JP2010245039A - All solid lithium battery - Google Patents

All solid lithium battery Download PDF

Info

Publication number
JP2010245039A
JP2010245039A JP2010063075A JP2010063075A JP2010245039A JP 2010245039 A JP2010245039 A JP 2010245039A JP 2010063075 A JP2010063075 A JP 2010063075A JP 2010063075 A JP2010063075 A JP 2010063075A JP 2010245039 A JP2010245039 A JP 2010245039A
Authority
JP
Japan
Prior art keywords
positive electrode
solid electrolyte
sulfide
lithium battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010063075A
Other languages
Japanese (ja)
Other versions
JP5710136B2 (en
Inventor
Yoshikatsu Kiyono
美勝 清野
Tadatoshi Murota
忠俊 室田
Satoru Fujiwara
哲 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Santoku Corp
Original Assignee
Idemitsu Kosan Co Ltd
Santoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd, Santoku Corp filed Critical Idemitsu Kosan Co Ltd
Priority to JP2010063075A priority Critical patent/JP5710136B2/en
Publication of JP2010245039A publication Critical patent/JP2010245039A/en
Application granted granted Critical
Publication of JP5710136B2 publication Critical patent/JP5710136B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an all-solid lithium battery superior in output characteristics. <P>SOLUTION: As for the all-solid lithium battery, the positive electrode contains a positive electrode active material as expressed by the following formula (1) and a sulfide system solid electrolyte, and an electrolyte layer contains the sulfide system solid electrolyte. Formula (1): Li<SB>a</SB>Ni<SB>b</SB>Co<SB>c</SB>Mn<SB>d</SB>M<SB>e</SB>O<SB>f+σ</SB>. In the formula, a is a number to satisfy 1.01≤a≤1.05, f is 2 or 4, σ is -0.2 or more and 0.2 or less, M is one kind or more element selected from Mg, Ca, Y, rare earth element, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Fe, Cu, Ag, Zn, B, Al, Ga, C, Si, Sn, N, P, S, F, and Cl. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、全固体リチウム電池に関する。   The present invention relates to an all-solid lithium battery.

可燃性の有機溶媒電解質を用いるリチウム電池にとって、発火等のその安全性に対する懸念は本質的な問題である。この安全性に関する問題に対する抜本的な解決法は、可燃性の有機溶媒電解質に代えて不燃性電解質を用いることである。   For lithium batteries using flammable organic solvent electrolytes, concerns about their safety, such as ignition, are an essential problem. A fundamental solution to this safety problem is to use a non-flammable electrolyte instead of a flammable organic solvent electrolyte.

上記不燃性電解質の代表例としては、無機物であるリチウムイオン伝導性固体電解質を挙げることができる。無機固体電解質を用いることにより、安全性を高めることができるのみならず、電池を薄膜化して電子回路と集積化できるうえ、無機固体電解質がイオン選択性を有することから、サイクル寿命、保存寿命等の電池の信頼性をも向上させることができる。   A typical example of the nonflammable electrolyte is a lithium ion conductive solid electrolyte which is an inorganic substance. By using an inorganic solid electrolyte, not only can safety be improved, but the battery can be thinned and integrated with an electronic circuit, and since the inorganic solid electrolyte has ion selectivity, cycle life, storage life, etc. The reliability of the battery can also be improved.

充放電サイクルに伴う容量低下及び自己放電の原因の多くは、電池内で生じる副反応である。リチウム電池のうち、特にリチウムイオン電池の電極反応に寄与するイオンは、リチウムイオンのみである。   Many of the causes of capacity reduction and self-discharge associated with charge / discharge cycles are side reactions occurring in the battery. Among lithium batteries, the only ions that contribute to the electrode reaction of lithium ion batteries are lithium ions.

有機溶媒電解質を用いたリチウム電池において、液体電解質中では、陰イオン、溶媒分子、不純物等も移動し、これらが高い酸化力を有する正極又は高い還元力を有する負極表面に拡散すると、酸化あるいは還元される場合がある。このような副反応が電池特性の低下を引き起こしてしまう問題があった。   In a lithium battery using an organic solvent electrolyte, in the liquid electrolyte, anions, solvent molecules, impurities, and the like move, and if these diffuse to the surface of the positive electrode having a high oxidizing power or the negative electrode having a high reducing power, they are oxidized or reduced. May be. There was a problem that such a side reaction caused deterioration of battery characteristics.

それに対して、無機固体電解質を用いたリチウム電池において、無機固体電解質はイオン選択性を有するので、無機固体電解質中をリチウムイオンのみが移動する。従って、有機溶媒電解質を用いたリチウム電池と異なり、リチウムイオン以外の成分が電極表面に拡散することで副反応が継続することがない。そのため、無機固体電解質を用いた全固体電池は、長寿命及び低自己放電の電池である。   In contrast, in a lithium battery using an inorganic solid electrolyte, since the inorganic solid electrolyte has ion selectivity, only lithium ions move in the inorganic solid electrolyte. Therefore, unlike a lithium battery using an organic solvent electrolyte, side reactions do not continue due to diffusion of components other than lithium ions to the electrode surface. Therefore, an all-solid battery using an inorganic solid electrolyte is a battery having a long life and low self-discharge.

上記全固体電池としては、例えば負極材料に低い電位及び高い容量密度を有する炭素材料を用いた全固体リチウム二次電池(特許文献1)、エネルギー密度の高い全固体リチウム二次電池等があるが、全固体リチウム二次電池において得られる出力密度は、平方センチメートルあたり数百マイクロアンペア程度であり、液体電解質系の電池に比べ依然低いものであった。即ち、全固体リチウム二次電池は、安全性等の優れた信頼性を有するが、一般的にエネルギー密度あるいは出力密度は液体電解質系の電池と比べて低いという問題があった。   Examples of the all-solid battery include an all-solid lithium secondary battery (Patent Document 1) using a carbon material having a low potential and a high capacity density as a negative electrode material, an all-solid lithium secondary battery having a high energy density, and the like. The output density obtained in the all-solid lithium secondary battery was about several hundred microamperes per square centimeter, which was still lower than that of the liquid electrolyte battery. That is, the all-solid lithium secondary battery has excellent reliability such as safety, but generally has a problem that its energy density or output density is lower than that of a liquid electrolyte battery.

国際公開第2007/004590号パンフレットInternational Publication No. 2007/004590 Pamphlet

本発明の目的は、出力特性に優れた全固体リチウム電池を提供することである。   An object of the present invention is to provide an all solid lithium battery having excellent output characteristics.

本発明によれば、以下の全固体リチウム電池が提供される。
本発明の全固体リチウム電池は、正極、電解質層及び負極を備え、
前記正極が下記式(1)で表される正極活物質及び硫化物系固体電解質を含み、及び前記電解質層が硫化物系固体電解質を含む。
LiNiCoMnf+σ…(1)
(式中、aは1.01≦a≦1.05を満たす数であり、
fは2又は4であり、σは−0.2以上0.2以下であり、MはMg、Ca、Y、希土類元素、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Fe、Cu、Ag、Zn、B、Al、Ga、C、Si、Sn、N、P、S、F、Clから選択される一種以上の元素である。
fが2の場合、bは0≦b≦1を満たす数であり、cは0≦c≦1を満たす数であり、dは0≦d≦1を満たす数であり、eは0≦e≦0.5を満たす数であり、b+c+d+e=1である。
fが4の場合、bは0≦b≦2を満たす数であり、cは0≦c≦2を満たす数であり、dは0≦d≦2を満たす数であり、eは0≦e≦1を満たす数であり、b+c+d+e=2である。)
前記正極活物質がLiCoO2+σ、LiNi0.8±0.1Co0.15±0.1Al0.05±0.052+σ、LiNi0.8±0.1Co0.2±0.12+σ、LiNiO2+σ、LiMn、LiMn0.5Ni0.5、LiMn1.5Ni0.5、又はLiMn1/3Ni1/3Co1/3であることが好ましい。
aが1.01≦a≦1.04を満たす数であることが好ましい。
According to the present invention, the following all solid lithium battery is provided.
The all solid lithium battery of the present invention comprises a positive electrode, an electrolyte layer and a negative electrode,
The positive electrode includes a positive electrode active material represented by the following formula (1) and a sulfide-based solid electrolyte, and the electrolyte layer includes a sulfide-based solid electrolyte.
Li a Ni b Co c Mn d Me O f + σ (1)
(Wherein, a is a number satisfying 1.01 ≦ a ≦ 1.05,
f is 2 or 4, σ is −0.2 or more and 0.2 or less, M is Mg, Ca, Y, rare earth element, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W , Fe, Cu, Ag, Zn, B, Al, Ga, C, Si, Sn, N, P, S, F, and Cl.
When f is 2, b is a number satisfying 0 ≦ b ≦ 1, c is a number satisfying 0 ≦ c ≦ 1, d is a number satisfying 0 ≦ d ≦ 1, and e is 0 ≦ e It is a number satisfying ≦ 0.5, and b + c + d + e = 1.
When f is 4, b is a number that satisfies 0 ≦ b ≦ 2, c is a number that satisfies 0 ≦ c ≦ 2, d is a number that satisfies 0 ≦ d ≦ 2, and e is 0 ≦ e It is a number satisfying ≦ 1, and b + c + d + e = 2. )
The positive electrode active material is Li a CoO 2 + σ , Li a Ni 0.8 ± 0.1 Co 0.15 ± 0.1 Al 0.05 ± 0.05 O 2 + σ , Li a Ni 0.8 ± 0.1 Co 0.2 ± 0.1 O 2 + σ , Li a NiO 2 + σ , Li a Mn 2 O 4 , Li a Mn 0.5 Ni 0.5 O 2 , Li a Mn 1.5 Ni 0.5 O 4 , or Li a Mn 1/3 Ni 1/3 Co 1/3 O 2 is preferable.
It is preferable that a is a number satisfying 1.01 ≦ a ≦ 1.04.

本発明によれば、出力特性に優れた全固体リチウム電池が提供できる。   According to the present invention, an all-solid lithium battery excellent in output characteristics can be provided.

本発明の全固体リチウム電池の一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the all-solid-state lithium battery of this invention.

本発明の全固体リチウム電池は、正極、電解質層及び負極を備え、正極が下記式(1)で表される正極活物質及び硫化物系固体電解質を含み、及び電解質層が硫化物系固体電解質を含む。
LiNiCoMnf+σ…(1)
(式中、aは1.01≦a≦1.05を満たす数であり、
fは2又は4であり、σは−0.2以上0.2以下であり、MはMg、Ca、Y、希土類元素、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Fe、Cu、Ag、Zn、B、Al、Ga、C、Si、Sn、N、P、S、F、Clから選択される一種以上の元素である。
fが2の場合、bは0≦b≦1を満たす数であり、cは0≦c≦1を満たす数であり、dは0≦d≦1を満たす数であり、eは0≦e≦0.5を満たす数であり、b+c+d+e=1である。
fが4の場合、bは0≦b≦2を満たす数であり、cは0≦c≦2を満たす数であり、dは0≦d≦2を満たす数であり、eは0≦e≦1を満たす数であり、b+c+d+e=2である。)
The all solid lithium battery of the present invention includes a positive electrode, an electrolyte layer, and a negative electrode, the positive electrode includes a positive electrode active material represented by the following formula (1) and a sulfide solid electrolyte, and the electrolyte layer is a sulfide solid electrolyte. including.
Li a Ni b Co c Mn d Me O f + σ (1)
(Wherein, a is a number satisfying 1.01 ≦ a ≦ 1.05,
f is 2 or 4, σ is −0.2 or more and 0.2 or less, M is Mg, Ca, Y, rare earth element, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W , Fe, Cu, Ag, Zn, B, Al, Ga, C, Si, Sn, N, P, S, F, and Cl.
When f is 2, b is a number satisfying 0 ≦ b ≦ 1, c is a number satisfying 0 ≦ c ≦ 1, d is a number satisfying 0 ≦ d ≦ 1, and e is 0 ≦ e It is a number satisfying ≦ 0.5, and b + c + d + e = 1.
When f is 4, b is a number that satisfies 0 ≦ b ≦ 2, c is a number that satisfies 0 ≦ c ≦ 2, d is a number that satisfies 0 ≦ d ≦ 2, and e is 0 ≦ e It is a number satisfying ≦ 1, and b + c + d + e = 2. )

σは、Li、Ni、Co、Mn、Mの含有量、Mの種類により決定される、電荷のバランスをとる値であり、σは−0.2以上0.2以下の範囲である。便宜上、本願においてσの値は0と記載する。
本発明の正極活物質はMを含有することは必ずしも必要としないが、種々の電池特性を改善する目的で含有させることができ、または不可避的不純物として含有する場合もある。MとしてTiを含む場合、充放電時におけるLiのディインターカレーションまたはインターカレーションの速度が速くなるため、負荷特性が高くなる。MがMgやAlの場合、結晶構造が安定化することにより熱安定性が向上する。また、正極活物質を合成する際のLiの拡散・反応を促進する効果がある。MがZrやHfの場合、結晶構造が安定化することにより高電位での充放電が可能になる。
σ is a value that balances charges, determined by the contents of Li, Ni, Co, Mn, and M, and the type of M, and σ is in the range of −0.2 to 0.2. For convenience, the value of σ is described as 0 in the present application.
The positive electrode active material of the present invention does not necessarily contain M, but can be contained for the purpose of improving various battery characteristics, or may be contained as an unavoidable impurity. When Ti is included as M, the load characteristic is improved because the speed of deintercalation or intercalation of Li during charge / discharge is increased. When M is Mg or Al, thermal stability is improved by stabilizing the crystal structure. In addition, there is an effect of promoting the diffusion and reaction of Li when synthesizing the positive electrode active material. When M is Zr or Hf, charging and discharging at a high potential becomes possible by stabilizing the crystal structure.

上記式(1)で表される正極活物質(以下、本発明の正極活物質という場合がある)が、例えばLiCoOである場合、電池性能を高めることができる。その理由は定かではないが、LiCoOはLiCoOと比較してLiイオンを多く含むため、LiCoOと硫化物系固体電解質との界面におけるLiの拡散がスムーズに行われること、LiCoOの結晶性が上がり、粒子の機械的強度が向上し、電極作成時に粒子の崩壊が生じにくいことに起因することが推測される。
但し、aが1.05超の場合、LiCoOは、結晶構造が安定化せず、正極活物質として機能できないおそれがある。
When the positive electrode active material represented by the above formula (1) (hereinafter sometimes referred to as the positive electrode active material of the present invention) is, for example, Li a CoO 2 , battery performance can be improved. The reason for this is not clear, but Li a CoO 2 contains more Li ions than LiCoO 2 , so that Li can be diffused smoothly at the interface between Li a CoO 2 and the sulfide-based solid electrolyte. It is presumed that the crystallinity of Li a CoO 2 is increased, the mechanical strength of the particles is improved, and the particles are less likely to be collapsed at the time of electrode preparation.
However, when a is more than 1.05, Li a CoO 2 may not function as a positive electrode active material because the crystal structure is not stabilized.

本発明の正極活物質は、好ましくはLiCoO2+σ、LiNi0.8±0.1Co0.15±0.1Al0.05±0.052+σ、LiNi0.8±0.1Co0.2±0.12+σ、LiNiO2+σ、LiMn、LiMn0.5Ni0.5、LiMn1.5Ni0.5、又はLiMn1/3Ni1/3Co1/3である。 The positive electrode active material of the present invention are preferably Li a CoO 2 + σ, Li a Ni 0.8 ± 0.1 Co 0.15 ± 0.1 Al 0.05 ± 0.05 O 2 + σ, Li a Ni 0.8 ± 0.1 Co 0.2 ± 0.1 O 2 + σ , Li a NiO 2 + σ , Li a Mn 2 O 4 , Li a Mn 0.5 Ni 0.5 O 2 , Li a Mn 1.5 Ni 0.5 O 4 , or Li a Mn 1/3 Ni 1/3 Co 1/3 O 2 .

本発明の正極活物質のaは、好ましくは1.01≦a≦1.04を満たす数である。
aを上記範囲にすることにより、本発明の正極活物質はLiイオンを多く含み、且つ結晶構造が安定であるため、電池性能を高めることができる。
A in the positive electrode active material of the present invention is preferably a number satisfying 1.01 ≦ a ≦ 1.04.
By setting a in the above range, the positive electrode active material of the present invention contains a large amount of Li ions and has a stable crystal structure, so that the battery performance can be improved.

本発明の正極活物質の粒径は、好ましくは0.1〜20μmであり、より好ましくは0.1〜15μmであり、さらに好ましくは0.1〜10μmである。
尚、上記粒径は、レーザー回折法で測定したD50の値である。
The particle size of the positive electrode active material of the present invention is preferably 0.1 to 20 μm, more preferably 0.1 to 15 μm, and further preferably 0.1 to 10 μm.
In addition, the said particle size is the value of D50 measured by the laser diffraction method.

本発明の正極活物質のBET表面積は、好ましくは0.1〜1.0m/gである。
上記BET表面積は、例えば測定対象である正極活物質を200℃で20分間脱気後、NOVA2000(カンタクロム社製)を用いたN吸着BET法により測定することができる。
The BET surface area of the positive electrode active material of the present invention is preferably 0.1 to 1.0 m 2 / g.
The BET surface area can be measured, for example, by the N 2 adsorption BET method using NOVA2000 (manufactured by Kantachrome) after degassing the positive electrode active material to be measured at 200 ° C. for 20 minutes.

例えば、本発明の正極活物質であるLiCoOは、以下の方法により製造することができる。
硫酸コバルト水溶液、硝酸コバルト水溶液等のコバルト化合物の水溶液と水酸化ナトリウム水溶液、アンモニア水溶液等のアルカリ水溶液とを、温度及びpHを制御して攪拌しながらそれぞれ反応槽に添加することによりコバルト水酸化物が得られる。
尚、反応槽中に、例えば、硫酸アンモニウム、硝酸アンモニウム等のアンモニウム塩の錯化剤を適宣添加してもよい。
For example, Li a CoO 2 that is the positive electrode active material of the present invention can be produced by the following method.
Cobalt hydroxide by adding an aqueous solution of a cobalt compound such as an aqueous cobalt sulfate solution and an aqueous cobalt nitrate solution and an alkaline aqueous solution such as an aqueous sodium hydroxide solution and an aqueous ammonia solution to the reaction vessel while stirring while controlling the temperature and pH. Is obtained.
For example, an ammonium salt complexing agent such as ammonium sulfate or ammonium nitrate may be suitably added to the reaction vessel.

得られたコバルト水酸化物を300℃〜850℃で1〜24時間焼成することにより酸化コバルトを得ることができる。さらに炭酸リチウムを加えて混合し、850℃〜1050℃で焼成することによりLiCoOが得られる。焼成は、目的の焼成温度より低温で仮焼成した後、目的の焼成温度まで昇温してもよい。 Cobalt oxide can be obtained by baking the obtained cobalt hydroxide at 300 ° C. to 850 ° C. for 1 to 24 hours. And mixed further added lithium carbonate, Li a CoO 2 is obtained by firing at 850 ° C. to 1050 ° C.. Firing may be pre-baked at a temperature lower than the target baking temperature, and then heated to the target baking temperature.

尚、上記コバルト化合物の水溶液の濃度、アルカリ水溶液の濃度、添加速度、pH、温度、錯化剤濃度等、又は得られたコバルト水酸化物の焼成条件により、LiCoOの形状、粒径及び粒度分布を制御することができる。 The concentration of the aqueous solution of the cobalt compound, the concentration of the aqueous alkali solution, addition rates, pH, temperature, the concentration of the complexing agent and the like, or by the resulting firing conditions cobalt hydroxide, Li a CoO 2 shape, particle size And the particle size distribution can be controlled.

正極に含まれる硫化物系固体電解質としては、硫黄、リン及びリチウムのみからなる硫化物系固体電解質を用いることができ、この硫化物系固体電解質はさらにAl、B、Si、Ge等を含んでもよい。   As the sulfide-based solid electrolyte contained in the positive electrode, a sulfide-based solid electrolyte consisting only of sulfur, phosphorus and lithium can be used, and the sulfide-based solid electrolyte may further contain Al, B, Si, Ge, etc. Good.

硫化物系固体電解質は、有機化合物からなる材料、無機化合物からなる材料、又は有機化合物及び無機化合物からなる材料を原材料に用いることで製造することができる。
具体的には、硫化リチウム(LiS)及び五硫化二燐(P);硫化リチウム、単体燐及び単体硫黄;又は硫化リチウム、五硫化二燐、単体燐及び/又は単体硫黄を原材料として用いることができる。
The sulfide-based solid electrolyte can be produced by using, as a raw material, a material composed of an organic compound, a material composed of an inorganic compound, or a material composed of an organic compound and an inorganic compound.
Specifically, lithium sulfide (Li 2 S) and diphosphorus pentasulfide (P 2 S 5 ); lithium sulfide, simple phosphorus and simple sulfur; or lithium sulfide, diphosphorus pentasulfide, simple phosphorus and / or simple sulfur It can be used as a raw material.

例えば原材料が、硫化リチウム及び五硫化二燐である場合、その混合モル比は、通常LiS:P=50:50〜80:20であり、好ましくはLiS:P=60:40〜75:25である。特に好ましくは、LiS:P=70:30(モル比)程度である。 For example, when the raw materials are lithium sulfide and diphosphorus pentasulfide, the mixing molar ratio is usually Li 2 S: P 2 S 5 = 50: 50 to 80:20, preferably Li 2 S: P 2 S. 5 = 60: 40 to 75:25. Particularly preferably, it is about Li 2 S: P 2 S 5 = 70: 30 (molar ratio).

硫化物系固体電解質は、好ましくは(1)硫化リチウム及び五硫化二燐(2)硫化リチウム、単体燐及び単体硫黄又は(3)硫化リチウム、五硫化二燐、単体燐及び単体硫黄から製造することができる。
具体的には、上記(1)〜(3)のいずれかの材料の混合物を溶融反応した後、急冷する、又はメカニカルミリング法(以下、MM法という場合がある)により処理することにより、ガラス状固体電解質が得られる。得られたガラス状固体電解質をさらに熱処理する
ことにより結晶性固体電解質である硫化物系固体電解質が得られる。
The sulfide-based solid electrolyte is preferably produced from (1) lithium sulfide and diphosphorus pentasulfide (2) lithium sulfide, simple phosphorus and simple sulfur or (3) lithium sulfide, diphosphorus pentasulfide, simple phosphorus and simple sulfur. be able to.
Specifically, after the mixture of the materials in any one of the above (1) to (3) is melt-reacted, it is cooled rapidly, or treated by a mechanical milling method (hereinafter sometimes referred to as MM method), thereby producing glass. A solid electrolyte is obtained. The obtained glassy solid electrolyte is further heat-treated to obtain a sulfide-based solid electrolyte that is a crystalline solid electrolyte.

硫化物系固体電解質の平均粒径は、好ましくは0.01〜50μmであり、より好ましくは0.1〜10μmであり、さらに好ましくは0.1〜7μmである。   The average particle size of the sulfide-based solid electrolyte is preferably 0.01 to 50 μm, more preferably 0.1 to 10 μm, and still more preferably 0.1 to 7 μm.

正極は、本発明の正極活物質及び硫化物系固体電解質の混合物である正極合材からなる。
正極合材中の本発明の正極活物質及び硫化物系固体電解質の混合比は、好ましくは正極活物質:電解質=95:5〜50:50(重量比)である。
The positive electrode is made of a positive electrode mixture which is a mixture of the positive electrode active material of the present invention and a sulfide-based solid electrolyte.
The mixing ratio of the positive electrode active material of the present invention and the sulfide-based solid electrolyte in the positive electrode mixture is preferably positive electrode active material: electrolyte = 95: 5 to 50:50 (weight ratio).

電解質層に含まれる硫化物系固体電解質は、上述した正極に含まれる硫化物系固体電解質と同様である。
電解質層に含まれる硫化物系固体電解質及び正極に含まれる硫化物系固体電解質は、互いに同じでも異なってもよく、好ましくは電解質層に含まれる硫化物系固体電解質と正極に含まれる硫化物系固体電解質が同じである。
The sulfide-based solid electrolyte contained in the electrolyte layer is the same as the sulfide-based solid electrolyte contained in the positive electrode described above.
The sulfide-based solid electrolyte contained in the electrolyte layer and the sulfide-based solid electrolyte contained in the positive electrode may be the same or different from each other, preferably the sulfide-based solid electrolyte contained in the electrolyte layer and the sulfide-based solid electrolyte contained in the positive electrode The solid electrolyte is the same.

本発明の全固体リチウム電池は、例えば本発明の正極活物質及び硫化物系固体電解質を含む正極と、負極と、正極及び負極間に挟持された硫化物系固体電解質を含む電解質層で構成される。   The all solid lithium battery of the present invention is composed of, for example, a positive electrode including the positive electrode active material of the present invention and a sulfide solid electrolyte, a negative electrode, and an electrolyte layer including a sulfide solid electrolyte sandwiched between the positive electrode and the negative electrode. The

図1は、本発明の全固体リチウム電池の一実施形態を示す概略断面図である。
全固体リチウム電池1は、正極10、電解質層20及び負極30がこの順に積層した積層体を、正極集電体40及び負極集電体42(正極側の集電体が正極集電体40であり、負極側の集電体が負極集電体42)で挟持した構造を有する。
FIG. 1 is a schematic cross-sectional view showing an embodiment of the all solid lithium battery of the present invention.
The all-solid-state lithium battery 1 includes a laminate in which a positive electrode 10, an electrolyte layer 20, and a negative electrode 30 are laminated in this order, a positive electrode current collector 40 and a negative electrode current collector 42 (the positive electrode current collector is a positive electrode current collector 40. The negative electrode current collector is sandwiched between the negative electrode current collectors 42).

正極10及び電解質層20については、上述した通りである。即ち、正極10は本発明の正極活物質及び硫化物系固体電解質の混合物である正極合材からなり、電解質層20は硫化物系固体電解質からなる。   The positive electrode 10 and the electrolyte layer 20 are as described above. That is, the positive electrode 10 is made of a positive electrode mixture which is a mixture of the positive electrode active material of the present invention and a sulfide solid electrolyte, and the electrolyte layer 20 is made of a sulfide solid electrolyte.

負極30は、電池の負極に使用できるものであれば、特に制限されない。
負極30は、例えば負極活物質及び固体電解質の混合物である負極合材からなってもよく、またカーボン負極であってもよい。
The negative electrode 30 is not particularly limited as long as it can be used for a negative electrode of a battery.
The negative electrode 30 may be made of, for example, a negative electrode mixture that is a mixture of a negative electrode active material and a solid electrolyte, or may be a carbon negative electrode.

上記負極活物質としては、市販の負極活物質を特に限定なく使用することができ、炭素材料、Sn金属、Si金属、In金属等を好適に用いることができる。
負極活物質の具体例としては、天然黒鉛、各種グラファイト、Sn,Si,Al,Sb,Zn,Bi等の金属粉、SnCu,SnCo,SnFe、TiSi系合金、NiSi系合金等の金属合金粉、Si酸化物等の金属酸化物粉、その他アモルファス合金、及びメッキ合金が挙げられる。
負極活物質の粒径は特に制限はないが、平均粒径が数μm〜80μmであると好ましい。
As said negative electrode active material, a commercially available negative electrode active material can be used without limitation, and a carbon material, Sn metal, Si metal, In metal, etc. can be used suitably.
Specific examples of the negative electrode active material include natural graphite, various graphites, metal powders such as Sn, Si, Al, Sb, Zn, and Bi, Sn 5 Cu 6 , Sn 2 Co, Sn 2 Fe, TiSi alloy, and NiSi alloy. Examples thereof include metal alloy powders such as alloys, metal oxide powders such as Si oxides, other amorphous alloys, and plating alloys.
The particle size of the negative electrode active material is not particularly limited, but the average particle size is preferably several μm to 80 μm.

負極30に用いる負極合材の固体電解質は、例えば正極10の硫化物系固体電解質を用いることができる。
負極合材は、上記負極活物質と固体電解質を所定の割合で混合することにより調製することができる。
As the solid electrolyte of the negative electrode mixture used for the negative electrode 30, for example, the sulfide-based solid electrolyte of the positive electrode 10 can be used.
The negative electrode mixture can be prepared by mixing the negative electrode active material and the solid electrolyte at a predetermined ratio.

正極集電体40及び負極集電体42としては、例えば、ステンレス鋼、金、白金、亜鉛、ニッケル、スズ、アルミニウム、モリブデン、ニオブ、タンタル、タングステン、チタン等の金属、及びこれらの合金が挙げられる。
上記金属又は合金をシート、箔、網状、パンチングメタル状、エキスパンドメタル状等に成形することにより集電体にすることができる。
本発明では、正極集電体40がアルミニウム箔であり、負極集電体42がアルミニウム箔又はスズ箔であると、集電性、加工性及びコストの観点から好ましい。
Examples of the positive electrode current collector 40 and the negative electrode current collector 42 include metals such as stainless steel, gold, platinum, zinc, nickel, tin, aluminum, molybdenum, niobium, tantalum, tungsten, and titanium, and alloys thereof. It is done.
A current collector can be formed by forming the metal or alloy into a sheet, foil, net, punched metal, expanded metal, or the like.
In the present invention, it is preferable that the positive electrode current collector 40 is an aluminum foil and the negative electrode current collector 42 is an aluminum foil or a tin foil from the viewpoint of current collection, workability, and cost.

全固体リチウム電池1は、例えば正極10及び正極集電体40を積層した正極合材シート、負極30及び負極集電体42とを積層した負極合材シート及び固体電解質シートを作製しておき、これらを重ね合わせてプレスすることにより製造できる。   The all solid lithium battery 1 is prepared, for example, by preparing a positive electrode mixture sheet in which the positive electrode 10 and the positive electrode current collector 40 are laminated, a negative electrode mixture sheet in which the negative electrode 30 and the negative electrode current collector 42 are laminated, and a solid electrolyte sheet. These can be manufactured by overlapping and pressing.

上記正極合材シート及び負極合材シートは、例えば、正極10及び負極30を正極集電体40及び負極集電体42の少なくとも一部に膜状にそれぞれ形成することにより作製できる。製膜方法としては、ブラスト法、エアロゾルデポジション法、コールドスプレー法、スパッタリング法、気相成長法、溶射法等が挙げられる。   The positive electrode mixture sheet and the negative electrode mixture sheet can be produced, for example, by forming the positive electrode 10 and the negative electrode 30 in a film shape on at least a part of the positive electrode current collector 40 and the negative electrode current collector 42, respectively. Examples of the film forming method include a blast method, an aerosol deposition method, a cold spray method, a sputtering method, a vapor phase growth method, and a thermal spraying method.

上記方法のほか、上記正極10及び負極30の電極合材(正極合材及び負極合材)をそれぞれスラリー化し、電極合材溶液をそれぞれ正極集電体40及び負極集電体42上に塗布する、又は上記正極10及び負極30の電極合材をそれぞれ正極集電体40及び負極集電体42上に積層し圧縮することで正極合材シート及び負極合材シートを形成することもできる。   In addition to the above method, the electrode mixture of the positive electrode 10 and the negative electrode 30 (positive electrode mixture and negative electrode mixture) is slurried, and the electrode mixture solution is applied onto the positive electrode current collector 40 and the negative electrode current collector 42, respectively. Alternatively, the positive electrode mixture sheet and the negative electrode mixture sheet can also be formed by laminating and compressing the electrode mixture of the positive electrode 10 and the negative electrode 30 on the positive electrode current collector 40 and the negative electrode current collector 42, respectively.

全固体リチウム電池1は、正極集電体40上に正極10及び電解質層20をこの順に積層した積層体を形成し、別途、負極集電体42上に負極30を積層した積層体を形成し、これら2つの積層体を電解質層20及び負極30が接するように重ね合わせることによっても製造することができる。   The all-solid-state lithium battery 1 forms a laminate in which the positive electrode 10 and the electrolyte layer 20 are laminated in this order on the positive electrode current collector 40, and separately forms a laminate in which the negative electrode 30 is laminated on the negative electrode current collector 42. These two laminates can also be manufactured by superposing them so that the electrolyte layer 20 and the negative electrode 30 are in contact with each other.

以下、本発明を実施例を基に詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to a following example, unless the summary is exceeded.

実施例1
[正極活物質の合成]
金属コバルトを100g硝酸に溶解した後、純水で希釈し1650mlとした。続いて4N水酸化ナトリウム溶液820mlを加え攪拌した後にろ過し、水酸化物のケーキを得た。得られたケーキを850℃で4時間焼成し、137gの酸化コバルトを得た。ここで、炭酸リチウム(LiCO)をLi/Co=1.02となるように酸化コバルトに添加・混合し、700℃で4時間仮焼成後、1000℃で5時間本焼成を行い、目的のLiCoO(X=1.02)を得た。
Example 1
[Synthesis of positive electrode active material]
After dissolving metallic cobalt in 100 g nitric acid, it was diluted with pure water to 1650 ml. Subsequently, 820 ml of 4N sodium hydroxide solution was added and stirred, followed by filtration to obtain a hydroxide cake. The obtained cake was baked at 850 ° C. for 4 hours to obtain 137 g of cobalt oxide. Here, the lithium carbonate (Li 2 CO 3) was added and mixed cobalt oxide such that the Li / Co = 1.02, after 4 hours calcined at 700 ° C., for 5 hours main calcination at 1000 ° C., The target Li X CoO 2 (X = 1.02) was obtained.

[硫化物系固体電解質の調製]
高純度硫化リチウム0.6508g(0.01417mol)と五硫化二燐1.3492g(0.00607mol)をよく混合し、混合粉末をアルミナ製ポットに投入し完全密閉した。混合粉末を投入したポットを遊星型ボールミル機に取り付け、最初、出発原料を十分に混合する目的で数分間低速回転(85rpm)でミリングを行った。その後徐々に回転数を上げて370rpmでさらに20時間メカニカルミリングを行った。X線測定により、得られた粉末がガラス化していることを確認し、この粉末を300℃で2時間、熱処理して硫化物系固体電解質を得た。
交流インピーダンス法(測定周波数100Hz〜15MHz)により、得られた硫化物系固体電解質のイオン伝導度を測定したところ、室温で1.0×10−3S/cmのイオン伝導度を示した。
[Preparation of sulfide-based solid electrolyte]
0.6508 g (0.01417 mol) of high purity lithium sulfide and 1.3492 g (0.00607 mol) of diphosphorus pentasulfide were mixed well, and the mixed powder was put into an alumina pot and completely sealed. The pot charged with the mixed powder was attached to a planetary ball mill, and milling was first performed at a low speed (85 rpm) for several minutes in order to sufficiently mix the starting materials. Thereafter, the rotational speed was gradually increased and mechanical milling was further performed at 370 rpm for 20 hours. It was confirmed by X-ray measurement that the obtained powder was vitrified, and this powder was heat treated at 300 ° C. for 2 hours to obtain a sulfide-based solid electrolyte.
When the ionic conductivity of the obtained sulfide-based solid electrolyte was measured by an AC impedance method (measurement frequency: 100 Hz to 15 MHz), it showed an ionic conductivity of 1.0 × 10 −3 S / cm at room temperature.

[正極合材の調製]
合成した正極活物質であるLiCoO(X=1.02)及び調製した硫化物系固体電解質を、硫化物系固体電解質が30wt%となるように混合し、正極合材を調製した。
[Preparation of positive electrode mixture]
Li x CoO 2 (X = 1.02), which was the synthesized positive electrode active material, and the prepared sulfide-based solid electrolyte were mixed so that the sulfide-based solid electrolyte would be 30 wt% to prepare a positive electrode mixture.

[リチウム電池の製造]
調製した硫化物系固体電解質50mgを直径10mmのプラスティック製の円筒に投入し、加圧成型して、さらに調製した正極合材(正極活物質:LiCoO(X=1.02))を30mg投入し再び加圧成型した。正極合材とは反対側から、インジウム箔(厚さ0.1mm、9mmφ)を投入して、正極、固体電解質層及び負極の三層構造とし、リチウム電池を作製した。
作製したリチウム電池を、1cmあたり500μAで3.9Vまで充電し、その後10mA/cmの放電電流密度にて放電し、放電容量及び放電電圧を評価した。結果を表1に示す。
[Manufacture of lithium batteries]
50 mg of the prepared sulfide-based solid electrolyte was put into a plastic cylinder having a diameter of 10 mm, pressure-molded, and further prepared positive electrode mixture (positive electrode active material: Li x CoO 2 (X = 1.02)) 30 mg was added and pressure-molded again. An indium foil (thickness 0.1 mm, 9 mmφ) was introduced from the side opposite to the positive electrode mixture to form a three-layer structure of a positive electrode, a solid electrolyte layer, and a negative electrode, and a lithium battery was produced.
The produced lithium battery was charged to 3.9 V at 500 μA per cm 2 , and then discharged at a discharge current density of 10 mA / cm 2 to evaluate the discharge capacity and the discharge voltage. The results are shown in Table 1.

実施例2
正極活物質の合成において、炭酸リチウム(LiCO)をLi/Co=1.04となるように添加してLiCoO(X=1.04)を合成し、当該正極活物質を用いて正極合材を調製した他は実施例1と同様にしてリチウム電池を作製し、評価した。結果を表1に示す。
Example 2
In the synthesis of the positive electrode active material, was synthesized Li X CoO 2 (X = 1.04 ) was added lithium carbonate (Li 2 CO 3) so that the Li / Co = 1.04, the positive electrode active material A lithium battery was prepared and evaluated in the same manner as in Example 1 except that the positive electrode mixture was prepared. The results are shown in Table 1.

実施例3
正極活物質の合成において、炭酸リチウム(LiCO)をLi/Co=1.01となるように添加してLiCoO(X=1.01)を合成し、当該正極活物質を用いて正極合材を調製した他は実施例1と同様にしてリチウム電池を作製し、評価した。結果を表1に示す。
Example 3
In the synthesis of the positive electrode active material, lithium carbonate (Li 2 CO 3 ) was added so that Li / Co = 1.01 to synthesize Li X CoO 2 (X = 1.01). A lithium battery was prepared and evaluated in the same manner as in Example 1 except that the positive electrode mixture was prepared. The results are shown in Table 1.

実施例4
正極活物質の合成において、炭酸リチウム(LiCO)をLi/Co=1.03となるように添加してLiCoO(X=1.03)を合成し、当該正極活物質を用いて正極合材を調製した他は実施例1と同様にしてリチウム電池を作製し、評価した。結果を表1に示す。
Example 4
In the synthesis of the positive electrode active material, lithium carbonate (Li 2 CO 3 ) was added so that Li / Co = 1.03 to synthesize Li X CoO 2 (X = 1.03). A lithium battery was prepared and evaluated in the same manner as in Example 1 except that the positive electrode mixture was prepared. The results are shown in Table 1.

実施例5
[負極合材の調製]
グラファイト(粒径:D50で25μm)及び実施例1で調製した硫化物系固体電解質を、グラファイト:硫化物系固体電解質=6:4(重量比)となるように混合し、負極合材を調製した。
Example 5
[Preparation of negative electrode mixture]
Graphite (particle size: D50: 25 μm) and the sulfide-based solid electrolyte prepared in Example 1 were mixed so that graphite: sulfide-based solid electrolyte = 6: 4 (weight ratio) to prepare a negative electrode mixture. did.

[リチウム電池の作製]
インジウム箔の代わりに調製した負極合材8.8mgを用い、実施例1の正極合材を14.4mg用いた他は実施例1と同様にしてリチウム電池を作製し評価した。結果を表1に示す。
[Production of lithium battery]
A lithium battery was prepared and evaluated in the same manner as in Example 1 except that 8.8 mg of the negative electrode mixture prepared instead of the indium foil was used and 14.4 mg of the positive electrode mixture of Example 1 was used. The results are shown in Table 1.

実施例6
インジウム箔の代わりに実施例5の負極合材8.8mgを用い、実施例2の正極合材を14.4mg用いた他は実施例2と同様にしてリチウム電池を作製し評価した。結果を表1に示す。
Example 6
A lithium battery was prepared and evaluated in the same manner as in Example 2 except that 8.8 mg of the negative electrode mixture of Example 5 was used instead of indium foil and 14.4 mg of the positive electrode mixture of Example 2 was used. The results are shown in Table 1.

実施例7
・Li(Ni0.85Co0.15)O(X=1.03)粒子の作製
金属ニッケルを85gと金属コバルトを15g硝酸に溶解した後、純水で希釈し1650mlとした。続いて4N水酸化ナトリウム溶液820mlを加え攪拌した後にろ過し、水酸化物のケーキを得た。得られたケーキを100℃で10時間乾燥し166gのニッケルコバルト複合水酸化物を得た。ここで、水酸化リチウム一水和物(LiOH・HO)をLi/(Ni+Co)=1.03となるようにニッケルコバルト複合水酸化物に添加・混合し、800℃で焼成を行い、Li(Ni0.85Co0.15)O(X=1.03)を合成した。得られたLi(Ni0.85Co0.15)Oの粒子径は9.28μm(D50)、BET表面積は、0.24m/gであった。当該正極活物質を使用した以外は実施例1と同様にして正極合材を調製し、リチウム電池を作製した。
作製したリチウム電池を、1cmあたり500μAで3.6Vまで充電し、その後10mA/cmの放電電流密度にて放電し、放電容量及び放電電圧を評価した。結果を表1に示す。
Example 7
Preparation of Li X (Ni 0.85 Co 0.15 ) O 2 (X = 1.03) Particles After dissolving metallic nickel in 85 g and metallic cobalt in 15 g nitric acid, it was diluted with pure water to 1650 ml. Subsequently, 820 ml of 4N sodium hydroxide solution was added and stirred, followed by filtration to obtain a hydroxide cake. The obtained cake was dried at 100 ° C. for 10 hours to obtain 166 g of nickel cobalt composite hydroxide. Here, lithium hydroxide monohydrate (LiOH.H 2 O) was added to and mixed with nickel-cobalt composite hydroxide so that Li / (Ni + Co) = 1.03, and calcined at 800 ° C., Li X (Ni 0.85 Co 0.15 ) O 2 (X = 1.03) was synthesized. The obtained Li X (Ni 0.85 Co 0.15 ) O 2 had a particle size of 9.28 μm (D50) and a BET surface area of 0.24 m 2 / g. A positive electrode mixture was prepared in the same manner as in Example 1 except that the positive electrode active material was used, and a lithium battery was produced.
The produced lithium battery was charged to 3.6 V at 500 μA per cm 2 and then discharged at a discharge current density of 10 mA / cm 2 to evaluate the discharge capacity and the discharge voltage. The results are shown in Table 1.

実施例8
・Li(Ni0.82Co0.14Al0.04)O(X=1.03)粒子の作製
金属ニッケルを85gと金属コバルトを15g硝酸に溶解した後、純水で希釈し1650mlとした。続いて4N水酸化ナトリウム溶液820mlと1mol/lの硝酸アルミニウム溶液40mlを加え攪拌した後にろ過し、水酸化物のケーキを得た。得られたケーキを100℃で10時間乾燥し168gのニッケルコバルト複合水酸化物を得た。ここで、水酸化リチウム一水和物(LiOH・HO)をLi/(Ni+Co+Al)=1.03となるように添加・混合し、800℃で焼成を行い、Li(Ni0.82Co0.14Al0.04)O(X=1.03)を合成した。得られたLi(Ni0.85Co0.15)Oの粒子径は9.10μm(D50)、BET表面積は、0.25m/gであった。当該正極活物質を使用した以外は実施例9と同様にして正極合材を調製し、リチウム電池を作製し評価した。結果を表1に示す。
Example 8
Preparation of Li X (Ni 0.82 Co 0.14 Al 0.04 ) O 2 (X = 1.03) Particles After dissolving metallic nickel in 85 g and metallic cobalt in 15 g nitric acid, it was diluted with pure water to 1650 ml It was. Subsequently, 820 ml of 4N sodium hydroxide solution and 40 ml of 1 mol / l aluminum nitrate solution were added and stirred, followed by filtration to obtain a hydroxide cake. The obtained cake was dried at 100 ° C. for 10 hours to obtain 168 g of nickel cobalt composite hydroxide. Here, lithium hydroxide monohydrate (LiOH.H 2 O) was added and mixed so that Li / (Ni + Co + Al) = 1.03, followed by firing at 800 ° C., and Li X (Ni 0.82 Co 0.14 Al 0.04 ) O 2 (X = 1.03) was synthesized. The resulting Li X (Ni 0.85 Co 0.15) particle size of the O 2 is 9.10μm (D50), BET surface area was 0.25 m 2 / g. A positive electrode mixture was prepared in the same manner as in Example 9 except that the positive electrode active material was used, and a lithium battery was prepared and evaluated. The results are shown in Table 1.

比較例1
正極活物質としてLiCoO(X=1.00)を用いて正極合材を調製した他は実施例1と同様にしてリチウム電池を作製し、評価した。結果を表1に示す。
Comparative Example 1
A lithium battery was prepared and evaluated in the same manner as in Example 1 except that a positive electrode mixture was prepared using Li x CoO 2 (X = 1.00) as the positive electrode active material. The results are shown in Table 1.

比較例2
正極活物質の合成において、炭酸リチウム(LiCO)をLi/Co=1.06となるように添加してLiCoO(X=1.06)を合成し、当該正極活物質を用いて正極合材を調製した他は実施例1と同様にしてリチウム電池を作製し、評価した。結果を表1に示す。
Comparative Example 2
In the synthesis of the positive electrode active material, lithium carbonate (Li 2 CO 3 ) was added so that Li / Co = 1.06 to synthesize Li X CoO 2 (X = 1.06). A lithium battery was prepared and evaluated in the same manner as in Example 1 except that the positive electrode mixture was prepared. The results are shown in Table 1.

Figure 2010245039
Figure 2010245039

本発明の全固体リチウム電池は、携帯情報端末、携帯電子機器、家庭用小型電力貯蔵装置、モータを動力源とする自動二輪車、電気自転車、ハイブリッド電気自動車等に使用するリチウム電池として使用できる。   The all-solid-state lithium battery of the present invention can be used as a lithium battery for use in portable information terminals, portable electronic devices, small household power storage devices, motorcycles powered by motors, electric bicycles, hybrid electric vehicles, and the like.

1 全固体リチウム電池
10 正極
20 電解質層
30 負極
40 正極集電体
42 負極集電体
DESCRIPTION OF SYMBOLS 1 All-solid-state lithium battery 10 Positive electrode 20 Electrolyte layer 30 Negative electrode 40 Positive electrode collector 42 Negative electrode collector

Claims (3)

正極、電解質層及び負極を備える全固体リチウム電池であって、
前記正極が下記式(1)で表される正極活物質及び硫化物系固体電解質を含み、及び前記電解質層が硫化物系固体電解質を含む全固体リチウム電池。
LiNiCoMnf+σ…(1)
(式中、aは1.01≦a≦1.05を満たす数であり、
fは2又は4であり、
σは−0.2以上0.2以下であり、
MはMg、Ca、Y、希土類元素、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Fe、Cu、Ag、Zn、B、Al、Ga、C、Si、Sn、N、P、S、F、Clから選択される一種以上の元素である。
fが2の場合、bは0≦b≦1を満たす数であり、cは0≦c≦1を満たす数であり、dは0≦d≦1を満たす数であり、eは0≦e≦0.5を満たす数であり、b+c+d+e=1である。
fが4の場合、bは0≦b≦2を満たす数であり、cは0≦c≦2を満たす数であり、dは0≦d≦2を満たす数であり、eは0≦e≦1を満たす数であり、b+c+d+e=2である。)
An all-solid lithium battery comprising a positive electrode, an electrolyte layer and a negative electrode,
The all-solid-state lithium battery in which the said positive electrode contains the positive electrode active material and sulfide-type solid electrolyte which are represented by following formula (1), and the said electrolyte layer contains a sulfide-type solid electrolyte.
Li a Ni b Co c Mn d Me O f + σ (1)
(Wherein, a is a number satisfying 1.01 ≦ a ≦ 1.05,
f is 2 or 4,
σ is −0.2 or more and 0.2 or less,
M is Mg, Ca, Y, rare earth element, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Fe, Cu, Ag, Zn, B, Al, Ga, C, Si, Sn, N , P, S, F, Cl.
When f is 2, b is a number satisfying 0 ≦ b ≦ 1, c is a number satisfying 0 ≦ c ≦ 1, d is a number satisfying 0 ≦ d ≦ 1, and e is 0 ≦ e It is a number that satisfies ≦ 0.5, and b + c + d + e = 1.
When f is 4, b is a number satisfying 0 ≦ b ≦ 2, c is a number satisfying 0 ≦ c ≦ 2, d is a number satisfying 0 ≦ d ≦ 2, and e is 0 ≦ e It is a number satisfying ≦ 1, and b + c + d + e = 2. )
前記正極活物質がLiCoO2+σ、LiNi0.8±0.1Co0.15±0.1Al0.05±0.052+σ、LiNi0.8±0.1Co0.2±0.12+σ、LiNiO2+σ、LiMn、LiMn0.5Ni0.5、LiMn1.5Ni0.5、又はLiMn1/3Ni1/3Co1/3である請求項1に記載の全固体リチウム電池。 The positive electrode active material is Li a CoO 2 + σ , Li a Ni 0.8 ± 0.1 Co 0.15 ± 0.1 Al 0.05 ± 0.05 O 2 + σ , Li a Ni 0.8 ± 0.1 Co 0.2 ± 0.1 O 2 + σ , Li a NiO 2 + σ , Li a Mn 2 O 4 , Li a Mn 0.5 Ni 0.5 O 2 , Li a Mn 1.5 Ni 0.5 O 4 , or Li all-solid lithium battery according to claim 1 which is a Mn 1/3 Ni 1/3 Co 1/3 O 2. aが1.01≦a≦1.04を満たす数である請求項1又は2に記載の全固体リチウム電池。   The all-solid-state lithium battery according to claim 1, wherein a is a number satisfying 1.01 ≦ a ≦ 1.04.
JP2010063075A 2009-03-18 2010-03-18 All solid lithium battery Active JP5710136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010063075A JP5710136B2 (en) 2009-03-18 2010-03-18 All solid lithium battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009066216 2009-03-18
JP2009066216 2009-03-18
JP2010063075A JP5710136B2 (en) 2009-03-18 2010-03-18 All solid lithium battery

Publications (2)

Publication Number Publication Date
JP2010245039A true JP2010245039A (en) 2010-10-28
JP5710136B2 JP5710136B2 (en) 2015-04-30

Family

ID=43097799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010063075A Active JP5710136B2 (en) 2009-03-18 2010-03-18 All solid lithium battery

Country Status (1)

Country Link
JP (1) JP5710136B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013175992A1 (en) * 2012-05-24 2013-11-28 株式会社 村田製作所 All-solid-state battery
JP2014067687A (en) * 2012-09-05 2014-04-17 Idemitsu Kosan Co Ltd Negative electrode mixture, negative electrode, and lithium ion battery
JP2018085310A (en) * 2016-11-25 2018-05-31 日立造船株式会社 Positive electrode for all-solid battery, and all-solid battery
CN112204675A (en) * 2018-10-01 2021-01-08 松下知识产权经营株式会社 Halide solid electrolyte material and battery using the same
CN113454735A (en) * 2019-02-28 2021-09-28 松下知识产权经营株式会社 Electrolyte material and battery using the same
CN114361459A (en) * 2022-03-17 2022-04-15 中创新航科技股份有限公司 Preparation method of silver phosphide-carbon material composite and solid lithium ion battery comprising same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08195219A (en) * 1994-11-14 1996-07-30 Matsushita Electric Ind Co Ltd Fuel-solid lithium secondary battery
JPH10117406A (en) * 1996-06-14 1998-05-06 Fuji Photo Film Co Ltd Electric car and its drive power source unit
JP2005276680A (en) * 2004-03-25 2005-10-06 National Institute Of Advanced Industrial & Technology Lithium manganate series positive electrode active material and all solid lithium secondary battery
WO2007004590A1 (en) * 2005-07-01 2007-01-11 National Institute For Materials Science All-solid lithium battery
JP2007512668A (en) * 2003-11-26 2007-05-17 ハンヤン ハク ウォン カンパニー,リミテッド Method for producing positive electrode active material for lithium secondary battery, reactive group used in the method, and positive electrode active material for lithium secondary battery produced by the method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08195219A (en) * 1994-11-14 1996-07-30 Matsushita Electric Ind Co Ltd Fuel-solid lithium secondary battery
JPH10117406A (en) * 1996-06-14 1998-05-06 Fuji Photo Film Co Ltd Electric car and its drive power source unit
JP2007512668A (en) * 2003-11-26 2007-05-17 ハンヤン ハク ウォン カンパニー,リミテッド Method for producing positive electrode active material for lithium secondary battery, reactive group used in the method, and positive electrode active material for lithium secondary battery produced by the method
JP2005276680A (en) * 2004-03-25 2005-10-06 National Institute Of Advanced Industrial & Technology Lithium manganate series positive electrode active material and all solid lithium secondary battery
WO2007004590A1 (en) * 2005-07-01 2007-01-11 National Institute For Materials Science All-solid lithium battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013175992A1 (en) * 2012-05-24 2013-11-28 株式会社 村田製作所 All-solid-state battery
JP2014067687A (en) * 2012-09-05 2014-04-17 Idemitsu Kosan Co Ltd Negative electrode mixture, negative electrode, and lithium ion battery
JP2018085310A (en) * 2016-11-25 2018-05-31 日立造船株式会社 Positive electrode for all-solid battery, and all-solid battery
CN112204675A (en) * 2018-10-01 2021-01-08 松下知识产权经营株式会社 Halide solid electrolyte material and battery using the same
CN112204675B (en) * 2018-10-01 2022-10-14 松下知识产权经营株式会社 Halide solid electrolyte material and battery using the same
CN113454735A (en) * 2019-02-28 2021-09-28 松下知识产权经营株式会社 Electrolyte material and battery using the same
CN113454735B (en) * 2019-02-28 2023-12-08 松下知识产权经营株式会社 Electrolyte material and battery using the same
CN114361459A (en) * 2022-03-17 2022-04-15 中创新航科技股份有限公司 Preparation method of silver phosphide-carbon material composite and solid lithium ion battery comprising same
CN114361459B (en) * 2022-03-17 2022-06-07 中创新航科技股份有限公司 Preparation method of silver phosphide-carbon material composite and solid lithium ion battery comprising same

Also Published As

Publication number Publication date
JP5710136B2 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
WO2010107084A1 (en) All-solid-state lithium battery
JP5752890B2 (en) Positive electrode mixture and lithium battery
KR101666269B1 (en) Cathod active material for lithium rechargeable battery
JP4592931B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP5505608B2 (en) Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
WO2014104234A1 (en) Surface-modified lithium-containing composite oxide particles, positive electrode using surface-modified lithium-containing composite oxide particles, and nonaqueous electrolyte secondary battery
JP6575048B2 (en) The positive electrode composition for nonaqueous electrolyte secondary batteries, the nonaqueous electrolyte secondary battery, and the manufacturing method of the positive electrode composition for nonaqueous electrolyte secondary batteries.
JP2015133318A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and method of producing the same
JP5280684B2 (en) Positive electrode active material, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
JP2021520333A (en) O3 / P2 mixed phase sodium-containing dope layered oxide material
JP6554780B2 (en) Positive electrode composition for non-aqueous electrolyte secondary battery and method for producing the same
CN108963217A (en) Manganese oxide composite electrodes for lithium batteries
CN102754254A (en) Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
JP4984593B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5710136B2 (en) All solid lithium battery
WO2018198410A1 (en) Positive electrode active material and battery
TW201626618A (en) Method for manufacturing positive electrode material for electrical storage device
JP2009054576A (en) Manufacturing method of lithium-iron-phosphorus compound oxide carbon complex and manufacturing method of coprecipitate containing lithium, iron, and phosphorus
WO2018163518A1 (en) Positive electrode active material, and cell
JP5810587B2 (en) Active material for lithium ion secondary battery, electrode for lithium ion secondary battery, lithium ion secondary battery
JP2007012599A (en) Heat-activated battery
JP2011165461A (en) Lithium ion secondary battery positive electrode material
JP2009193686A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and method of manufacturing the same
JP4900888B2 (en) Lithium transition metal oxides for lithium batteries
JP6743920B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150304

R150 Certificate of patent or registration of utility model

Ref document number: 5710136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250