assistant, carbon black and graphite, which are carbon materials having conductivity, can be used. Examples of the carbon black include acetylene black, ketjen black, channel black, furnace black, and thermal black. Among these, ketjen black is preferable. Examples of graphite include natural graphite and artificial graphite.
Any binder may be used as long as it is usually used, for example, rubbers such as fluorine rubber, diene rubber and styrene rubber, fluorine-containing polymers such as polytetrafluoroethylene and polyvinylidene fluoride, and the like. , Polyolefin resin, acrylic resin, nitrile resin, polyester resin, phenol resin, polyvinyl acetate resin, polyvinyl alcohol resin, epoxy resin and the like.
A capacitor cell is produced by making the electrodes face each other with a separator interposed therebetween, and the capacitor cell is impregnated with an electrolytic solution to obtain an electric double layer capacitor.

本発明においては、この分極性電極に含有される水分含有率を150ppm以下、好ましくは120ppm以下としている。       In the present invention, the moisture content contained in this polarizable electrode is 150 ppm or less, preferably 120 ppm or less.

本発明においては電解液として、その主溶媒として、γ−ブチロラクトン、スルホランまたはその誘導体、プロピレンカーボネートを用いる。また、副溶媒として、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネートなどのカーボネート類;トリメトキシメタン、1,2−ジメトキシエタン、ジエチルエーテル、2−エトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフランなどのエーテル類;ジメチルスルホキシドなどのスルホキシド類;1,3−ジオキソラン、4−メチル−1,3−ジオキソランなどのオキソラン類;アセトニトリルやニトロメタンなどの含窒素類;ギ酸メチル、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチルなどの有機酸エステル類;リン酸トリエステルや炭酸ジメチル、炭酸ジエチル、炭酸ジプロピルのような炭酸ジエステルなどの無機酸エステル類;ジグライム類;トリグライム類;3−メチル−2−オキサゾリジノンなどのオキサゾリジノン類;1,3−プロパンスルトン、1,4−ブタンスルトン、ナフタスルトンなどのスルトン類等を用いることができる。   In the present invention, γ-butyrolactone, sulfolane or a derivative thereof, and propylene carbonate are used as the main solvent as the electrolytic solution. In addition, as a co-solvent, carbonates such as ethylene carbonate, butylene carbonate, dimethyl carbonate and diethyl carbonate; ethers such as trimethoxymethane, 1,2-dimethoxyethane, diethyl ether, 2-ethoxyethane, tetrahydrofuran and 2-methyltetrahydrofuran Sulfoxides such as dimethyl sulfoxide; oxolanes such as 1,3-dioxolane and 4-methyl-1,3-dioxolane; nitrogen-containing compounds such as acetonitrile and nitromethane; methyl formate, methyl acetate, ethyl acetate, butyl acetate, Organic acid esters such as methyl propionate and ethyl propionate; inorganic acid esters such as phosphoric acid triester and diester carbonate such as dimethyl carbonate, diethyl carbonate and dipropyl carbonate; diglyme ; Triglyme like; oxazolidinones such as 3-methyl-2-oxazolidinone; 1,3-propane sultone, 1,4-butane sultone can be used sultone like such Nafutasuruton.

有機溶媒中に溶解する電解質としては、金属の陽イオン、4級アンモニウムカチオン、カルボニウムカチオン等のカチオンと、BF4 -、PF6 -、ClO4 -、AsF6 -、SbF6 -、AlCl4 -、またはRfSO3 -、(RfSO22-、RfCO2 -(Rfは炭素数1〜8のフルオロアルキル基)から選ばれるアニオンの塩を挙げることができる。 Examples of the electrolyte dissolved in the organic solvent include metal cations, quaternary ammonium cations, carbonium cations, and the like, BF 4 , PF 6 , ClO 4 , AsF 6 , SbF 6 , and AlCl 4. -, or RfSO 3 -, (RfSO 2) 2 N -, RfCO 2 - (Rf is a fluoroalkyl group having 1 to 8 carbon atoms) can be exemplified salts of anions selected from.

本発明においては、以上のγ−ブチロラクトンを主体とする電解液に含有される水分含有率を40ppm以下、好ましくは30ppm以下としている。       In the present invention, the water content contained in the electrolytic solution mainly composed of γ-butyrolactone is 40 ppm or less, preferably 30 ppm or less.

そして、本発明の電気二重層キャパシタは、コイン型、巻回型、積層型等の形状の何れであってもよい。このような電気二重層キャパシタは、例えば、電極シートを所望の大きさ、形状に切断し、セパレータを両極の間に介在させた状態で積層または巻回し、容器に挿入後電解液を注入し、封口板、ガスケットを用いて封口をかしめて製造できる。
The electric double layer capacitor of the present invention may have any shape such as a coin type, a wound type, and a laminated type. Such an electric double layer capacitor is obtained by, for example, cutting an electrode sheet into a desired size and shape, stacking or winding the separator sheet between both electrodes, inserting the electrolyte into the container, It can be produced by caulking the seal using a sealing plate or gasket.

本発明の実施例に係る発明を具体的に説明する。
(実施例1)
活性炭粉末、導電助剤であるケッチェンブラック、バインダーであるポリテロラフルオロエチレン(PTFE)から成る混合物を、圧延ローラーを用いてシート状に成形してこれを分極性電極とした。このシート状分極性電極をリード線を設けたアルミニウム集電体に導電性接着剤を用いて貼り付けて電極とした。作成した2枚の電極をセルロース系セパレータを介して向かい合わせ電気二重層キャパシタ素子(電極面積12cm2)を作製した。
この電気二重層キャパシタ素子を12時間以上150℃で減圧乾燥した後、アルゴン雰囲気下のドライボックス内で1M テトラエチルアンモニウムテトラフルオロボレート(TEABF4)/プロピレンカーボネート(PC)100mLに2.3ミクロンの3Aゼオライト1gを分散させた電解液を減圧含浸させ、ラミネートフィルムに封入し電気二重層キャパシタセルを作製した。この電気二重層キャパシタセルに対して、60℃雰囲気下で2.5V定電圧負荷試験を行い、任意の時間で容量(F)、及び直流抵抗(DCIR)を測定した。
(実施例2)
実施例1と同様に電気二重層キャパシタ素子を作製し、1M TEABF4/PC 100mL中に2.3ミクロンの3Aゼオライト2gを分散させた電解液を減圧含浸させ、ラミネートフィルムに封入し電気二重層キャパシタセルを作製した。この電気二重層キャパシタセルに対して実施例1と同様の試験を行った。
(実施例3)
実施例1と同様に電気二重層キャパシタ素子を作製し、1M TEABF4/PC 100mL中に2.3ミクロンの3Aゼオライト5g分散させた電解液を減圧含浸させ、ラミネートフィルムに封入し電気二重層キャパシタセルを作製した。この電気二重層キャパシタセルに対して実施例1と同様の試験を行った。
(実施例4)
実施例1と同様に電気二重層キャパシタ素子を作製し、1M TEABF4/PC 100mL中に2.3ミクロンの3Aゼオライト10gを分散させた電解液を減圧含浸させ、ラミネートフィルムに封入し電気二重層キャパシタセルを作製した。この電気二重層キャパシタセルに対して実施例1と同様の試験を行った。
(実施例5)
実施例1と同様に電気二重層キャパシタ素子を作製し、1M TEABF4/γ−ブチロラクトン(GBL) 100mL中に2.3ミクロンの3Aゼオライト1gを分散させた電解液を減圧含浸させ、ラミネートフィルムで封止し電気二重層キャパシタセルを作製した。この電気二重層キャパシタセルに対して、85℃雰囲気下で2.5V定電圧負荷試験を行い、任意の時間で容量(F)、及び直流抵抗(DCIR)を測定した。
(実施例6)
実施例1と同様に電気二重層キャパシタ素子を作製し、1M TEABF4/GBL 100mL中に2.3ミクロンの3Aゼオライト2g分散させた電解液を減圧含浸させ、ラミネートフィルムで封止し電気二重層キャパシタセルを作製した。この電気二重層キャパシタセルに対して実施例5と同様の試験を行った。
(実施例7)
実施例1と同様に電気二重層キャパシタ素子を作製し、1M TEABF4/GBL 100mL中に2.3ミクロンの3Aゼオライト5gを分散させた電解液を減圧含浸させ、ラミネートフィルムに封入し電気二重層キャパシタセルを作製した。この電気二重層キャパシタセルに対して実施例5と同様の試験を行った。
(実施例8)
実施例1と同様に電気二重層キャパシタ素子を作製し、1M TEABF4/GBL 100mL中に2.3ミクロンの3Aゼオライト10gを分散させた電解液を減圧含浸させ、ラミネートフィルムに封入し電気二重層キャパシタセルを作製した。この電気二重層キャパシタセルに対して実施例5と同様の試験を行った。
(実施例9)
実施例1と同様に電気二重層キャパシタ素子を作製し、1M トリエチルメチルアンモニウム(TEMA)BF4/スルホラン(SLF) 100mL中に2.3ミクロンの3Aゼオライト1gを分散させた電解液を減圧含浸させ、ラミネートフィルムに封入し電気二重層キャパシタセルを作製した。この電気二重層キャパシタセルに対して、105℃雰囲気下で2.5V定電圧負荷試験を行い、任意の時間で容量(F)、及び直流抵抗(DCIR)を測定した。
(実施例10)
実施例1と同様に電気二重層キャパシタ素子を作製し、1M TEMABF4/SLF 100mL中に2.3ミクロンの3Aゼオライト2g分散させた電解液を減圧含浸させ、ラミネートフィルムで封止し電気二重層キャパシタセルを作製した。この電気二重層キャパシタセルに対して実施例9と同様の試験を行った。
(実施例11)
実施例1と同様に電気二重層キャパシタ素子を作製し、1M TEMABF4/SLF 100mL中に2.3ミクロンの3Aゼオライト5gを分散させた電解液を減圧含浸させ、ラミネートフィルムに封入し電気二重層キャパシタセルを作製した。この電気二重層キャパシタセルに対して実施例9と同様の試験を行った。
(実施例12)
実施例1と同様に電気二重層キャパシタ素子を作製し、1M TEMABF4/SLF 100mL中に2.3ミクロンの3Aゼオライト10gを分散させた電解液を減圧含浸させ、ラミネートフィルムに封入し電気二重層キャパシタセルを作製した。この電気二重層キャパシタセルに対して実施例9と同様の試験を行った。
(比較例1)
実施例1と同様に電気二重層キャパシタ素子を作製し、1M TEABF4/PC 電解液を減圧含浸させ、ラミネートフィルムに封入し電気二重層キャパシタセルを作製した。この電気二重層キャパシタセルに対して実施例1と同様の試験を行った。
(比較例2)
実施例1と同様に電気二重層キャパシタ素子を作製し、1M TEABF4/GBL 電解液を減圧含浸させ、ラミネートフィルムに封入し電気二重層キャパシタセルを作製した。この電気二重層キャパシタセルに対して実施例5と同様の試験を行った。
(比較例3)
実施例1と同様に電気二重層キャパシタ素子を作製し、1M TEMABF4/SLF 電解液を減圧含浸させ、ラミネートフィルムに封入し電気二重層キャパシタセルを作製した。この電気二重層キャパシタセルに対して実施例9と同様の試験を行った。
The invention according to the embodiments of the present invention will be specifically described.
Example 1
A mixture of activated carbon powder, ketjen black as a conductive aid, and polyterafluorofluoroethylene (PTFE) as a binder was formed into a sheet using a rolling roller, and this was used as a polarizable electrode. The sheet-like polarizable electrode was attached to an aluminum current collector provided with a lead wire by using a conductive adhesive to obtain an electrode. The produced two electrodes face each other through a cellulose separator to produce an electric double layer capacitor element (electrode area 12 cm 2).
This electric double layer capacitor element was dried under reduced pressure at 150 ° C. for 12 hours or more, and then 2.3 μm of 3A zeolite in 100 mL of 1M tetraethylammonium tetrafluoroborate (TEABF4) / propylene carbonate (PC) in a dry box under an argon atmosphere. An electrolytic solution in which 1 g was dispersed was impregnated under reduced pressure and sealed in a laminate film to produce an electric double layer capacitor cell. This electric double layer capacitor cell was subjected to a 2.5 V constant voltage load test in an atmosphere of 60 ° C., and the capacity (F) and direct current resistance (DCIR) were measured at an arbitrary time.
(Example 2)
An electric double layer capacitor element was prepared in the same manner as in Example 1, and an electrolytic solution in which 2 g of 2.3 A 3A zeolite was dispersed in 100 mL of 1M TEABF4 / PC was impregnated under reduced pressure, and sealed in a laminate film. A cell was produced. The same test as in Example 1 was performed on the electric double layer capacitor cell.
Example 3
An electric double layer capacitor element was prepared in the same manner as in Example 1, and an electrolytic solution in which 5 g of 2.3 micron 3A zeolite was dispersed in 100 mL of 1M TEABF4 / PC was impregnated under reduced pressure, and sealed in a laminate film. Was made. The same test as in Example 1 was performed on the electric double layer capacitor cell.
Example 4
An electric double layer capacitor element was prepared in the same manner as in Example 1, and an electrolytic solution in which 10 g of 2.3 micron 3A zeolite was dispersed in 100 mL of 1M TEABF4 / PC was impregnated under reduced pressure, and sealed in a laminate film. A cell was produced. The same test as in Example 1 was performed on the electric double layer capacitor cell.
(Example 5)
An electric double layer capacitor element was prepared in the same manner as in Example 1, and an electrolyte solution in which 1 g of 2.3 A 3A zeolite was dispersed in 100 mL of 1M TEABF4 / γ-butyrolactone (GBL) was impregnated under reduced pressure and sealed with a laminate film. An electric double layer capacitor cell was produced. This electric double layer capacitor cell was subjected to a 2.5 V constant voltage load test in an atmosphere of 85 ° C., and the capacity (F) and direct current resistance (DCIR) were measured at an arbitrary time.
(Example 6)
An electric double layer capacitor element was produced in the same manner as in Example 1, and an electrolytic solution in which 2 g of 2.3 micron 3A zeolite was dispersed in 100 mL of 1M TEABF4 / GBL was impregnated under reduced pressure and sealed with a laminate film. A cell was produced. The same test as in Example 5 was performed on this electric double layer capacitor cell.
(Example 7)
An electric double layer capacitor element was prepared in the same manner as in Example 1, and an electrolytic solution in which 5 g of 2.3 micron 3A zeolite was dispersed in 100 mL of 1M TEABF4 / GBL was impregnated under reduced pressure, and sealed in a laminate film. A cell was produced. The same test as in Example 5 was performed on this electric double layer capacitor cell.
(Example 8)
An electric double layer capacitor element was produced in the same manner as in Example 1, and an electrolytic solution in which 10 g of 2.3 micron 3A zeolite was dispersed in 100 mL of 1M TEABF4 / GBL was impregnated under reduced pressure, and sealed in a laminate film. A cell was produced. The same test as in Example 5 was performed on this electric double layer capacitor cell.
Example 9
An electric double layer capacitor element was prepared in the same manner as in Example 1, and impregnated under reduced pressure with an electrolytic solution in which 1 g of 2.3 A 3A zeolite was dispersed in 100 mL of 1M triethylmethylammonium (TEMA) BF4 / sulfolane (SLF). An electric double layer capacitor cell was prepared by enclosing in a laminate film. This electric double layer capacitor cell was subjected to a 2.5 V constant voltage load test in an atmosphere of 105 ° C., and the capacity (F) and direct current resistance (DCIR) were measured at an arbitrary time.
(Example 10)
An electric double layer capacitor element was prepared in the same manner as in Example 1, and an electrolytic solution in which 2 g of 2.3 micron 3A zeolite was dispersed in 100 mL of 1M TEMABF4 / SLF was impregnated under reduced pressure, and sealed with a laminate film. A cell was produced. The same test as in Example 9 was performed on this electric double layer capacitor cell.
(Example 11)
An electric double layer capacitor element was prepared in the same manner as in Example 1, and an electrolytic solution in which 5 g of 2.3 micron 3A zeolite was dispersed in 100 mL of 1M TEMABF4 / SLF was impregnated under reduced pressure, and enclosed in a laminate film. A cell was produced. The same test as in Example 9 was performed on this electric double layer capacitor cell.
(Example 12)
An electric double layer capacitor element was prepared in the same manner as in Example 1, and an electrolytic solution in which 10 g of 2.3 micron 3A zeolite was dispersed in 100 mL of 1M TEMABF4 / SLF was impregnated under reduced pressure, and sealed in a laminate film. A cell was produced. The same test as in Example 9 was performed on this electric double layer capacitor cell.
(Comparative Example 1)
An electric double layer capacitor element was produced in the same manner as in Example 1, impregnated with 1M TEABF4 / PC electrolyte under reduced pressure, and enclosed in a laminate film to produce an electric double layer capacitor cell. The same test as in Example 1 was performed on the electric double layer capacitor cell.
(Comparative Example 2)
An electric double layer capacitor element was produced in the same manner as in Example 1, impregnated with 1M TEABF4 / GBL electrolyte under reduced pressure, and enclosed in a laminate film to produce an electric double layer capacitor cell. The same test as in Example 5 was performed on this electric double layer capacitor cell.
(Comparative Example 3)
An electric double layer capacitor element was produced in the same manner as in Example 1, impregnated with 1M TEMABF4 / SLF electrolyte under reduced pressure, and enclosed in a laminate film to produce an electric double layer capacitor cell. The same test as in Example 9 was performed on this electric double layer capacitor cell.

(結果)
図1〜図6から明らかなように、本願の実施例はゼオライトを添加しない比較例1〜3より、容量変化、内部抵抗変化とも良好である。特にゼオライトを1〜5%添加した、実施例1〜3、実施例5〜7、実施例9〜11の特性はさらに良好である。
(result)
As is apparent from FIGS. 1 to 6, the examples of the present application are better in capacity change and internal resistance change than Comparative Examples 1 to 3 in which no zeolite is added. In particular, the characteristics of Examples 1 to 3, Examples 5 to 7, and Examples 9 to 11 to which 1 to 5% of zeolite is added are even better.

Claims (4)

非水電解液と両極に集電体と分極性電極からなる電極を用いた電気二重層キャパシタにおいて、非水電解液にゼオライトを添加した電気二重層キャパシタ。 An electric double layer capacitor in which zeolite is added to a nonaqueous electrolytic solution in an electric double layer capacitor using a nonaqueous electrolytic solution and electrodes composed of a current collector and a polarizable electrode on both electrodes. 電解液の溶媒がγ−ブチロラクトンを主体とし、かつ、電解液中の水分含有率が40ppm以下であり、分極性電極の水分含有率が分極性電極の重量に対して150ppm以下である請求項1記載の電気二重層キャパシタ。 The solvent of the electrolytic solution is mainly γ-butyrolactone, the water content in the electrolytic solution is 40 ppm or less, and the water content of the polarizable electrode is 150 ppm or less with respect to the weight of the polarizable electrode. The electric double layer capacitor as described. 電解液の溶媒がスルホランまたはその誘導体を主体とし、かつ、電解液中の水分含有率が40ppm以下であり、分極性電極の水分含有率が分極性電極の重量に対して150ppm以下である請求項1記載の電気二重層キャパシタ。 The solvent of the electrolytic solution is mainly composed of sulfolane or a derivative thereof, the water content in the electrolytic solution is 40 ppm or less, and the water content of the polarizable electrode is 150 ppm or less with respect to the weight of the polarizable electrode. 2. The electric double layer capacitor according to 1. 電解液の溶媒がプロピレンカーボネートを主体とし、かつ、電解液中の水分含有率が40ppm以下であり、分極性電極の水分含有率が分極性電極の重量に対して150ppm以下である請求項1記載の電気二重層キャパシタ。
The solvent of the electrolytic solution is mainly composed of propylene carbonate, the water content in the electrolytic solution is 40 ppm or less, and the water content of the polarizable electrode is 150 ppm or less with respect to the weight of the polarizable electrode. Electric double layer capacitor.
JP2009088582A 2009-04-01 2009-04-01 Electric double-layer capacitor Pending JP2010245070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009088582A JP2010245070A (en) 2009-04-01 2009-04-01 Electric double-layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009088582A JP2010245070A (en) 2009-04-01 2009-04-01 Electric double-layer capacitor

Publications (1)

Publication Number Publication Date
JP2010245070A true JP2010245070A (en) 2010-10-28

Family

ID=43097816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009088582A Pending JP2010245070A (en) 2009-04-01 2009-04-01 Electric double-layer capacitor

Country Status (1)

Country Link
JP (1) JP2010245070A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014524146A (en) * 2011-07-08 2014-09-18 ファーストキャップ・システムズ・コーポレイション High temperature energy storage device
JP2017073519A (en) * 2015-10-09 2017-04-13 Necトーキン株式会社 Electric double layer capacitor
US10872737B2 (en) 2013-10-09 2020-12-22 Fastcap Systems Corporation Advanced electrolytes for high temperature energy storage device
JP2021021321A (en) * 2011-07-27 2021-02-18 ファーストキャップ・システムズ・コーポレイションFastCAP SYSTEMS Corporation Power source for downhole instruments
US11127537B2 (en) 2015-01-27 2021-09-21 Fastcap Systems Corporation Wide temperature range ultracapacitor
US11250995B2 (en) 2011-07-08 2022-02-15 Fastcap Systems Corporation Advanced electrolyte systems and their use in energy storage devices

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11482384B2 (en) 2011-07-08 2022-10-25 Fastcap Systems Corporation High temperature energy storage device
US11250995B2 (en) 2011-07-08 2022-02-15 Fastcap Systems Corporation Advanced electrolyte systems and their use in energy storage devices
JP2017152733A (en) * 2011-07-08 2017-08-31 ファーストキャップ・システムズ・コーポレイションFa High temperature energy storage device
US10714271B2 (en) 2011-07-08 2020-07-14 Fastcap Systems Corporation High temperature energy storage device
JP2020115581A (en) * 2011-07-08 2020-07-30 ファーストキャップ・システムズ・コーポレイションFastCAP SYSTEMS Corporation High temperature energy storage device
US11901123B2 (en) 2011-07-08 2024-02-13 Fastcap Systems Corporation High temperature energy storage device
US11776765B2 (en) 2011-07-08 2023-10-03 Fastcap Systems Corporation Advanced electrolyte systems and their use in energy storage devices
JP2014524146A (en) * 2011-07-08 2014-09-18 ファーストキャップ・システムズ・コーポレイション High temperature energy storage device
JP2021021321A (en) * 2011-07-27 2021-02-18 ファーストキャップ・システムズ・コーポレイションFastCAP SYSTEMS Corporation Power source for downhole instruments
US11488787B2 (en) 2013-10-09 2022-11-01 Fastcap Systems Corporation Advanced electrolytes for high temperature energy storage device
US10872737B2 (en) 2013-10-09 2020-12-22 Fastcap Systems Corporation Advanced electrolytes for high temperature energy storage device
US11127537B2 (en) 2015-01-27 2021-09-21 Fastcap Systems Corporation Wide temperature range ultracapacitor
US11756745B2 (en) 2015-01-27 2023-09-12 Fastcap Systems Corporation Wide temperature range ultracapacitor
JP2017073519A (en) * 2015-10-09 2017-04-13 Necトーキン株式会社 Electric double layer capacitor

Similar Documents

Publication Publication Date Title
JP4959259B2 (en) Electric double layer capacitor
JP5839303B2 (en) Manufacturing method of electric double layer capacitor
WO2008001955A1 (en) Additive for electrolyte solution and electrolyte solution
JP2004186246A (en) Electric double layer capacitor
JP2010245070A (en) Electric double-layer capacitor
JP2007073809A (en) Electric double-layer capacitor
US7974073B2 (en) Electric double-layer capacitor with a negative electrode containing a carbon material and a titanium oxide
JP2013051342A (en) Electrochemical device
JPWO2008123286A1 (en) Electric double layer capacitor
JP2010245068A (en) Electric double-layer capacitor
JP2010245071A (en) Electric double-layer capacitor
JP4957373B2 (en) Electric double layer capacitor
JP2010245072A (en) Electric double-layer capacitor
JP5724875B2 (en) Electric double layer capacitor
JP2011077377A (en) Electric double-layer capacitor
JP2013197535A (en) Electrolytic solution and electric double-layer capacitor
JP2011077376A (en) Electric double-layer capacitor
JP2009267397A (en) Electric double-layer capacitor
JP2007066943A (en) Electric double-layer capacitor
JP2011216750A (en) Electric double-layer capacitor
JP2010087315A (en) Electric double layer capacitor
JP2011216751A (en) Electric double layer capacitor
JP2013219187A (en) Electrochemical device
JP2000315630A (en) Electrolyte for electrochemical capacitor and electrochemical capacitor using
JP2010245067A (en) Electric double-layer capacitor