JP2010244924A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2010244924A
JP2010244924A JP2009093831A JP2009093831A JP2010244924A JP 2010244924 A JP2010244924 A JP 2010244924A JP 2009093831 A JP2009093831 A JP 2009093831A JP 2009093831 A JP2009093831 A JP 2009093831A JP 2010244924 A JP2010244924 A JP 2010244924A
Authority
JP
Japan
Prior art keywords
condensed water
water
water tank
supply device
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009093831A
Other languages
Japanese (ja)
Other versions
JP2010244924A5 (en
Inventor
Yoshikazu Tanaka
良和 田中
Satoshi Matsumoto
松本  聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009093831A priority Critical patent/JP2010244924A/en
Publication of JP2010244924A publication Critical patent/JP2010244924A/en
Publication of JP2010244924A5 publication Critical patent/JP2010244924A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell system for lengthening intervals of maintenance corresponding to clogging of a filter. <P>SOLUTION: The fuel cell system includes: an oxidant condensed water tank 9 storing condensed water obtained by condensing oxidant gas after reaction exhausted from a fuel cell 1; a condensed water supply device 11 supplying the condensed water accumulated in the oxidant condensed water tank 9 to a water purification 10; a removing filter 18 removing foreign matters in the condensed water supplied to the condensed water supply device 11; a pure water supply device 16 supplying pure water generated in the water purification device 10 to a hydrogen generating device 4; and a control device 19. The control device 19 increases the supply capacity of the condensed water supply device 11 according to the clogging state of the removing filter 18 caused by foreign matters, and even when the clogging of the removing filter 18 caused by the foreign matters is generated, the operation of the fuel cell system is continued while the supply shortage of the condensed water is covered by increasing the supply capacity of the condensed water supply device 11. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、固体高分子形やリン酸形などの燃料電池を備え、電気の供給を行なう燃料電池システムに関するものである。   The present invention relates to a fuel cell system that includes a solid polymer type or phosphoric acid type fuel cell and supplies electricity.

水素と酸素の反応により発電する固体高分子形やリン酸形などの燃料電池を用いた燃料電池システムは、都市ガスやプロパン、灯油などの炭化水素原料と水を用いた水蒸気改質反応により水素を多く含んだ還元剤ガスを生成する水素生成装置と、酸化剤ガスとしての空気を供給する空気供給装置と、水素生成装置より供給される還元剤ガスと空気供給装置より供給される酸化剤ガスとを用いて発電する燃料電池と、燃料電池で反応に使用した後の還元剤ガスや酸化剤ガスから凝縮水として水分を回収する凝縮器と、凝縮器で回収された凝縮水を貯える凝縮水タンクと、回収された凝縮水の不純物を取り除き純水として再利用するための純水器とで構成されている。   Fuel cell systems using solid polymer and phosphoric acid fuel cells that generate electricity by the reaction of hydrogen and oxygen are produced by a steam reforming reaction using city gas, propane, kerosene and other hydrocarbon raw materials and water. Generator for generating a reducing agent gas containing a large amount of gas, an air supply device for supplying air as an oxidant gas, a reducing agent gas supplied from a hydrogen generator, and an oxidant gas supplied from an air supply device A fuel cell that generates electricity using the above, a condenser that recovers moisture as condensed water from the reducing agent gas and oxidant gas after use in the reaction in the fuel cell, and condensed water that stores the condensed water recovered by the condenser It consists of a tank and a deionizer for removing the impurities of the collected condensed water and reusing it as pure water.

生成された純水は、水素生成装置に供給され水蒸気改質反応に利用される。このように、燃料電池システムにおいては、一般的に水の利用・回収において、自立した系で運転が行われる。   The generated pure water is supplied to the hydrogen generator and used for the steam reforming reaction. As described above, in the fuel cell system, the operation is generally performed in an independent system in the use and recovery of water.

このように従来の燃料電池システムでは、システム内において水の利用・回収を循環して繰り返しているが、凝縮水の貯えられる凝縮水タンクは大気とつながっており、ゴミなどの異物の侵入や内部での発生を防止できない。そのため、凝縮水を利用する際には異物を除去するためのフィルタが必要不可欠になる(例えば、特許文献1参照)。   As described above, in the conventional fuel cell system, the use / recovery of water is repeatedly circulated in the system, but the condensate tank in which the condensate is stored is connected to the atmosphere, so that foreign matter such as dust can enter the Can not be prevented. Therefore, when using condensed water, the filter for removing a foreign material becomes indispensable (for example, refer patent document 1).

特開2006−179373号公報JP 2006-179373 A

しかしながら、フィルタによる異物の除去は、燃料電池システムを長期間運転することでフィルタの詰まりとなって各種異常を引き起こす原因となり、定期的なフィルタ清掃などのメンテナンスや、フィルタを大型化することが必要であった。   However, the removal of foreign matters by the filter causes the filter to become clogged by operating the fuel cell system for a long period of time and cause various abnormalities. It is necessary to maintain the filter regularly and to enlarge the filter. Met.

本発明は、上記従来の課題に鑑み、フィルタの詰まり対応のメンテナンスの間隔を広げたり、フィルタの小型化が可能な燃料電池システムを提供することを目的とする。   In view of the above-described conventional problems, an object of the present invention is to provide a fuel cell system capable of widening a maintenance interval corresponding to filter clogging and reducing the size of the filter.

上記目的を達成するために、本発明は、凝縮水タンクに貯まった凝縮水を純水器に供給する凝縮水供給装置と、前記凝縮水供給装置に供給される凝縮水中の異物を除去する除去フィルタと、異物による前記除去フィルタの詰まり具合に応じて前記凝縮水供給装置の供給能力を増加する制御器とを備えたのである。   To achieve the above object, the present invention provides a condensed water supply device that supplies condensed water stored in a condensed water tank to a deionizer, and a removal that removes foreign matter in the condensed water supplied to the condensed water supply device. A filter and a controller that increases the supply capacity of the condensed water supply device according to the degree of clogging of the removal filter due to foreign substances are provided.

本発明によれば、除去フィルタの詰まりに応じて凝縮水供給装置の供給能力が増加するので、凝縮水中のゴミなどの異物により除去フィルタに詰まりが生じた場合でも、凝縮水の供給量不足を凝縮水供給装置の供給能力を増加することで対応できる間は、燃料電池システムの運転を継続することができる。   According to the present invention, the supply capacity of the condensate supply device increases in accordance with the clogging of the removal filter. Therefore, even when the removal filter is clogged with foreign matters such as dust in the condensed water, the supply amount of the condensate is insufficient. The fuel cell system can be continuously operated as long as the supply capacity of the condensate supply device can be increased.

これにより、必要なメンテナンスの間隔を広げることが可能となり、燃料電池システムの設置における維持作業を軽減することができる。また、メンテナンスの間隔が十分な場合には、必要なメンテナンスの間隔を広げる代わりに、フィルタを小型化することが可能となり、燃料電池システムのコストやフィルタサイズの低減ができる。   This makes it possible to widen the necessary maintenance interval and reduce maintenance work in installing the fuel cell system. Further, when the maintenance interval is sufficient, the filter can be miniaturized instead of increasing the required maintenance interval, and the cost of the fuel cell system and the filter size can be reduced.

また、上記目的を達成するために、別の本発明は、凝縮水タンクの排水口から流出した凝縮水を純水器に供給する凝縮水供給装置と、前記凝縮水タンクの排水口近傍の前記凝縮水タンク内に設けられ前記凝縮水タンクの水位を計測する水位センサーと、前記凝縮水タンクの前記排水口と前記水位センサーを囲むように前記凝縮水タンク内に設けられ前記凝縮水供給装置に供給される凝縮水中の異物を除去すると共に前記水位センサーを凝縮水中の異物から保護する保護フィルタと、前記凝縮水タンク内の前記凝縮水の不足時に開けられて水道水を前記凝縮水タンク内に補給する給水弁と、各装置を制御する制御器とを備え、前記制御器は、前記水位センサーにより前記凝縮水タンクの水位低下を検知後、前記凝縮水供給装置の動作を停止させ、さらに前記凝縮水タンクの水位低下を所定の時間継続して検知した場合に、前記給水弁により水道水を補給するのである。   In order to achieve the above object, another aspect of the present invention provides a condensed water supply device that supplies condensed water flowing out from a drain of a condensed water tank to a deionizer, and the vicinity of the outlet of the condensed water tank. A water level sensor provided in the condensed water tank for measuring the water level of the condensed water tank, and provided in the condensed water tank so as to surround the drain port and the water level sensor of the condensed water tank. A protective filter that removes foreign matter in the supplied condensed water and protects the water level sensor from foreign matter in the condensed water, and tap water that is opened when the condensed water in the condensed water tank is insufficient is placed in the condensed water tank. A water supply valve to be replenished, and a controller for controlling each device, and the controller stops the operation of the condensed water supply device after detecting a decrease in the water level of the condensed water tank by the water level sensor. If further the drawdown of the condensed water tank is detected continuously for a predetermined period of time, it is to replenish the tap water by the water supply valve.

本発明によれば、水位センサーを凝縮水中の異物から保護する保護フィルタが、凝縮水供給装置に供給される凝縮水中の異物を除去する除去フィルタの機能を兼ね備えているので、水位センサーを凝縮水中の異物から保護する保護フィルタと凝縮水供給装置に供給される凝縮水中の異物を除去する除去フィルタとを一つのフィルタで構成することができる。これにより、単純な構造となり、コストやフィルタ清掃などのメンテナンス時の作業工数の低減が可能となる。   According to the present invention, the protective filter that protects the water level sensor from the foreign matter in the condensed water has the function of a removal filter that removes the foreign matter in the condensed water supplied to the condensed water supply device. The protection filter that protects against foreign matter and the removal filter that removes foreign matter in the condensed water supplied to the condensed water supply device can be configured by one filter. Thereby, it becomes a simple structure and it becomes possible to reduce the work man-hour at the time of maintenance, such as cost and filter cleaning.

ところで、水位センサーを凝縮水中の異物から保護する保護フィルタに、凝縮水供給装置に供給される凝縮水中の異物を除去する除去フィルタの機能を持たせると、凝縮水供給装置の動作により、保護フィルタの内側の水位が保護フィルタの外側の水位より低くなる傾向があり、保護フィルタの網の目の大きさが小さくなるほど、または、保護フィルタの異物による詰まりが多くなるほど、保護フィルタの内側と外側の水位の差は大きくなり、凝縮水供給装置が動作を停止しても、保護フィルタの内側と外側の水位の差がなくなるまでに要する時間が長くなる。   By the way, if the protective filter that protects the water level sensor from foreign matter in the condensed water has the function of a removal filter that removes foreign matter in the condensed water supplied to the condensed water supply device, the protective filter is operated by the operation of the condensed water supply device. The water level inside the protective filter tends to be lower than the water level outside the protective filter, and the smaller the mesh size of the protective filter, or the more clogged with foreign matter in the protective filter, the more inside and outside the protective filter. The difference in water level becomes large, and even if the condensed water supply device stops operating, the time required until the difference in water level between the inside and outside of the protective filter disappears.

また、水位センサーは保護フィルタの内側の水位を検知(計測)するので、保護フィルタの網の目の大きさが小さくなるほど、または、保護フィルタの異物による詰まりが多くなるほど、凝縮水供給装置の動作中は、水位センサーによる水位検知(計測)により凝縮水タンクの凝縮水が実際よりも不足していると判断され、凝縮水タンクの凝縮水不足の検知後、直ちに凝縮水タンクに水道水を補給すると、凝縮水タンクに十分な量の凝縮水が貯まっているにもかかわらず凝縮水タンクに水道水が補給されてしまう可能性が高くなる。   In addition, the water level sensor detects (measures) the water level inside the protective filter, so the smaller the mesh size of the protective filter, or the more clogged by foreign matter in the protective filter, the more the operation of the condensed water supply device When the water level is detected (measured) by the water level sensor, it is determined that the condensate in the condensate tank is insufficient compared to the actual level. Even if a sufficient amount of condensed water is stored in the condensed water tank, there is a high possibility that tap water will be supplied to the condensed water tank.

そこで、給水弁を作動させるべき水位を検知した時点で、凝縮水供給装置の動作を停止させて所定時間待つことにより、保護フィルタへの異物詰まりで発生する保護フィルタの内外での水位差を解消または水位差を小さくし、凝縮水タンクへの水道水の不必要な給水を防止することができる。これにより純水器への負荷を低減することができ、必要なメンテナンスの間隔を広げることができる。   Therefore, when the water level at which the water supply valve should be activated is detected, the operation of the condensate supply device is stopped and the system waits for a predetermined time, thereby eliminating the water level difference between the inside and outside of the protective filter caused by clogging of the protective filter. Or a water level difference can be made small and the unnecessary water supply of the tap water to a condensed water tank can be prevented. As a result, the load on the deionizer can be reduced, and the necessary maintenance interval can be increased.

なお、給水弁を作動させるべき水位を検知した時点で、凝縮水供給装置の動作を停止させて所定時間待つ場合でも、純水器で生成された純水を純水タンクに貯え、純水タンクに貯えられた純水を水素生成装置に供給するように構成し、純水タンクに十分な量の純水を貯めていれば、水素生成装置への純水の供給が途絶える虞はない。   Even when the operation of the condensate supply device is stopped and waits for a predetermined time when the water level at which the water supply valve should be activated is detected, the pure water generated by the deionizer is stored in the deionized water tank. If the pure water stored in the tank is configured to be supplied to the hydrogen generator and a sufficient amount of pure water is stored in the pure water tank, there is no possibility that the supply of pure water to the hydrogen generator will be interrupted.

また、上記目的を達成するために、さらに別のもう一つの本発明は、水素生成装置より供給される還元剤ガスと空気供給装置より供給される酸化剤ガスとを用いて発電する燃料電池と、前記燃料電池より排出される反応後の還元剤ガスを凝縮して凝縮水を得る還元剤凝縮器と、前記還元剤凝縮器で得られた凝縮水を貯める還元剤凝縮水タンクと、前記燃料電池より排出される反応後の酸化剤ガスを凝縮して凝縮水を得る酸化剤凝縮器と、前記酸化剤凝縮器で得られた凝縮水を貯める酸化剤凝縮水タンクと、凝縮水を純水器に供給する凝縮水供給装置と、前記還元剤凝縮水タンクの水位を計測する還元剤水位センサーと、前記酸化剤凝縮水タンクの底部の排水口または前記排水口の近傍に設けられ前記凝縮水供給装置に供給される凝縮水中の異物を除去する除去フィルタと、前記酸化剤凝縮水タンクの前記排水口と前記還元剤凝縮水タンクの底部の排水口とを接続する排水経路と、前記排水経路に設置された排水弁と、前記排水弁と前記酸化剤凝縮水タンクの前記排水口との間の排水経路と前記凝縮水供給装置とを接続する凝縮水供給経路と、各装置を制御する制御器とを備え、前記還元剤凝縮水タンクは前記酸化剤凝縮水タンクよりも高い位置に配置され、前記制御器は、前記還元剤水位センサーにより前記還元剤凝縮水タンクの水位上昇を検知して前記排水弁を開き、前記排水弁の開から所定の時間経過後も前記還元剤凝縮水タンクの水位が低下しない場合は前記凝縮水供給装置を動作させて前記還元剤凝縮水タンクの排水を行うのである。   In order to achieve the above object, yet another aspect of the present invention provides a fuel cell that generates power using a reducing agent gas supplied from a hydrogen generator and an oxidant gas supplied from an air supply device. A reducing agent condenser for condensing the reducing agent gas after reaction discharged from the fuel cell to obtain condensed water, a reducing agent condensed water tank for storing condensed water obtained by the reducing agent condenser, and the fuel An oxidant condenser that condenses the oxidant gas after the reaction discharged from the battery to obtain condensed water, an oxidant condensate water tank that stores the condensed water obtained by the oxidant condenser, and pure water from the condensed water. A condensate water supply device for supplying to the vessel, a reducing agent water level sensor for measuring the water level of the reducing agent condensate water tank, and the condensate water provided near or near the drain outlet at the bottom of the oxidant condensate water tank Differences in condensed water supplied to the feeder A drainage filter connecting the drainage port of the oxidant condensate water tank and a drainage port at the bottom of the reducing agent condensate water tank, a drainage valve installed in the drainage channel, and the drainage A condensate water supply path connecting the drainage path between the valve and the drain outlet of the oxidant condensate water tank and the condensate water supply device; and a controller for controlling each device; The tank is disposed at a position higher than the oxidant condensate water tank, and the controller detects a rise in the water level of the reductant condensate water tank by the reductant water level sensor, opens the drain valve, If the water level of the reducing agent condensate water tank does not drop even after a predetermined time has elapsed since opening, the condensate water supply device is operated to drain the reducing agent condensate water tank.

本発明によれば、還元剤水位センサーにより還元剤凝縮水タンクの水位上昇を検知した場合に、還元剤凝縮水タンクの底部の排水口と酸化剤凝縮水タンクの底部の排水口とを接続する排水経路に設置された排水弁が開く。このとき、還元剤凝縮水タンクは酸化剤凝縮水タンクよりも高い位置に配置されているので、排水弁が開くと、還元剤凝縮水タンクの水位と酸化剤凝縮水タンクの水位は同じ水位になるように、還元剤凝縮水タンク内の凝縮水が酸化剤凝縮水タンク内に流れて還元剤凝縮水タンクの水位が低下していく。このとき、異物による除去フィルタの詰まりが多くなるほど、還元剤凝縮水タンクの水位が低下していく速度が遅くなる。そして、排水弁の開から所定の時間経過後も還元剤凝縮水タンクの水位が低下しない場合は凝縮水供給装置を動作させて還元剤凝縮水タンクの排水を行うので、除去フィルタへの異物詰まりにより発生する還元剤凝縮水タンクの排水不良を抑制することができる。   According to the present invention, when an increase in the level of the reducing agent condensate water tank is detected by the reducing agent water level sensor, the drain outlet at the bottom of the reducing agent condensate water tank and the drain outlet at the bottom of the oxidant condensate water tank are connected. The drain valve installed in the drainage channel opens. At this time, since the reducing agent condensate water tank is positioned higher than the oxidant condensate water tank, when the drain valve is opened, the water level of the reducing agent condensate water tank and the water level of the oxidant condensate water tank are the same. Thus, the condensed water in the reducing agent condensed water tank flows into the oxidizing agent condensed water tank, and the water level of the reducing agent condensed water tank decreases. At this time, the rate at which the water level of the reducing agent condensate water tank decreases decreases as the removal filter becomes clogged with foreign matter. If the water level in the reducing agent condensate water tank does not drop even after a predetermined time has elapsed since the drain valve was opened, the condensate water supply device is operated to drain the reducing agent condensate water tank. Therefore, it is possible to suppress the drainage failure of the reducing agent condensate water tank.

これにより、必要なメンテナンスの間隔を広げることができる。メンテナンスの間隔が十分な場合には、必要なメンテナンスの間隔を広げる代わりに、フィルタを小型化することが可能となり、燃料電池システムのコストやフィルタサイズの低減ができる。   Thereby, a necessary maintenance interval can be widened. When the maintenance interval is sufficient, the filter can be miniaturized instead of increasing the necessary maintenance interval, and the cost of the fuel cell system and the filter size can be reduced.

本発明によれば、凝縮水中のゴミなどの異物により除去フィルタに詰まりが生じた場合でも、凝縮水の供給量不足を凝縮水供給装置の供給能力を増加することで対応できる間は、燃料電池システムの運転を継続することができる。これにより、必要なメンテナンスの間隔を広げることが可能となり、燃料電池システムの設置における維持作業を軽減することができる。また、メンテナンスの間隔が十分な場合には、必要なメンテナンスの間隔を広げる代わりに、フィルタを小型化することが可能となり、燃料電池システムのコストやフィルタサイズの低減ができる。   According to the present invention, even when the removal filter is clogged with foreign matters such as dust in the condensed water, the fuel cell can be used as long as the supply capacity of the condensed water supply device can cope with the insufficient supply amount of the condensed water. System operation can be continued. This makes it possible to widen the necessary maintenance interval and reduce maintenance work in installing the fuel cell system. Further, when the maintenance interval is sufficient, the filter can be miniaturized instead of increasing the required maintenance interval, and the cost of the fuel cell system and the filter size can be reduced.

また、別の本発明によれば、水位センサーを凝縮水中の異物から保護する保護フィルタと凝縮水供給装置に供給される凝縮水中の異物を除去する除去フィルタとを一つのフィルタで構成することができる。これにより、単純な構造となり、コストやフィルタ清掃などのメンテナンス時の作業工数の低減が可能となる。また、凝縮水タンクへの水道水の不必要な給水を防止することができる。これにより純水器への負荷を低減することができ、必要なメンテナンスの間隔を広げることができる。   Further, according to another aspect of the present invention, the protection filter that protects the water level sensor from foreign matter in the condensed water and the removal filter that removes foreign matter in the condensed water supplied to the condensed water supply device can be configured by one filter. it can. Thereby, it becomes a simple structure and it becomes possible to reduce the work man-hour at the time of maintenance, such as cost and filter cleaning. In addition, unnecessary water supply to the condensed water tank can be prevented. As a result, the load on the deionizer can be reduced, and the necessary maintenance interval can be increased.

また、さらに別のもう一つの本発明によれば、除去フィルタへの異物詰まりにより発生する還元剤凝縮水タンクの排水不良を抑制することができるので、必要なメンテナンスの間隔を広げることができる。メンテナンスの間隔が十分な場合には、必要なメンテナンスの間隔を広げる代わりに、フィルタを小型化することが可能となり、燃料電池システムのコストやフィルタサイズの低減ができる。   According to still another aspect of the present invention, defective drainage of the reducing agent condensate water tank caused by clogging of foreign substances in the removal filter can be suppressed, so that necessary maintenance intervals can be widened. When the maintenance interval is sufficient, the filter can be miniaturized instead of increasing the necessary maintenance interval, and the cost of the fuel cell system and the filter size can be reduced.

本発明の実施の形態1による燃料電池システムのシステム構成図1 is a system configuration diagram of a fuel cell system according to Embodiment 1 of the present invention. 本発明の実施の形態2による燃料電池システムのシステム構成図System configuration diagram of a fuel cell system according to Embodiment 2 of the present invention 本発明の実施の形態3による燃料電池システムのシステム構成図System configuration diagram of a fuel cell system according to Embodiment 3 of the present invention

第1の発明は、原料と水とを用いて水素を含む還元剤ガスを生成する水素生成装置と、酸化剤ガスを供給する空気供給装置と、前記水素生成装置より供給される還元剤ガスと前記空気供給装置より供給される酸化剤ガスとを用いて発電する燃料電池と、前記燃料電池より排出される反応後の還元剤ガスまたは反応後の酸化剤ガスを凝縮して凝縮水を得る凝縮器と、前記凝縮器で得られた凝縮水を貯める凝縮水タンクと、前記凝縮水タンクに貯まった凝縮水を純水器に供給する凝縮水供給装置と、前記凝縮水供給装置に供給される凝縮水中の異物を除去する除去フィルタと、前記純水器で生成された純水を貯える純水タンクと、前記純水タンクに貯えられた純水を前記水素生成装置に供給する純水供給装置と、各装置を制御する制御器とを備え、前記制御器は、異物による前記除去フィルタの詰まり具合に応じて前記凝縮水供給装置の供給能力を増加することを特徴とする燃料電池システムである。   According to a first aspect of the present invention, there is provided a hydrogen generating device that generates a reducing agent gas containing hydrogen using a raw material and water, an air supply device that supplies an oxidizing gas, and a reducing agent gas that is supplied from the hydrogen generating device. A fuel cell that generates electricity using the oxidant gas supplied from the air supply device, and a condensation that condenses the reduced gas after reaction or the oxidant gas after reaction discharged from the fuel cell to obtain condensed water , A condensed water tank that stores the condensed water obtained by the condenser, a condensed water supply device that supplies the condensed water stored in the condensed water tank to a pure water device, and the condensed water supply device A removal filter that removes foreign matter in the condensed water, a pure water tank that stores pure water generated by the pure water device, and a pure water supply device that supplies the pure water stored in the pure water tank to the hydrogen generator And a controller for controlling each device. The controller is a fuel cell system, characterized in that to increase the supply capacity of the condensed water supplying apparatus in accordance with the clogging degree of the removal filter due to foreign matter.

第1の発明によれば、除去フィルタの詰まりに応じて凝縮水供給装置の供給能力が増加するので、凝縮水中のゴミなどの異物により除去フィルタに詰まりが生じた場合でも、凝縮水の供給量不足を凝縮水供給装置の供給能力を増加することで対応できる間は、燃料電池システムの運転を継続することができる。   According to the first aspect of the present invention, the supply capacity of the condensed water supply device increases in accordance with the clogging of the removal filter. Therefore, even when the removal filter is clogged with foreign matters such as dust in the condensed water, the supply amount of the condensed water While the shortage can be dealt with by increasing the supply capacity of the condensed water supply device, the operation of the fuel cell system can be continued.

これにより、必要なメンテナンスの間隔を広げることが可能となり、燃料電池システムの設置における維持作業を軽減することができる。また、メンテナンスの間隔が十分な場合には、必要なメンテナンスの間隔を広げる代わりに、フィルタを小型化することが可能となり、燃料電池システムのコストやフィルタサイズの低減ができる。   This makes it possible to widen the necessary maintenance interval and reduce maintenance work in installing the fuel cell system. Further, when the maintenance interval is sufficient, the filter can be miniaturized instead of increasing the required maintenance interval, and the cost of the fuel cell system and the filter size can be reduced.

第2の発明は、原料と水とを用いて水素を含む還元剤ガスを生成する水素生成装置と、酸化剤ガスを供給する空気供給装置と、前記水素生成装置より供給される還元剤ガスと前記空気供給装置より供給される酸化剤ガスとを用いて発電する燃料電池と、前記燃料電池より排出される反応後の還元剤ガスまたは反応後の酸化剤ガスを凝縮して凝縮水を得る凝縮器と、前記凝縮器で得られた凝縮水を貯める凝縮水タンクと、前記凝縮水タンクの排水口から流出した凝縮水を純水器に供給する凝縮水供給装置と、前記凝縮水タンクの排水口近傍の前記凝縮水タンク内に設けられ前記凝縮水タンクの水位を計測する水位センサーと、前記凝縮水タンクの前記排水口と前記水位センサーを囲むように前記凝縮水タンク内に設けられ前記凝縮水供給装置に供給される凝縮水中の異物を除去すると共に前記水位センサーを凝縮水中の異物から保護する保護フィルタと、前記凝縮水タンク内の前記凝縮水の不足時に開けられて水道水を前記凝縮水タンク内に補給する給水弁と、前記純水器で生成された純水を貯える純水タンクと、前記純水タンクに貯えられた純水を前記水素生成装置に供給する純水供給装置と、各装置を制御する制御器とを備え、前記制御器は、前記水位センサーにより前記凝縮水タンクの水位低下を検知後、前記凝縮水供給装置の動作を停止させ、さらに前記凝縮水タンクの水位低下を所定の時間継続して検知した場合に、前記給水弁により水道水を補給することを特徴とする燃料電池システムである。   According to a second aspect of the present invention, there is provided a hydrogen generator that generates a reducing agent gas containing hydrogen using a raw material and water, an air supply device that supplies an oxidant gas, and a reducing agent gas that is supplied from the hydrogen generator. A fuel cell that generates electricity using the oxidant gas supplied from the air supply device, and a condensation that condenses the reduced gas after reaction or the oxidant gas after reaction discharged from the fuel cell to obtain condensed water A condensate water tank for storing the condensate water obtained by the condenser, a condensate water supply device for supplying the condensate water flowing out from the drain port of the condensate water tank to the deionizer, and drainage of the condensate water tank A water level sensor provided in the condensate tank near the mouth for measuring the water level of the condensate tank; and the condensate tank provided in the condensate tank so as to surround the drain port and the water level sensor of the condensate tank. Water supply equipment A protective filter that removes foreign matter in the supplied condensed water and protects the water level sensor from foreign matter in the condensed water, and tap water that is opened when the condensed water in the condensed water tank is insufficient is placed in the condensed water tank. A water supply valve for replenishing, a pure water tank for storing pure water generated by the pure water device, a pure water supply device for supplying pure water stored in the pure water tank to the hydrogen generator, and each device A controller for controlling, after the water level sensor detects a decrease in the water level of the condensed water tank, the controller stops the operation of the condensed water supply device, and further reduces the water level of the condensed water tank to a predetermined level. In the fuel cell system, tap water is replenished by the water supply valve when it is detected continuously.

第2の発明によれば、水位センサーを凝縮水中の異物から保護する保護フィルタが、凝縮水供給装置に供給される凝縮水中の異物を除去する除去フィルタの機能を兼ね備えているので、水位センサーを凝縮水中の異物から保護する保護フィルタと凝縮水供給装置に供給される凝縮水中の異物を除去する除去フィルタとを一つのフィルタで構成することができる。これにより、単純な構造となり、コストやフィルタ清掃などのメンテナンス時の作業工数の低減が可能となる。   According to the second invention, the protective filter that protects the water level sensor from the foreign matter in the condensed water has the function of a removal filter that removes the foreign matter in the condensed water supplied to the condensed water supply device. The protection filter that protects against foreign matter in the condensed water and the removal filter that removes foreign matter in the condensed water supplied to the condensed water supply device can be configured as a single filter. Thereby, it becomes a simple structure and it becomes possible to reduce the work man-hour at the time of maintenance, such as cost and filter cleaning.

ところで、水位センサーを凝縮水中の異物から保護する保護フィルタに、凝縮水供給装置に供給される凝縮水中の異物を除去する除去フィルタの機能を持たせると、凝縮水供給装置の動作により、保護フィルタの内側の水位が保護フィルタの外側の水位より低くなる傾向があり、保護フィルタの網の目の大きさが小さくなるほど、または、保護フィルタの異物による詰まりが多くなるほど、保護フィルタの内側と外側の水位の差は大きくなり、凝縮水供給装置が動作を停止しても、保護フィルタの内側と外側の水位の差がなくなるまでに要する時間が長くなる。   By the way, if the protective filter that protects the water level sensor from foreign matter in the condensed water has the function of a removal filter that removes foreign matter in the condensed water supplied to the condensed water supply device, the protective filter is operated by the operation of the condensed water supply device. The water level inside the protective filter tends to be lower than the water level outside the protective filter, and the smaller the mesh size of the protective filter, or the more clogged with foreign matter in the protective filter, the more inside and outside the protective filter. The difference in water level becomes large, and even if the condensed water supply device stops operating, the time required until the difference in water level between the inside and outside of the protective filter disappears.

また、水位センサーは保護フィルタの内側の水位を検知(計測)するので、保護フィルタの網の目の大きさが小さくなるほど、または、保護フィルタの異物による詰まりが多くなるほど、凝縮水供給装置の動作中は、水位センサーによる水位検知(計測)により凝縮水タンクの凝縮水が実際よりも不足していると判断され、凝縮水タンクの凝縮水不足の検知後、直ちに凝縮水タンクに水道水を補給すると、凝縮水タンクに十分な量の凝縮水が貯まっているにもかかわらず凝縮水タンクに水道水が補給されてしまう可能性が高くなる。   In addition, the water level sensor detects (measures) the water level inside the protective filter, so the smaller the mesh size of the protective filter, or the more clogged by foreign matter in the protective filter, the more the operation of the condensed water supply device When the water level is detected (measured) by the water level sensor, it is determined that the condensate in the condensate tank is insufficient compared to the actual level. Even if a sufficient amount of condensed water is stored in the condensed water tank, there is a high possibility that tap water will be supplied to the condensed water tank.

そこで、給水弁を作動させるべき水位を検知した時点で、凝縮水供給装置の動作を停止させて所定時間待つことにより、保護フィルタへの異物詰まりで発生する保護フィルタの内外での水位差を解消または水位差を小さくし、凝縮水タンクへの水道水の不必要な給水を防止することができる。これにより純水器への負荷を低減することができ、必要なメンテナンスの間隔を広げることができる。   Therefore, when the water level at which the water supply valve should be activated is detected, the operation of the condensate supply device is stopped and the system waits for a predetermined time, thereby eliminating the water level difference between the inside and outside of the protective filter caused by clogging of the protective filter. Or a water level difference can be made small and the unnecessary water supply of the tap water to a condensed water tank can be prevented. As a result, the load on the deionizer can be reduced, and the necessary maintenance interval can be increased.

なお、給水弁を作動させるべき水位を検知した時点で、凝縮水供給装置の動作を停止させて所定時間待つ場合でも、純水器で生成された純水を純水タンクに貯え、純水タンクに貯えられた純水を水素生成装置に供給する構成としているので、純水タンクに十分な量の純水を貯めていれば、水素生成装置への純水の供給が途絶える虞はない。   Even when the operation of the condensate supply device is stopped and waits for a predetermined time when the water level at which the water supply valve should be activated is detected, the pure water generated by the deionizer is stored in the deionized water tank. Therefore, if a sufficient amount of pure water is stored in the pure water tank, there is no possibility that the supply of pure water to the hydrogen generator is interrupted.

第3の発明は、原料と水とを用いて水素を含む還元剤ガスを生成する水素生成装置と、酸化剤ガスを供給する空気供給装置と、前記水素生成装置より供給される還元剤ガスと前記空気供給装置より供給される酸化剤ガスとを用いて発電する燃料電池と、前記燃料電池より排出される反応後の還元剤ガスを凝縮して凝縮水を得る還元剤凝縮器と、前記還元剤凝縮器で得られた凝縮水を貯める還元剤凝縮水タンクと、前記燃料電池より排出される反応後の酸化剤ガスを凝縮して凝縮水を得る酸化剤凝縮器と、前記酸化剤凝縮器で得られた凝縮水を貯める酸化剤凝縮水タンクと、凝縮水を純水器に供給する凝縮水供給装置と、前記還元剤凝縮水タンクの水位を計測する還元剤水位センサーと、前記酸化剤凝縮水タンクの底部の排水口または前記排水口の近傍に設けられ前記凝縮水供給装置に供給される凝縮水中の異物を除去する除去フィルタと、前記酸化剤凝縮水タンクの前記排水口と前記還元剤凝縮水タンクの底部の排水口とを接続する排水経路と、前記排水経路に設置された排水弁と、前記排水弁と前記酸化剤凝縮水タンクの前記排水口との間の排水経路と前記凝縮水供給装置とを接続する凝縮水供給経路と、前記純水器で生成された純水を貯える純水タンクと、前記純水タンクに貯えられた純水を前記水素生成装置に供給する純水供給装置と、各装置を制御する制御器とを備え、前記還元剤凝縮水タンクは前記酸化剤凝縮水タンクよりも高い位置に配置され、前記制御器は、前記還元剤水位センサーにより前記還元剤凝縮水タンクの水位上昇を検知して前記排水弁を開き、前記排水弁の開から所定の時間経過後も前記還元剤凝縮水タンクの水位が低下しない場合は前記凝縮水供給装置を動作させて前記還元剤凝縮水タンクの排水を行うことを特徴とする燃料電池システムである。   According to a third aspect of the present invention, there is provided a hydrogen generator that generates a reducing agent gas containing hydrogen using a raw material and water, an air supply device that supplies an oxidant gas, and a reducing agent gas that is supplied from the hydrogen generator. A fuel cell that generates electricity using an oxidant gas supplied from the air supply device; a reducing agent condenser that condenses the reducing agent gas after reaction discharged from the fuel cell to obtain condensed water; and the reduction A reducing agent condensed water tank for storing condensed water obtained by the oxidizing agent condenser, an oxidizing agent condenser for condensing the oxidizing gas after reaction discharged from the fuel cell to obtain condensed water, and the oxidizing agent condenser An oxidant condensate water tank that stores the condensate water obtained in step 1, a condensate supply device that supplies the condensate water to a deionizer, a reductant level sensor that measures the water level of the reductant condensate water tank, and the oxidant Drain port at the bottom of the condensate tank or the drain A removal filter for removing foreign matter in the condensed water supplied to the condensate water supply device and the drain port of the oxidant condensate water tank and the drain port at the bottom of the reducing agent condensate water tank. A condensate water supply path for connecting the condensate water supply device and a drainage path between the drainage valve installed in the drainage path, the drainage valve and the drainage port of the oxidizer condensate water tank A pure water tank that stores the pure water generated by the pure water device, a pure water supply device that supplies the pure water stored in the pure water tank to the hydrogen generator, and a controller that controls each device The reducing agent condensate water tank is disposed at a position higher than the oxidant condensate water tank, and the controller detects an increase in the water level of the reducing agent condensate water tank by the reducing agent water level sensor. Open the drain valve and the drain When the water level of the reducing agent condensate water tank does not drop even after a predetermined time has elapsed since the opening of the fuel cell system, the condensate water supply device is operated to drain the reducing agent condensate water tank. is there.

第3の発明によれば、還元剤水位センサーにより還元剤凝縮水タンクの水位上昇を検知した場合に、還元剤凝縮水タンクの底部の排水口と酸化剤凝縮水タンクの底部の排水口とを接続する排水経路に設置された排水弁が開く。このとき、還元剤凝縮水タンクは酸化剤凝縮水タンクよりも高い位置に配置されているので、排水弁が開くと、還元剤凝縮水タンクの水位と酸化剤凝縮水タンクの水位は同じ水位になるように、還元剤凝縮水タンク内の凝縮水が酸化剤凝縮水タンク内に流れて還元剤凝縮水タンクの水位が低下していく。このとき、異物による除去フィルタの詰まりが多くなるほど、還元剤凝縮水タンクの水位が低下していく速度が遅くなる。そして、排水弁の開から所定の時間経過後も還元剤凝縮水タンクの水位が低下しない場合は凝縮水供給装置を動作させて還元剤凝縮水タンクの排水を行うので、除去フィルタへの異物詰まりにより発生する還元剤凝縮水タンクの排水不良を抑制することができる。   According to the third invention, when the reducing agent water level sensor detects an increase in the water level of the reducing agent condensate water tank, the drain outlet at the bottom of the reducing agent condensate water tank and the drain outlet at the bottom of the oxidant condensate water tank are provided. The drain valve installed in the drainage path to be connected opens. At this time, since the reducing agent condensate water tank is positioned higher than the oxidant condensate water tank, when the drain valve is opened, the water level of the reducing agent condensate water tank and the water level of the oxidant condensate water tank are the same. Thus, the condensed water in the reducing agent condensed water tank flows into the oxidizing agent condensed water tank, and the water level of the reducing agent condensed water tank decreases. At this time, the rate at which the water level of the reducing agent condensate water tank decreases decreases as the removal filter becomes clogged with foreign matter. If the water level in the reducing agent condensate water tank does not drop even after a predetermined time has elapsed since the drain valve was opened, the condensate water supply device is operated to drain the reducing agent condensate water tank. Therefore, it is possible to suppress the drainage failure of the reducing agent condensate water tank.

これにより、必要なメンテナンスの間隔を広げることができる。メンテナンスの間隔が十分な場合には、必要なメンテナンスの間隔を広げる代わりに、フィルタを小型化することが可能となり、燃料電池システムのコストやフィルタサイズの低減ができる。   Thereby, a necessary maintenance interval can be widened. When the maintenance interval is sufficient, the filter can be miniaturized instead of increasing the necessary maintenance interval, and the cost of the fuel cell system and the filter size can be reduced.

以下、本発明の燃料電池システムの実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Embodiments of a fuel cell system according to the present invention will be described below with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における燃料電池システムを示す構成図である。図1に示すように、本実施の形態における燃料電池システムは、燃料電池1と、燃料電池1に接続され還元剤ガスを供給する還元剤ガス供給経路2と、燃料電池1に接続され酸化剤ガスを供給する酸化剤ガス供給経路3と、還元剤ガス供給経路2に接続され水素を含有した還元剤ガスを生成する水素生成装置4と、酸化剤ガス供給経路3に接続され酸化剤ガスとして空気を供給する空気供給装置5と、燃料電池1で反応後の還元剤ガスを排気する還元剤ガス排気経路6と、燃料電池1で反応後の酸化剤ガスを排気する酸化剤ガス排気経路7と、酸化剤ガス排気経路7に接続され反応後の酸化剤ガス中の水分を凝縮して回収する酸化剤凝縮器8と酸化剤凝縮水タンク9と、純水器10と、純水器10に凝縮水を供給する凝縮水供給装置11と、酸化剤凝縮水タンク9の底部の排水口から凝縮水供給装置11を経て純水器10に接続された凝縮水供給経路12と、純水器10に接続され純水を貯える純水タンク13に至る純水経路14と、純水タンク13の水位を検知する純水水位センサー15と、純水タンク13より純水を水素生成装置4に供給する純水供給装置16および純水供給経路17と、酸化剤凝縮水タンク9の底部の排水口と凝縮水供給装置11との間の凝縮水供給経路12に設置された除去フィルタ18と、制御器19とを備えている。
(Embodiment 1)
FIG. 1 is a configuration diagram showing a fuel cell system according to Embodiment 1 of the present invention. As shown in FIG. 1, the fuel cell system according to the present embodiment includes a fuel cell 1, a reducing agent gas supply path 2 that is connected to the fuel cell 1 and supplies a reducing agent gas, and an oxidant that is connected to the fuel cell 1. An oxidant gas supply path 3 for supplying gas, a hydrogen generator 4 connected to the reductant gas supply path 2 for generating a reductant gas containing hydrogen, and an oxidant gas connected to the oxidant gas supply path 3 An air supply device 5 that supplies air, a reducing agent gas exhaust path 6 that exhausts the reducing agent gas after reaction in the fuel cell 1, and an oxidant gas exhaust path 7 that exhausts the oxidant gas after reaction in the fuel cell 1. And an oxidant condenser 8 connected to the oxidant gas exhaust path 7 for condensing and recovering moisture in the oxidant gas after reaction, an oxidant condensed water tank 9, a pure water device 10, and a pure water device 10 A condensed water supply device 11 for supplying condensed water to The condensed water supply path 12 connected to the deionizer 10 from the drain outlet at the bottom of the condensing agent condensate tank 9 through the condensed water supply device 11, and the pure water tank 13 connected to the deionizer 10 for storing pure water. A pure water path 14, a pure water level sensor 15 that detects the water level of the pure water tank 13, a pure water supply device 16 that supplies pure water from the pure water tank 13 to the hydrogen generator 4, and a pure water supply path 17. The removal filter 18 installed in the condensed water supply path | route 12 between the drain outlet of the bottom part of the oxidizing agent condensed water tank 9 and the condensed water supply apparatus 11 and the controller 19 are provided.

以上のように構成された本実施の形態の燃料電池システムについて、以下、その動作を説明する。   The operation of the fuel cell system of the present embodiment configured as described above will be described below.

燃料電池1では、水素生成装置4により還元剤ガス供給経路2から供給された水素を含有した還元剤ガスと、空気供給装置5により酸化剤ガス供給経路3から供給された酸素を含む空気などの酸化剤ガスとの電気化学反応により発電を行ない、発電に利用された後の還元剤ガスおよび酸化剤ガスを還元剤ガス排気経路6および酸化剤ガス排気経路7からそれぞれ排気する。   In the fuel cell 1, such as air containing a reducing agent gas containing hydrogen supplied from the reducing agent gas supply path 2 by the hydrogen generation device 4 and oxygen supplied from the oxidant gas supply path 3 by the air supply device 5. Power generation is performed by an electrochemical reaction with the oxidant gas, and the reductant gas and the oxidant gas after being used for power generation are exhausted from the reductant gas exhaust path 6 and the oxidant gas exhaust path 7, respectively.

水素生成装置4では、都市ガスやプロパンガス、灯油などの炭化水素系原料から水蒸気改質反応などにより水素を含有した還元剤ガスを生成し燃料電池1へ供給する。燃料電池1としては、主に固体高分子形やリン酸形などが用いられ、空気供給装置5としては、主に往復ポンプやターボファン、スクロールファンなどが用いられる。   In the hydrogen generator 4, a reducing agent gas containing hydrogen is generated from a hydrocarbon-based raw material such as city gas, propane gas, or kerosene by a steam reforming reaction or the like and supplied to the fuel cell 1. As the fuel cell 1, a solid polymer type or a phosphoric acid type is mainly used, and as the air supply device 5, a reciprocating pump, a turbo fan, a scroll fan or the like is mainly used.

燃料電池1で反応に利用された後の酸化剤ガスは、酸化剤ガス排気経路7に設置された酸化剤凝縮器8においてガス中の蒸気が凝縮されることで気液分離され、酸化剤凝縮水タンク9には凝縮水が貯えられる。酸化剤凝縮器8としては、主にプレート式熱交換器や二重管式熱交換器などが用いられる。   The oxidant gas after being used for the reaction in the fuel cell 1 is separated into gas and liquid by the vapor in the gas being condensed in the oxidant condenser 8 installed in the oxidant gas exhaust path 7 to condense the oxidant. Condensed water is stored in the water tank 9. As the oxidant condenser 8, a plate heat exchanger, a double tube heat exchanger, or the like is mainly used.

酸化剤凝縮水タンク9に貯えられた凝縮水は、ゴミなどの異物を凝縮水供給経路12に設置された除去フィルタ18で除去した後、凝縮水供給装置11にて純水器10に送られ、各種イオンなどが除去されて純水タンク13に貯えられる。凝縮水供給装置11としては、主に遠心ポンプや斜流ポンプ、往復ポンプなどが用いられ、純水器10としては、主にイオン交換樹脂や逆浸透膜などが用いられる。   The condensed water stored in the oxidant condensed water tank 9 removes foreign matters such as dust with a removal filter 18 installed in the condensed water supply path 12 and then is sent to the deionizer 10 by the condensed water supply device 11. Various ions are removed and stored in the pure water tank 13. As the condensed water supply device 11, a centrifugal pump, a mixed flow pump, a reciprocating pump, or the like is mainly used. As the pure water device 10, an ion exchange resin, a reverse osmosis membrane, or the like is mainly used.

純水タンク13に貯えられた純水は、純水供給装置16により純水供給経路17を経て水素生成装置4に供給され、水蒸気改質反応に利用される。純水供給装置16としては、主に遠心ポンプや斜流ポンプ、往復ポンプなどが用いられる。   The pure water stored in the pure water tank 13 is supplied to the hydrogen generator 4 via the pure water supply path 17 by the pure water supply device 16 and used for the steam reforming reaction. As the pure water supply device 16, a centrifugal pump, a mixed flow pump, a reciprocating pump, or the like is mainly used.

燃料電池1で発電した電力は、電力変換装置(図示せず)で直流電力から交流電力に変換および電圧調整を行ない、電灯や各種電気機器などの電力負荷に供給される。電力負荷は、燃料電池システムからの出力電力とともに火力発電所などの電力会社の商用系統と接続され、必要に応じて両者の電力を使用している。これら各機器の制御は制御器19により実施され、温度やガスの供給量、発電量などが制御される。   The electric power generated by the fuel cell 1 is converted from direct current power to alternating current power by a power conversion device (not shown) and the voltage is adjusted, and is supplied to a power load such as an electric lamp or various electric devices. The power load is connected to the commercial power system of an electric power company such as a thermal power plant together with the output power from the fuel cell system, and uses both powers as necessary. These devices are controlled by the controller 19 to control temperature, gas supply amount, power generation amount, and the like.

制御器19は、純水水位センサー15により純水タンク13の水位を監視し、水素生成装置4での利用による純水の水位低下を検知して、凝縮水供給装置11を動作させ純水タンク13の水位を所定内に維持する。純水水位センサー15としては、主にフロート式センサーや光学界面式センサー、超音波式センサーなどが用いられる。   The controller 19 monitors the water level of the pure water tank 13 with the pure water level sensor 15, detects a decrease in the level of pure water due to use in the hydrogen generator 4, and operates the condensed water supply device 11 to operate the pure water tank. The 13 water level is maintained within a predetermined range. As the pure water level sensor 15, a float sensor, an optical interface sensor, an ultrasonic sensor, or the like is mainly used.

さらに制御器19は、凝縮水供給装置11を動作させてから所定時間内に純水タンク13の水位が回復しない場合には、凝縮水中のゴミなどの異物により除去フィルタ18が詰まっている可能性があるため、凝縮水供給装置11の供給能力が増加するように凝縮水供給装置11に制御電圧や、制御周波数などを増加した指示を実施する。   Further, when the water level in the pure water tank 13 does not recover within a predetermined time after the operation of the condensed water supply device 11, the controller 19 may cause the removal filter 18 to be clogged with foreign matters such as dust in the condensed water. Therefore, an instruction to increase the control voltage, the control frequency, etc. is executed to the condensed water supply device 11 so that the supply capacity of the condensed water supply device 11 is increased.

本実施の形態の燃料電池システムは、原料と水とを用いて水素を含む還元剤ガスを生成する水素生成装置4と、酸化剤ガスを供給する空気供給装置5と、水素生成装置4より供給される還元剤ガスと空気供給装置5より供給される酸化剤ガスとを用いて発電する燃料電池1と、燃料電池1より排出される反応後の酸化剤ガスを凝縮して凝縮水を得る酸化剤凝縮器8と、酸化剤凝縮器8で得られた凝縮水を貯める酸化剤凝縮水タンク9と、酸化剤凝縮水タンク9に貯まった凝縮水を純水器10に供給する凝縮水供給装置11と、凝縮水供給装置11に供給される凝縮水中の異物を除去する除去フィルタ18と、純水器10で生成された純水を貯える純水タンク13と、純水タンク13に貯えられた純水を水素生成装置4に供給する純水供給装置16と、各装置を制御する制御器19とを備え、制御器19は、異物による除去フィルタ18の詰まり具合に応じて凝縮水供給装置11の供給能力を増加するものであり、除去フィルタ18の詰まりに応じて凝縮水供給装置11の供給能力が増加するので、凝縮水中のゴミなどの異物により除去フィルタ18に詰まりが生じた場合でも、凝縮水の供給量不足を凝縮水供給装置11の供給能力を増加することで対応できる間は、燃料電池システムの運転を継続することができる。   The fuel cell system of the present embodiment is supplied from a hydrogen generator 4 that generates a reducing agent gas containing hydrogen using raw materials and water, an air supply device 5 that supplies an oxidant gas, and a hydrogen generator 4. Fuel cell 1 that generates electric power using the reducing agent gas that is generated and the oxidant gas that is supplied from the air supply device 5, and the oxidation that condenses the oxidant gas after the reaction discharged from the fuel cell 1 to obtain condensed water The condensate condenser 8, the oxidant condensate water tank 9 that stores the condensate obtained by the oxidant condenser 8, and the condensed water supply device that supplies the condensate water stored in the oxidant condensate water tank 9 to the pure water device 10 11, a removal filter 18 for removing foreign matter in the condensed water supplied to the condensed water supply device 11, a pure water tank 13 for storing pure water generated by the pure water device 10, and a pure water tank 13. Pure water supply device for supplying pure water to the hydrogen generator 4 6 and a controller 19 that controls each device. The controller 19 increases the supply capacity of the condensed water supply device 11 according to the degree of clogging of the removal filter 18 by foreign matter. Since the supply capacity of the condensed water supply device 11 increases in accordance with the clogging, even if the removal filter 18 is clogged with foreign matter such as dust in the condensed water, the supply of the condensed water supply device 11 will indicate that the supply amount of the condensed water is insufficient. The fuel cell system can continue to operate as long as the capacity can be increased.

これにより、必要なメンテナンスの間隔を広げることが可能となり、燃料電池システムの設置における維持作業を軽減することができる。また、メンテナンスの間隔が十分な場合には、必要なメンテナンスの間隔を広げる代わりに、フィルタを小型化することが可能となり、燃料電池システムのコストやフィルタサイズの低減ができる。   This makes it possible to widen the necessary maintenance interval and reduce maintenance work in installing the fuel cell system. Further, when the maintenance interval is sufficient, the filter can be miniaturized instead of increasing the required maintenance interval, and the cost of the fuel cell system and the filter size can be reduced.

なお、凝縮器および凝縮水タンクとして、本実施の形態では、酸化剤ガスから水を回収する方式について例示しているが、この水回収は酸化剤ガスからに限らず、還元剤ガスからの回収を採用した装置であっても良い。   In this embodiment, as the condenser and the condensed water tank, a system for recovering water from the oxidant gas is illustrated, but this water recovery is not limited to the oxidant gas but is recovered from the reducing agent gas. The apparatus which employ | adopted.

(実施の形態2)
図2は本発明の実施の形態2における燃料電池システムを示す構成図である。なお、実施の形態1と同様の構成要素については、同一符号を付与し、その説明を省略する。
(Embodiment 2)
FIG. 2 is a block diagram showing a fuel cell system according to Embodiment 2 of the present invention. In addition, the same code | symbol is provided about the component similar to Embodiment 1, and the description is abbreviate | omitted.

図2に示すように、本実施の形態における燃料電池システムは、酸化剤凝縮水タンク9の底部排水口の上方で酸化剤凝縮水タンク9内に設けられ酸化剤凝縮水タンク9の水位を検知(計測)する凝縮水水位センサー20と、酸化剤凝縮水タンク9の底部排水口と凝縮水水位センサー20の周囲を囲むように設けられ凝縮水水位センサー20を凝縮水中の異物から保護する保護フィルタ21と、酸化剤凝縮水タンク9に接続され水道配管より水道水を供給する給水経路22および給水経路22を開閉する給水弁23とをさらに備えている。保護フィルタ21は、実施の形態1における除去フィルタ18の機能も兼ね備えており、本実施の形態では、除去フィルタを廃している。   As shown in FIG. 2, the fuel cell system in the present embodiment detects the water level of the oxidant condensate water tank 9 provided in the oxidant condensate water tank 9 above the bottom drain outlet of the oxidant condensate water tank 9. (Measurement) Condensate water level sensor 20, a protective filter provided to surround the condensate water level sensor 20 and the bottom drain outlet of the oxidant condensate water tank 9 and protect the condensate water level sensor 20 from foreign substances in the condensed water 21, a water supply path 22 that is connected to the oxidant condensate water tank 9 and supplies tap water from a water pipe, and a water supply valve 23 that opens and closes the water supply path 22. The protection filter 21 also has the function of the removal filter 18 in the first embodiment, and the removal filter is abolished in the present embodiment.

以上のように構成された本実施の形態の燃料電池システムについて、以下、その動作を説明する。   The operation of the fuel cell system of the present embodiment configured as described above will be described below.

制御器19は、凝縮水水位センサー20により酸化剤凝縮水タンク9の水位を監視し、凝縮水供給装置11の動作による凝縮水の水位低下を検知して、給水弁23を開動作させ酸化剤凝縮水タンク9の水位を所定内に維持する。   The controller 19 monitors the water level of the oxidant condensate water tank 9 by means of the condensate water level sensor 20, detects a decrease in the water level of the condensate water due to the operation of the condensate water supply device 11, and opens the water supply valve 23 to cause the oxidant to open. The water level of the condensed water tank 9 is maintained within a predetermined range.

まず、凝縮水水位センサー23により給水弁23を作動させるべき水位を検知した後、凝縮水供給装置11が動作中であれば動作を停止させ、所定時間経過後に再び凝縮水水位センサー23による水位が給水弁23を作動させるべき水位である場合のみ、給水弁23により給水を実施する。凝縮水水位センサー20としては、主にフロート式センサーや光学界面式センサー、超音波式センサーなどが用いられる。   First, after detecting the water level at which the water supply valve 23 should be operated by the condensed water level sensor 23, the operation is stopped if the condensed water supply device 11 is in operation, and the water level by the condensed water level sensor 23 is again measured after a predetermined time. Water supply is performed by the water supply valve 23 only when the water level is to activate the water supply valve 23. As the condensed water level sensor 20, a float sensor, an optical interface sensor, an ultrasonic sensor, or the like is mainly used.

本実施の形態における保護フィルタ21は、凝縮水供給装置11に供給される凝縮水中の異物を除去する機能を有しているため、凝縮水供給装置11の動作中は、保護フィルタ21の内側の水位が保護フィルタ21の外側の水位より低くなる傾向があり、保護フィルタ21の網の目の大きさが小さくなるほど、または、保護フィルタ21の異物による詰まりが多くなるほど、保護フィルタ21の内側と外側の水位の差は大きくなり、凝縮水供給装置11の動作が停止してから、保護フィルタ21の内側と外側の水位の差がなくなるまでに要する時間が長くなる。   Since the protective filter 21 in the present embodiment has a function of removing foreign matter in the condensed water supplied to the condensed water supply device 11, the protective filter 21 is disposed inside the protective filter 21 during the operation of the condensed water supply device 11. The water level tends to be lower than the water level outside the protective filter 21, and the smaller the mesh size of the protective filter 21, or the more clogging of the protective filter 21 due to foreign matter, the more inside and outside the protective filter 21. The difference in the water level increases, and the time required from when the operation of the condensed water supply device 11 stops until the difference between the water levels inside and outside the protective filter 21 disappears becomes longer.

また、凝縮水水位センサー20は保護フィルタ21の内側の水位を検知(計測)するので、保護フィルタ21の網の目の大きさが小さくなるほど、または、保護フィルタ21の異物による詰まりが多くなるほど、凝縮水供給装置11の動作中は、凝縮水水位センサー20による水位検知(計測)により酸化剤凝縮水タンク9の凝縮水が実際よりも不足していると判断され、酸化剤凝縮水タンク9の凝縮水不足の検知後、直ちに酸化剤凝縮水タンク9に水道水を補給すると、酸化剤凝縮水タンク9に十分な量の凝縮水が貯まっているにもかかわらず酸化剤凝縮水タンク9に水道水が補給されてしまう可能性が高くなる。   Further, since the condensed water level sensor 20 detects (measures) the water level inside the protective filter 21, the smaller the mesh size of the protective filter 21, or the greater the clogging of the protective filter 21 with foreign matter, During the operation of the condensed water supply device 11, it is determined by the water level detection (measurement) by the condensed water level sensor 20 that the condensed water in the oxidant condensed water tank 9 is insufficient compared to the actual condition. If tap water is supplied to the oxidant condensate water tank 9 immediately after the condensate water shortage is detected, the tap water in the oxidant condensate water tank 9 is stored even though a sufficient amount of condensate is stored in the oxidant condensate water tank 9. Is likely to be replenished.

そこで、凝縮水水位センサー20により給水弁23を作動させるべき水位を検知した時点で、凝縮水供給装置11の動作を停止させて所定時間待つことにより、保護フィルタ21への異物詰まりで発生する保護フィルタ21の内外での水位差を解消または水位差を小さくし、不必要な給水を防止することができる。   Therefore, when the condensate water level sensor 20 detects the water level at which the water supply valve 23 should be activated, the operation of the condensate supply device 11 is stopped and a predetermined time is waited, thereby protecting the protective filter 21 due to foreign matter clogging. The difference in water level between the inside and outside of the filter 21 can be eliminated or the water level difference can be reduced, and unnecessary water supply can be prevented.

なお、給水弁23を作動させるべき水位を検知した時点で、凝縮水供給装置11の動作を停止させて所定時間待つ場合でも、純水器10で生成された純水を純水タンク13に貯え、純水タンク13に貯えられた純水を水素生成装置4に供給する構成としているので、純水タンク13に十分な量の純水を貯めていれば、水素生成装置4への純水の供給が途絶える虞はない。   Even when the operation of the condensed water supply device 11 is stopped and a predetermined time is waited when the water level at which the water supply valve 23 should be activated is detected, the pure water generated by the deionizer 10 is stored in the pure water tank 13. Since the pure water stored in the pure water tank 13 is supplied to the hydrogen generator 4, if a sufficient amount of pure water is stored in the pure water tank 13, the pure water to the hydrogen generator 4 is stored. There is no risk of supply disruption.

本実施の形態の燃料電池システムは、原料と水とを用いて水素を含む還元剤ガスを生成する水素生成装置4と、酸化剤ガスを供給する空気供給装置5と、水素生成装置4より供給される還元剤ガスと空気供給装置5より供給される酸化剤ガスとを用いて発電する燃料電池1と、燃料電池1より排出される反応後の酸化剤ガスを凝縮して凝縮水を得る酸化剤凝縮器8と、酸化剤凝縮器8で得られた凝縮水を貯める酸化剤凝縮水タンク9と、酸化剤凝縮水タンク9の底部の排水口から流出した凝縮水を純水器10に供給する凝縮水供給装置11と、酸化剤凝縮水タンク9の排水口近傍の酸化剤凝縮水タンク9内に設けられ酸化剤記凝縮水タンク9の水位を計測する凝縮水水位センサー20と、酸化剤凝縮水タンク9の底部の排水口と凝縮水水位センサー20を囲むように酸化剤凝縮水タンク9内に設けられ凝縮水供給装置11に供給される凝縮水中の異物を除去すると共に凝縮水水位センサー20を凝縮水中の異物から保護する保護フィルタ21と、酸化剤凝縮水タンク9内の凝縮水の不足時に開けられて水道水を酸化剤凝縮水タンク9内に補給する給水弁23と、純水器10で生成された純水を貯える純水タンク13と、純水タンク13に貯えられた純水を水素生成装置4に供給する純水供給装置16と、各装置を制御する制御器19とを備え、制御器19は、凝縮水水位センサー20により酸化剤凝縮水タンク9の水位低下を検知後、凝縮水供給装置11の動作を停止させ、さらに酸化剤凝縮水タンク9の水位低下を所定の時間継続して検知した場合に、給水弁23により水道水を補給するものである。   The fuel cell system of the present embodiment is supplied from a hydrogen generator 4 that generates a reducing agent gas containing hydrogen using raw materials and water, an air supply device 5 that supplies an oxidant gas, and a hydrogen generator 4. Fuel cell 1 that generates electric power using the reducing agent gas that is generated and the oxidant gas that is supplied from the air supply device 5, and the oxidation that condenses the oxidant gas after the reaction discharged from the fuel cell 1 to obtain condensed water The oxidant condenser 8, the oxidant condensate water tank 9 that stores the condensate obtained by the oxidant condenser 8, and the condensate water that flows out from the drain outlet at the bottom of the oxidant condensate water tank 9 are supplied to the pure water device 10 A condensate water supply device 11, a condensate water level sensor 20 provided in the oxidant condensate water tank 9 in the vicinity of the drain of the oxidant condensate water tank 9 for measuring the water level of the oxidant condensate water tank 9, an oxidant The drain outlet at the bottom of the condensate tank 9 and the condensate water level A protective filter 21 provided in the oxidant condensed water tank 9 so as to surround the sensor 20 and removing foreign matter in the condensed water supplied to the condensed water supply device 11 and protecting the condensed water level sensor 20 from foreign matter in the condensed water; A water supply valve 23 that is opened when the condensate in the oxidant condensate water tank 9 is insufficient, and replenishes tap water into the oxidant condensate water tank 9, and a pure water tank that stores pure water generated by the deionizer 10. 13, a pure water supply device 16 that supplies the pure water stored in the pure water tank 13 to the hydrogen generator 4, and a controller 19 that controls each device. The controller 19 includes a condensed water level sensor 20. After detecting the water level drop of the oxidant condensate water tank 9, the operation of the condensate water supply device 11 is stopped, and when the water level drop of the oxidant condensate water tank 9 is continuously detected for a predetermined time, the water supply valve 23 Tap water It is intended to supply.

本実施の形態の燃料電池システムによれば、凝縮水水位センサー20を凝縮水中の異物から保護する保護フィルタ21が、凝縮水供給装置11に供給される凝縮水中の異物を除去する除去フィルタの機能を兼ね備えているので、凝縮水水位センサー20を凝縮水中の異物から保護する保護フィルタと凝縮水供給装置11に供給される凝縮水中の異物を除去する除去フィルタとを一つのフィルタで構成することができる。これにより、単純な構造となり、コストやフィルタ清掃などのメンテナンス時の作業工数の低減が可能となる。   According to the fuel cell system of the present embodiment, the protective filter 21 that protects the condensed water level sensor 20 from foreign matter in the condensed water removes the foreign matter in the condensed water supplied to the condensed water supply device 11. Therefore, the protection filter that protects the condensed water level sensor 20 from foreign matter in the condensed water and the removal filter that removes foreign matter in the condensed water supplied to the condensed water supply device 11 can be configured as a single filter. it can. Thereby, it becomes a simple structure and it becomes possible to reduce the work man-hour at the time of maintenance, such as cost and filter cleaning.

さらに、給水弁23を作動させるべき水位を検知した時点で、凝縮水供給装置11の動作を停止させて所定時間待つことにより、保護フィルタ21への異物詰まりで発生する保護フィルタ21の内外での水位差を解消または水位差を小さくし、酸化剤凝縮水タンク9への水道水の不必要な給水を防止することができる。これにより純水器10への負荷を低減することができ、必要なメンテナンスの間隔を広げることができる。   Furthermore, when the water level at which the water supply valve 23 is to be operated is detected, the operation of the condensed water supply device 11 is stopped and a predetermined time is waited. The water level difference can be eliminated or the water level difference can be reduced, and unnecessary water supply to the oxidant condensate water tank 9 can be prevented. Thereby, the load to the deionizer 10 can be reduced, and the necessary maintenance interval can be widened.

なお、凝縮器および凝縮水タンクとして、本実施の形態では、酸化剤ガスから水を回収する方式について例示しているが、この水回収は酸化剤ガスからに限らず、還元剤ガスからの回収を採用した装置であっても良い。   In this embodiment, as the condenser and the condensed water tank, a system for recovering water from the oxidant gas is illustrated, but this water recovery is not limited to the oxidant gas but is recovered from the reducing agent gas. The apparatus which employ | adopted.

(実施の形態3)
図3は本発明の実施の形態3における燃料電池システムを示す構成図である。なお、実施の形態1または実施の形態2と同様の構成要素については、同一符号を付与し、その説明を省略する。
(Embodiment 3)
FIG. 3 is a block diagram showing a fuel cell system according to Embodiment 3 of the present invention. In addition, the same code | symbol is provided about the component similar to Embodiment 1 or Embodiment 2, and the description is abbreviate | omitted.

図3に示すように、本実施の形態における燃料電池システムは、還元剤ガス排気経路6に接続され反応後の還元剤ガス中の水分を凝縮して回収する還元剤凝縮器24と還元剤凝縮水タンク25と、還元剤凝縮水タンク25の水位を検知する還元剤水位センサー26と、還元剤凝縮水タンク25の底部排水口と酸化剤凝縮水タンク9の底部排水口とを接続する排水経路27と、排水経路27に設置された排水弁28とを備え、凝縮水供給経路12が排水弁28と酸化剤凝縮水タンク9の底部排水口との間の排水経路27に接続されている。   As shown in FIG. 3, the fuel cell system according to the present embodiment is connected to the reducing agent gas exhaust path 6 and condenses and recovers the moisture in the reducing agent gas after the reaction, and the reducing agent condensation. A drainage path that connects the water tank 25, the reducing agent water level sensor 26 that detects the water level of the reducing agent condensate water tank 25, and the bottom drain port of the reducing agent condensate water tank 25 and the bottom drain port of the oxidant condensate water tank 9. 27 and a drain valve 28 installed in the drain path 27, and the condensed water supply path 12 is connected to the drain path 27 between the drain valve 28 and the bottom drain port of the oxidant condensed water tank 9.

以上のように構成された本実施の形態の燃料電池システムについて、以下、その動作を説明する。   The operation of the fuel cell system of the present embodiment configured as described above will be described below.

制御器19は、還元剤水位センサー26により還元剤凝縮水タンク25の水位を監視し、還元剤凝縮器24で回収された凝縮水の水位上昇を検知して、排水弁28を開き還元剤凝縮水タンク25の水位を所定内に維持する。   The controller 19 monitors the water level of the reducing agent condensate water tank 25 with the reducing agent water level sensor 26, detects the rise in the water level of the condensed water collected by the reducing agent condenser 24, opens the drain valve 28, and condenses the reducing agent. The water level of the water tank 25 is maintained within a predetermined range.

まず、還元剤水位センサー26により排水弁28を作動させるべき水位を検知した後、排水弁28を開く。所定時間経過後に再び還元剤水位センサー26による水位が排水弁28を作動させるべき水位である場合には、凝縮水供給装置11を動作させて還元剤凝縮水タンク25の排水を実施する。還元剤水位センサー26としては、主にフロート式センサーや光学界面式センサー、超音波式センサーなどが用いられる。   First, after the water level at which the drain valve 28 should be operated is detected by the reducing agent water level sensor 26, the drain valve 28 is opened. When the water level by the reducing agent water level sensor 26 is the water level at which the drain valve 28 should be actuated again after a predetermined time has elapsed, the condensed water supply device 11 is operated to drain the reducing agent condensed water tank 25. As the reducing agent water level sensor 26, a float sensor, an optical interface sensor, an ultrasonic sensor, or the like is mainly used.

本実施の形態の燃料電池システムは、
原料と水とを用いて水素を含む還元剤ガスを生成する水素生成装置4と、酸化剤ガスを供給する空気供給装置5と、水素生成装置4より供給される還元剤ガスと空気供給装置5より供給される酸化剤ガスとを用いて発電する燃料電池1と、燃料電池1より排出される反応後の還元剤ガスを凝縮して凝縮水を得る還元剤凝縮器24と、還元剤凝縮器24で得られた凝縮水を貯める還元剤凝縮水タンク25と、燃料電池1より排出される反応後の酸化剤ガスを凝縮して凝縮水を得る酸化剤凝縮器8と、酸化剤凝縮器8で得られた凝縮水を貯める酸化剤凝縮水タンク9と、凝縮水を純水器10に供給する凝縮水供給装置11と、酸化剤凝縮水タンク9に回収された凝縮水を純水器10に供給する凝縮水供給装置11と、還元剤凝縮水タンク25の水位を計測する還元剤水位センサー26と、酸化剤凝縮水タンク9の底部排水口近傍の酸化剤凝縮水タンク9内に設けられ酸化剤記凝縮水タンク9の水位を計測する凝縮水水位センサー20と、酸化剤凝縮水タンク9の排水口と凝縮水水位センサー20を囲むように酸化剤凝縮水タンク9内に設けられ凝縮水供給装置11に供給される凝縮水中の異物を除去すると共に凝縮水水位センサー20を凝縮水中の異物から保護する除去フィルタを兼ねた保護フィルタ21と、酸化剤凝縮水タンク9の底部の排水口と還元剤凝縮水タンク25の底部の排水口とを接続する排水経路27と、排水経路27に設置された排水弁28と、排水弁28と酸化剤凝縮水タンク9の底部の排水口との間の排水経路27と凝縮水供給装置11の吸込側とを接続する凝縮水供給経路12と、純水器10で生成された純水を貯える純水タンク13と、純水タンク13に貯えられた純水を水素生成装置4に供給する純水供給装置16と、各装置を制御する制御器18とを備え、還元剤凝縮水タンク25は酸化剤凝縮水タンク9よりも高い位置に配置され、制御器19は、還元剤水位センサー26により還元剤凝縮水タンク25の水位上昇を検知して排水弁28を開き、排水弁28の開から所定の時間経過後も還元剤凝縮水タンク25の水位が低下しない場合は凝縮水供給装置11を動作させて還元剤凝縮水タンク25の排水を行うものである。
The fuel cell system of the present embodiment is
A hydrogen generator 4 that generates a reducing agent gas containing hydrogen using a raw material and water, an air supply device 5 that supplies an oxidizing gas, and a reducing agent gas and an air supply device 5 that are supplied from the hydrogen generator 4 A fuel cell 1 that generates electricity using an oxidant gas supplied from the fuel cell, a reducing agent condenser 24 that condenses the reducing agent gas after the reaction discharged from the fuel cell 1 to obtain condensed water, and a reducing agent condenser. 24, the reducing agent condensate water tank 25 that stores the condensed water obtained in 24, the oxidant condenser 8 that condenses the oxidant gas after the reaction discharged from the fuel cell 1 to obtain condensed water, and the oxidant condenser 8 The condensate water tank 9 for storing the condensate water obtained in the above, the condensate water supply device 11 for supplying the condensate water to the deionizer 10, and the condensate water collected in the oxidant condensate water tank 9 for the deionizer 10 Condensed water supply device 11 for supplying water to the reducing agent condensed water tank 25 A reductant water level sensor 26 that measures the water level, a condensate water level sensor 20 that measures the water level in the oxidant condensate water tank 9 provided in the oxidant condensate water tank 9 near the bottom outlet of the oxidant condensate water tank 9, and The foreign water in the condensed water that is provided in the oxidant condensed water tank 9 and is supplied to the condensed water supply device 11 so as to surround the drain outlet of the oxidant condensed water tank 9 and the condensed water level sensor 20 is removed and the condensed water level is A drainage path 27 that connects the protective filter 21 that also serves as a removal filter that protects the sensor 20 from foreign matter in the condensed water, and the drain outlet at the bottom of the oxidant condensate water tank 9 and the drain outlet at the bottom of the reductant condensate water tank 25. And a drain valve 28 installed in the drainage path 27, a drainage path 27 between the drainage valve 28 and the drainage port at the bottom of the oxidant condensate water tank 9, and a condensing connecting the suction side of the condensed water supply device 11 A supply path 12, a pure water tank 13 for storing pure water generated by the pure water device 10, a pure water supply device 16 for supplying pure water stored in the pure water tank 13 to the hydrogen generator 4, and each device The reducing agent condensate water tank 25 is disposed at a position higher than the oxidant condensate water tank 9, and the controller 19 uses a reducing agent water level sensor 26 to control the water level of the reducing agent condensate water tank 25. When the rise is detected and the drain valve 28 is opened, and the water level of the reducing agent condensate water tank 25 does not decrease even after a predetermined time has elapsed since the drain valve 28 is opened, the condensate water supply device 11 is operated to reduce the condensing water tank. 25 drainage is performed.

本実施の形態の燃料電池システムによれば、還元剤水位センサー26により還元剤凝縮水タンク25の水位上昇を検知した場合に、還元剤凝縮水タンク25の底部の排水口と酸化剤凝縮水タンク9の底部の排水口とを接続する排水経路27に設置された排水弁28が開く。このとき、還元剤凝縮水タンク25は酸化剤凝縮水タンク9よりも高い位置に配置されているので、排水弁28が開くと、還元剤凝縮水タンク25の水位と酸化剤凝縮水タンク9の水位は同じ水位になるように、還元剤凝縮水タンク25内の凝縮水が酸化剤凝縮水タンク9内に流れて還元剤凝縮水タンク25の水位が低下していく。このとき、異物による保護フィルタ21の詰まりが多くなるほど、還元剤凝縮水タンク25の水位が低下していく速度が遅くなる。そして、排水弁28の開から所定の時間経過後も還元剤凝縮水タンク25の水位が低下しない場合は凝縮水供給装置11を動作させて還元剤凝縮水タンク25の排水を行うので、保護フィルタ21への異物詰まりにより発生する還元剤凝縮水タンク25の排水不良を抑制することができる。   According to the fuel cell system of the present embodiment, when the reducing agent water level sensor 26 detects an increase in the water level of the reducing agent condensate water tank 25, the drain outlet at the bottom of the reducing agent condensate water tank 25 and the oxidant condensate water tank. The drain valve 28 installed in the drainage path 27 connecting the drain outlet at the bottom of 9 opens. At this time, since the reducing agent condensate water tank 25 is disposed at a position higher than the oxidant condensate water tank 9, when the drain valve 28 is opened, the water level of the reducing agent condensate water tank 25 and the oxidant condensate water tank 9 The condensed water in the reducing agent condensate water tank 25 flows into the oxidant condensate water tank 9 so that the water level becomes the same, and the water level in the reducing agent condensate water tank 25 decreases. At this time, the rate at which the water level of the reducing agent condensate water tank 25 decreases decreases as the amount of clogging of the protective filter 21 by foreign matter increases. When the water level in the reducing agent condensate water tank 25 does not drop even after a predetermined time has elapsed since the drain valve 28 is opened, the condensate water supply device 11 is operated to drain the reducing agent condensate water tank 25, so that the protective filter Accordingly, it is possible to suppress the drainage failure of the reducing agent condensate water tank 25 caused by the clogging of the foreign matter into 21.

これにより、必要なメンテナンスの間隔を広げることができる。メンテナンスの間隔が十分な場合には、必要なメンテナンスの間隔を広げる代わりに、フィルタを小型化することが可能となり、燃料電池システムのコストやフィルタサイズの低減ができる。   Thereby, a necessary maintenance interval can be widened. When the maintenance interval is sufficient, the filter can be miniaturized instead of increasing the necessary maintenance interval, and the cost of the fuel cell system and the filter size can be reduced.

本発明の燃料電池システムは、フィルタの詰まり対応のメンテナンスの間隔を広げたり、フィルタの小型化が可能であるので、例えば家庭用の燃料電池コージェネレーションシステム等として有用である。   The fuel cell system of the present invention is useful as, for example, a household fuel cell cogeneration system because the maintenance interval corresponding to filter clogging can be extended and the filter can be downsized.

1 燃料電池
4 水素生成装置
5 空気供給装置
8 酸化剤凝縮器
9 酸化剤凝縮水タンク
10 純水器
11 凝縮水供給装置
12 凝縮水供給経路
13 純水タンク
16 純水供給装置
18 除去フィルタ
19 制御器
20 凝縮水水位センサー
21 保護フィルタ
23 給水弁
24 還元剤凝縮器
25 還元剤凝縮水タンク
26 還元剤水位センサー
27 排水経路
28 排水弁
DESCRIPTION OF SYMBOLS 1 Fuel cell 4 Hydrogen generator 5 Air supply device 8 Oxidant condenser 9 Oxidant condensate water tank 10 Pure water device 11 Condensate water supply device 12 Condensate water supply path 13 Pure water tank 16 Pure water supply device 18 Removal filter 19 Control 20 Condensate water level sensor 21 Protective filter 23 Water supply valve 24 Reductant condenser 25 Reductant condensate water tank 26 Reductant water level sensor 27 Drain path 28 Drain valve

Claims (3)

原料と水とを用いて水素を含む還元剤ガスを生成する水素生成装置と、酸化剤ガスを供給する空気供給装置と、前記水素生成装置より供給される還元剤ガスと前記空気供給装置より供給される酸化剤ガスとを用いて発電する燃料電池と、前記燃料電池より排出される反応後の還元剤ガスまたは反応後の酸化剤ガスを凝縮して凝縮水を得る凝縮器と、前記凝縮器で得られた凝縮水を貯める凝縮水タンクと、前記凝縮水タンクに貯まった凝縮水を純水器に供給する凝縮水供給装置と、前記凝縮水供給装置に供給される凝縮水中の異物を除去する除去フィルタと、前記純水器で生成された純水を貯える純水タンクと、前記純水タンクに貯えられた純水を前記水素生成装置に供給する純水供給装置と、各装置を制御する制御器とを備え、前記制御器は、異物による前記除去フィルタの詰まり具合に応じて前記凝縮水供給装置の供給能力を増加することを特徴とする燃料電池システム。 A hydrogen generator that generates a reducing agent gas containing hydrogen using raw materials and water, an air supply device that supplies an oxidant gas, a reducing agent gas that is supplied from the hydrogen generator, and a supply that is supplied from the air supply device A fuel cell that generates electric power using the oxidant gas that is generated, a condenser that condenses the reduced gas after reaction or the oxidant gas after reaction discharged from the fuel cell to obtain condensed water, and the condenser The condensed water tank that stores the condensed water obtained in step 1, the condensed water supply device that supplies the condensed water stored in the condensed water tank to the deionizer, and foreign substances in the condensed water supplied to the condensed water supply device are removed. A deionizing filter, a deionized water tank for storing deionized water generated by the deionizer, a deionized water supply device for supplying deionized water stored in the deionized water tank to the hydrogen generator, and controlling each device A controller for Fuel cell system, characterized in that to increase the supply capacity of the condensed water supplying apparatus in accordance with the clogging degree of the removal filter due to foreign matter. 原料と水とを用いて水素を含む還元剤ガスを生成する水素生成装置と、酸化剤ガスを供給する空気供給装置と、前記水素生成装置より供給される還元剤ガスと前記空気供給装置より供給される酸化剤ガスとを用いて発電する燃料電池と、前記燃料電池より排出される反応後の還元剤ガスまたは反応後の酸化剤ガスを凝縮して凝縮水を得る凝縮器と、前記凝縮器で得られた凝縮水を貯める凝縮水タンクと、前記凝縮水タンクの排水口から流出した凝縮水を純水器に供給する凝縮水供給装置と、前記凝縮水タンクの排水口近傍の前記凝縮水タンク内に設けられ前記凝縮水タンクの水位を計測する水位センサーと、前記凝縮水タンクの前記排水口と前記水位センサーを囲むように前記凝縮水タンク内に設けられ前記凝縮水供給装置に供給される凝縮水中の異物を除去すると共に前記水位センサーを凝縮水中の異物から保護する保護フィルタと、前記凝縮水タンク内の前記凝縮水の不足時に開けられて水道水を前記凝縮水タンク内に補給する給水弁と、前記純水器で生成された純水を貯える純水タンクと、前記純水タンクに貯えられた純水を前記水素生成装置に供給する純水供給装置と、各装置を制御する制御器とを備え、前記制御器は、前記水位センサーにより前記凝縮水タンクの水位低下を検知後、前記凝縮水供給装置の動作を停止させ、さらに前記凝縮水タンクの水位低下を所定の時間継続して検知した場合に、前記給水弁により水道水を補給することを特徴とする燃料電池システム。 A hydrogen generator that generates a reducing agent gas containing hydrogen using raw materials and water, an air supply device that supplies an oxidant gas, a reducing agent gas that is supplied from the hydrogen generator, and a supply that is supplied from the air supply device A fuel cell that generates electric power using the oxidant gas that is generated, a condenser that condenses the reduced gas after reaction or the oxidant gas after reaction discharged from the fuel cell to obtain condensed water, and the condenser A condensed water tank for storing the condensed water obtained in step (b), a condensed water supply device for supplying condensed water flowing out from the drain outlet of the condensed water tank to a deionizer, and the condensed water near the outlet of the condensed water tank. A water level sensor provided in the tank for measuring the water level of the condensed water tank; and provided in the condensed water tank so as to surround the drain outlet and the water level sensor of the condensed water tank and supplied to the condensed water supply device. Condensation A protective filter that removes foreign matter and protects the water level sensor from foreign matter in the condensed water, and a water supply valve that is opened when the condensed water in the condensed water tank is insufficient and replenishes tap water into the condensed water tank A pure water tank that stores the pure water generated by the pure water device, a pure water supply device that supplies the pure water stored in the pure water tank to the hydrogen generator, and a controller that controls each device And the controller stops the operation of the condensed water supply device after detecting a decrease in the water level of the condensed water tank by the water level sensor, and further continues the lowering of the water level of the condensed water tank for a predetermined time. When it detects, the fuel cell system characterized by replenishing tap water with the said water supply valve. 原料と水とを用いて水素を含む還元剤ガスを生成する水素生成装置と、酸化剤ガスを供給する空気供給装置と、前記水素生成装置より供給される還元剤ガスと前記空気供給装置より供給される酸化剤ガスとを用いて発電する燃料電池と、前記燃料電池より排出される反応後の還元剤ガスを凝縮して凝縮水を得る還元剤凝縮器と、前記還元剤凝縮器で得られた凝縮水を貯める還元剤凝縮水タンクと、前記燃料電池より排出される反応後の酸化剤ガスを凝縮して凝縮水を得る酸化剤凝縮器と、前記酸化剤凝縮器で得られた凝縮水を貯める酸化剤凝縮水タンクと、凝縮水を純水器に供給する凝縮水供給装置と、前記還元剤凝縮水タンクの水位を計測する還元剤水位センサーと、前記酸化剤凝縮水タンクの底部の排水口または前記排水口の近傍に設けられ前記凝縮水供給装置に供給される凝縮水中の異物を除去する除去フィルタと、前記酸化剤凝縮水タンクの前記排水口と前記還元剤凝縮水タンクの底部の排水口とを接続する排水経路と、前記排水経路に設置された排水弁と、前記排水弁と前記酸化剤凝縮水タンクの前記排水口との間の排水経路と前記凝縮水供給装置とを接続する凝縮水供給経路と、前記純水器で生成された純水を貯える純水タンクと、前記純水タンクに貯えられた純水を前記水素生成装置に供給する純水供給装置と、各装置を制御する制御器とを備え、前記還元剤凝縮水タンクは前記酸化剤凝縮水タンクよりも高い位置に配置され、前記制御器は、前記還元剤水位センサーにより前記還元剤凝縮水タンクの水位上昇を検知して前記排水弁を開き、前記排水弁の開から所定の時間経過後も前記還元剤凝縮水タンクの水位が低下しない場合は前記凝縮水供給装置を動作させて前記還元剤凝縮水タンクの排水を行うことを特徴とする燃料電池システム。 A hydrogen generator that generates a reducing agent gas containing hydrogen using raw materials and water, an air supply device that supplies an oxidant gas, a reducing agent gas that is supplied from the hydrogen generator, and a supply that is supplied from the air supply device Obtained by the fuel cell for generating power using the oxidant gas generated, the reducing agent condenser for condensing the reducing agent gas after the reaction discharged from the fuel cell to obtain condensed water, and the reducing agent condenser. A reducing agent condensed water tank for storing the condensed water, an oxidant condenser for condensing the oxidant gas after reaction discharged from the fuel cell to obtain condensed water, and the condensed water obtained by the oxidant condenser An oxidant condensate water tank, a condensate supply device for supplying condensate to the deionizer, a reductant water level sensor for measuring the water level of the reductant condensate water tank, and a bottom of the oxidant condensate water tank. Provided in the vicinity of the drain or the drain A removal filter for removing foreign matter in the condensed water supplied to the condensed water supply device, and a drainage path connecting the drainage port of the oxidant condensate water tank and the drainage port at the bottom of the reducing agent condensate water tank; A drainage valve installed in the drainage path, a drainage path between the drainage valve and the drainage port of the oxidant condensate water tank, and a condensed water supply path for connecting the condensed water supply device; A pure water tank for storing pure water generated by the water device, a pure water supply device for supplying the pure water stored in the pure water tank to the hydrogen generator, and a controller for controlling each device, The reducing agent condensate water tank is disposed at a position higher than the oxidant condensate water tank, and the controller detects a rise in the water level of the reducing agent condensate water tank by the reducing agent water level sensor and opens the drain valve. , Predetermined from the opening of the drain valve The fuel cell system if after time does not lower the level of the reducing agent condensed water tank and performs drainage of the reducing agent condensed water tank by operating the condensed water supplying device.
JP2009093831A 2009-04-08 2009-04-08 Fuel cell system Pending JP2010244924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009093831A JP2010244924A (en) 2009-04-08 2009-04-08 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009093831A JP2010244924A (en) 2009-04-08 2009-04-08 Fuel cell system

Publications (2)

Publication Number Publication Date
JP2010244924A true JP2010244924A (en) 2010-10-28
JP2010244924A5 JP2010244924A5 (en) 2012-01-12

Family

ID=43097711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009093831A Pending JP2010244924A (en) 2009-04-08 2009-04-08 Fuel cell system

Country Status (1)

Country Link
JP (1) JP2010244924A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013073682A (en) * 2011-09-26 2013-04-22 Ngk Spark Plug Co Ltd Fuel cell system
JP2015503835A (en) * 2012-01-09 2015-02-02 エイエフシー エナジー ピーエルシー Liquid electrolyte fuel cell system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH087906A (en) * 1994-06-15 1996-01-12 Tokyo Gas Co Ltd Water treatment device for fuel cell
JP2005122959A (en) * 2003-10-15 2005-05-12 Matsushita Electric Ind Co Ltd Fuel cell power generating system
JP2006127842A (en) * 2004-10-27 2006-05-18 Matsushita Electric Ind Co Ltd Fuel cell power generating system
JP2007273302A (en) * 2006-03-31 2007-10-18 Equos Research Co Ltd Fuel cell system and its operation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH087906A (en) * 1994-06-15 1996-01-12 Tokyo Gas Co Ltd Water treatment device for fuel cell
JP2005122959A (en) * 2003-10-15 2005-05-12 Matsushita Electric Ind Co Ltd Fuel cell power generating system
JP2006127842A (en) * 2004-10-27 2006-05-18 Matsushita Electric Ind Co Ltd Fuel cell power generating system
JP2007273302A (en) * 2006-03-31 2007-10-18 Equos Research Co Ltd Fuel cell system and its operation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013073682A (en) * 2011-09-26 2013-04-22 Ngk Spark Plug Co Ltd Fuel cell system
JP2015503835A (en) * 2012-01-09 2015-02-02 エイエフシー エナジー ピーエルシー Liquid electrolyte fuel cell system

Similar Documents

Publication Publication Date Title
JP4921619B2 (en) FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM
JP2009009808A (en) Fuel cell device
JP2012221903A (en) Fuel cell system
JP5381237B2 (en) Fuel cell system
JP2005235586A (en) Fuel cell system
JP5178042B2 (en) Fuel cell device
JP5132205B2 (en) Fuel cell device
JP2008300058A (en) Fuel cell device
JP2010244924A (en) Fuel cell system
JP5153178B2 (en) Fuel cell device
JP2010244924A5 (en)
JP3780714B2 (en) Fuel cell power generator
JP5907372B2 (en) Fuel cell system
WO2013150799A1 (en) Fuel cell system
JP5593808B2 (en) Fuel cell hot water supply system
JP5471030B2 (en) Fuel cell system
JP2014191965A (en) Fuel cell system
JP2008218353A (en) Fuel cell power generation system
JP2014007001A (en) Fuel cell system
KR20140142586A (en) Fuel cell system
JP2005197108A (en) Fuel cell power generation hot-water supply system
JP6454874B2 (en) Fuel cell system and operation method thereof
JP2011029116A (en) Fuel cell device
JP2008204860A (en) Fuel cell system
JP6299383B2 (en) Cogeneration system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120329

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140401