JP2010239924A - Viscoelastic composition for food - Google Patents

Viscoelastic composition for food Download PDF

Info

Publication number
JP2010239924A
JP2010239924A JP2009094301A JP2009094301A JP2010239924A JP 2010239924 A JP2010239924 A JP 2010239924A JP 2009094301 A JP2009094301 A JP 2009094301A JP 2009094301 A JP2009094301 A JP 2009094301A JP 2010239924 A JP2010239924 A JP 2010239924A
Authority
JP
Japan
Prior art keywords
value
dietary fiber
food
elastic modulus
viscoelastic composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009094301A
Other languages
Japanese (ja)
Inventor
Shizuko Tachikawa
静子 立川
Yukako Nakamura
祐佳子 中村
Takayuki Kamimura
隆之 神村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BG FOODS CO Ltd
Original Assignee
BG FOODS CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BG FOODS CO Ltd filed Critical BG FOODS CO Ltd
Priority to JP2009094301A priority Critical patent/JP2010239924A/en
Publication of JP2010239924A publication Critical patent/JP2010239924A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Confectionery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a viscoelastic composition for not-too-sweet food which is produced by using no sugar even in view of health, so as to make safely-eatable and chewable candies. <P>SOLUTION: The viscoelastic composition for food contains a dietary fiber as an essential component, and has the following characteristics: (i) the value of a storage elastic modulus (G') obtained by following equation (1): G'(ω)=σ1/γ0 and is in the range of 100,000-600,000 Pa at 25-35°C, and the ratio of (the value of G' at 35°C)/(the value of G' at 25°C) is not less than 0.5 but less than 1; and (ii) the value of a loss elastic modulus (G") obtained by following equation (2): G"(ω)=σ2/γ0 and is in the range of 200,000-800,000 Pa at 25-35°C, and the ratio of (the value of G" at 35°C)/(the value of G" at 25°C) is not less than 0.4 but less than 1. Wherein, ω shows an angular velocity, σ1 shows a stress of an elastic component, and γ0 shows vibration strain in the equation (1), and ω shows an angular velocity, σ2 shows a stress of a viscosity component, and γ0 shows vibration strain in the equation (2). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は食品用粘弾性組成物に関するものであり、さらに詳しくは、菓子類の中でソフトキャンディ類やグミキャンディ類に分類される噛むキャンディ類のベース生地等や、食べられるガムなどにも応用できる食品用粘弾性組成物に関するものである。   The present invention relates to a viscoelastic composition for foods, and more particularly, to a base dough for chewing candy classified as soft candy and gummy candy among confectionery, and to eatable gum The present invention relates to a viscoelastic composition for food.

噛み応えのある食感で、口持ちが良いキャンディ類が市場で好まれるようになってきている。噛み応えのある食感で、口持ちが良いキャンディ類のなかで、『ハイチュウ』[登録商標、森永製菓(株)]は市場では高い評価を得ている。
その一方、菓子類は砂糖などの糖類を多く含むことから、健康上の理由から敬遠される傾向にもある。したがってシュガーレスのキャンディが増えており、糖質としても食物繊維の人気が高まっている。
Candy with a chewy texture and good mouthfeel is becoming popular in the market. Among the candy that has a chewy texture and a good mouthfeel, “Hi-chu” [registered trademark, Morinaga Seika Co., Ltd.] is highly evaluated in the market.
On the other hand, since confectionery contains many sugars such as sugar, it tends to be avoided for health reasons. Therefore, sugarless candy is increasing and dietary fiber is becoming more popular as a carbohydrate.

食感の良否は感覚的であるが、粘弾性的性質は食感を反映するものである。そこで、その性質を測定器により評価することが試みられている。歯で噛むことを想定してゆっくりしたサイクルで動的変形を繰り返す測定方法が知られている[例えば、食品物性測定用レオメータ(G−5000)、(株)ユービーエム製を使用する方法]。その原理や測定方法は文献にも紹介されている(例えば、非特許文献1参照)。   The quality of the texture is sensual, but the viscoelastic nature reflects the texture. Therefore, an attempt has been made to evaluate the property with a measuring instrument. A measurement method that repeats dynamic deformation in a slow cycle assuming that it is chewed by teeth is known [for example, a food property measurement rheometer (G-5000), a method using UBM Co., Ltd.]. The principle and measurement method are also introduced in the literature (for example, see Non-Patent Document 1).

一方、食物繊維には、不溶性食物繊維から水溶性食物繊維まで多くの種類がある。食物繊維の摂取は腸内細菌の増殖にも関係し、健康に良い影響があることは多くの報告がなされている。このような食物繊維をより多く摂取するために、菓子類に食物繊維を配合する試みが盛んに行なわれている(特許文献1参照)。   On the other hand, there are many types of dietary fiber from insoluble dietary fiber to water-soluble dietary fiber. There are many reports that dietary fiber intake is related to the growth of enteric bacteria and has a positive effect on health. In order to ingest more of such dietary fiber, attempts to blend dietary fiber with confectionery have been actively made (see Patent Document 1).

特許第3618718号公報Japanese Patent No. 3618718

「科学と工業」食品物性測定用レオメータ,81(12),p589〜594(2007)"Science and Industry" Rheometer for measuring food properties, 81 (12), p589-594 (2007)

従来、ソフトキャンディは古くからあったが、噛み始めは硬く、口中で温度が上がり、水分を含むと柔らかくなり、食感のおいしさを損ねてしまうという問題があった。
また、糖類からできているので甘すぎることも近年では嫌われる原因になっている。前記『ハイチュウ』はこれらの問題点をかなり改良しているが、糖類の砂糖を主原料にしているので非常に甘く、また、噛み応えは改良されているが、噛み始めと口中で時間経過により柔らかくなり、噛み応えを十分に保持できていないという問題があった。
Conventionally, soft candy has been used for a long time, but it has a problem that it is hard at the beginning of chewing, its temperature rises in the mouth, becomes soft when it contains moisture, and the taste of the texture is impaired.
Moreover, since it is made from saccharides, being too sweet has also become a cause of dislike in recent years. The above-mentioned “Haichu” has improved these problems considerably, but it is very sweet because it uses sugar sugar as the main ingredient, and the chewing response has been improved, There was a problem that it became soft and the chewing response was not sufficiently maintained.

初期の食感を維持するには口中温度での粘弾性的特性が維持されているのが理想であるが、現実的にはその特性低下を少なくする方法は発明されておらず、今後解決せねばならない。
従来、砂糖とゼラチンからなる組成が提案されているが、この組成では砂糖組成物の温度依存と水分吸収性から食感のこれ以上の改良は困難であり、問題が残ると考えられる。
In order to maintain the initial texture, it is ideal that the viscoelastic characteristics at the mouth temperature are maintained, but in reality, no method has been invented to reduce the deterioration of the characteristics, which will not be solved in the future. I have to.
Conventionally, a composition composed of sugar and gelatin has been proposed, but it is difficult to improve the texture further due to the temperature dependence and moisture absorption of the sugar composition, and it is considered that problems remain.

また、ハードキャンディには舐めるおいしさがあるが、硬くて噛むことはできない。しかし、ハードキャンディは口中で長い時間溶けずにとどまり、おいしさが長持ちするという利点がある。
そこで、本発明の目的は、従来のソフトキャンディとハードキャンディの利点を併せ持つとともに噛み応えのあるキャンディであって、健康面からも糖類を使わずに甘すぎない食品用粘弾性組成物を作り、安心して食べられるキャンディ類を提供することである。
Hard candy has a taste to lick, but it is hard and cannot be chewed. However, hard candy has the advantage that it remains undissolved in the mouth for a long time and has a long-lasting taste.
Therefore, the object of the present invention is a candy that has the advantages of conventional soft candy and hard candy and is chewy, and makes a viscoelastic composition for foods that is not too sweet without using sugar from the health aspect, It is to provide candy that can be eaten with peace of mind.

前記課題を解決するための本発明の請求項1記載の食品用粘弾性組成物は、食物繊維を必須主成分として含む食品用粘弾性組成物であって、次に示す特性(イ)および特性(ロ)を有することを特徴とするものである。   The viscoelastic composition for food according to claim 1 of the present invention for solving the above-mentioned problem is a viscoelastic composition for food containing dietary fiber as an essential component, and has the following characteristics (a) and characteristics: (B).

特性:
(イ)動的粘弾性測定を行って下式(1)により求められる貯蔵弾性率(G′)の値が、25℃から35℃の領域で100,000Paから600,000Paの領域にあるとともに、(35℃のG′の値)/(25℃のG′の値)の比が0.5以上1未満である。
Characteristic:
(B) The value of the storage elastic modulus (G ′) obtained by performing dynamic viscoelasticity measurement by the following formula (1) is in the range of 100,000 Pa to 600,000 Pa in the range of 25 ° C. to 35 ° C. The ratio of (G ′ value at 35 ° C.) / (G ′ value at 25 ° C.) is 0.5 or more and less than 1.

(ロ)動的粘弾性測定を行って下式(2)により求められる損失弾性率(G″)の値が、25℃から35℃の領域で200,000Paから800,000Paの領域にあるとともに、(35℃のG″の値)/(25℃のG″の値)の比が0.4以上1未満である。 (B) The value of the loss elastic modulus (G ″) obtained by performing dynamic viscoelasticity measurement by the following equation (2) is in the region of 200,000 Pa to 800,000 Pa in the region of 25 ° C. to 35 ° C. , (Value of G ″ at 35 ° C.) / (Value of G ″ at 25 ° C.) is 0.4 or more and less than 1.

G′(ω)=σ1/γ0・・・・式(1)
G″(ω)=σ2/γ0・・・・式(2)
ただし、式(1)中の、ωは角速度、σ1は弾性成分の応力、γ0は振動歪みを示し、式(2)中の、ωは角速度、σ2は粘性成分の応力、γ0は振動歪みを示す。
G ′ (ω) = σ1 / γ0 (1)
G ″ (ω) = σ2 / γ0... Formula (2)
In Equation (1), ω is angular velocity, σ1 is elastic component stress, γ0 is vibration strain, ω is angular velocity, σ2 is viscous component stress, and γ0 is vibration strain. Show.

本発明の請求項2記載の食品用粘弾性組成物は、請求項1記載の食品用粘弾性組成物において、前記食物繊維の一種であるアカシア食物繊維を除く食物繊維を組成物全体に対して40質量%以上90質量%未満含有するとともに、前記アカシア食物繊維を組成物全体に対して10〜40質量%含有することを特徴とするものである。   The viscoelastic composition for food according to claim 2 of the present invention is the viscoelastic composition for food according to claim 1, wherein the dietary fiber excluding acacia dietary fiber, which is a kind of the dietary fiber, is used for the entire composition. While containing 40 mass% or more and less than 90 mass%, the said acacia dietary fiber is contained 10-40 mass% with respect to the whole composition, It is characterized by the above-mentioned.

本発明の請求項1記載の食品用粘弾性組成物は、食物繊維を必須主成分として含む食品用粘弾性組成物であって、前記特性(イ)および特性(ロ)を有することを特徴とするものであり、
食物繊維を必須主成分として含み、前記特性(イ)および特性(ロ)を有する食品用粘弾性組成物を用いることによって、歯ごたえのあるソフトキャンディを製造することが可能となり、口中での粘りが強く、口持ちが良くなり、さらに、小さなキャンディでも十分な食感を得ることができるので、キャンディ類に限らず、焼き菓子の中間サンド部分やチョコレート菓子に混ぜることで歯ごたえのある食感を与えることができ、さらに、合成樹脂を使う食べられないガムではなく食べられるガムとしても応用可能であり、また、食物繊維を多量に含むので、食べることによって腸内細菌を活発にし、健康増進に貢献するという、顕著な効果を奏する。
The viscoelastic composition for food according to claim 1 of the present invention is a viscoelastic composition for food containing dietary fiber as an essential component, and has the above-mentioned properties (A) and (B). Is what
By using a viscoelastic composition for foods containing dietary fiber as an essential main component and having the above-mentioned properties (I) and (B), it becomes possible to produce a soft candy with a chewy texture, and the stickiness in the mouth It is strong and has a good mouthfeel, and even a small candy can provide a sufficient texture, so it is not limited to candy, but it gives a crunchy texture when mixed with the intermediate sand portion of baked goods and chocolate candy. In addition, it can be applied as an edible gum instead of an inedible gum that uses synthetic resin, and since it contains a large amount of dietary fiber, it activates enteric bacteria and contributes to health promotion This has a remarkable effect.

本発明の請求項2記載の食品用粘弾性組成物は、請求項1記載の食品用粘弾性組成物において、前記食物繊維の一種であるアカシア食物繊維を除く食物繊維を組成物全体に対して40質量%以上90質量%未満含有するとともに、前記アカシア食物繊維を組成物全体に対して10〜40質量%含有することを特徴とするものであり、
アカシア食物繊維を併用する食品用粘弾性組成物を用いることによって、一層歯ごたえのあるソフトキャンディを製造することが可能となり、口中での粘りがより強く、口持ちがより良くなり、さらに、小さなキャンディでもより十分な食感を得ることができるという、さらなる顕著な効果を奏する
The viscoelastic composition for food according to claim 2 of the present invention is the viscoelastic composition for food according to claim 1, wherein the dietary fiber excluding acacia dietary fiber, which is a kind of the dietary fiber, is used for the entire composition. While containing 40% by weight or more and less than 90% by weight, the acacia dietary fiber is contained in an amount of 10 to 40% by weight based on the entire composition,
By using a viscoelastic composition for foods that is combined with acacia dietary fiber, it becomes possible to produce a soft candy that is even more crunchy, with a stronger stickiness in the mouth, a better mouthfeel, and a smaller candy However, there is a further remarkable effect that a sufficient texture can be obtained.

正弦波振動ひずみγと応力σとの関係を示す説明図である。It is explanatory drawing which shows the relationship between sine wave vibration distortion (gamma) and stress (sigma). 実施例1〜3および比較例1、比較例2の貯蔵弾性率(G′)の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the storage elastic modulus (G ') of Examples 1-3, Comparative Example 1, and Comparative Example 2. 比較例3の貯蔵弾性率(G′)の温度依存性を示すグラフである。10 is a graph showing temperature dependence of storage elastic modulus (G ′) of Comparative Example 3. 実施例1〜3および比較例2の損失弾性率(G″)の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the loss elastic modulus (G ") of Examples 1-3 and Comparative Example 2. 比較例1、3の損失弾性率(G″)の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the loss elastic modulus (G ") of the comparative examples 1 and 3. FIG.

本発明の食品用粘弾性組成物において、口中の温度上昇によってもキャンディ生地がへたらないようにするには、すなわち、初期の食感を維持するには口中温度での粘弾性的特性が維持されており、口中の温度上昇によっても粘弾性的特性が低下をしない構造を有する機能性原材料を用いる必要がある。
ゼラチンは、蛋白質で、その結合力の強さにより架橋構造となるので強い粘弾性的性質を有するので、その特性を利用して、粘弾性を有する食品にはゼラチンを多く配合したソフトキャンディや、同じくゼラチンを配合したグミキャンディなどがある。
しかしその架橋構造は水素結合によるもので、水分や熱により結合が弱くなる欠点があった。
そこで、本発明においては熱や水分に弱い架橋構造ではなく、天然ガムのような物質を用いることを考案した。
In the viscoelastic composition for food according to the present invention, the viscoelastic property at the mouth temperature is maintained in order to prevent the candy dough from sagging even when the temperature in the mouth rises, that is, to maintain the initial texture. Therefore, it is necessary to use a functional raw material having a structure in which the viscoelastic properties do not deteriorate even when the temperature in the mouth rises.
Gelatin is a protein and has a strong viscoelastic property because it has a cross-linked structure due to its strong binding force, so using its properties, soft candy containing a lot of gelatin in a viscoelastic food, There is also gummy candy with gelatin.
However, the cross-linked structure is due to hydrogen bonds, and there is a drawback that the bonds are weakened by moisture or heat.
Therefore, in the present invention, it has been devised to use a substance such as natural gum, not a crosslinked structure weak against heat and moisture.

発明者等は粘弾性的な性質を得るのに食物繊維を使用することにより、特にアカシア食物繊維を併用して使用することにより課題を解決することを発明した。アカシア食物繊維はグミキャンディには使用されているが、ソフトキャンディには使用されていない。   The inventors have invented solving the problem by using dietary fiber to obtain viscoelastic properties, in particular by using acacia dietary fiber in combination. Acacia dietary fiber is used in gummy candy but not in soft candy.

砂糖などの糖類を多く含む従来のソフトキャンディでは口中での食感が問題であったが、本発明では砂糖ではなく食物繊維を多く配合する組成をベースとし、しかも、同じ食物繊維であるアカシア食物繊維を併用することにより可能となった。これは、アカシア食物繊維は分子量が大きいため、その結果、温度上昇により不安定になる架橋構造ではなく、分子の大きさからくる粘弾性的な性質が寄与しているためと考えられる。   In the conventional soft candy containing many sugars such as sugar, the texture in the mouth was a problem, but in the present invention, it is based on a composition containing many dietary fibers instead of sugar, and the same dietary fiber is an acacia food It became possible by using fiber together. This is probably because the acacia dietary fiber has a large molecular weight, and as a result, a viscoelastic property derived from the size of the molecule contributes rather than a cross-linked structure that becomes unstable due to an increase in temperature.

アカシア食物繊維とは、アフリカに存在するアカシアの木のうちマメ科の灌木であるアカシア・セネガル種やアカシア・セヤル種の樹皮に浸出凝固した樹液である。アラビアガムとも呼ばれ、平均分子量50万程度の水溶性天然高分子ともいえる。しかも高分子の側鎖部分にはアラビノース基の極性基を有し、架橋構造も形成しえる分子構造である。
本発明の食品用粘弾性組成物において、アカシア食物繊維の配合量は特に限定されるものではないが、アカシア食物繊維を除く食物繊維を組成物全体に対して40質量%以上90質量%未満、好ましくは50質量%以上80質量%以下配合し、アカシア食物繊維を組成物全体に対して10〜40質量%、好ましくは20〜40質量%配合することが、本発明の食品用粘弾性組成物の製造および特性を考慮すると好ましい。
アカシア食物繊維が10質量%未満では初期の食感を維持するのが困難となる恐れがあり、40質量%を超えると粘りが強くなり、成型加工性が困難になる恐れがある。
Acacia dietary fiber is a sap that has been leached and solidified into the bark of the Acacia Senegal and Acacia Seyal species, which are the leguminous shrubs of African acacia trees. It is also called gum arabic and can be said to be a water-soluble natural polymer having an average molecular weight of about 500,000. In addition, the side chain portion of the polymer has a molecular structure that has a polar group of arabinose group and can form a crosslinked structure.
In the viscoelastic composition for food of the present invention, the blending amount of the acacia dietary fiber is not particularly limited, but the dietary fiber excluding the acacia dietary fiber is 40% by mass or more and less than 90% by mass, The viscoelastic composition for food according to the present invention preferably contains 50% by mass or more and 80% by mass or less, and 10 to 40% by mass, preferably 20 to 40% by mass of acacia dietary fiber based on the whole composition. Considering the production and characteristics of
If the acacia dietary fiber is less than 10% by mass, it may be difficult to maintain the initial texture, and if it exceeds 40% by mass, the tenacity becomes strong and molding processability may be difficult.

アカシア食物繊維が好ましいことが分かったが、分子量が大きく極性基を有する食物繊維であれば目的を達成できると考えられ、汎用の食物繊維を化学的に変性させてつくることも可能であると考えられる。その意味でアカシア食物繊維を使うことは一つの方法であるが、アカシア食物繊維に限定されるものではなく、アカシア食物繊維と同等あるいはより優れた粘弾性的性質を表す物性値を有する食物繊維を使用することができる。本発明においては、食物繊維の粘弾性的性質を表す物性値が非常に重要である。   Acacia dietary fiber was found to be preferable, but it is thought that the purpose can be achieved if it is a dietary fiber having a large molecular weight and a polar group, and it can be made by chemically modifying general-purpose dietary fiber. It is done. In that sense, the use of acacia dietary fiber is one method, but it is not limited to acacia dietary fiber, and a dietary fiber having a physical property value that is equivalent to or superior to that of acacia dietary fiber is used. Can be used. In the present invention, a physical property value representing the viscoelastic property of dietary fiber is very important.

このアカシアの樹液は、消化酵素でも消化されない多糖類であるので食物繊維と分類される。その他の食物繊維もアカシア食物繊維ほどの高分子ではないが、同様の多糖類であるので混合状態も良好で、安定性にも関係していると考えられる。したがって、他の食物繊維との併用によりアカシア食物繊維の性質を引き出している原因でもある。   This acacia sap is classified as dietary fiber because it is a polysaccharide that is not digested by digestive enzymes. Other dietary fibers are not as high as acacia dietary fibers, but they are similar polysaccharides, so they are well mixed and considered to be related to stability. Therefore, it is also a cause of drawing out the properties of acacia dietary fiber in combination with other dietary fiber.

従来は、単に、糖類にアカシア食物繊維を配合してもソフトキャンディに好ましい生地をつくることができなかったので、従来のソフトキャンディにアカシア食物繊維が使われてこなかった理由と考えられる。   In the past, simply adding acacia dietary fiber to saccharides did not make a preferred dough for soft candy, which is probably why acacia dietary fiber has not been used in conventional soft candy.

アカシア食物繊維以外の食物繊維としては、具体的には、例えば、オート麦繊維、ポリデキストロース、難消化性デキストリン、グアーガム酵素分解物、低分子アルギン酸ナトリウム、サイリウム種皮、グルコマンナン、チコリファイバー、イヌリン、水溶性大豆多糖類、コーンファイバー、レジスタントスターチ、ビートファイバー、アップルファイバー、さとうきび食物繊維、寒天、小麦ふすま、発酵大麦ファイバー、えんどうファイバー、セルロース、小麦ファイバー、大豆ファイバー、ポテトファイバー、チアシード、アラビノキシラン、酒粕再発酵物があるが、好ましくはオート麦繊維、ポリデキストロース、難消化性デキストリンなどを挙げることができる。   Specific examples of dietary fibers other than acacia dietary fiber include, for example, oat fiber, polydextrose, indigestible dextrin, guar gum enzymatic degradation product, low molecular sodium alginate, psyllium seed coat, glucomannan, chicory fiber, inulin, Water-soluble soybean polysaccharide, corn fiber, resistant starch, beet fiber, apple fiber, sugarcane dietary fiber, agar, wheat bran, fermented barley fiber, pea fiber, cellulose, wheat fiber, soybean fiber, potato fiber, chia seed, arabinoxylan There are re-fermented products of sake lees, preferably oat fiber, polydextrose, indigestible dextrin and the like.

本発明の食品用粘弾性組成物の商品構成上、前記配合で甘味度が著しく低い場合は公知の甘味料を添加することもできる他、公知の酸味料、光沢剤、乳化剤、果汁やジャム、乳製品、蛋白質(ゼラチンなど)を副原料として本発明の主旨を逸脱しない範囲においてさらに添加することができる。   On the product structure of the viscoelastic composition for food of the present invention, when the sweetness is extremely low in the above composition, a known sweetener can be added, as well as a known acidulant, brightener, emulsifier, fruit juice and jam, Dairy products and proteins (gelatin and the like) can be further added as auxiliary materials within a range not departing from the gist of the present invention.

食感の良否は感覚的であるが、粘弾性的性質は食感を反映するものである。そこで、その性質を前記のように測定器により歯で噛むことを想定してゆっくりしたサイクルで動的変形を繰り返す測定方法で評価することが試みられており、その原理や測定方法も文献に紹介されている(非特許文献1参照)。   The quality of the texture is sensual, but the viscoelastic nature reflects the texture. Therefore, it has been attempted to evaluate its properties by a measurement method that repeats dynamic deformation in a slow cycle, assuming that it is bitten with teeth by a measuring instrument as described above, and the principle and measurement method are also introduced in the literature. (See Non-Patent Document 1).

それによると、粘性と弾性を併せ持つ粘弾性物質をレオメータで正弦波の振動ひずみを与え、応答する応力を測定すると、応答には粘性による時間遅れを生じる。図1に、正弦波振動ひずみγと応力σとの関係を示す。
図1(イ)に示した正弦波振動ひずみγに対して、図1(ロ)に示した弾性体では応力がひずみと同じ位相で現れるが、図1(ハ)に示したニュートン流体(粘性体)では応力がひずみと位相が90°ずれる。そして図1(ニ)に示した粘弾性体の場合では応力がひずみと位相が0〜90°の間のずれとなる。粘弾性体の場合では0<δ<(π/2)だけ位相がずれた応力が生じることになる。
According to this, when a viscoelastic substance having both viscosity and elasticity is subjected to a sinusoidal vibration strain with a rheometer and the response stress is measured, a time delay due to the viscosity occurs in the response. FIG. 1 shows the relationship between the sinusoidal vibration strain γ and the stress σ.
In contrast to the sinusoidal vibration strain γ shown in FIG. 1 (a), in the elastic body shown in FIG. 1 (b), the stress appears in the same phase as the strain, but the Newtonian fluid (viscosity shown in FIG. In the body), the stress is 90 degrees out of phase with the strain. In the case of the viscoelastic body shown in FIG. 1 (d), the stress becomes strain and the phase is shifted between 0 and 90 °. In the case of a viscoelastic body, stress whose phase is shifted by 0 <δ <(π / 2) is generated.

γ(t)=γ0cos(ωt)で表される振動ひずみに対して、粘弾性体で生じた応力σ(t)は下式(a)、(b)で表される。
σ(t)=σ0cos(ωt+δ) 式(a)
=σ1cos(ωt)+σ2sin(ωt) 式(b)
ここで、応力を式(b)のように分けると、その第1項におけるσ1はひずみと同じ位相の応力であり、本項が弾性成分を表す。その第2項におけるσ2はひずみと90°ずれた応力であることから、粘性成分を表す。この二つの粘弾性関数G′(ω),G″(ω)を下記のように定義することができる。
The stress σ (t) generated in the viscoelastic body with respect to the vibration strain represented by γ (t) = γ0 cos (ωt) is represented by the following expressions (a) and (b).
σ (t) = σ0 cos (ωt + δ) Equation (a)
= Σ1cos (ωt) + σ2sin (ωt) Equation (b)
Here, when the stress is divided as shown in formula (b), σ1 in the first term is a stress having the same phase as the strain, and this term represents the elastic component. Since σ2 in the second term is a stress shifted by 90 ° from the strain, it represents a viscous component. These two viscoelastic functions G ′ (ω) and G ″ (ω) can be defined as follows.

G′(ω)=σ1/γ0(貯蔵弾性率)・・・・式(1)
G″(ω)=σ2/γ0(損失弾性率)・・・・式(2)
ただし、式(1)中の、ωは角速度、σ1は弾性成分の応力、γ0は振動歪みを示し、式(2)中の、ωは角速度、σ2は粘性成分の応力、γ0は振動歪みを示す。
G ′ (ω) = σ1 / γ0 (storage modulus)... Formula (1)
G ″ (ω) = σ2 / γ0 (loss modulus)... Formula (2)
In Equation (1), ω is angular velocity, σ1 is elastic component stress, γ0 is vibration strain, ω is angular velocity, σ2 is viscous component stress, and γ0 is vibration strain. Show.

前記のように正弦波のひずみに対する応答応力から弾性率が測定されるが、粘性と弾性が複合したもので複素弾性率とも呼ばれる。この複素弾性率は粘性部分の見かけの弾性率とバネのようなヤング率に相当する弾性率との複合である。それらを分解するとバネのような弾性率は貯蔵弾性率(G′)と呼ばれる。一方、粘性による見かけの弾性率は損失弾性率(G″)と呼ばれる。損失とはエネルギー損失のことで粘性による分子の内部摩擦で発熱し力学的変形エネルギーを損失させてしまう。一方、バネのような弾性は発熱せずにエネルギーを貯蔵するので貯蔵弾性率と呼ばれる。   As described above, the elastic modulus is measured from the response stress with respect to the sinusoidal strain, but it is a composite of viscosity and elasticity and is also called a complex elastic modulus. This complex elastic modulus is a composite of the apparent elastic modulus of the viscous portion and the elastic modulus corresponding to the Young's modulus such as a spring. When they are disassembled, the elastic modulus like a spring is called the storage elastic modulus (G ′). On the other hand, the apparent elastic modulus due to viscosity is called loss elastic modulus (G ″). Loss is energy loss, and heat is generated due to internal friction of molecules due to viscosity, and mechanical deformation energy is lost. Such elasticity is called storage elastic modulus because it stores energy without generating heat.

したがって、損失弾性率(G″)が大きい領域では物質は粘性的で、長時間放置するとだらりと変形してしまう。一方、貯蔵弾性率(G′)が大きい領域では変形は一定下で保持される。一般的には温度が上がると分子運動が大きくなって、粘弾性物質は粘性的になる。
初期の食感を維持し粘りのあり歯ごたえがある生地を得るには、口中温度での粘弾性的特性が維持されており、口中の温度上昇によっても粘弾性的特性が低下をしないように、損失弾性率(G″)が貯蔵弾性率(G′)よりも大きいことが望ましい。
Therefore, the material is viscous in the region where the loss elastic modulus (G ″) is large, and is slowly deformed when left for a long time. On the other hand, in the region where the storage elastic modulus (G ′) is large, the deformation is kept constant. In general, as the temperature rises, the molecular motion increases and the viscoelastic material becomes viscous.
In order to obtain a dough that has an initial texture and is sticky and crunchy, the viscoelastic properties at the mouth temperature are maintained, so that the viscoelastic properties do not decrease even if the temperature in the mouth increases. It is desirable that the loss elastic modulus (G ″) is larger than the storage elastic modulus (G ′).

温度上昇による歯ごたえの低下を少なくするには、損失弾性率(G″)や貯蔵弾性率(G′)の温度低下が少ないことが望ましい。高分子の知見から、分子量の増加や分子の絡み合いによる架橋構造の増加が損失弾性率や貯蔵弾性率の温度低下が少なくすることが知られている。   In order to reduce the decrease in the texture due to the temperature rise, it is desirable that the temperature loss of the loss elastic modulus (G ″) and the storage elastic modulus (G ′) is small. From the knowledge of the polymer, it is caused by the increase in the molecular weight or the entanglement of the molecule. It is known that the increase in the cross-linked structure reduces the temperature drop of the loss elastic modulus and storage elastic modulus.

初期の食感を維持し粘りのある歯ごたえがある生地を得るには、前記(イ)動的粘弾性測定を行って前記式(1)により求められる貯蔵弾性率(G′)の値が、25℃から35℃の領域で100,000Paから600,000Pa、好ましくは200,000Paから500,000Paの領域にあるとともに、(35℃のG′の値)/(25℃のG′の値)の比が0.5以上1未満、好ましくは0.6以上0.9以下であるとともに、
前記(ロ)動的粘弾性測定を行って前記式(2)により求められる損失弾性率(G″)の値が、25℃から35℃の領域で200,000Paから800,000Pa、好ましくは300,000Paから700,000Paの領域にあるとともに、(35℃のG″の値)/(25℃のG″の値)の比が0.4以上1未満、好ましくは0.5以上0.9以下であることが肝要である。
In order to obtain a dough having a sticky texture and maintaining an initial texture, the value of the storage elastic modulus (G ′) obtained by the above equation (1) by performing the dynamic viscoelasticity measurement is: It is in the range of 100,000 Pa to 600,000 Pa, preferably 200,000 Pa to 500,000 Pa in the region of 25 ° C. to 35 ° C., and (G ′ value of 35 ° C.) / (G ′ value of 25 ° C.) The ratio is 0.5 or more and less than 1, preferably 0.6 or more and 0.9 or less,
The value of the loss elastic modulus (G ″) obtained by the above-mentioned (b) dynamic viscoelasticity measurement by the above formula (2) is 200,000 Pa to 800,000 Pa in the region of 25 ° C. to 35 ° C., preferably 300 , And a ratio of (G ″ at 35 ° C.) / (G ″ at 25 ° C.) is 0.4 or more and less than 1, preferably 0.5 or more and 0.9. It is important that:

貯蔵弾性率(G′)の値が、25℃から35℃の領域で100,000Pa未満であると、噛み始めの食感が柔らかすぎ、600,000Paを超えると、噛み始めの食感が硬すぎる恐れがある。
(35℃のG″の値)/(25℃のG″の値)の比が0.5未満では、口中温度上昇により食感が柔らかすぎる、現実的には1を超えることはない。
When the storage elastic modulus (G ′) is less than 100,000 Pa in the region of 25 ° C. to 35 ° C., the texture at the beginning of chewing is too soft, and when it exceeds 600,000 Pa, the texture at the beginning of chewing is hard. There is a risk of too much.
If the ratio (value of G ″ at 35 ° C.) / (Value of G ″ at 25 ° C.) is less than 0.5, the texture is too soft due to the increase in mouth temperature, and practically does not exceed 1.

損失弾性率(G″)の値が、25℃から35℃の領域で200,000Pa未満であると、粘りが不足し、800,000Paを超えると、粘りが強すぎる恐れがある。
(35℃のG″の値)/(25℃のG″の値)の比が0.4未満では、口中温度上昇により粘りがへたってしまう恐れがあり、現実的には1を超えることはない。
If the value of the loss elastic modulus (G ″) is less than 200,000 Pa in the region of 25 ° C. to 35 ° C., the stickiness is insufficient, and if it exceeds 800,000 Pa, the stickiness may be too strong.
If the ratio of (G ″ value at 35 ° C.) / (G ″ value at 25 ° C.) is less than 0.4, there is a risk of stickiness due to the temperature increase in the mouth. Absent.

本発明の食品用粘弾性組成物の製造方法などについて次に述べる。
通常、下記の工程(1)〜(7)を含む工程により、本発明の食品用粘弾性組成物を製造し密封包装し、梱包し、貯蔵し、輸送し、販売に供する。
Next, a method for producing the viscoelastic composition for food of the present invention will be described.
In general, the food viscoelastic composition of the present invention is manufactured and hermetically packaged, packed, stored, transported, and sold by a process including the following processes (1) to (7).

(1)食物繊維原料など粉体原料を計量し混合した粉体原料混合物を混練ニーダーに投入後、撹拌しながら、次に還元麦芽糖水飴、ポリデキストロースを投入し、撹拌して混合する。 (1) A powder raw material mixture such as a dietary fiber raw material is weighed and mixed into a kneading kneader, and then stirred, and then reduced maltose starch syrup and polydextrose are added and stirred to mix.

(2)撹拌・混合して全体が混合し、少しまとまりがみられるようになってきたら、膨潤あるいは溶解させたゼラチンおよび溶解させた油脂を投入し、撹拌して混合する。約20〜30分の混合による摩擦で発熱し、その熱により品温が約60℃程度になり均一になってくる(餅状態となる)。 (2) When the whole is mixed by stirring and mixing and a little bit of cohesion is observed, the swollen or dissolved gelatin and the dissolved oil and fat are added and stirred and mixed. Heat is generated by friction due to mixing for about 20 to 30 minutes, and the product temperature becomes about 60 ° C. and becomes uniform due to the heat (becomes a habit state).

(3)撹拌・混合して全体が滑らかな状態になってきた時点で酸味料を投入し、全体が均一になったところで、混練ニーダーから取り出す。 (3) When the whole becomes smooth after stirring and mixing, the acidulant is added, and when the whole becomes uniform, it is taken out from the kneading kneader.

(4)混練ニーダーから取り出した組成物を室温で24時間〜48時間かけて放冷し、エージングする。 (4) The composition taken out from the kneading kneader is allowed to cool at room temperature over 24 to 48 hours and aged.

(5)エージング後、生地を成型する。例えば、生地を圧延してシートを成形し、所定の大きさにカットする。 (5) After aging, the dough is molded. For example, the dough is rolled to form a sheet and cut into a predetermined size.

(6)製品同士が癒着するようであれば、マルチトール粉末を癒着防止剤として表面に少量使用し、最後にレボリングパンで表面コーテイングした後、包装手段により密封包装し、梱包して製品とする。 (6) If the products seem to adhere to each other, use a small amount of maltitol powder on the surface as an anti-adhesive agent, and finally coat the surface with a revolving pan, then seal and wrap the product with packaging means. To do.

(7)密封包装し、梱包した製品は公知の手段により貯蔵し、輸送し、販売に供する。 (7) Sealed and packaged products are stored, transported and sold for sale by known means.

以上、本発明の食品用粘弾性組成物の製造方法について述べたが、本発明は既述の実施形態に限定されるものではなく、本発明の技術思想に基づいて各種の変形および変更が可能である。   As mentioned above, although the manufacturing method of the viscoelastic composition for foodstuffs of this invention was described, this invention is not limited to above-mentioned embodiment, Various deformation | transformation and change are possible based on the technical idea of this invention. It is.

次に実施例および比較例により本発明を詳しく説明するが、本発明の主旨を逸脱しない限りこれらの実施例に限定されるものではない。以下の実施例において記載された%は、質量%を表す。   EXAMPLES Next, although an Example and a comparative example demonstrate this invention in detail, unless it deviates from the main point of this invention, it is not limited to these Examples. In the following examples, “%” represents mass%.

(実施例1)
表1に示すように、アカシア食物繊維を組成物全体に対し25%含有し、食物繊維の合計を60%とし、そして、市販の一般的なソフトキャンディに使われる糖質、ゼラチン、植物油脂、酸味料、乳化剤を加え、本発明の食品用粘弾性組成物の原料を構成した。
表1に示すように、本発明の食品用粘弾性組成物の原料は市販のソフトキャンディに使われる水あめ、砂糖、ブドウ糖、果糖、ブドウ糖果糖液糖、果糖ブドウ糖液糖、砂糖混合ブドウ糖果糖液糖、砂糖混合果糖ブドウ糖液糖、乳糖、粉飴などの糖類を用いず、還元麦芽糖水飴(糖アルコール)を配合した。
表1に示す本発明の食品用粘弾性組成物の原料を混合し、そのまま混練ニーダーで常温、常圧下で撹拌混合した。10分間の混合による摩擦で発熱し均一に混ぜることができた。混練物はいわゆる餅状態で、この一部を延棒で2mm厚に延ばし、9mm角四方に切断し、本発明の食品用粘弾性組成物の動的粘弾性測定用のサンプルとした。
Example 1
As shown in Table 1, Acacia dietary fiber is contained at 25% of the total composition, the total dietary fiber is 60%, and carbohydrates, gelatin, vegetable oils and fats used in commercially available general soft candy, A sour agent and an emulsifier were added to constitute a raw material for the viscoelastic composition for food of the present invention.
As shown in Table 1, the raw material of the viscoelastic composition for food of the present invention is syrup, sugar, glucose, fructose, glucose fructose liquid sugar, fructose glucose liquid sugar, sugar mixed glucose fructose liquid sugar used in commercially available soft candy. Reduced maltose starch syrup (sugar alcohol) was blended without using sugar such as sugar-mixed fructose, glucose liquid sugar, lactose, and powdered koji.
The raw materials of the viscoelastic composition for food according to the present invention shown in Table 1 were mixed and stirred and mixed with a kneading kneader at normal temperature and normal pressure. Heat was generated by friction due to mixing for 10 minutes and mixing was possible. The kneaded material was in a so-called cocoon state, and a part of the kneaded material was stretched to a thickness of 2 mm with a stick and cut into a 9 mm square to prepare a sample for measuring the dynamic viscoelasticity of the food viscoelastic composition of the present invention.

(動的粘弾性測定条件):
測定装置:食品物性測定用レオメーター(G−5000(株)、ユービーエム製)を用いた。
動的変形周期は口腔内の咀嚼を想定して、0.3Hzとした。
温度はワンポイント測定ではなく、常温25℃の食品を口腔内に入れ、咀嚼する過程で35℃になると想定し、昇温速度1℃/分のペースで昇温して連続的に測定した。
サンプルの変形冶具はパラレルブレート方式で2枚の平板で2mm厚みのサンプルを挟み込んだ。
前記平板は1degの角度で正弦波のねじり歪をサンプルに与える。
貯蔵弾性率(G′)と損失弾性率(G″)は測定器付属のプログラムで自動的に測定表示された。
(Dynamic viscoelasticity measurement conditions):
Measuring device: A rheometer for measuring food properties (G-5000, manufactured by UBM) was used.
The dynamic deformation period was set to 0.3 Hz assuming mastication in the oral cavity.
The temperature was not measured at one point, but it was assumed that the temperature would be 35 ° C. during the process of putting food at room temperature of 25 ° C. into the oral cavity and chewing, and the temperature was raised at a rate of 1 ° C./min and continuously measured.
The deformation jig of the sample was a parallel blade method, and a 2 mm thick sample was sandwiched between two flat plates.
The flat plate imparts a sinusoidal torsional strain to the sample at an angle of 1 deg.
The storage elastic modulus (G ′) and the loss elastic modulus (G ″) were automatically measured and displayed by a program attached to the measuring instrument.

貯蔵弾性率(G′)の温度依存性を図2に、損失弾性率(G″)の温度依存性を図4に示す。
貯蔵弾性率(G′)と損失弾性率(G″)の測定の結果、(35℃のG′の値)/(25℃のG′の値)の比の計算の結果、および(35℃のG″の値)/(25℃のG″の値)の比の計算の結果を表2にまとめて示す。
本発明の食品用粘弾性組成物を20名のパネラーにより食し、その噛み応えを評価した結果を表2にまとめて示す。表2に記載した結果は20名のパネラーのほぼ全員の一致した意見であった。
FIG. 2 shows the temperature dependence of the storage elastic modulus (G ′), and FIG. 4 shows the temperature dependence of the loss elastic modulus (G ″).
Results of measurement of storage modulus (G ′) and loss modulus (G ″), calculation of ratio of (G ′ value at 35 ° C.) / (G ′ value at 25 ° C.), and (35 ° C. Table 2 summarizes the results of the calculation of the ratio of “G ″ of G” / (G ″ of 25 ° C.).
Table 2 summarizes the results of eating the viscoelastic composition for food of the present invention by 20 panelists and evaluating the chewing response. The results listed in Table 2 were the consensus of almost all 20 panelists.

Figure 2010239924
Figure 2010239924

Figure 2010239924
Figure 2010239924

(実施例2)
アカシア食物繊維を40%配合し、食物繊維の合計を60%とした以外は表1の実施例2に記載した本発明の食品用粘弾性組成物の原料を用い、実施例1と同様にして本発明の食品用粘弾性組成物の動的粘弾性測定用のサンプルを調製して動的粘弾性測定を行った。
貯蔵弾性率(G′)の温度依存性を図2に、損失弾性率(G″)の温度依存性を図4に示す。
貯蔵弾性率(G′)と損失弾性率(G″)の測定の結果、(35℃のG′の値)/(25℃のG′の値)の比の計算の結果、および(35℃のG″の値)/(25℃のG″の値)の比の計算の結果を表2にまとめて示す。
実施例1と同様にして本発明の食品用粘弾性組成物を食し、その噛み応えを評価した結果を表2にまとめて示す。
(Example 2)
Using the raw material of the viscoelastic composition for foods of the present invention described in Example 2 of Table 1 except that 40% of acacia dietary fiber is blended and the total amount of dietary fiber is 60%, the same as in Example 1 A sample for measuring the dynamic viscoelasticity of the viscoelastic composition for food of the present invention was prepared, and the dynamic viscoelasticity measurement was performed.
FIG. 2 shows the temperature dependence of the storage elastic modulus (G ′), and FIG. 4 shows the temperature dependence of the loss elastic modulus (G ″).
Results of measurement of storage modulus (G ′) and loss modulus (G ″), calculation of ratio of (G ′ value at 35 ° C.) / (G ′ value at 25 ° C.), and (35 ° C. Table 2 summarizes the results of the calculation of the ratio of “G ″ of G” / (G ″ of 25 ° C.).
The results of eating the viscoelastic composition for food of the present invention in the same manner as in Example 1 and evaluating the chewing response are summarized in Table 2.

(実施例3)
アカシア食物繊維を10%配合し、食物繊維の合計を50%とした以外は表1の実施例3に記載した本発明の食品用粘弾性組成物の原料を用い、実施例1と同様にして本発明の食品用粘弾性組成物の動的粘弾性測定用のサンプルを調製して動的粘弾性測定を行った。
貯蔵弾性率(G′)の温度依存性を図2に、損失弾性率(G″)の温度依存性を図4に示す。
貯蔵弾性率(G′)と損失弾性率(G″)の測定の結果、(35℃のG′の値)/(25℃のG′の値)の比の計算の結果、および(35℃のG″の値)/(25℃のG″の値)の比の計算の結果を表2にまとめて示す。
実施例1と同様にして本発明の食品用粘弾性組成物を食し、その噛み応えを評価した結果を表2にまとめて示す。
Example 3
Using the raw material of the viscoelastic composition for food of the present invention described in Example 3 of Table 1 except that 10% of Acacia dietary fiber was blended and the total amount of dietary fiber was 50%, the same as in Example 1 A sample for measuring the dynamic viscoelasticity of the viscoelastic composition for food of the present invention was prepared, and the dynamic viscoelasticity measurement was performed.
FIG. 2 shows the temperature dependence of the storage elastic modulus (G ′), and FIG. 4 shows the temperature dependence of the loss elastic modulus (G ″).
Results of measurement of storage modulus (G ′) and loss modulus (G ″), calculation of ratio of (G ′ value at 35 ° C.) / (G ′ value at 25 ° C.), and (35 ° C. Table 2 summarizes the results of the calculation of the ratio of “G ″ of G” / (G ″ of 25 ° C.).
The results of eating the viscoelastic composition for food of the present invention in the same manner as in Example 1 and evaluating the chewing response are summarized in Table 2.

(比較例1)
アカシア食物繊維を配合せず、食物繊維の合計は実施例1と同様に60%とした以外は表1に記載した比較の食品用粘弾性組成物の原料を用い、実施例1と同様にして比較の食品用粘弾性組成物の動的粘弾性測定用のサンプルを調製して動的粘弾性測定を行った。
貯蔵弾性率(G′)の温度依存性を図2に、損失弾性率(G″)の温度依存性を図5に示す。
貯蔵弾性率(G′)と損失弾性率(G″)の測定の結果、(35℃のG′の値)/(25℃のG′の値)の比の計算の結果、および(35℃のG″の値)/(25℃のG″の値)の比の計算の結果を表2にまとめて示す。
実施例1と同様にして本発明の食品用粘弾性組成物を食し、その噛み応えを評価した結果を表2にまとめて示す。
(Comparative Example 1)
Acacia dietary fiber was not blended, and the total amount of dietary fiber was 60% as in Example 1, using the raw materials for the comparative viscoelastic composition for foods described in Table 1, and as in Example 1. Samples for measuring the dynamic viscoelasticity of comparative food viscoelastic compositions were prepared and subjected to dynamic viscoelasticity measurement.
FIG. 2 shows the temperature dependence of the storage elastic modulus (G ′), and FIG. 5 shows the temperature dependence of the loss elastic modulus (G ″).
Results of measurement of storage modulus (G ′) and loss modulus (G ″), calculation of ratio of (G ′ value at 35 ° C.) / (G ′ value at 25 ° C.), and (35 ° C. Table 2 summarizes the results of the calculation of the ratio of “G ″ of G” / (G ″ of 25 ° C.).
The results of eating the viscoelastic composition for food of the present invention in the same manner as in Example 1 and evaluating the chewing response are summarized in Table 2.

(比較例2)
市販のソフトキャンディである「ハイチュウ」[登録商標、森永製菓(株)]を購入し、延棒で2mm厚に延ばして実施例1同様に切断し、動的粘弾性測定用のサンプルとした以外は、実施例1と同様にして動的粘弾性測定を行った。
貯蔵弾性率(G′)の温度依存性を図2に、損失弾性率(G″)の温度依存性を図4に示す。
貯蔵弾性率(G′)と損失弾性率(G″)の測定の結果、(35℃のG′の値)/(25℃のG′の値)の比の計算の結果、および(35℃のG″の値)/(25℃のG″の値)の比の計算の結果を表2にまとめて示す。
実施例1と同様にして本発明の食品用粘弾性組成物を食し、その噛み応えを評価した結果を表2にまとめて示す。
(Comparative Example 2)
Other than purchasing “Hi-chu” [registered trademark, Morinaga Seika Co., Ltd.], a commercially available soft candy, extending to a thickness of 2 mm with a stick and cutting in the same manner as in Example 1 to obtain a sample for measuring dynamic viscoelasticity Measured dynamic viscoelasticity in the same manner as in Example 1.
FIG. 2 shows the temperature dependence of the storage elastic modulus (G ′), and FIG. 4 shows the temperature dependence of the loss elastic modulus (G ″).
Results of measurement of storage modulus (G ′) and loss modulus (G ″), calculation of ratio of (G ′ value at 35 ° C.) / (G ′ value at 25 ° C.), and (35 ° C. Table 2 summarizes the results of the calculation of the ratio of “G ″ of G” / (G ″ of 25 ° C.).
The results of eating the viscoelastic composition for food of the present invention in the same manner as in Example 1 and evaluating the chewing response are summarized in Table 2.

(比較例3)
市販のグミキャンディである「Meiji果汁グミ」(グレープ味)[登録商標、明治製菓(株)]を購入し、延棒で2mm厚に延ばして実施例1同様に切断し、動的粘弾性測定用のサンプルとした以外は、実施例1と同様にして動的粘弾性測定を行った。
貯蔵弾性率(G′)の温度依存性を図3に、損失弾性率(G″)の温度依存性を図5に示す。
貯蔵弾性率(G′)と損失弾性率(G″)の測定の結果、(35℃のG′の値)/(25℃のG′の値)の比の計算の結果、および(35℃のG″の値)/(25℃のG″の値)の比の計算の結果を表2にまとめて示す。
実施例1と同様にして本発明の食品用粘弾性組成物を食し、その噛み応えを評価した結果を表2にまとめて示す。
(Comparative Example 3)
A commercially available gummy candy, “Meiji fruit juice gummy” (Grape flavor) [registered trademark, Meiji Seika Co., Ltd.] is purchased, stretched to a thickness of 2 mm with a stick, cut in the same manner as in Example 1, and measured for dynamic viscoelasticity. The dynamic viscoelasticity measurement was performed in the same manner as in Example 1 except that the sample was used as a sample.
FIG. 3 shows the temperature dependence of the storage elastic modulus (G ′), and FIG. 5 shows the temperature dependence of the loss elastic modulus (G ″).
Results of measurement of storage modulus (G ′) and loss modulus (G ″), calculation of ratio of (G ′ value at 35 ° C.) / (G ′ value at 25 ° C.), and (35 ° C. Table 2 summarizes the results of the calculation of the ratio of “G ″ of G” / (G ″ of 25 ° C.).
The results of eating the viscoelastic composition for food of the present invention in the same manner as in Example 1 and evaluating the chewing response are summarized in Table 2.

なお、表1の比較例2、3に記載の原材料名は商品に記載されていた原材料名である。
実施例1〜3の本発明の食品用粘弾性組成物の水分含有量は15%であり、比較例1、2、3の比較の食品用粘弾性組成物の水分含有量はそれぞれ15%、7%および15%であった。
In addition, the raw material name described in Comparative Examples 2 and 3 in Table 1 is the raw material name described in the product.
The moisture content of the food viscoelastic composition of the present invention of Examples 1 to 3 is 15%, and the moisture content of the comparative food viscoelastic composition of Comparative Examples 1, 2, and 3 is 15%, 7% and 15%.

表2から実施例1〜3の本発明の食品用粘弾性組成物は、いずれも噛みごたえが持続し、口中での粘りが強く、口持ちが良くなり、十分な食感を得ることができることが判る。
実施例2の本発明の食品用粘弾性組成物は実施例1の本発明の食品用粘弾性組成物よりもアカシア食物繊維含有量が多いので、弾性率の温度変化も少なく、食感も同時に硬くなった。
実施例3の本発明の食品用粘弾性組成物は実施例1の本発明の食品用粘弾性組成物よりもアカシア食物繊維含有量が少ないので、弾性率の温度変化も少し大きくなり、食感が同時に柔らかくなるが問題ないレベルである。
From Table 2, the viscoelastic compositions for foods of Examples 1 to 3 of the present invention all have sustained chewing, strong stickiness in the mouth, good mouthfeel, and sufficient texture can be obtained. I understand.
The viscoelastic composition for food of the present invention of Example 2 has a higher acacia dietary fiber content than the viscoelastic composition for food of the present invention of Example 1, so that the temperature change of the elastic modulus is small and the texture is also the same. It became hard.
Since the viscoelastic composition for food of the present invention in Example 3 has less acacia dietary fiber content than the viscoelastic composition for food of the present invention in Example 1, the temperature change of the elastic modulus is slightly larger, and the texture At the same time, it becomes soft but no problem.

それに対して、表2から、比較例1の比較の食品用粘弾性組成物は、食感が硬く温度上昇による弾性率変化が大きく、温度上昇すると噛みごたえが持続せず、比較例2の比較の食品用粘弾性組成物は、初期の食感は好ましいが、温度上昇による弾性率変化が大きく、温度上昇すると噛みごたえが持続せず、比較例3の比較の食品用粘弾性組成物は、食感は柔らかく、グミキャンディはソフトキャンディとは別物であるが、食感の温度変化は少ないものであるが、硬さが不足し噛み応えのあるものではない。   On the other hand, from Table 2, the comparative viscoelastic composition for food of Comparative Example 1 has a hard texture and a large change in elastic modulus due to temperature rise. In the viscoelastic composition for food, the initial texture is preferable, but the change in elastic modulus due to temperature rise is large, and the chewing texture does not persist when the temperature rises. The comparative viscoelastic composition for food of Comparative Example 3 is Although the texture is soft and gummy candy is different from soft candy, the temperature change of the texture is small, but the hardness is insufficient and it is not chewy.

本発明の食品用粘弾性組成物は、食物繊維を必須主成分として含む食品用粘弾性組成物であって、前記特性(イ)および特性(ロ)を有することを特徴とするものであり、
食物繊維を必須主成分として含み、前記特性(イ)および特性(ロ)を有する食品用粘弾性組成物を用いることによって、歯ごたえのあるソフトキャンディを製造することが可能となり、口中での粘りが強く、口持ちが良くなり、さらに、小さなキャンディでも十分な食感を得ることができるので、キャンディ類に限らず、焼き菓子の中間サンド部分やチョコレート菓子に混ぜることで歯ごたえのある食感を与えることができ、さらに、合成樹脂を使う食べられないガムではなく食べられるガムとしても応用可能であり、また、食物繊維を多量に含むので、食べることによって腸内細菌を活発にし、健康増進に貢献するという、顕著な効果を奏するので、産業上の利用価値は甚だ大きい。
The viscoelastic composition for foods of the present invention is a viscoelastic composition for foods containing dietary fiber as an essential main component, characterized in that it has the above-mentioned properties (A) and (B).
By using a viscoelastic composition for foods containing dietary fiber as an essential main component and having the above-mentioned properties (I) and (B), it becomes possible to produce a soft candy with a chewy texture, and the stickiness in the mouth It is strong and has a good mouthfeel, and even a small candy can provide a sufficient texture, so it is not limited to candy, but it gives a crunchy texture when mixed with the intermediate sand portion of baked goods and chocolate candy. In addition, it can be applied as an edible gum instead of an inedible gum that uses synthetic resin, and since it contains a large amount of dietary fiber, it activates enteric bacteria and contributes to health promotion Since it has a remarkable effect, the industrial utility value is very large.

Claims (2)

食物繊維を必須主成分として含む食品用粘弾性組成物であって、次に示す特性(イ)および特性(ロ)を有することを特徴とする食品用粘弾性組成物。
特性:
(イ)動的粘弾性測定を行って下式(1)により求められる貯蔵弾性率(G′)の値が、25℃から35℃の領域で100,000Paから600,000Paの領域にあるとともに、(35℃のG′の値)/(25℃のG′の値)の比が0.5以上1未満である。
(ロ)動的粘弾性測定を行って下式(2)により求められる損失弾性率(G″)の値が、25℃から35℃の領域で200,000Paから800,000Paの領域にあるとともに、(35℃のG″の値)/(25℃のG″の値)の比が0.4以上1未満である。
G′(ω)=σ1/γ0・・・・式(1)
G″(ω)=σ2/γ0・・・・式(2)
ただし、式(1)中の、ωは角速度、σ1は弾性成分の応力、γ0は振動歪みを示し、式(2)中の、ωは角速度、σ2は粘性成分の応力、γ0は振動歪みを示す。
A viscoelastic composition for foods containing dietary fiber as an essential component, the food viscoelastic composition having the following properties (A) and (B):
Characteristic:
(B) The value of the storage elastic modulus (G ′) obtained by performing dynamic viscoelasticity measurement by the following formula (1) is in the range of 100,000 Pa to 600,000 Pa in the range of 25 ° C. to 35 ° C. The ratio of (G ′ value at 35 ° C.) / (G ′ value at 25 ° C.) is 0.5 or more and less than 1.
(B) The value of the loss elastic modulus (G ″) obtained by performing dynamic viscoelasticity measurement by the following equation (2) is in the region of 200,000 Pa to 800,000 Pa in the region of 25 ° C. to 35 ° C. , (Value of G ″ at 35 ° C.) / (Value of G ″ at 25 ° C.) is 0.4 or more and less than 1.
G ′ (ω) = σ1 / γ0 (1)
G ″ (ω) = σ2 / γ0... Formula (2)
In Equation (1), ω is angular velocity, σ1 is elastic component stress, γ0 is vibration strain, ω is angular velocity, σ2 is viscous component stress, and γ0 is vibration strain. Show.
前記食物繊維の一種であるアカシア食物繊維を除く食物繊維を組成物全体に対して40質量%以上90質量%未満含有するとともに、前記アカシア食物繊維を組成物全体に対して10〜40質量%含有することを特徴とする請求項1記載の食品用粘弾性組成物。   The dietary fiber excluding acacia dietary fiber, which is a kind of the dietary fiber, is contained in an amount of 40% by mass or more and less than 90% by mass with respect to the whole composition, and the acacia dietary fiber is contained in an amount of 10 to 40% by mass with respect to the whole composition. The viscoelastic composition for food according to claim 1, wherein:
JP2009094301A 2009-04-08 2009-04-08 Viscoelastic composition for food Pending JP2010239924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009094301A JP2010239924A (en) 2009-04-08 2009-04-08 Viscoelastic composition for food

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009094301A JP2010239924A (en) 2009-04-08 2009-04-08 Viscoelastic composition for food

Publications (1)

Publication Number Publication Date
JP2010239924A true JP2010239924A (en) 2010-10-28

Family

ID=43093741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009094301A Pending JP2010239924A (en) 2009-04-08 2009-04-08 Viscoelastic composition for food

Country Status (1)

Country Link
JP (1) JP2010239924A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012110288A (en) * 2010-11-26 2012-06-14 Kracie Foods Ltd Soft candy and method for producing the same
JP2013226093A (en) * 2012-04-26 2013-11-07 Coris Co Ltd Confection made from kneaded product and method for producing the same
JP2014045713A (en) * 2012-08-31 2014-03-17 Uha Mikakuto Co Ltd Low moisture hard gummi candy
KR20160088298A (en) 2013-11-22 2016-07-25 가부시키가이샤 롯데 Soft candy that does not stick to teeth, and method for manufacturing said candy
WO2018229894A1 (en) * 2017-06-14 2018-12-20 ユーハ味覚糖株式会社 Confectionery having grape-like mouthfeel
TWI718312B (en) * 2017-06-14 2021-02-11 日商悠哈味覺糖有限公司 A dessert with a grape-like taste

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012110288A (en) * 2010-11-26 2012-06-14 Kracie Foods Ltd Soft candy and method for producing the same
JP2013226093A (en) * 2012-04-26 2013-11-07 Coris Co Ltd Confection made from kneaded product and method for producing the same
JP2014045713A (en) * 2012-08-31 2014-03-17 Uha Mikakuto Co Ltd Low moisture hard gummi candy
KR20160088298A (en) 2013-11-22 2016-07-25 가부시키가이샤 롯데 Soft candy that does not stick to teeth, and method for manufacturing said candy
WO2018229894A1 (en) * 2017-06-14 2018-12-20 ユーハ味覚糖株式会社 Confectionery having grape-like mouthfeel
CN110769697A (en) * 2017-06-14 2020-02-07 悠哈味觉糖有限公司 Candy with grape-like taste
KR20200016355A (en) * 2017-06-14 2020-02-14 유하미카쿠토 가부시키가이샤 Sweets with a grapey texture
JPWO2018229894A1 (en) * 2017-06-14 2020-04-16 ユーハ味覚糖株式会社 Confectionery with a grape-like texture
TWI718312B (en) * 2017-06-14 2021-02-11 日商悠哈味覺糖有限公司 A dessert with a grape-like taste
KR102407662B1 (en) 2017-06-14 2022-06-10 유하미카쿠토 가부시키가이샤 Sweets with a grape-like texture
US11582984B2 (en) 2017-06-14 2023-02-21 Uha Mikakuto Co., Ltd. Confectionery having grape-like mouthfeel
CN110769697B (en) * 2017-06-14 2023-04-04 悠哈味觉糖有限公司 Candy with grape-like taste
AU2017418804B2 (en) * 2017-06-14 2023-06-08 Uha Mikakuto Co., Ltd. Confectionery having grape-like mouthfeel

Similar Documents

Publication Publication Date Title
JP4512135B2 (en) Functional sugar substitute
US9295277B2 (en) Substitute for fat within meat and the forming method thereof
TWI459902B (en) Formula and process for producing gluten-free bakery products
JP6809729B2 (en) Food composition
JP6473174B2 (en) Chewy candy containing highly branched starch (HBS) and method for providing the same
BRPI0707914A2 (en) functional sugar substitution
JP7349527B2 (en) Caramel with a crunchy texture
JP6715905B2 (en) Jelly composition and method for producing the same
JP2010239924A (en) Viscoelastic composition for food
JP2016501017A (en) Jelly confectionery and method for producing such a confectionery product
JP6688749B2 (en) New non-fat confectionery items
JP5166207B2 (en) Baked goods
US20110081476A1 (en) Syrup composition
CN102387707A (en) Baked dough including a specific flour
CN106306295A (en) Functional mixed gel type soft sweets and manufacturing method thereof
JP4994336B2 (en) Bread
US20070237874A1 (en) Food gels comprising an indigestible or poorly digestible carbohydrate and related methods of forming the same
FR3103682A1 (en) REDUCED SUGAR FOOD COMPOSITIONS
JP2017012165A (en) Rice-cake like eat-texture desert
JP2021023285A (en) Sheet-like composition for food
JP2017055710A (en) Food product having improved odor of protein
AU2019285317A1 (en) Gelatin-free gelled confectionery and method for preparing such a confectionery
IT201800005020A1 (en) Composition based on fibers and its use for the preparation of food products
AU2011218785A1 (en) Food bar with reduced hardness
Promsakha na Sakon Nakhon et al. Optimization of sorbitol, fructooligosaccharides and sugar levels in the syrup based on physicochemical properties and sensory acceptance of healthy, sweet egg yolk drop (a traditional egg-based dessert) using response surface methodology

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120330

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20130813