JP2010241129A - Method of producing powder compact - Google Patents

Method of producing powder compact Download PDF

Info

Publication number
JP2010241129A
JP2010241129A JP2010063504A JP2010063504A JP2010241129A JP 2010241129 A JP2010241129 A JP 2010241129A JP 2010063504 A JP2010063504 A JP 2010063504A JP 2010063504 A JP2010063504 A JP 2010063504A JP 2010241129 A JP2010241129 A JP 2010241129A
Authority
JP
Japan
Prior art keywords
molded body
mold
powder
powder molded
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010063504A
Other languages
Japanese (ja)
Inventor
Yoshihiro Suzuki
能大 鈴木
Tatsuo Kawaguchi
竜生 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2010063504A priority Critical patent/JP2010241129A/en
Publication of JP2010241129A publication Critical patent/JP2010241129A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Moulds, Cores, Or Mandrels (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing a powder compact, that excels in mold releasability, suppresses product variance, and improves dimensional accuracy and increases productivity and, particularly is optimally applicable to a method of producing a compact for a turbine. <P>SOLUTION: In the method of producing a powder compact, a powder compact is produced by casting a slurry containing ceramic and/or metallic powder, a dispersion medium, and a gelling agent and by solidifying it by gelling the slurry. After the slurry is cast in a mold 3 for a powder compacting and hardened, the hardened slurry is cooled with the mold in which the powder compact 1 is stored while it is hardened. Thus, by causing temperature difference in the mold 3 and the powder compact 1, mold releasing is performed. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、セラミック及び/又は金属の原料粉体から成形体を製造する方法に関する。より詳しくは、ゲル化剤を含むスラリーを注型し、当該スラリーをゲル化させることにより硬化して成形体を得る粉体成形体の製造方法に関する。   The present invention relates to a method for producing a molded body from ceramic and / or metal raw powders. More specifically, the present invention relates to a method for producing a powder molded body in which a slurry containing a gelling agent is cast and cured by gelling the slurry to obtain a molded body.

従来、セラミックや金属の原料粉体から成形体を製造する方法としては、プレス成形、鋳込成形、射出成形等の方法が利用されているが、複雑形状品の成形が困難、寸法精度が低い、厚肉品ではクラックを生じ易い、成形体を緻密化し難い等の問題があることから、近年、これらの問題を解決し得る方法として、いわゆるゲルキャスト法が注目されている。   Conventionally, methods such as press molding, cast molding, and injection molding have been used as methods for producing molded bodies from ceramic and metal raw material powders, but it is difficult to mold complex shapes and dimensional accuracy is low. Since thick-walled products are prone to cracking and difficult to densify the molded product, the so-called gel casting method has recently attracted attention as a method that can solve these problems.

ゲルキャスト法は、セラミック、金属等の原料粉体と、分散媒と、ゲル化剤とを含むスラリーを成形型に注入した後に、スラリーを温度条件や架橋剤の添加等によりゲル化させることにより硬化して成形体を得る粉体成形体等の製造方法であり、ゲル化前の流動性が高い状態でスラリーを注型できることから複雑形状品の成形が容易であることに加え、注型後はゲル化によりハンドリングに耐える充分な強度を有する成形体を得ることができるものである。   In the gel casting method, a slurry containing a raw material powder of ceramic, metal, etc., a dispersion medium, and a gelling agent is injected into a mold, and then the slurry is gelled by addition of a temperature condition or a crosslinking agent. It is a manufacturing method for powder molded bodies and the like to obtain a molded body by curing, and since the slurry can be cast with high fluidity before gelation, it is easy to mold complex shaped products, and after casting Can obtain a molded article having sufficient strength to withstand handling by gelation.

従来、このゲルキャスト法としては、セラミック、金属等の原料粉体と、ポリビニルアルコール、エポキシ樹脂、フェノール樹脂等のプレポリマーを主成分とするゲル化剤とを、分散媒中に分散させてスラリーを調製し、得られたスラリーを金属製の成形型に注入した後、更に、架橋剤を添加して、架橋剤とゲル化剤との架橋反応によりゲル化してスラリーを硬化した後、成形型を取り外して成形体を得る方法等が知られている。   Conventionally, as this gel casting method, a raw material powder such as ceramic and metal and a gelling agent mainly composed of a prepolymer such as polyvinyl alcohol, epoxy resin, and phenol resin are dispersed in a dispersion medium to form a slurry. After the prepared slurry was poured into a metal mold, a crosslinking agent was further added, and the slurry was cured by crosslinking reaction between the crosslinking agent and the gelling agent. A method is known in which a molded body is obtained by removing the sheet.

ところで、このゲルキャスト法では、従来よりスラリーを注型して硬化させた後、離型
処理が行われている。
By the way, in this gel casting method, a mold release process is performed after casting and hardening a slurry conventionally.

3次元複雑形状品のときは、硬化後の成形体強度を出そうと架橋剤とゲル化剤を多く入れると、硬化時の体積変化で、型と干渉し成形体が割れてしまう。一方硬化時の体積変化を抑えようと架橋剤とゲル化剤を少なくすると、硬化後の成形体強度が低く、離型時の型と成形体の摩擦で成形体が壊れてしまう。このようなときには、スラリーを注型して硬化させた後、粉体成形体を加熱して、成形体が収縮しすぎて型と干渉して破損しない程度に、乾燥収縮させた型と成形体との間に微小なクリアランスをつくり、かつ成形体強度も上げてから、型から粉体成形体を離型する離型処理が行われている。このような加熱による乾燥処理では、(1)粉体成形体の乾燥時に、成形体用型内に(乾燥前の)粉体成形体が拘束されているため、外気等に触れる領域が小さくなってしまい、乾燥の進行が不均一な状態となり、乾燥時における粉体成形体の収縮差が同一成形体内で大きく生じるといった問題、(2)さらに、粉体成形体用型に拘束されて収縮されるため、割れ等の不具合が生じやすいといった問題が生じている。   In the case of a three-dimensional complicated shape product, if a large amount of a cross-linking agent and a gelling agent are added to increase the strength of the molded product after curing, the molded product will crack due to interference with the mold due to volume change during curing. On the other hand, if the amount of the crosslinking agent and the gelling agent is decreased so as to suppress the volume change at the time of curing, the strength of the molded body after curing is low, and the molded body is broken due to the friction between the mold and the molded body at the time of release. In such a case, after the slurry is cast and cured, the powder compact is heated, and the compact and the compact are dried and shrunk so that the compact does not shrink and interfere with the mold and break. A mold release process is performed to release the powder compact from the mold after forming a minute clearance between the two and increasing the strength of the compact. In such a drying process by heating, (1) when the powder molded body is dried, the powder molded body (before drying) is constrained in the mold for the molded body, so that the area that comes into contact with the outside air is reduced. The problem is that the progress of drying becomes non-uniform and the difference in shrinkage of the powder compact during drying becomes large within the same compact. (2) Further, the powder compact is constrained and contracted by the mold for the powder compact. Therefore, there is a problem that defects such as cracks are likely to occur.

さらに、型から粉体成形体を離型する離型処理時の際には、(3)型と成形体と間の摩擦力が大きく割れが生じてしまうといった問題が生じている。(4)乾燥の進行が不均一な状態、粉体成形体用型に拘束されて収縮する状態、を抑えるためには、低温での緩やかな乾燥が必要で時間がかかる。(5)型と成形体のクリアランスをつくる収縮が最小で割れがなく、離型時の型と成形体の摩擦で成形体が壊れない強度の乾燥領域というのが非常に狭く制御が難しい。したがって、従来のゲルキャスト法によって製造される粉体成形体では、前述のような複合的問題に起因して、粉体成形体にクラックや、千切れ(とりわけ離型時に)等が生じ、製品ばらつきや寸法精度に劣るものとなっていた。   Furthermore, during the mold release process for releasing the powder compact from the mold, (3) there is a problem that the frictional force between the mold and the compact is greatly cracked. (4) In order to suppress the state in which the progress of drying is uneven and the state in which the drying is constrained and contracted by the mold for the powder molded body, slow drying at a low temperature is necessary and takes time. (5) The shrinkage that creates the clearance between the mold and the molded body is minimal, there is no cracking, and the dry region has a strength that prevents the molded body from being broken by the friction between the mold and the molded body at the time of mold release, and is difficult to control. Therefore, in the powder molded body manufactured by the conventional gel casting method, the powder molded body is cracked or broken (particularly at the time of mold release) due to the above-mentioned complex problems, and the product It was inferior in variation and dimensional accuracy.

さらに、近年では、成形体の形状が複雑化しており、前述のような問題に拍車をかけている。たとえば、微細な複雑形状のものを成形する場合には、離型の際に、成形体の微細形状が破損しやすく、さらに、アンダーカット等の形状を備える粉体成形体を製造する場合には、アンダーカット形状等の成形型を用いると、成形体の形状を破損しないが、離型できないという問題も生じている。   Furthermore, in recent years, the shape of the molded body has become complicated, which has spurred the above-mentioned problems. For example, in the case of molding a fine complex shape, when the mold is released, the fine shape of the molded body is easily damaged, and in the case of manufacturing a powder molded body having a shape such as an undercut When a molding die such as an undercut shape is used, there is a problem that the shape of the molded body is not damaged but cannot be released.

とりわけ、その中でも軸付きタービン等複雑形状品を製造する場合には、その形状が微細かつ複雑であるため、離型処理において、極めて薄い部分(たとえば翼等)が折れてしまう等の不具合が生じやすいという問題が生じている。従来の製造方法では、乾燥収縮を制御し難いため、破損や不具合を防止し難い。加えて、破損や不具合を減らそうとして乾燥を長時間行う等の対策も講じられてはいるものの十分でなく、生産効率の低下といった悪循環を引き起こしている。他方、乾燥収縮させずに離型しようとすると、粉体成形体には、溶剤が残留しているため、成形体強度が不十分である成形体/成形体コマ間にクリアランスが無いため、摩擦が大きくなってしまい翼等が破損してしまう。したがって、十分な対応がなされておらず、更なる改良が望まれるところである。   In particular, when manufacturing a complicated shape product such as a turbine with a shaft among them, the shape is fine and complicated, and therefore, in the mold release process, there is a problem that an extremely thin part (for example, a blade) is broken. There is a problem that it is easy. In the conventional manufacturing method, since it is difficult to control drying shrinkage, it is difficult to prevent breakage and malfunction. In addition, although measures such as drying for a long time in order to reduce breakage and malfunctions are taken, it is not sufficient, causing a vicious cycle of reduced production efficiency. On the other hand, when trying to release the mold without drying shrinkage, since the solvent remains in the powder molded body, there is no clearance between the molded body and the molded body frame where the molded body strength is insufficient. Will become larger and the wings will be damaged. Therefore, sufficient measures have not been taken and further improvements are desired.

このような課題に対して、以下の特許文献1がある。   There exists the following patent document 1 with respect to such a subject.

大量の樹脂類を添加することなくスラリーを硬化させ、硬化作業時の温度管理に厳重さを要しないで粉体成形体を製造することを目的に、セラミック、ガラスあるいは金属から選ばれた一種以上の粉体を、分散剤を用いて分散媒に分散させて作製されたスラリーに、分散剤との相互作用により分散剤の分散能力を消失もしくは低下させる反応物質を添加することにより、スラリーを硬化させて粉体成形体を製造する方法が開示されている。   One or more types selected from ceramic, glass, or metal for the purpose of curing the slurry without adding a large amount of resins and producing a powder compact without requiring strict temperature control during the curing operation. The slurry is cured by adding a reactive substance that loses or lowers the dispersing ability of the dispersing agent due to the interaction with the dispersing agent to the slurry prepared by dispersing the powder in the dispersing medium using the dispersing agent. And a method for producing a powder compact is disclosed.

特開平11−048222号公報Japanese Patent Laid-Open No. 11-048222

しかし、同文献1では、粉体原料となるスラリーの注型(充填)を行った後、加熱して乾燥処理を行うものであり、3次元複雑形状品を製造する場合には、不均一な乾燥による収縮が生じるおそれがある。加えて収縮差も不均一となりやすく、乾燥収縮差を均一にする乾燥条件の設定が困難である。そのため、製品のばらつきがでやすい。したがって、更なる改良が求められるところである。   However, in the literature 1, after performing casting (filling) of a slurry as a powder raw material, heating is performed to perform a drying process. Shrinkage due to drying may occur. In addition, the shrinkage difference tends to be non-uniform, and it is difficult to set drying conditions that make the drying shrinkage difference uniform. For this reason, product variations are likely to occur. Therefore, further improvements are required.

本発明は、このような課題を解決すべく、研究が重ねられてなされたものであり、スラリーを、粉体成形体用の型に注型し硬化した後、硬化した粉体成形体を収納した型ごと冷却して離型処理し、粉体成形体を製造することにより、離型性に優れ、製品ばらつきを抑制できるとともに、寸法精度を向上でき、生産性を向上できるといった粉体成形体の製造方法を提供する。とりわけ、軸付きタービン用成形体を製造することに好適に用いることができる。   The present invention has been made in order to solve such problems, and the slurry is poured into a mold for a powder molded body and cured, and then the cured powder molded body is stored. By cooling the molds and releasing them to produce powder compacts, the powder compacts have excellent releasability, can suppress product variations, improve dimensional accuracy, and improve productivity. A manufacturing method is provided. In particular, it can be suitably used for producing a molded article for a turbine with a shaft.

[1] セラミック及び/又は金属の粉体と、分散媒と、ゲル化剤とを含むスラリーを注型し、前記スラリーをゲル化させることにより固化して成形体を得る粉体成形体の製造方法であって、前記スラリーを、粉体成形体用の型に注型した後、硬化させながら前記粉体成形体を収納した型ごと冷却し、前記型と前記粉体成形体に温度差を生じさせて離型処理し、前記粉体成形体を製造する粉体成形体の製造方法。 [1] Manufacture of a powder molded body obtained by casting a slurry containing ceramic and / or metal powder, a dispersion medium, and a gelling agent, and solidifying the slurry by gelling. In this method, the slurry is poured into a mold for a powder compact, and then cooled together with the mold containing the powder compact while being cured, so that a temperature difference is generated between the mold and the powder compact. A method for producing a powder molded body, wherein the powder molded body is produced by performing mold release treatment.

[2] さらに、前記冷却した前記粉体成形体を、収納した型ごと室温下で型と粉体成形体に温度差を生じさせて離型処理し、前記粉体成形体を製造する[1]に記載の粉体成形体の製造方法。 [2] Further, the cooled powder molded body is subjected to mold release treatment by causing a temperature difference between the mold and the powder molded body together with the housed mold at room temperature, thereby producing the powder molded body [1] ] The manufacturing method of the powder molded object of description.

[3] 前記冷却時に、前記粉体成形体に残留する残留溶剤を、前記型の表面に結露させて、前記粉体成形体を製造する[1]又は[2]に記載の粉体成形体の製造方法。 [3] The powder molded body according to [1] or [2], wherein during the cooling, the residual solvent remaining in the powder molded body is condensed on the surface of the mold to produce the powder molded body. Manufacturing method.

[4] 前記型が、残留溶剤を含む注型時のスラリーよりも小さい熱伝導率及び/又は熱容量を有する型を使用して、前記粉体成形体を製造する[1]〜[3]のいずれかに記載の粉体成形体の製造方法。 [4] The powder molded body is manufactured using a mold having a smaller thermal conductivity and / or heat capacity than the casting slurry containing the residual solvent. [1] to [3] The manufacturing method of the powder compact in any one.

[5] 前記型の熱伝導率が0.5W/mK以下である[4]に記載の粉体成形体の製造方法。 [5] The method for producing a powder molded body according to [4], wherein the mold has a thermal conductivity of 0.5 W / mK or less.

[6] 前記型の熱容量が3MJ/mK以下である[4]に記載の粉体成形体の製造方法。 [6] The method for producing a powder molded body according to [4], wherein the mold has a heat capacity of 3 MJ / m 3 K or less.

[7] 前記型の材質がポリテトラフルオロエチレンからなる型を使用して、前記粉体成形体を製造する[1]〜[6]のいずれかに記載の粉体成形体の製造方法。 [7] The method for producing a powder molded body according to any one of [1] to [6], wherein the powder molded body is produced using a mold made of polytetrafluoroethylene.

[8] 前記粉体成形体の冷却温度が室温に対して10℃以下であって、さらに、前記冷却時に前記粉体成形体と、前記粉体成形体が入った前記粉体成形用型との間に温度差を発生させて離型処理し、前記粉体成形体を製造する[1]〜[7]のいずれかに記載の粉体成形体の製造方法。 [8] The cooling temperature of the powder molded body is 10 ° C. or less with respect to room temperature, and the powder molded body and the powder molding mold containing the powder molded body are contained during the cooling. The method for producing a powder molded body according to any one of [1] to [7], wherein the powder molded body is manufactured by generating a temperature difference between the two and performing mold release treatment.

[9] 前記粉体成形体の冷却時間が少なくとも30分以上である[1]〜[8]のいずれかに記載の粉体成形体の製造方法。 [9] The method for producing a powder molded body according to any one of [1] to [8], wherein the cooling time of the powder molded body is at least 30 minutes or longer.

[10] 前記粉体成形体を少なくとも30分以上冷却した後、室温下で10分以上放置して粉体成形体を製造する[1]〜[9]のいずれかに記載の粉体成形体の製造方法。 [10] The powder molded body according to any one of [1] to [9], wherein the powder molded body is cooled for at least 30 minutes or more and then allowed to stand at room temperature for 10 minutes or longer to produce a powder molded body. Manufacturing method.

[11] 前記粉体成形体が軸付きタービン用成形体である[1]〜[10]のいずれかに記載の前記粉体成形体の製造方法。 [11] The method for producing a powder molded body according to any one of [1] to [10], wherein the powder molded body is a molded body for a turbine with a shaft.

本発明に係る粉体成形体の製造方法によれば、離型性に優れ、製品ばらつきを抑制できるとともに、寸法精度を向上でき、生産性を向上できるといった、優れた効果を奏することができる。とりわけ、軸付きタービン用成形体を製造することに好適に用いることができる。   According to the method for producing a powder molded body according to the present invention, it is possible to obtain excellent effects such as excellent releasability, suppression of product variation, improvement of dimensional accuracy, and improvement of productivity. In particular, it can be suitably used for producing a molded article for a turbine with a shaft.

本発明に係る粉体成形体の製造方法の一の実施形態であって、その処理工程を示すフロー図である。It is one Embodiment of the manufacturing method of the powder compact | molding | casting which concerns on this invention, Comprising: It is a flowchart which shows the process process. 本発明に係る粉体成形体の製造方法の一の実施形態であって、粉体成形体と粉体成形体用型の断面を模式的に示した図である。1 is an embodiment of a method for producing a powder molded body according to the present invention, and is a diagram schematically showing a cross section of a powder molded body and a powder molded body mold. FIG. 本発明に係る粉体成形体の製造方法の一の実施形態であって、粉体成形体を模式的に示した分解斜視図である。1 is an exploded perspective view schematically showing a powder compact, which is an embodiment of a method for producing a powder compact according to the present invention. 図2に示される粉体成形体と粉体成形体用型とを模式的に示した、斜視図である。FIG. 3 is a perspective view schematically showing the powder molded body and the mold for powder molded body shown in FIG. 2. 本発明に係る粉体成形体の製造方法の一の実施形態であって、下型を模式的に示した平面図である。1 is a plan view schematically showing a lower mold, which is an embodiment of a method for producing a powder molded body according to the present invention. 本発明に係る粉体成形体の製造方法の一の実施形態であって、下型に翼型をセットした状態を模式的に示した平面図である。1 is a plan view schematically showing a state in which an airfoil is set in a lower mold, which is an embodiment of a method for producing a powder molded body according to the present invention. 図6Aの翼型を模式的に示した斜視図である。FIG. 6B is a perspective view schematically showing the airfoil of FIG. 6A. 本発明に係る粉体成形体の製造方法の一の実施形態であって、粉体成形体本体用型の、粉体成形体本体用上型を模式的に示した平面図である。1 is a plan view schematically showing an upper mold for a powder molded body main body, which is an embodiment of a method for producing a powder molded body according to the present invention, and is a mold for a powder molded body main body. 図7Aの粉体成形体本体用上型を模式的に示した斜視図である。It is the perspective view which showed typically the upper mold | type for powder molded object main bodies of FIG. 7A. 固定ピンを模式的に示した斜視図である。It is the perspective view which showed the fixing pin typically. 本発明に係る粉体成形体の製造方法の一の実施形態であって、粉体成形体の一部及び本体の離型処理工程の状態を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing a part of the powder molded body and the state of a mold release treatment process of the powder molded body, which is an embodiment of the method for producing a powder molded body according to the present invention.

以下、本発明の粉体成形体の製造方法を実施するための形態について具体的に説明する。但し、本発明はその発明特定事項を備える粉体成形体の製造方法を広く包含するものであり、以下の実施形態に限定されるものではない。   Hereinafter, the form for implementing the manufacturing method of the powder compact of this invention is demonstrated concretely. However, the present invention broadly encompasses a method for producing a powder compact having the invention-specific matters, and is not limited to the following embodiments.

[1]本発明の粉体成形体の製造方法:
本発明の粉体成形体の製造方法は、セラミック及び/又は金属の粉体と、分散媒と、ゲル化剤とを含むスラリーを注型し、前記スラリーをゲル化させることにより固化して成形体を得る粉体成形体の製造方法であって、前記スラリーを、前記粉体成形体用の型に注型した後、硬化させながら前記粉体成形体を収納した型ごと冷却し、前記型と粉体成形体に温度差を生じさせて離型処理し、前記粉体成形体を製造する粉体成形体の製造方法として構成される。
[1] Method for producing powder molded body of the present invention:
The method for producing a powder molded body of the present invention is a method in which a slurry containing ceramic and / or metal powder, a dispersion medium, and a gelling agent is cast and solidified by gelling the slurry. A method for producing a powder molded body for obtaining a body, wherein the slurry is poured into a mold for the powder molded body and then cooled together with the mold containing the powder molded body while being cured, And a powder molded body, a temperature difference is generated between the powder molded body and a mold release treatment to produce the powder molded body.

[1−1]粉体成形体の処理工程:
本発明の粉体成形体の製造方法では、調整した所望のスラリーを、前記粉体成形体用の型に注型した後、硬化させながら前記粉体成形体を収納した型ごと冷却し、前記型と粉体成形体に温度差を生じさせて離型処理し、前記粉体成形体を製造することが望ましい。このように、スラリーを、前記粉体成形体用の型に注型し硬化した後、硬化した前記粉体成形体を収納した型ごと冷却し、前記型と粉体成形体に温度差を生じさせて離型処理することにより、離型処理を容易に行えるため、粉体成形体の厚みや複雑な形状に左右されることなく、離型時の千切れ等を防止できる。
[1-1] Process of processing powder compact:
In the method for producing a powder molded body of the present invention, the adjusted desired slurry is poured into the mold for the powder molded body, and then cooled together with the mold containing the powder molded body while being cured, It is desirable to produce the powder compact by producing a temperature difference between the mold and the powder compact and releasing the mold. In this way, the slurry is poured into a mold for the powder molded body and cured, and then the mold containing the cured powder molded body is cooled to produce a temperature difference between the mold and the powder molded body. By performing the mold release process, the mold release process can be easily performed, so that it is possible to prevent tearing at the time of mold release without being influenced by the thickness or complicated shape of the powder molded body.

すなわち、本発明では、前述のような構成により、粉体成形体が収納された型ごと冷却することで、加熱して乾燥処理を行わずに離型処理するものである。換言すれば、粉体成形体を硬化させた後、粉体成形体を加熱して乾燥処理を行わないため、離型前に粉体成形体の収縮が同一成形体内で大きく生じることがなく、さらに、成形体内の溶剤が成形体用型/成形体間に残留していることから、型と成形体と間に発生する摩擦力も抑制でき、不具合なく離型処理を行うことができ、また、クラックや千切れ等を防止できる。したがって、離型性に優れ、製品ばらつきを抑制できるとともに、寸法精度を向上できる。加えて乾燥時間を短縮でき、生産性を向上できるといった、優れた効果を奏することができる。   That is, in the present invention, by the configuration as described above, the mold in which the powder molded body is housed is cooled to release the mold without heating and drying. In other words, after the powder molded body is cured, the powder molded body is not heated and dried, so that the shrinkage of the powder molded body does not occur in the same molded body before release, Furthermore, since the solvent in the molded body remains between the mold for the molded body / molded body, the frictional force generated between the mold and the molded body can be suppressed, and the mold release treatment can be performed without any trouble. Cracks and tears can be prevented. Therefore, it is excellent in releasability, can suppress product variation, and can improve dimensional accuracy. In addition, the drying time can be shortened and the productivity can be improved.

好ましくは、さらに、冷却した粉体成形体を、収納した型ごと室温下で型と粉体成形体に温度差を生じさせて離型処理し、粉体成形体を製造することであり、より好ましくは、更に冷却した粉体成形体を、収納した型ごと室温に静置し型と粉体成形体に温度差を生じさせて離型処理し、粉体成形体を製造することである。このように、粉体成形体を製造することにより、離型前の粉体成形体の収縮を、同一成形体内で制御しやすくなり、さらに、成形体用型/成形体間に残留する成形体内の溶剤によって、型と成形体との間に発生する摩擦を十分に抑制しやすくなり、不具合のない離型処理をより確実に行うことができる。   Preferably, further, the cooled powder molded body is subjected to a mold release treatment by causing a temperature difference between the mold and the powder molded body together with the housed mold at room temperature, and a powder molded body is manufactured. Preferably, the cooled powder molded body is allowed to stand at room temperature together with the housed mold, and a mold difference is generated between the mold and the powder molded body so as to produce a powder molded body. Thus, by manufacturing the powder molded body, the shrinkage of the powder molded body before release can be easily controlled in the same molded body, and further, the molded body remaining between the molded body mold / molded body. This solvent makes it easy to sufficiently suppress the friction generated between the mold and the molded body, and it is possible to more reliably perform the mold release process without any defects.

ここで、本実施形態では、図1に示されるような、(S1)スラリー調製処理工程、(S2)スラリー注型(充填)処理工程、(S3)硬化及び冷却処理工程、(S4)離型処理工程(1)、(S5)乾燥処理工程(1)、(S6)離型処理工程(2)、(S7)乾燥処理工程(2)、といった各処理工程を経て粉体成形体が製造される((S8)粉体成形体の完成)。   Here, in this embodiment, as shown in FIG. 1, (S1) slurry preparation processing step, (S2) slurry casting (filling) processing step, (S3) curing and cooling processing step, (S4) mold release The powder molded body is manufactured through each of the processing steps (1), (S5) drying processing step (1), (S6) mold release processing step (2), and (S7) drying processing step (2). ((S8) Completion of powder compact).

[1−1−1]スラリー調製処理工程:
本実施形態の製造方法では、スラリーはセラミック及び/又は金属の粉体と、分散媒と、ゲル化剤とを含む各材料を調製したスラリーを使用することが望ましい。粉体成形体を成形し易いことに加えて、離型性などの点で、本発明の効果を奏し易いからである。このスラリー調製処理工程は、図1の(S1)に示されるように、本実施形態の製造方法の最初に行われる処理工程である。具体的には以下で説明するように、所望のスラリーが調製されることが好ましい。
[1-1-1] Slurry preparation process:
In the production method of the present embodiment, it is desirable to use a slurry prepared from each material including ceramic and / or metal powder, a dispersion medium, and a gelling agent. This is because the effect of the present invention is easily achieved in terms of releasability and the like in addition to easy molding of the powder compact. This slurry preparation processing step is a processing step performed at the beginning of the manufacturing method of the present embodiment, as shown in (S1) of FIG. Specifically, it is preferable that a desired slurry is prepared as described below.

セラミック及び/又は金属からなる原料粉体としては、例えば、ガラス、アルミナ、窒化珪素、炭化珪素、窒化アルミ、ジルコニア、若しくはサイアロン等のセラミック粉体、又は各種金属粉体を、適宜、一種単独で又は二種以上を組み合わせて使用したものを挙げることができる。また、これら原料粉体の粒径は、スラリーを調製可能な限りにおいて特に限定はなく、製造する成形体に応じて適宜、好ましい粒径とすればよい。   As the raw material powder made of ceramic and / or metal, for example, ceramic powder such as glass, alumina, silicon nitride, silicon carbide, aluminum nitride, zirconia, or sialon, or various metal powders are appropriately used alone. Or what was used combining 2 or more types can be mentioned. In addition, the particle diameter of these raw material powders is not particularly limited as long as the slurry can be prepared, and may be set to a preferable particle diameter as appropriate according to the molded body to be manufactured.

また、必要に応じて、反応性官能基を有する有機化合物を含有する分散媒と、反応性官能基を有する有機化合物を含有させてもよい。たとえば、有機分散媒としては、反応性官能基を有する有機化合物を含有し、後述するゲル化剤と反応し得るものを挙げることができる。これにより、高い反応効率を達成することができ、硬化に寄与する成分を高濃度で含有させながらも、低粘度で高流動性のスラリーを用いることが可能となる。   Further, if necessary, a dispersion medium containing an organic compound having a reactive functional group and an organic compound having a reactive functional group may be contained. For example, the organic dispersion medium includes an organic compound having a reactive functional group and capable of reacting with a gelling agent described later. Thereby, high reaction efficiency can be achieved, and it becomes possible to use a slurry having low viscosity and high fluidity while containing a component contributing to curing at a high concentration.

ここで、前述の「反応性官能基」とは、他の成分と化学反応し得る原子団を意味し、例えば、水酸基、カルボキシル基、又はアミノ基等の他、後述するエステル結合により形成されるカルボニル基等が含まれるものを意味する。   Here, the above-mentioned “reactive functional group” means an atomic group that can chemically react with other components, and is formed by, for example, an ester bond described later in addition to a hydroxyl group, a carboxyl group, an amino group, or the like. It means a substance containing a carbonyl group or the like.

また、分散媒としては、たとえば、反応性官能基を有する有機化合物の中でも、20℃における粘度が20cps以下の低粘性の液状物質であるエステル類、とりわけ、全体の炭素数が20以下のエステル類などを挙げることができる。エステル類は比較的安定ではあるものの、反応性が高いゲル化剤を用いることにより、全体として反応性を高めることができる。   As the dispersion medium, for example, among organic compounds having a reactive functional group, esters that are low-viscosity liquid substances having a viscosity at 20 ° C. of 20 cps or less, particularly esters having a total carbon number of 20 or less. And so on. Although esters are relatively stable, the overall reactivity can be enhanced by using a highly reactive gelling agent.

また、分散媒を構成する有機化合物としては、少なくとも1の反応性官能基を有するものを含有させてもよいし、より高い反応効率を達成し、充分な硬化状態を得るために、2以上の反応性官能基を有する有機化合物を使用してもよい。   Moreover, as an organic compound which comprises a dispersion medium, you may contain what has at least 1 reactive functional group, and in order to achieve higher reaction efficiency and to obtain sufficient hardening state, two or more An organic compound having a reactive functional group may be used.

なお、本プロセスにおける材料に関する内容は、前記特許文献1の特開平11−048222号公開公報や、特開2001−335371号公開公報、国際公開第2002/085590号パンフレットに記載されている。   In addition, the content regarding the material in this process is described in Unexamined-Japanese-Patent No. 11-048222 of the said patent document 1, Unexamined-Japanese-Patent No. 2001-335371, and international publication 2002/085590 pamphlet.

但し、スラリー濃度(スラリー全体の体積に対する原料粉体の体積%)が低すぎると成形体密度が低下し、成形体の強度低下、又は乾燥・焼成時におけるクラックの発生若しくは変形等の問題を生ずるため、通常は、スラリー濃度が25〜75体積%のものが好ましく、35〜75体積%のものがより好ましい。尚、スラリーの粘度は、既述した反応性分散媒やゲル化剤の粘度の他、原料粉体の種類、分散剤の量、スラリー濃度によって調整することができる。   However, if the slurry concentration (volume% of the raw material powder with respect to the total volume of the slurry) is too low, the density of the molded body will decrease, causing problems such as reduced strength of the molded body, cracking or deformation during drying / firing. Therefore, the slurry concentration is preferably 25 to 75% by volume, more preferably 35 to 75% by volume. The viscosity of the slurry can be adjusted by the kind of the raw material powder, the amount of the dispersant, and the slurry concentration in addition to the viscosity of the reactive dispersion medium and the gelling agent described above.

また、本発明におけるスラリーには、本発明の効果を阻害しない限りにおいて、例えば、分散媒とゲル化剤との反応を促進するための触媒、スラリー調製を容易にするための分散剤、消泡剤、界面活性剤、又は焼結体特性を向上させるための焼結助剤等、種々の添加剤を加えることができる。   Further, the slurry in the present invention includes, for example, a catalyst for promoting the reaction between the dispersion medium and the gelling agent, a dispersant for facilitating slurry preparation, and an antifoam, as long as the effects of the present invention are not impaired. Various additives such as an agent, a surfactant, or a sintering aid for improving the properties of the sintered body can be added.

例えば、硬化後の成形体の強度を向上させるためには、ポリカルボン酸エステル等の分散剤を添加することが好ましい。   For example, in order to improve the strength of the molded product after curing, it is preferable to add a dispersant such as a polycarboxylic acid ester.

[1−1−2]スラリー注型(充填)処理工程:
次に、図1に示される(S2)スラリー注型(充填)処理工程について説明する。前述のようにして調製したスラリーを、用意した粉体成形体の型に注型(充填)する。充填方法としては、前述のスラリーを予めスラリープール等に貯留して、用意する型の注入口から所望のスラリーを注型(充填)するとよい。ただし、このようなスラリーの注型方法に限らず、公知のスラリーの注型方法であって、本発明の構成から逸脱しないものであれば、そのような公知の方法によってスラリーを注型してもよい。
[1-1-2] Slurry casting (filling) treatment process:
Next, the (S2) slurry casting (filling) processing step shown in FIG. 1 will be described. The slurry prepared as described above is cast (filled) into a mold of the prepared powder compact. As a filling method, the above-described slurry may be stored in a slurry pool or the like in advance, and a desired slurry may be cast (filled) from a prepared injection port. However, the present invention is not limited to such a slurry casting method, and is a known slurry casting method that does not deviate from the configuration of the present invention. Also good.

たとえば、図2に示されるように、粉体成形体が軸付きタービン1である場合には、図2、図4に示されるように粉体成形体用型3に、スラリーを注型して乾燥処理まで行った後、後述の(S3)硬化及び冷却処理工程を行う。   For example, as shown in FIG. 2, when the powder compact is a turbine 1 with a shaft, slurry is cast into the powder compact mold 3 as shown in FIGS. After performing to a drying process, the below-mentioned (S3) hardening and cooling process process is performed.

[1−1−3]スラリー硬化及び冷却処理工程:
さらに、図1に示される(S3)スラリー硬化及び冷却処理工程について説明する。前述のようなスラリーを粉体成形体の一部或いは本体を成型する型に注入した後、スラリー硬化及び冷却処理を行う。このスラリー硬化及び冷却処理工程では、硬化をさせながら冷却処理を同時に行うものである。この硬化処理としては、1)所定時間放置する、2)所定の反応温度まで上昇させる、3)注型直前に触媒を添加する、等の方法を単独で又は組合わせて硬化させることが好ましく、迅速な硬化が可能な点では、2)所定の反応温度まで上昇させる、3)注型直前に触媒を添加する方法を単独で又は組み合わせて硬化させることがより好ましい。また、冷却処理としては、前述のように調製したスラリーを、前記粉体成形体用の型に注型し硬化させながら、同時に粉体成形体を収納した型ごと冷却することが望ましい。前記粉体成形体用の型に注型し硬化させながら粉体成形体を収納した型ごと冷却することにより、型と型内の粉体成形体との、温度差が生じ易くなり、後述の(S4)離型処理工程(1)を容易に行える。また、乾燥処理を施さないため、粉体成形体に溶剤が残留するため、冷却処理時及び冷却処理後に、残留した溶剤が粉体成形体上に染み出しやすくなり、その染み出した残留した溶剤が、あたかも粉体成形体及び粉体成形体用型との間の潤滑剤の役割を果たすことになる。すなわち、後述の(S4)離型処理工程(1)前に乾燥処理をしないことから粉体成形体内の溶剤が完全に蒸発することもなく、粉体成形体の収縮を最低限に抑えることができ、しかも、残留していた成形体内の溶剤が成形体用型/成形体間の潤滑剤の役割を果たし摩擦力が大幅に低減できる。換言すれば、型/成形体間に、いわば溶剤層を作ることができ、型/成形体間の所謂「スベリ」を良くできるため、複雑形状等に見られる成形体強度が低い傾向にあるものにもクラックを入れずに離型が容易となる。
[1-1-3] Slurry curing and cooling treatment process:
Furthermore, the (S3) slurry hardening and cooling process shown by FIG. 1 is demonstrated. After the slurry as described above is injected into a mold for molding a part of the powder molded body or the main body, the slurry is cured and cooled. In the slurry curing and cooling process, the cooling process is performed simultaneously while curing. As this curing treatment, it is preferable to cure alone or in combination such as 1) leaving for a predetermined time, 2) raising to a predetermined reaction temperature, 3) adding a catalyst immediately before casting, In terms of enabling rapid curing, it is more preferable to cure by 2) raising the temperature to a predetermined reaction temperature, or 3) adding a catalyst immediately before casting, either alone or in combination. In addition, as the cooling treatment, it is desirable that the slurry prepared as described above is poured into a mold for the powder molded body and cured, and at the same time, the mold containing the powder molded body is cooled. By cooling the mold containing the powder molded body while being poured and cured into the mold for the powder molded body, a temperature difference between the mold and the powder molded body in the mold is likely to occur. (S4) The mold release process step (1) can be easily performed. In addition, since the drying process is not performed, the solvent remains in the powder molded body. Therefore, the remaining solvent is likely to ooze out on the powder molded body during and after the cooling process, and the remaining solvent that has oozed out. However, it acts as a lubricant between the powder molded body and the mold for the powder molded body. That is, since the drying process is not performed before the later-described (S4) mold release process step (1), the solvent in the powder molded body is not completely evaporated, and the shrinkage of the powder molded body can be minimized. In addition, the remaining solvent in the molded body acts as a lubricant between the molded body mold / molded body, and the frictional force can be greatly reduced. In other words, a solvent layer can be formed between the mold / molded body, so-called “slip” between the mold / molded body can be improved, and the strength of the molded body found in complex shapes and the like tends to be low. In addition, the mold can be easily released without cracking.

具体的には、粉体成形用型にスラリーを注型し硬化させながら、冷却処理を施すことにより、図2、図8に示されるように、粉体成形体1と粉体成形用型3の間(図2、図8の符号Zで表す領域)に、粉体成形体1から生じた残留溶剤が染み出し、粉体成形用型3と粉体成形体1との間の領域Zでは、摩擦力が低下して離型をスムーズに行うことができる。   Specifically, the powder molded body 1 and the powder molding die 3 are subjected to a cooling process while being poured and cured in a powder molding die, as shown in FIGS. Between the powder molded body 1 and the powder molded body 1 in the region Z between the powder molded body 3 and the powder molded body 1 (region represented by the symbol Z in FIGS. 2 and 8). Thus, the frictional force is reduced and the mold release can be performed smoothly.

さらに、冷却時に、粉体成形体に残留する残留溶剤を、粉体成形体用型の表面に結露させて、粉体成形体を製造することが好ましい。このように、硬化させながら冷却する際に、粉体成形体に残留する残留溶剤を、粉体成形体と粉体成形体用型との表面に表出させるように結露させることによって、成形体と粉体成形体用型との間に生じた結露が、前述のように、あたかも潤滑剤となり、離型時における成形体と粉体成形体用型間の摩擦を低減させるため、離型がスムーズに行え、成形体の厚みや複雑な形状に左右されず、確実に離型できる。より具体的には、粉体成形体と粉体成形体用型とが冷却され室温に静置し型と粉体成形体に温度差を生じさせることにより、粉体成形体内に残留していた溶剤からなる溶剤蒸気圧が上がり、粉体成形体と粉体成形体用型の間であって、粉体成形体の表面上及び/又は粉体成形体用型の表面上に付着することになる。そして、このような潤滑剤としての、冷却によって粉体成形体から染み出た溶剤が、粉体成形体/粉体成形体用型間の間で、粉体成形体用型から粉体成形体を離型する離型処理時に生じる摩擦を抑制し、粉体成形体を離型しやすくし千切れを無くすことができるのである。   Furthermore, it is preferable to produce a powder molded body by allowing the residual solvent remaining in the powder molded body to condense on the surface of the powder molded body mold during cooling. In this way, when cooling while curing, the residual solvent remaining in the powder molded body is condensed so as to be exposed on the surface of the powder molded body and the mold for the powder molded body, thereby forming the molded body. As described above, the dew condensation that occurs between the mold and the powder molded body molds as a lubricant and reduces the friction between the molded body and the powder molded body mold during the mold release. It can be performed smoothly and can be reliably released without being influenced by the thickness or complicated shape of the molded body. More specifically, the powder molded body and the powder molded body mold were cooled and left at room temperature to cause a temperature difference between the mold and the powder molded body, thereby remaining in the powder molded body. The solvent vapor pressure of the solvent increases, and it adheres between the powder molded body and the powder molded body mold, and adheres to the surface of the powder molded body and / or the surface of the powder molded body mold. Become. The solvent that exudes from the powder molded body by cooling as such a lubricant is transferred from the powder molded body mold to the powder molded body between the powder molded body / powder molded body mold. Thus, it is possible to suppress the friction generated during the mold release process for releasing the mold, to facilitate the mold release of the powder compact, and to eliminate the tearing.

さらに、粉体成形体用型が、残留溶剤を含む注型時のスラリーよりも小さい熱伝導率及び/又は熱容量を有するように、残留溶剤を含む注型時のスラリーが調製されることが好ましい。このように構成されることにより、型/成形体間に温度差を生じさせやすくなり、本発明の効果をより奏しやすくなる。他方、粉体成形体用型が、残留溶剤を含む注型時のスラリーよりも大きい熱伝導率及び/又は熱容量を有すると、粉体成形体用型における体積が、粉体成形体に比べて大きいため、温度差を生じさせにくく、本発明の効果を奏し難くなるため好ましくない。   Further, it is preferable that the slurry at the time of casting containing the residual solvent is prepared so that the mold for the powder molded body has a smaller thermal conductivity and / or heat capacity than the slurry at the time of casting containing the residual solvent. . By being configured in this manner, a temperature difference is easily generated between the mold / molded body, and the effects of the present invention can be more easily achieved. On the other hand, when the powder molded body mold has a larger thermal conductivity and / or heat capacity than the casting slurry containing the residual solvent, the volume of the powder molded body mold is larger than that of the powder molded body. Since it is large, it is difficult to cause a temperature difference and it is difficult to achieve the effects of the present invention.

さらに、粉体成形体用型の熱伝導率が0.5W/mK以下であることが好ましく、粉体成形体用型の熱伝導率が0.3W/mK以下であることがより好ましい。このように粉体成形体用型の熱伝導率が0.5W/mK以下であると、スラリーの温度が型に伝わりにくくなり、型とスラリーとに温度差が生じやすくなり、離型しやすくなるため好ましい。さらに、0.3W/mK以下であると、スラリーの温度が型に伝わりにくくなり、型とスラリーとに確実に温度差が生じ、離型が容易となるためより好ましい。他方、残留溶剤の熱伝導率が0.5W/mKを超えると、スラリーの温度が型に伝わりやすくスラリーと型の温度が一緒になってしまいスラリー/型間の温度差がつきにくく、離型しづらくなってしまい、粉体成形体に所謂千切れやクラック等の不具合が生じやすいため好ましくない。   Furthermore, the thermal conductivity of the powder molded body mold is preferably 0.5 W / mK or less, and the thermal conductivity of the powder molded body mold is more preferably 0.3 W / mK or less. As described above, when the thermal conductivity of the mold for the powder molded body is 0.5 W / mK or less, the temperature of the slurry is difficult to be transmitted to the mold, and a temperature difference is easily generated between the mold and the slurry, so that the mold release is easy. Therefore, it is preferable. Furthermore, it is more preferable that it is 0.3 W / mK or less because the temperature of the slurry is difficult to be transmitted to the mold, a temperature difference is surely generated between the mold and the slurry, and the mold release becomes easy. On the other hand, if the thermal conductivity of the residual solvent exceeds 0.5 W / mK, the temperature of the slurry is easy to be transferred to the mold, and the temperature of the slurry and the mold becomes difficult, and the temperature difference between the slurry and the mold is difficult to occur. This is not preferable because it becomes difficult to cause problems such as so-called tearing and cracks in the powder molded body.

また、粉体成形体用型の熱容量が3MJ/mK以下であることが好ましく、粉体成形体用型の熱容量が2.5MJ/mK以下であることがより好ましい。このように粉体成形体用型の熱容量が3MJ/mK以下であると、前述のような冷却処理後、たとえば、室温下に置いた際に型温度が室温に達しやすくなり、スラリー/型間の温度差を生じやすくでき、後述の離型処理をスムーズに行えることができるため好ましい。さらに、2.5MJ/mK以下であると、型温度が室温に達しやすく、確実にスラリー/型間の温度差を生じさせるため、容易に離型処理を行えるためより好ましい。他方、粉体成形体用型の熱容量が3J/mKを超えると、型温度が室温に達しにくく、スラリー/型間の温度差がつきにくいため、離型処理の際に不具合を生じさせやすいため好ましくない。 The heat capacity of the powder molded body mold is preferably 3 MJ / m 3 K or less, and the heat capacity of the powder molded body mold is more preferably 2.5 MJ / m 3 K or less. Thus, when the heat capacity of the powder molded body mold is 3 MJ / m 3 K or less, the mold temperature tends to reach room temperature when placed at room temperature after the cooling treatment as described above, and the slurry / It is preferable because a temperature difference between the molds can be easily generated, and a later-described mold release process can be performed smoothly. Furthermore, it is more preferable that it is 2.5 MJ / m 3 K or less because the mold temperature easily reaches room temperature, and a temperature difference between the slurry and the mold is surely generated, so that the mold release process can be easily performed. On the other hand, if the heat capacity of the mold for the powder molded body exceeds 3 J / m 3 K, the mold temperature hardly reaches room temperature, and the temperature difference between the slurry / mold is difficult to occur. It is not preferable because it is easy.

また、粉体成形体の冷却温度が室温に対して10℃以下であって、さらに、冷却時に前記粉体成形体と、前記粉体成形体が入った粉体成形用型との間に温度差を発生させて離型処理し、粉体成形体を製造することが好ましく、より好ましいのは、粉体成形体の冷却温度が室温に対して20℃以下であって、更に、前記粉体成形体と、前記粉体成形体が入った粉体成形用型との間に温度差を発生させて離型処理し、前記粉体成形体を製造することである。このように粉体成形体の冷却温度が室温に対して10℃以下であって、さらに、粉体成形体と、粉体成形体が入った粉体成形用型との間に温度差を発生させて離型処理し、粉体成形体を製造すると、スラリー温度が下がり、スラリー/型間の温度差がつきやすくなり、スラリー/型間の温度差を生じやすくでき、後述の離型処理をスムーズに行えることができるため好ましい。さらに、粉体成形体の冷却温度が室温に対して20℃以下で前述の処理を行うとスラリー温度が確実に下がり、スラリー/型間の温度差を生じさせるため、容易に離型処理を行えるため好ましい。他方、粉体成形体の冷却温度が室温に対して10℃未満の温度で、前述の処理を行うと、スラリー温度の低下が不十分でスラリー/型間の温度差がつきにくくなるため、離型処理の際に不具合を生じる虞が高くなるため好ましくない。   Further, the cooling temperature of the powder molded body is 10 ° C. or less with respect to room temperature, and the temperature between the powder molded body and the powder molding mold containing the powder molded body during cooling is further reduced. It is preferable to produce a powder molded body by releasing the mold by generating a difference, and more preferably, the cooling temperature of the powder molded body is 20 ° C. or lower with respect to room temperature, A temperature difference is generated between the molded body and the powder molding mold containing the powder molded body, and a mold release treatment is performed to manufacture the powder molded body. Thus, the cooling temperature of the powder molded body is 10 ° C. or less with respect to room temperature, and further, a temperature difference is generated between the powder molded body and the powder molding die containing the powder molded body. When the mold release process is performed and the powder molded body is manufactured, the slurry temperature is lowered, the temperature difference between the slurry / mold is likely to occur, and the temperature difference between the slurry / mold can be easily generated. This is preferable because it can be performed smoothly. Furthermore, when the above-mentioned treatment is performed at a cooling temperature of the powder compact of 20 ° C. or less with respect to room temperature, the slurry temperature is surely lowered and a temperature difference between the slurry and the mold is generated. Therefore, it is preferable. On the other hand, if the above-mentioned treatment is performed at a cooling temperature of the powder molded body of less than 10 ° C. with respect to room temperature, the slurry temperature is not sufficiently lowered and the temperature difference between the slurry and the mold is difficult to occur. This is not preferable because there is a high risk of occurrence of defects during mold processing.

また、粉体成形体の冷却時間が少なくとも30分以上であることが好ましい。このように粉体成形体の冷却時間が少なくとも30分以上であると、型とスラリーの温度が室温に対して十分下がるため好ましい。他方、粉体成形体の冷却時間が少なくとも30分よりも短いと、型とスラリーの温度が室温に対してほとんど変わらず、離型前にスラリー/型間の温度差がつきにくいため、離型処理の際に不具合を生じる虞が高くなるため好ましくない。   The cooling time of the powder compact is preferably at least 30 minutes or longer. Thus, it is preferable that the cooling time of the powder compact is at least 30 minutes or more because the temperature of the mold and the slurry is sufficiently lowered with respect to room temperature. On the other hand, when the cooling time of the powder compact is shorter than at least 30 minutes, the temperature of the mold and the slurry hardly changes with respect to room temperature, and the temperature difference between the slurry and the mold is difficult to occur before the mold release. This is not preferable because there is a high risk of occurrence of problems during processing.

[1−1−4](S4)離型処理工程(1):
さらに、図1に示される(S4)離型処理工程(1)について説明する。ここでの、離型処理工程では、たとえば、後述のように粉体成形体がタービンである場合に、翼型を本体用型から離型させて、粉体成形体本体と、その粉体成形体用型との間にクリアランスを保持させて、後述の離型処理をよりスムーズに行うものであって、前述のような粉体成形体本体を、その粉体成形体用型から離型させる(S6)離型処理工程(2)とは異なるものである。そのため、必須の処理工程ではないものの、複雑成型品等を成形するために使用されるもの、たとえば、図6Bに示されるような翼型9などを使用する場合には、クリアランスを確保するために、(S4)の工程で離型することが好ましい。
[1-1-4] (S4) Mold release process (1):
Furthermore, (S4) mold release process step (1) shown in FIG. 1 will be described. Here, in the mold release process, for example, when the powder compact is a turbine as described later, the airfoil is released from the main body mold, and the powder compact body and its powder molding A clearance is maintained between the body mold and the later-described mold release process is performed more smoothly, and the powder compact body as described above is released from the powder compact body mold. (S6) This is different from the mold release process step (2). Therefore, although it is not an indispensable processing step, in order to ensure clearance when using a product used for molding a complex molded product, for example, an airfoil 9 as shown in FIG. 6B. , (S4) is preferably released in the step.

なお、粉体成形体用型1が、図2、図3、図8に示されるように、粉体成形体本体用型と、粉体成形体残部用型とから構成され、さらに、粉体成形体本体用型が、下型7、下シャフト型15、翼型9、上型5等から構成され、粉体成形体残部用型が上シャフト型11等から構成される場合には、図8に示されるように、翼型9を下型7から完全に離型しない状態であって、粉体成形体と翼型9との間にクリアランスが形成されるように、スライドさせるとよい。   The powder molded body mold 1 is composed of a powder molded body main body mold and a powder molded body remaining mold as shown in FIGS. When the molded body main body mold is composed of the lower mold 7, the lower shaft mold 15, the wing mold 9, the upper mold 5, etc., and the powder molded body remaining mold is composed of the upper shaft mold 11, etc. As shown in FIG. 8, the airfoil 9 may be slid so that the airfoil 9 is not completely released from the lower mold 7 and a clearance is formed between the powder compact and the airfoil 9.

[1−1−5](S5)乾燥処理工程(1):
次に、図1に示される(S5)乾燥処理工程(1)について説明する。ここでの、(S5)乾燥処理工程(1)では、たとえば、後述のように粉体成形体がタービンである場合に、粉体成形体本体と、その粉体成形体用型との間にクリアランスを保持させて、後述の(S6)離型処理工程(2)をよりスムーズに行うものである。ただし、ここでの乾燥処理は、粉体成形体を完全に乾燥させるものではなく、離型時に不具合が生じない程度の乾燥処理である。
[1-1-5] (S5) Drying step (1):
Next, (S5) drying process step (1) shown in FIG. 1 will be described. In this (S5) drying treatment step (1), for example, when the powder molded body is a turbine as described later, between the powder molded body main body and the mold for the powder molded body. The clearance is maintained, and the later-described (S6) mold release process step (2) is performed more smoothly. However, the drying process here does not completely dry the powder compact, and is a drying process that does not cause a problem during mold release.

さらに、粉体成形体を少なくとも30分以上冷却した後、室温下で10分以上放置して粉体成形体を製造することがより好ましい。このように粉体成形体を少なくとも30分以上冷却した後、室温下で10分以上放置して粉体成形体を製造すると、十分に冷却され、さらに、室温下で十分置かれるため、粉体成形体/粉体成形体用型間に溶剤の蒸気(結露)を付着させることができ、結露した残留溶剤が十分に潤滑剤の役割を果たすことができる。したがって、本発明の効果を確実に奏することができ好ましい。他方、粉体成形体を少なくとも30分よりも短く、及び/或いは、室温下で10分よりも短い時間の放置に留める場合には、十分に冷却されないか、十分冷却されても室温下で十分置かれないため、粉体成形体/粉体成形体用型間に溶剤の蒸気(結露)を付着させることができない。そのため、結露した残留溶剤が十分に潤滑剤の役割を果たすことができないため、本発明の効果を奏し得ない。   Further, it is more preferable that the powder molded body is cooled for at least 30 minutes or more and then allowed to stand at room temperature for 10 minutes or longer to produce a powder molded body. After the powder compact is cooled for at least 30 minutes or more and then allowed to stand for 10 minutes or more at room temperature, the powder compact is sufficiently cooled and further placed at room temperature. The vapor (condensation) of the solvent can be adhered between the molded body / powder molded body mold, and the condensed residual solvent can sufficiently serve as a lubricant. Therefore, it is preferable because the effects of the present invention can be reliably obtained. On the other hand, if the powder compact is allowed to stand for at least less than 30 minutes and / or less than 10 minutes at room temperature, it may not be cooled sufficiently or may be sufficiently cooled at room temperature. Since it is not placed, solvent vapor (condensation) cannot be adhered between the powder molded body / powder molded body mold. For this reason, the residual solvent that has condensed is not able to sufficiently function as a lubricant, and thus the effects of the present invention cannot be achieved.

[1−1−6]粉体成形体と型の離型処理工程:
以上のように、粉体成形体全体を成型した後、図1に示される(S6)離型処理工程(2)によって、粉体成形体用型から粉体成形体を離型する。たとえば、タービン等の微細な形状を有する複雑形状品等では、図8に示されるように、タービン翼部分(図8中の符号9)のようにスライドさせた状態で(S5)乾燥処理工程(1)を経ることで、シャフト部分も容易に乾燥されているため、乾燥収縮により粉体成形体と、粉体成形体用型3との間にはクリアランスがあり、上シャフト用型11、上型5、と順々に外(離型)していき、粉体成形体を下型7から引き抜くことで成形体が得られる。
[1-1-6] Molding process of powder compact and mold:
As described above, after the entire powder molded body is molded, the powder molded body is released from the powder molded body mold in the release processing step (2) shown in FIG. 1 (S6). For example, in a complicated shape product having a fine shape such as a turbine, as shown in FIG. 8, it is slid like a turbine blade portion (reference numeral 9 in FIG. 8) (S5) drying process ( 1), the shaft portion is also easily dried. Therefore, there is a clearance between the powder molded body and the powder molded body mold 3 due to drying shrinkage, and the upper shaft mold 11 and the upper The mold 5 is sequentially removed (released) and the powder molded body is pulled out from the lower mold 7 to obtain a molded body.

[1−1−7]粉体成形体乾燥処理工程:
さらに、離型した粉体成形体を乾燥させる(S7)乾燥処理工程(2)について説明する。ここでの、(S7)乾燥処理工程(2)では、前述の(S5)乾燥処理工程(1)とは異なり、粉体成形体を完全に乾燥させるものである。このような乾燥処理手段としては、たとえば、デシケータ保管、調湿乾燥、熱風乾燥等を用いて、150℃で5時間乾燥させるものを一例として挙げることができる。ただし、このような乾燥手段に限定されるものではなく、本発明を逸脱しない範囲で公知の乾燥手段を用いて乾燥処理を行ってもよい。
[1-1-7] Powder molded body drying treatment step:
Further, the drying process step (2) for drying the released powder compact (S7) will be described. In this (S7) drying process (2), unlike the above-mentioned (S5) drying process (1), the powder compact is completely dried. As such a drying processing means, for example, what is dried at 150 ° C. for 5 hours using desiccator storage, humidity conditioning drying, hot air drying, and the like can be given as an example. However, the present invention is not limited to such a drying means, and the drying process may be performed using a known drying means without departing from the present invention.

[1−2]粉体成形用型:
粉体成形用型の材質や形状は特に限定されるものでなく、本発明の構成を採用しながら、本発明の効果を奏するものであれば、公知の材質、形状からなる型を使用してもよい。ただし、より好ましいのは、粉体成形体用型の材質がポリテトラフルオロエチレンからなる型を使用して、粉体成形体を製造することである。このような材質からなる型を使用すると、冷却時に粉体成形体と、粉体成形体用型とに温度差が生じやすい。すなわち、ポリテトラフルオロエチレンなどの材質からなる型では、室温静置時に容易に室温に戻るため、粉体成形体との温度差が生じ、本発明の効果を確実に奏することができるため好ましい。他方、たとえば、アルミニウムにダイヤモンドライクカーボンコート(DLCコート)された、粉体成形体用型では、粉体成形体の温度が容易に伝わってしまうため、粉体成形体との温度差が生じにくく、残留溶剤の結露等溶剤の付着が十分に行われないため好ましくない。
[1-2] Mold for powder molding:
The material and shape of the powder molding die are not particularly limited, and a mold made of a known material and shape is used as long as the effect of the present invention is achieved while adopting the configuration of the present invention. Also good. However, it is more preferable to produce a powder molded body using a mold in which the material of the powder molded body mold is made of polytetrafluoroethylene. When a mold made of such a material is used, a temperature difference tends to occur between the powder molded body and the powder molded body mold during cooling. That is, a mold made of a material such as polytetrafluoroethylene is preferable because it easily returns to room temperature when allowed to stand at room temperature, so that a temperature difference from the powder molded body is produced and the effects of the present invention can be reliably achieved. On the other hand, for example, in a powder molded body mold in which aluminum is diamond-like carbon coated (DLC coated), the temperature of the powder molded body is easily transmitted, so that a temperature difference from the powder molded body hardly occurs. Further, it is not preferable because adhesion of the solvent such as condensation of the residual solvent is not sufficiently performed.

また、粉体成形体が軸付きタービン用成形体である場合には、図3、図4、図6Aに示されるように、粉体成形体用型に翼型を取り付けた後に、スラリーを前記本体用型に注型し硬化した後に、これまで説明してきた各処理工程を経る等して、複雑な形状からなる軸付きタービン用成形体を製造する場合にも、本発明の効果を普く奏することができる。   When the powder compact is a shaft-equipped turbine compact, as shown in FIGS. 3, 4, and 6A, after attaching the airfoil to the powder compact, the slurry is added to the slurry. The effects of the present invention are also widely used in the case of manufacturing a shaft-equipped turbine molded body having a complicated shape by, for example, passing through the processing steps described so far after being cast into a main body mold and cured. Can play.

さらに、粉体成形体が軸付きタービン用成形体である場合について、図を参照しながら、本実施形態の製造方法を説明する。   Furthermore, the manufacturing method of this embodiment is demonstrated, referring a figure about the case where a powder compact is a molded object for turbines with a shaft.

まず、図2、図3、図5に示されるような、軸付きタービン1の先端に形成される先端軸17aを成形するための下シャフト型15と、下シャフト型15を安定載置するための下型7を用意する。この下型7には、後述するような固定ピン19を挿入できる孔(固定ピン挿入孔7a)が複数形成されるとともに、貫通していない中底7b(図3参照)が形成され、下シャフト型15をその中心に嵌合(挿入)して使用する。さらに、下シャフト型15には先端軸17aを成形するために、前述のスラリーを上シャフト型11に形成されるスラリー注型孔11aを介して流し込み(充填)できるスラリー注型孔15aが中央に形成されている。なお、図3、図4に示される下型7は円形形状に形成されているが、このような円形からなる型形状に限定されるものではなく、多角形、楕円形等適宜必要に応じて選択されることが好ましい。   First, as shown in FIGS. 2, 3, and 5, a lower shaft mold 15 for forming a tip shaft 17 a formed at the tip of the turbine 1 with a shaft, and a lower shaft mold 15 are stably placed. A lower mold 7 is prepared. The lower mold 7 is formed with a plurality of holes (fixed pin insertion holes 7a) into which a fixing pin 19 to be described later can be inserted, and an insole 7b (see FIG. 3) that is not penetrated is formed. The mold 15 is used by being fitted (inserted) into the center thereof. Further, in order to form the tip shaft 17a in the lower shaft mold 15, a slurry casting hole 15a that can be poured (filled) through the slurry casting hole 11a formed in the upper shaft mold 11 is formed in the center. Is formed. The lower mold 7 shown in FIGS. 3 and 4 is formed in a circular shape. However, the lower mold 7 is not limited to such a circular mold shape, and may be a polygon, an ellipse, or the like as necessary. Preferably it is selected.

次に、軸付きタービンの翼部を備えるタービン本体を成形するための翼型9を、前述の下シャフト型15、下型7上に図6Aのようにセットする。なお、ここでの翼型9にも固定ピンを挿入できる固定ピン挿入孔9bが複数形成していると、翼型の固定が行えるため好ましく、さらに、前述の(S4)の離型処理時に、翼型9と翼部3bとのクリアランスを確保できるように、翼型9がスライドできるスリット7c(図5参照)を形成していると、固定ピンを抜かずに翼型のスライドが容易となるため好ましい。   Next, an airfoil 9 for forming a turbine main body including a blade portion of a turbine with a shaft is set on the lower shaft die 15 and the lower die 7 as shown in FIG. 6A. In addition, it is preferable to form a plurality of fixing pin insertion holes 9b into which the fixing pin can be inserted in the airfoil 9 here, because the airfoil can be fixed. Further, during the mold release process of (S4) described above, If the slit 7c (see FIG. 5) that allows the airfoil 9 to slide is formed so that the clearance between the airfoil 9 and the airfoil portion 3b can be secured, the airfoil can be easily slid without removing the fixing pin. Therefore, it is preferable.

さらに、図3、図7A、図7Bに示されるような上型5を用意し、前述のように下シャフト型15、下型7にセットした翼型9の、更に上にセットする。なお、ここでの上型5にも固定ピン挿入孔、上下型位置決めピン挿入孔21等が形成されると、上型7、下型7に固定ピン或いは上下型位置決めピン23等を介して、前述のような所謂分割型を一体化できるため、さらに成形体の固定を行うことができる。   Further, an upper die 5 as shown in FIG. 3, FIG. 7A, and FIG. 7B is prepared, and is set on the lower shaft die 15 and the airfoil 9 set on the lower die 7 as described above. Here, when the fixed die insertion hole, the vertical die positioning pin insertion hole 21 and the like are also formed in the upper die 5 here, the upper die 7 and the lower die 7 are connected to the upper die 7 via the fixed pin or the vertical die positioning pin 23 and the like. Since the so-called split mold as described above can be integrated, the molded body can be further fixed.

なお、ここでの固定ピン、上下型位置決めピン等は、離型時に取り外し可能に形成されることが好ましい。たとえば、前述のような先端軸用型(下シャフト型)、翼型、上型に夫々形成される、固定ピンを差込みできる孔、上下型位置決めピンを差込みできる孔等に対して、出し入れ自在になるような遊びが形成されるもの等を好適に用いることができる。   In addition, it is preferable that the fixing pins and the upper and lower positioning pins here are formed so as to be removable at the time of releasing. For example, it can be freely inserted into and removed from the tip shaft mold (lower shaft mold), wing mold, and upper mold as described above. The thing etc. in which such a play is formed can be used suitably.

さらに、軸付きタービンである、上シャフトを成形するための、上シャフト型11を用意し(図3参照)、上型5の上にセットし、上下型位置決めピン23を差込みしてセットする。このようにして、軸付きタービン用の型をセットし終えた後、前述したような所望のスラリーを、図2、図4に示されるような上部側の、スラリー注型孔(上シャフト型11のスラリー注型孔11a)から注ぎ込む。   Further, an upper shaft mold 11 for forming the upper shaft, which is a turbine with a shaft, is prepared (see FIG. 3), set on the upper mold 5, and set by inserting the upper and lower mold positioning pins 23. In this way, after setting the shaft turbine mold, the desired slurry as described above is poured into the upper slurry casting hole (upper shaft mold 11 as shown in FIGS. 2 and 4). From the slurry casting hole 11a).

次に、硬化及び冷却処理を行う。具体的には、冷蔵庫等で室温よりも10℃以下〜20℃以下になるようにして、少なくとも30分以上冷却し、室温に静置し、型と粉体成形体に温度差を生じさせる。   Next, a curing and cooling process is performed. Specifically, in a refrigerator or the like, the temperature is set to 10 ° C. or lower to 20 ° C. or lower than room temperature, and is cooled for at least 30 minutes or more and left at room temperature to cause a temperature difference between the mold and the powder compact.

その後、固定ピン19を引き抜き、図8に示されるように、翼型9をスライドさせ、成形体翼部分と翼型との間に空間を作ることによって、その成形体翼部分と翼型間にクリアランスを確保する。   Thereafter, the fixing pin 19 is pulled out and the airfoil 9 is slid as shown in FIG. 8 to create a space between the airfoil part and the airfoil. Ensure clearance.

さらに、乾燥処理を行う。具体的には、熱風乾燥を使用して、40℃、1.0時間で乾燥させる。   Furthermore, a drying process is performed. Specifically, it is dried at 40 ° C. for 1.0 hour using hot air drying.

この後、図3に示される固定ピン19等を外し、上シャフト型11、上型5、翼型9、下シャフト型15を夫々取り外して、粉体成形体を離型する。   Thereafter, the fixing pin 19 and the like shown in FIG. 3 are removed, and the upper shaft mold 11, the upper mold 5, the wing mold 9, and the lower shaft mold 15 are removed, and the powder compact is released.

さらに、前述のような粉体成形体を離型処理した後、150℃、5.0時間で乾燥させることにより、粉体成形体が完成する。   Furthermore, after performing the mold release treatment of the powder molded body as described above, the powder molded body is completed by drying at 150 ° C. for 5.0 hours.

以下、本発明を実施例により、更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

[1]不具合モード:
得られた実施例及び比較例の成形品のそれぞれに対して、翼千切れ観察、及び翼クラック観察を行うことにより不具合が生じているかを評価した。
[1] Failure mode:
For each of the obtained molded products of Examples and Comparative Examples, it was evaluated whether or not a defect occurred by performing blade blade tearing observation and blade crack observation.

[1−1]翼千切れ観察:
得られた軸付きタービンの翼を、目視或いはルーペ等を用いて、翼における千切れの有無を観察した。評価方法としては、成形品数(n個)のうち、翼千切れが生じている翼の枚数がどの程度の割合で生じているかを、100分率(%)で示した。
[1-1] Observation of wings:
The blades of the obtained turbine with a shaft were observed visually or using a loupe or the like for the presence or absence of tearing in the blades. As an evaluation method, the percentage of the number of blades in which the number of blades is broken out of the number of molded products (n) is shown in 100% (%).

[1−2]翼クラック観察:
得られた軸付きタービンの翼を、目視或いはルーペ等を用いて、翼におけるクラックの有無を観察した。評価方法としては、成形品数(n個)のうち、翼クラックが生じている翼の枚数がどの程度の割合で生じているかを、100分率(%)で示した。
[1-2] Wing crack observation:
The obtained blade of the turbine with a shaft was observed for cracks in the blade by visual observation or using a magnifying glass. As an evaluation method, the percentage of the number of blades in which blade cracks were generated out of the number of molded products (n) was shown as a percentage (%).

[2]総合良品率:
得られた実施例及び比較例の成形品のそれぞれに対して、翼における千切れ、クラック等の不具合の有無を評価した。評価方法としては、成形品数(n個)のうち、翼に千切れ、クラックが生じていない翼の枚数を、100分率(%)で示した。
[2] Total good product rate:
Each of the obtained molded products of Examples and Comparative Examples was evaluated for the presence or absence of defects such as tears and cracks in the wing. As an evaluation method, out of the number of molded products (n), the number of blades that were not broken and cracked in the blades was shown as a percentage (%).

[3−1]粉体成形体用型の作成:
実施例、比較例における粉体成形用型としては、ポリテトラフルオロエチレンから成形するとともに、図2〜図5Bに示すような形状の成形型Aを作製した。具体的には、下記の実施例1、2に使用する型Aが、型材質として20℃下で熱伝導率0.25W/mK、熱容量2.2MJ/mKであるポリテトラフルオロエチレンから成形した型Aを使用した。
[3-1] Production of mold for powder compact:
As a powder molding die in Examples and Comparative Examples, a molding die A having a shape as shown in FIGS. 2 to 5B was produced while being molded from polytetrafluoroethylene. Specifically, the mold A used in Examples 1 and 2 below is a polytetrafluoroethylene having a thermal conductivity of 0.25 W / mK and a heat capacity of 2.2 MJ / m 3 K at 20 ° C. as a mold material. Molded mold A was used.

さらに、比較例における粉体成形用型としては、アルミニウムを材質とし、DLCコートして成形するとともに、前述と同様に図2〜図5Bに示すような形状の成形型Bを作製した。具体的には、下記の比較例6に使用する型Bが、型材質として20℃下で伝導率237W/mK、熱容量2.38MJ/mKであるアルミニウムにDLCコートして成形した型Bを使用した。 Furthermore, as a powder molding die in the comparative example, aluminum was used as a material, and DLC coating was performed, and a molding die B having a shape as shown in FIGS. Specifically, a mold B used in Comparative Example 6 below is a mold B formed by DLC coating on aluminum having a conductivity of 237 W / mK and a heat capacity of 2.38 MJ / m 3 K at 20 ° C. as a mold material. It was used.

[4]粉体成形体の作成:
(実施例1)
スラリーは、室温下(20℃前後)、ニ塩基酸メチルエステルからなる分散媒28.3質量部に、ポリカルボン酸共重合体からなる分散剤1.6質量部を添加・混合した後、窒化珪素粉体67質量部を添加・分散し、更にゲル化剤としてイソシアネート樹脂0.4質量部を添加・分散した後に、ジメチルアミノヘキサノール0.2質量部を添加することにより調製した。
[4] Preparation of powder compact:
Example 1
After adding and mixing 1.6 parts by mass of a dispersant made of a polycarboxylic acid copolymer to 28.3 parts by mass of a dispersion medium made of dibasic acid methyl ester at room temperature (around 20 ° C.), the slurry was nitrided It was prepared by adding and dispersing 67 parts by mass of silicon powder, adding 0.4 parts by mass of an isocyanate resin as a gelling agent, and then adding 0.2 parts by mass of dimethylaminohexanol.

成形体の作製は、上述のように調製したスラリーを、前述のように作成した粉体成形体用型Aに注入後、成形型Aごと成形体を冷蔵庫内で、温度18℃で3時間放置して冷却硬化させ、その後冷蔵庫内から取り出して、離型することにより、粉体成形体を3個成形した。このようにして得られた夫々の粉体成形体を実施例1の粉体成形体とするとともに、前述のような評価をおこなった。その際の特性、並びに得られた成形体の評価について、表1に示した。   The molded body was prepared by injecting the slurry prepared as described above into the powder molded body mold A prepared as described above, and then leaving the molded body together with the mold A in a refrigerator at a temperature of 18 ° C. for 3 hours. Then, it was cooled and cured, and then taken out from the refrigerator and released to form three powder compacts. Each powder molded body thus obtained was used as the powder molded body of Example 1 and evaluated as described above. The characteristics at that time and the evaluation of the obtained molded product are shown in Table 1.

Figure 2010241129
Figure 2010241129

(実施例2)
実施例1と同様に、前述のように調整したスラリーを粉体成形体用型Aに注入した。さらに、成形型Aごと成形体を冷蔵庫内で、温度−10℃で0.5時間放置して冷却硬化させ、その後冷蔵庫内から取り出して、室温下(温度18℃)で、3時間放置し、その後、離型することにより、粉体成形体を17個成形した。このようにして得られた夫々の粉体成形体を実施例2の粉体成形体とするとともに、前述のような評価をおこなった。その際の特性、並びに得られた成形体の評価について、表1に示した。
(Example 2)
In the same manner as in Example 1, the slurry prepared as described above was poured into a mold A for a powder compact. Furthermore, the molded body together with the mold A is allowed to cool and cure in a refrigerator at a temperature of −10 ° C. for 0.5 hours, and then taken out from the refrigerator and left at room temperature (temperature of 18 ° C.) for 3 hours. Thereafter, 17 powder compacts were formed by releasing the mold. Each powder molded body thus obtained was used as the powder molded body of Example 2 and evaluated as described above. The characteristics at that time and the evaluation of the obtained molded product are shown in Table 1.

(比較例1)
実施例1と同様に、前述のように調整したスラリーを粉体成形体用型Aに注入した。さらに、成形体を成形型Aごと、熱風乾燥機に入れて、温度40℃で10時間放置して加熱硬化させて乾燥させた。その後、熱風乾燥機から取り出して離型処理することにより、粉体成形体を4個成形した。このようにして得られた夫々の粉体成形体を比較例1の粉体成形体とするとともに、前述のような評価をおこなった。その際の特性、並びに得られた成形体の評価について、表2に示した。
(Comparative Example 1)
In the same manner as in Example 1, the slurry prepared as described above was poured into a mold A for a powder compact. Further, the molded body, together with the mold A, was placed in a hot air dryer and allowed to stand at a temperature of 40 ° C. for 10 hours to be cured by heating and dried. Then, it took out from the hot air dryer and mold-processed four powder compacts. Each powder molded body thus obtained was used as the powder molded body of Comparative Example 1 and evaluated as described above. The properties at that time and the evaluation of the obtained molded product are shown in Table 2.

Figure 2010241129
Figure 2010241129

(比較例2)
比較例1と同様に、前述のように調整したスラリーを粉体成形体用型Aに注入し、成形型Aごと成形体を、熱風乾燥機に入れて、温度40℃で2時間放置して加熱硬化させて乾燥させた。その後、熱風乾燥機から取り出して離型処理することにより、粉体成形体を4個成形した。このようにして得られた夫々の粉体成形体を比較例2の粉体成形体とするとともに、前述のような評価をおこなった。その際の特性、並びに得られた成形体の評価について、表2に示した。
(Comparative Example 2)
As in Comparative Example 1, the slurry prepared as described above was poured into a mold A for a powder molded body, and the molded body together with the mold A was placed in a hot air dryer and left at a temperature of 40 ° C. for 2 hours. Heat-cured and dried. Then, it took out from the hot air dryer and mold-processed four powder compacts. Each powder molded body thus obtained was used as a powder molded body of Comparative Example 2 and evaluated as described above. The properties at that time and the evaluation of the obtained molded product are shown in Table 2.

(比較例3)
比較例1と同様に、前述のように調整したスラリーを粉体成形体用型Aに注入し、成形型Aごと成形体を、熱風乾燥機に入れて、温度40℃で1.5時間放置して加熱硬化させて乾燥させた。その後、熱風乾燥機から取り出して離型処理することにより、粉体成形体を1個成形した。このようにして得られた粉体成形体を比較例3の粉体成形体とするとともに、前述のような評価をおこなった。その際の特性、並びに得られた成形体の評価について、表2に示した。
(Comparative Example 3)
As in Comparative Example 1, the slurry prepared as described above was poured into a mold A for a powder molded body, and the molded body together with the mold A was placed in a hot air dryer and left at a temperature of 40 ° C. for 1.5 hours. Then, it was cured by heating and dried. Then, one powder compact was shape | molded by taking out from a hot air dryer and performing a mold release process. The powder molded body thus obtained was used as the powder molded body of Comparative Example 3 and evaluated as described above. The properties at that time and the evaluation of the obtained molded product are shown in Table 2.

(比較例4)
比較例1と同様に、前述のように調整したスラリーを粉体成形体用型Aに注入し、成形型Aごと成形体を、熱風乾燥機に入れて、温度40℃で1.0時間放置して加熱硬化させて乾燥させた。その後、熱風乾燥機から取り出して離型処理することにより、粉体成形体を10個成形した。このようにして得られた夫々の粉体成形体を比較例4の粉体成形体とするとともに、前述のような評価をおこなった。その際の特性、並びに得られた成形体の評価について、表2に示した。
(Comparative Example 4)
As in Comparative Example 1, the slurry prepared as described above was poured into a mold A for a powder molded body, and the molded body together with the mold A was placed in a hot air dryer and left at a temperature of 40 ° C. for 1.0 hour. Then, it was cured by heating and dried. Thereafter, 10 powder compacts were molded by taking out from the hot air dryer and releasing the mold. Each powder molded body thus obtained was used as a powder molded body of Comparative Example 4 and evaluated as described above. The properties at that time and the evaluation of the obtained molded product are shown in Table 2.

(比較例5)
比較例1と同様に、前述のように調整したスラリーを粉体成形体用型Aに注入し、成形型Aごと成形体を、熱風乾燥機に入れて、温度40℃で0.5時間放置して加熱硬化させて乾燥させた。その後、熱風乾燥機から取り出して離型処理することにより、粉体成形体を2個成形した。このようにして得られた夫々の粉体成形体を比較例5の粉体成形体とするとともに、前述のような評価をおこなった。その際の特性、並びに得られた成形体の評価について、表2に示した。
(Comparative Example 5)
As in Comparative Example 1, the slurry prepared as described above was poured into a mold A for a powder molded body, and the molded body together with the mold A was placed in a hot air dryer and left at a temperature of 40 ° C. for 0.5 hour. Then, it was cured by heating and dried. Then, it took out from the hot air dryer and carried out mold release process, and formed two powder compacts. Each powder molded body thus obtained was used as a powder molded body of Comparative Example 5 and evaluated as described above. The properties at that time and the evaluation of the obtained molded product are shown in Table 2.

(比較例6)
前述のように調整したスラリーを、粉体成形体用型Bに注入した。さらに、成形型Bごと成形体を冷蔵庫内で、温度−10℃で0.5時間放置して冷却硬化させ、その後冷蔵庫内から取り出して、室温下(温度18℃)で、3時間放置し、その後、離型することにより、粉体成形体を1個成形した。このようにして得られた粉体成形体を比較例6の粉体成形体とするとともに、前述のような評価を行った。その際の特性、並びに得られた成形体の評価について、表1に示した。
(Comparative Example 6)
The slurry prepared as described above was poured into a mold B for a powder compact. Further, the molded body together with the mold B was allowed to cool and cure in a refrigerator at a temperature of −10 ° C. for 0.5 hours, and then removed from the refrigerator and left at room temperature (temperature of 18 ° C.) for 3 hours. Thereafter, one powder compact was formed by releasing the mold. The powder molded body thus obtained was used as the powder molded body of Comparative Example 6 and evaluated as described above. The characteristics at that time and the evaluation of the obtained molded product are shown in Table 1.

(考察1)
実施例1、2の結果から、スラリーを注型した後、その型ごと冷却することによって、離型時(型の引き抜き時)に、翼の千切れ及び翼クラックといった、翼の破損を低減でき、良好な結果を得ることができた。特に、実施例1,2では、(i)溶剤を乾燥させないことで、収縮が最低限に抑えられ、(ii)成形体の硬化後強度が維持され、さらに(iii)成形体の溶剤が型/成形体に付着したことにより、離型時に、型/成形体間の摩擦力を大幅に低減したため、翼の破損が低減したものと考えられ、実験結果から裏づけされた。
(Discussion 1)
From the results of Examples 1 and 2, by casting the slurry and then cooling the mold together, it is possible to reduce blade damage such as wing breakage and blade cracking during mold release (when the mold is pulled out). Good results could be obtained. In particular, in Examples 1 and 2, (i) by not drying the solvent, shrinkage is minimized, (ii) strength after curing of the molded body is maintained, and (iii) the solvent of the molded body is the mold. / The fact that the friction force between the mold and the molded body was greatly reduced at the time of mold release due to the adhesion to the molded body, which is considered to have reduced the blade damage, which was supported by the experimental results.

他方、比較例1〜5では、冷却しないで加熱して硬化処理をしたため、実施例に見られるような、あたかも潤滑油としての役割を果たす残留溶剤がなく、型/成形体間の摩擦力が大きいため、離型時に翼が千切れ、クラック等の不具合が大きく生じている。このことから、比較例1〜5では、本発明の効果を奏することができないばかりか、実用化において課題が残ることが確認された。   On the other hand, in Comparative Examples 1 to 5, since the curing treatment was performed without cooling, there was no residual solvent that played the role of lubricating oil, as seen in the examples, and the frictional force between the mold and the molded body was Since it is large, the blades are broken at the time of mold release, and defects such as cracks are greatly generated. From this, it was confirmed that in Comparative Examples 1 to 5, the effects of the present invention could not be achieved, but problems remained in practical use.

さらに、比較例6では、アルミニウムを材質とした型を使用して、前述のように実験してみたが、離型時に翼に千切れが生じてしまった。これは、アルミニウムを材質とした型では、冷却時に母材が金属であるため、冷却時に型・成形体の温度がほぼ同じとなったため、残溶剤が染み出してこなかったと考えられる。以上から、ポリテトラフルオロエチレン型はあまり冷えないため、その温度差で、型/成形体間の溶剤蒸気圧が上がり、型表面に付着し、それが潤滑剤の役割をし、型が抜け易いため、型の材質として好ましいが、アルミニウム等の金属からなる型では、型の材質として好ましくないことが裏づけされた。   Furthermore, in Comparative Example 6, an experiment was performed as described above using a mold made of aluminum, but the blades were cut off at the time of mold release. This is presumably because in the mold made of aluminum, the base material was a metal during cooling, and the temperature of the mold and the molded body became substantially the same during cooling, so that the residual solvent did not ooze out. From the above, since the polytetrafluoroethylene mold does not cool very much, the solvent vapor pressure between the mold and the molded body rises due to the temperature difference and adheres to the mold surface, which acts as a lubricant, and the mold is easily removed. Therefore, it is preferable as the material of the mold, but it was confirmed that the mold made of metal such as aluminum is not preferable as the material of the mold.

さらに、実施例1、2では、スラリーを注型した後、その型ごと冷却することによって、離型時(型の引き抜き時)に、翼の千切れ及び翼クラックといった、翼の破損を低減でき、良好な結果を得ることができた。しかし、比較例6では、その型母材が伝導率、熱容量とも高く、冷却時に型・成形体間の温度がほぼ同じとなったため、実施例のように残留溶剤が染み出してこなかったため、離型しづらいものとなったと考えられ、実験によって実証された。また、予め冷却しておいた型にスラリーを注型することで同様の効果を得ることが出来る。   Furthermore, in Examples 1 and 2, by casting the slurry and then cooling the mold together, it is possible to reduce blade damage such as wing breakage and blade cracking during mold release (when the mold is pulled out). Good results could be obtained. However, in Comparative Example 6, since the mold base material had high conductivity and heat capacity, and the temperature between the mold and the molded body became almost the same during cooling, the residual solvent did not bleed out as in the example. It was thought to be difficult to mold and was proved by experiments. The same effect can be obtained by casting the slurry into a mold that has been cooled in advance.

本発明に係る粉体成形体の製造方法によれば、離型性に優れ、乾燥収縮差を生じにくくして乾燥収縮差を制御でき、製品ばらつきを抑制できるとともに、寸法精度を向上でき、生産性を向上できるといった、優れた効果を奏することができる。軸付きタービン用成形体を製造することに好適に用いることができるだけではなく、国際公開第2007/111380号パンフレットで例示されるような発光管用途にも適用することが出来る。   According to the method for producing a powder molded body according to the present invention, it is excellent in releasability, can hardly control the drying shrinkage difference, can control the drying shrinkage difference, can suppress the product variation, can improve the dimensional accuracy, and can be produced. The effect which can improve property can be show | played. Not only can it be suitably used for manufacturing a shaft-formed turbine molded body, but it can also be applied to arc tube applications as exemplified in WO 2007/111380.

1:粉体成形体(軸付きタービンシャフト、軸付きタービン)、3:粉体成形体用型、5:上型、7:下型、7a:固定ピン挿入孔、7b:中底、7c:(下型の)スリット、7d:(上下型位置決め)ピン挿入孔、9:翼型、9b:固定ピン挿入孔、11:上シャフト型、11a:スラリー注型孔、15:下シャフト型、17a:先端軸、19:固定ピン、21:上下型位置決めピン挿入孔、23:上下型位置決めピン、Z:粉体成形用型1と粉体成形体3との間の領域。 1: Powder compact (turbine shaft with shaft, turbine with shaft), 3: Mold for powder compact, 5: Upper die, 7: Lower die, 7a: Fixed pin insertion hole, 7b: Insole, 7c: (Lower mold) slit, 7d: (Upper and lower mold positioning) pin insertion hole, 9: Wing mold, 9b: Fixed pin insertion hole, 11: Upper shaft mold, 11a: Slurry casting hole, 15: Lower shaft mold, 17a : Tip axis, 19: fixing pin, 21: vertical die positioning pin insertion hole, 23: vertical die positioning pin, Z: region between the powder molding die 1 and the powder compact 3.

Claims (11)

セラミック及び/又は金属の粉体と、分散媒と、ゲル化剤とを含むスラリーを注型し、前記スラリーをゲル化させることにより固化して成形体を得る粉体成形体の製造方法であって、
前記スラリーを、粉体成形体用の型に注型した後、硬化させながら前記粉体成形体を収納した型ごと冷却し、前記型と前記粉体成形体に温度差を生じさせて離型処理し、前記粉体成形体を製造する粉体成形体の製造方法。
A method for producing a powder molded body in which a slurry containing a ceramic and / or metal powder, a dispersion medium, and a gelling agent is cast, and the slurry is solidified by gelation to obtain a molded body. And
The slurry is poured into a mold for a powder molded body, and then cooled together with the mold containing the powder molded body while being cured, thereby causing a temperature difference between the mold and the powder molded body to release the mold. A method for producing a powder molded body, which is processed to produce the powder molded body.
さらに、前記冷却した前記粉体成形体を、収納した型ごと室温下で型と粉体成形体に温度差を生じさせて離型処理し、前記粉体成形体を製造する請求項1に記載の粉体成形体の製造方法。   2. The powder molded body according to claim 1, wherein the cooled powder molded body is subjected to a mold release treatment by causing a temperature difference between the mold and the powder molded body together with the housed mold at room temperature to manufacture the powder molded body. Method for producing a powder compact. 前記冷却時に、前記粉体成形体に残留する残留溶剤を、前記型の表面に結露させて、前記粉体成形体を製造する請求項1又は2に記載の粉体成形体の製造方法。   3. The method for producing a powder compact according to claim 1, wherein the powder compact is produced by causing condensation of a residual solvent remaining in the powder compact on the surface of the mold during the cooling. 4. 前記型が、残留溶剤を含む注型時のスラリーよりも小さい熱伝導率及び/又は熱容量を有する型を使用して、前記粉体成形体を製造する請求項1〜3のいずれか1項に記載の粉体成形体の製造方法。   The mold according to any one of claims 1 to 3, wherein the mold is manufactured using a mold having a thermal conductivity and / or a heat capacity smaller than that of a slurry containing a residual solvent at the time of casting. The manufacturing method of the powder molded object of description. 前記型の熱伝導率が0.5W/mK以下である請求項4に記載の粉体成形体の製造方法。   The method for producing a powder compact according to claim 4, wherein the thermal conductivity of the mold is 0.5 W / mK or less. 前記型の熱容量が3MJ/mK以下である請求項4に記載の粉体成形体の製造方法。 The method for producing a powder compact according to claim 4, wherein the mold has a heat capacity of 3 MJ / m 3 K or less. 前記型の材質がポリテトラフルオロエチレンからなる型を使用して、前記粉体成形体を製造する請求項1〜6のいずれか1項に記載の粉体成形体の製造方法。   The method for manufacturing a powder molded body according to any one of claims 1 to 6, wherein the powder molded body is manufactured using a mold made of polytetrafluoroethylene. 前記粉体成形体の冷却温度が室温に対して10℃以下であって、さらに、前記冷却時に前記粉体成形体と、前記粉体成形体が入った前記粉体成形用型との間に温度差を発生させて離型処理し、前記粉体成形体を製造する請求項1〜7のいずれか1項に記載の粉体成形体の製造方法。   The cooling temperature of the powder molded body is 10 ° C. or less with respect to room temperature, and further, during the cooling, between the powder molded body and the powder molding mold containing the powder molded body The method for producing a powder molded body according to any one of claims 1 to 7, wherein the powder molded body is produced by generating a temperature difference and releasing the mold. 前記粉体成形体の冷却時間が少なくとも30分以上である請求項1〜8のいずれか1項に記載の粉体成形体の製造方法。   The method for producing a powder compact according to any one of claims 1 to 8, wherein the cooling time of the powder compact is at least 30 minutes or longer. 前記粉体成形体を少なくとも30分以上冷却した後、室温下で10分以上放置して粉体成形体を製造する請求項1〜9のいずれか1項に記載の粉体成形体の製造方法。   The method for producing a powder molded body according to any one of claims 1 to 9, wherein the powder molded body is cooled for at least 30 minutes or more and then allowed to stand at room temperature for 10 minutes or longer to produce a powder molded body. . 前記粉体成形体が軸付きタービン用成形体である請求項1〜10のいずれか1項に記載の前記粉体成形体の製造方法。   The method for producing the powder molded body according to any one of claims 1 to 10, wherein the powder molded body is a molded body for a turbine with a shaft.
JP2010063504A 2009-03-19 2010-03-19 Method of producing powder compact Pending JP2010241129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010063504A JP2010241129A (en) 2009-03-19 2010-03-19 Method of producing powder compact

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009068742 2009-03-19
JP2010063504A JP2010241129A (en) 2009-03-19 2010-03-19 Method of producing powder compact

Publications (1)

Publication Number Publication Date
JP2010241129A true JP2010241129A (en) 2010-10-28

Family

ID=43094703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010063504A Pending JP2010241129A (en) 2009-03-19 2010-03-19 Method of producing powder compact

Country Status (1)

Country Link
JP (1) JP2010241129A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108222A1 (en) 2011-02-10 2012-08-16 日本碍子株式会社 Production method for powder compact, and powder compact
WO2012114865A1 (en) 2011-02-21 2012-08-30 日本碍子株式会社 Method for manufacturing powder compact, and powder compact
JP2017502194A (en) * 2013-12-12 2017-01-19 ゼネラル・エレクトリック・カンパニイ Method of depositing an abradable film under a polymer gel
CN117774093A (en) * 2024-02-26 2024-03-29 潍坊萨伯特精密转动设备有限公司 Screw pump stator plaster model take-out device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054204A (en) * 1991-06-27 1993-01-14 Toyota Motor Corp Method and apparatus for molding ceramics
JPH09174523A (en) * 1995-12-22 1997-07-08 Ngk Insulators Ltd Freeze molding method of ceramic employing polyvinyl alcohol solution
JPH09193113A (en) * 1996-01-19 1997-07-29 Nippon Cement Co Ltd Flask for ceramic molding and its manufacture
WO2004035281A1 (en) * 2002-10-16 2004-04-29 Ngk Insulators, Ltd. Method for producing ceramic formed article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054204A (en) * 1991-06-27 1993-01-14 Toyota Motor Corp Method and apparatus for molding ceramics
JPH09174523A (en) * 1995-12-22 1997-07-08 Ngk Insulators Ltd Freeze molding method of ceramic employing polyvinyl alcohol solution
JPH09193113A (en) * 1996-01-19 1997-07-29 Nippon Cement Co Ltd Flask for ceramic molding and its manufacture
WO2004035281A1 (en) * 2002-10-16 2004-04-29 Ngk Insulators, Ltd. Method for producing ceramic formed article

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108222A1 (en) 2011-02-10 2012-08-16 日本碍子株式会社 Production method for powder compact, and powder compact
WO2012114865A1 (en) 2011-02-21 2012-08-30 日本碍子株式会社 Method for manufacturing powder compact, and powder compact
US9051220B2 (en) 2011-02-21 2015-06-09 Ngk Insulators, Ltd. Method for producing powder molded product and powder molded product
JP2017502194A (en) * 2013-12-12 2017-01-19 ゼネラル・エレクトリック・カンパニイ Method of depositing an abradable film under a polymer gel
US10508059B2 (en) 2013-12-12 2019-12-17 General Electric Company Method of depositing abradable coatings under polymer gels
CN117774093A (en) * 2024-02-26 2024-03-29 潍坊萨伯特精密转动设备有限公司 Screw pump stator plaster model take-out device
CN117774093B (en) * 2024-02-26 2024-05-03 潍坊萨伯特精密转动设备有限公司 Screw pump stator plaster model take-out device

Similar Documents

Publication Publication Date Title
JP4761698B2 (en) Method for producing molded body and molding core
US5252273A (en) Slip casting method
JP2010241129A (en) Method of producing powder compact
JP6187810B2 (en) Manufacturing method of ceramic sintered body
CN110891715A (en) Method for producing parts with complex shape by metal powder injection moulding
RU2532783C2 (en) Manufacturing method of system containing many blades installed in platform
KR101761048B1 (en) Core for precision casting, production method therefor, and mold for precision casting
JP4614767B2 (en) Manufacturing method of ceramic molded body
WO2011061593A1 (en) Method for manufacturing monolithic bodies by means of a casting or injection molding process
JPWO2016084585A1 (en) Wax pattern surface treatment agent and method for producing dental prosthesis
US20080232996A1 (en) Method for Fabricating Parts by PIM or MICROPIM
WO2015122445A1 (en) Method for producing ceramic sintered body and ceramic sintered body
CN110831712A (en) Casting process by utilizing hot die casting
US8794297B1 (en) Molding apparatus and method of forming a moldable article
JP2010241128A (en) Method of producing powder compact
KR101761047B1 (en) Core for precision casting, production method therefor, and mold for precision casting
JP5465909B2 (en) Manufacturing method of ceramic molded body
JP2021095317A (en) Silicon nitride sintered compact and bearing using the same
KR101373481B1 (en) Manufacturing method of ceramic core used for the gas turbine hot components having internal cooling passage
Noguchi et al. Three-dimensional microcasting
KR101657022B1 (en) Mold for precision casting, and method for producing same
JP6347400B2 (en) Manufacturing method of ceramic sintered body
KR101233476B1 (en) Manufacturing Method of the ceramic core on the gas turbine hot components during sintering And Support plate for Sintering of ceramic core
JP2009039934A (en) Method of forming hollow ceramic part and pin for formation of hollow ceramic part
FR3062323A1 (en) PROCESS FOR PRODUCING A CERAMIC CORE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130204

A977 Report on retrieval

Effective date: 20131028

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140304