JP2010239496A - Planar antenna - Google Patents

Planar antenna Download PDF

Info

Publication number
JP2010239496A
JP2010239496A JP2009086722A JP2009086722A JP2010239496A JP 2010239496 A JP2010239496 A JP 2010239496A JP 2009086722 A JP2009086722 A JP 2009086722A JP 2009086722 A JP2009086722 A JP 2009086722A JP 2010239496 A JP2010239496 A JP 2010239496A
Authority
JP
Japan
Prior art keywords
electrode
substrate
planar antenna
radiation
radiation electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009086722A
Other languages
Japanese (ja)
Inventor
Akinori Misawa
彰規 三澤
Hidetoshi Hagiwara
英俊 萩原
Yasunori Takagi
保規 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2009086722A priority Critical patent/JP2010239496A/en
Publication of JP2010239496A publication Critical patent/JP2010239496A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small planar antenna capable of being surface-mounted to a circuit board, easy adjustment of resonance frequency and having excellent radiation characteristics and gains. <P>SOLUTION: The planar antenna includes a rectangular substrate having upper and lower surfaces and side surfaces linking the upper and lower surfaces, a rectangular radiation electrode formed on the upper surface of the substrate, a first ground electrode formed on the lower surface of the substrate, a band-like feed electrode formed on a side surface of the substrate and extending from the lower surface to the upper surface, and a pair of second ground electrodes formed on the same side surface as that of the feed electrode, facing each other with the feed electrode interposed therebetween, and extending from the first ground electrode with intervals between end portions thereof and the radiation electrode being equal to each other. An end portion of the radiation electrode faces an end portion of the feed electrode, and power is fed to the radiation electrode by capacitive coupling. The end portions of the second ground electrodes closer to the end portion of the radiation electrode are formed in the shape of a comb. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明はWLAN(Wireless Local Area Network)などの直線偏波の電波を利用した通信システムや、GPS(Global Positioning System)などの円偏波の電波を利用した通信システムに用いられる平面アンテナに関するものである。   The present invention relates to a planar antenna used in a communication system using linearly polarized radio waves such as WLAN (Wireless Local Area Network) and a communication system using circularly polarized radio waves such as GPS (Global Positioning System). is there.

電子機器の小型化、薄型化、軽量化などの動向を反映して平面アンテナに間する研究が盛んに行われている。平面アンテナの一種であるマイクロストリップアンテナ(MSA)は、帯域が狭く、指向性が大きいという特性を持つ。マイクロストリップパッチアンテナ、パッチアンテナとも呼ばれ、アンテナの放射電極は、絶縁物の基板上に貼り付けた金属にエッチングしたり、セラミック基板上にAgやCuなどの導体ペーストを印刷して焼き付けたりして形成される。平面アンテナの放射電極の形状は、矩形や円形など単純であって、共振周波数における波長によって大きさが決まるため、UHF帯以上の周波数で用いられることが多い。   Research on flat antennas has been actively conducted to reflect the trend of electronic devices to become smaller, thinner and lighter. A microstrip antenna (MSA), which is a kind of planar antenna, has characteristics that a band is narrow and directivity is large. Also called a microstrip patch antenna or patch antenna, the radiation electrode of the antenna is etched into a metal pasted on an insulating substrate, or a conductor paste such as Ag or Cu is printed on a ceramic substrate and baked. Formed. The shape of the radiation electrode of the planar antenna is simple, such as a rectangle or a circle, and its size is determined by the wavelength at the resonance frequency, so it is often used at a frequency higher than the UHF band.

図10に従来の平面アンテナの例を斜視図として示す。平面アンテナ10は平板状の基板70の一方主面に矩形の放射電極50を備え、他方の主面のほぼ全面に接地電極100が形成され、他方主面側から基板70を貫通して放射電極50と接続する給電線路60が形成されて構成されている。放射電極50の各辺は給電周波数における実効波長(基板を構成する材料による波長短縮効果を含む)のほぼ1/2になるように形成されている。給電線路60と放射電極50との接続点の位置によって電圧と電流とが異なる為、給電点Fを放射電極50の中心部からはずれた位置にとることで、入力インピーダンスを50Ωで整合を取ることが出来る。また図中、給電点Fの位置を放射電極50の対角線上としているが、例えば中心線上など他の位置に設けても良い。   FIG. 10 shows a perspective view of an example of a conventional planar antenna. The planar antenna 10 includes a rectangular radiation electrode 50 on one main surface of a flat substrate 70, a ground electrode 100 is formed on almost the entire other main surface, and the radiation electrode penetrates the substrate 70 from the other main surface side. A feed line 60 connected to 50 is formed. Each side of the radiation electrode 50 is formed so as to be approximately a half of the effective wavelength (including the wavelength shortening effect by the material constituting the substrate) at the feeding frequency. Since the voltage and current differ depending on the position of the connection point between the feed line 60 and the radiation electrode 50, matching the input impedance to 50Ω by taking the feed point F away from the center of the radiation electrode 50. I can do it. In the drawing, the position of the feeding point F is on the diagonal line of the radiation electrode 50, but may be provided at other positions such as on the center line.

放射電極50の各辺の長さを同じとした場合に、給電点Fの位置を放射電極50の対角線上として、二つの対角線と45度の角度をなす位置の給電点Fから給電すると直線偏波が励振される。放射電極50の各辺の長さを異ならせ、長辺を実効波長の1/2よりも少し長くし、短辺を短くすると、放射電極50に互いに90度の位相差を持ち、振幅が等しい二つの共振モードの電流(矢印)が発生して、円偏波の電磁波を励振することが出来る。   If the length of each side of the radiation electrode 50 is the same, the position of the feeding point F is on the diagonal line of the radiation electrode 50, and power is fed from the feeding point F at a position that forms an angle of 45 degrees with the two diagonal lines. Waves are excited. When the length of each side of the radiation electrode 50 is made different, the long side is made slightly longer than ½ of the effective wavelength, and the short side is made short, the radiation electrode 50 has a phase difference of 90 degrees and the amplitude is equal. Two resonance mode currents (arrows) are generated to excite circularly polarized electromagnetic waves.

給電点Fの位置を放射電極50の中心線上とした場合、放射電極50の対角線の長さが同じであれば、直線偏波が励振される。対角線の一方の長さを他方の対角線の長さを異ならせると、放射電極50に互いに90度の位相差を持ち、振幅が等しい二つの共振モードの電流が発生して、円偏波の電磁波を励振することが出来る。放射電極50の対角線の長さを異ならせる方法としては、放射電極50の対向する2箇所の隅部にカットを設けたり、放射電極50を菱形としたり、放射電極50の内部に、長方形や楕円形、あるいは十字形状のスリットを設けるなどの縮退分離手段によって電流経路の長短を調整する。   When the position of the feeding point F is on the center line of the radiation electrode 50, linearly polarized waves are excited if the diagonal lines of the radiation electrode 50 have the same length. If one diagonal length is made different from the other diagonal length, currents in two resonance modes having a phase difference of 90 degrees and equal amplitude are generated in the radiation electrode 50, and circularly polarized electromagnetic waves are generated. Can be excited. As a method of making the diagonal lengths of the radiation electrode 50 different, cuts are provided at two corners of the radiation electrode 50 facing each other, the radiation electrode 50 is formed into a rhombus, or a rectangle or an ellipse is formed inside the radiation electrode 50. The length of the current path is adjusted by a degenerative separation means such as providing a shape or cross-shaped slit.

このアンテナの利点は、さまざまな偏波に対応できる点であるものの、放射電極50への給電は、その面内に給電点Fを設ける構造のため、ピン給電方式としたり、あるいは放射電極50を支持する基板に貫通穴を形成し、そこに給電線路を設けたりする等の構造を取らざるを得ず、表面実装が困難であるとの問題がある。またインピーダンス調整のため、給電点の位置が制限される問題があった。   Although the advantage of this antenna is that it can cope with various polarized waves, the feeding to the radiating electrode 50 is a structure in which the feeding point F is provided in the plane, so that a pin feeding method is used, or the radiating electrode 50 is provided. There is a problem that surface mounting is difficult because it is necessary to take a structure such as forming a through hole in a supporting substrate and providing a feed line there. Further, there is a problem that the position of the feeding point is limited due to the impedance adjustment.

この様な問題に対して特許文献1には、表面実装性やインピーダンス整合と容易とする平面アンテナが開示されている。図11はその斜視図である。この平面アンテナ10は、誘電体よりなる平板状の基板70の上面に放射電極50が形成され、前記基板70の側面から上面にかけて、一端側が開放となるマイクロストリップ状の給電電極(給電線路)60を備え、底面に接地電極100が形成されており、給電電極の開放端と放射電極の縁端部である1つの辺とを、ギャップを介して近接して配置するものである。
この平面アンテナは基板の側面を利用して給電することが出来るため、貫通する給電線路や給電ピンを用いなくても良く、回路基板への表面実装が容易となる。また給電電極と放射電極とが容量結合する構成であるため、インピーダンスの調整が比較的容易となる利点もある。
With respect to such a problem, Patent Document 1 discloses a planar antenna that facilitates surface mountability and impedance matching. FIG. 11 is a perspective view thereof. The planar antenna 10 has a radiation electrode 50 formed on the upper surface of a flat substrate 70 made of a dielectric, and a microstrip-shaped feeding electrode (feeding line) 60 having one end open from the side surface to the upper surface of the substrate 70. The ground electrode 100 is formed on the bottom surface, and the open end of the power supply electrode and one side that is the edge of the radiation electrode are arranged close to each other via a gap.
Since this planar antenna can be fed using the side surface of the substrate, it is not necessary to use a feed line or feed pin that penetrates, and surface mounting on the circuit board becomes easy. Further, since the power supply electrode and the radiation electrode are capacitively coupled, there is an advantage that the adjustment of impedance is relatively easy.

また特許文献2には、底面側の接地電極100と連続し、側面に形成された給電電極60の両側に位置するように他の接地電極100a、100bを形成した平面アンテナが記載されている(図12)。接地電極100a、100bと放射電極50との間には容量が形成され、容量の増加により共振周波数が低下する。一方、放射電極を小型とすれば共振周波数は増加するので、接地電極100a、100bによる容量の付加によって、接地電極100a、100bを設けないアンテナに対して小型なものとすることが出来る。   Further, Patent Document 2 describes a planar antenna in which other ground electrodes 100a and 100b are formed so as to be located on both sides of the feeding electrode 60 formed on the side surface, which is continuous with the ground electrode 100 on the bottom surface side ( FIG. 12). A capacitance is formed between the ground electrodes 100a and 100b and the radiation electrode 50, and the resonance frequency is lowered due to the increase in capacitance. On the other hand, if the radiation electrode is made small, the resonance frequency increases. Therefore, by adding capacitance by the ground electrodes 100a and 100b, the antenna can be made compact with respect to the antenna not provided with the ground electrodes 100a and 100b.

特開平11−074721号公報Japanese Patent Application Laid-Open No. 11-074721 特開2000−183637号公報JP 2000-183637 A

引用文献1や引用文献2に開示されたアンテナでは、放射電極が形成された主面に給電電極が形成されるため、その分、アンテナの上面面積を大きくせざるを得ない。その結果、アンテナの外形寸法が大きくなってしまう。また給電電極が長く形成されると、給電電極から実装される回路基板の接地電極へ向かう電界が大きくなり易く、アンテナ効率が低下するといった問題がある。   In the antennas disclosed in the cited document 1 and the cited document 2, since the feeding electrode is formed on the main surface on which the radiation electrode is formed, the upper surface area of the antenna must be increased accordingly. As a result, the outer dimensions of the antenna are increased. In addition, if the feed electrode is formed long, the electric field from the feed electrode to the ground electrode of the circuit board mounted is likely to increase, and there is a problem that the antenna efficiency is lowered.

また特許文献2の開示のアンテナでは、接地電極と放射電極とが異なる面に形成されている。このような場合には、個々のアンテナでの電極形成時の電極間寸法がばらつき易く、それに伴って共振周波数が様々にばらつき、所望の周波数帯域が確保できず、市場に供せないといった問題もあるが、特許文献2においては何等認識されていない。接地電極と放射電極とを同一面に形成する場合には、アンテナの上面面積を大きくする必要がある。   In the antenna disclosed in Patent Document 2, the ground electrode and the radiation electrode are formed on different surfaces. In such a case, the dimension between the electrodes at the time of electrode formation in each antenna tends to vary, and accordingly, the resonance frequency varies in various ways, a desired frequency band cannot be secured, and it cannot be put on the market. However, there is no recognition in Patent Document 2. When the ground electrode and the radiation electrode are formed on the same surface, it is necessary to increase the top surface area of the antenna.

そこで本発明では、回路基板への表面実装が可能であり、共振周波数の調整が容易で、放射特性、利得に優れ、かつ小型の平面アンテナを提供することを目的とする。   Accordingly, an object of the present invention is to provide a small planar antenna that can be surface-mounted on a circuit board, can easily adjust the resonance frequency, has excellent radiation characteristics, and gain.

本発明は、上下面と前記上下面間を繋ぐ側面を備えた矩形の基板と、前記基板の一方の上面に形成された矩形の放射電極と、基板の下面に形成された第1接地電極と、基板の側面に形成され下面側から上面側へ延びる帯状の給電電極と、給電電極と同じ側面に形成され、前記給電電極を挟んで対向し前記第1接地電極から延び、その端部と前記放射電極との間隔が等しい一対の第2接地電極を備え、前記放射電極の端部を前記給電電極の端部と対向させて容量結合により給電し、前記第2接地電極の放射電極側の端部が櫛歯状に形成されていることを特徴とする平面アンテナである。
前記放射電極は、その一辺から前記側面にまで延長する帯状の延長部を有し、その端部を前記給電電極の端部と対向させて容量結合により給電するのが好ましい。
The present invention includes a rectangular substrate having an upper surface and a side surface connecting the upper and lower surfaces, a rectangular radiation electrode formed on one upper surface of the substrate, a first ground electrode formed on the lower surface of the substrate, A strip-shaped power supply electrode formed on the side surface of the substrate and extending from the lower surface side to the upper surface side, formed on the same side surface as the power supply electrode, facing the power supply electrode and extending from the first ground electrode; A pair of second ground electrodes having the same distance from the radiation electrode, the end of the radiation electrode being opposed to the end of the power supply electrode and feeding power by capacitive coupling, and the end of the second ground electrode on the side of the radiation electrode The flat antenna is characterized in that the portion is formed in a comb-teeth shape.
It is preferable that the radiation electrode has a belt-like extension extending from one side to the side surface, and is fed by capacitive coupling with the end facing the end of the feeding electrode.

更に本発明においては、放射電極の一辺から側面にまで延長する帯状の延長部を複数とし、延長部の一つの端部を給電電極の端部と対向させて容量結合により給電し、他の延長部の端部を第2接地電極と対向させてもよい。   Furthermore, in the present invention, a plurality of strip-like extensions extending from one side to the side of the radiation electrode are provided, and one end of the extension is opposed to the end of the power supply electrode to supply power by capacitive coupling, and the other extension. The end of the part may be opposed to the second ground electrode.

放射電極は平面視で矩形であるのが好ましく、縮退分離のため周縁、あるいは内部を一部スリットを形成して切り欠いても良い。また外周長を長く見せるように外周を櫛歯状に形成しても良い。本願発明の平面アンテナでは、給電点を放射電極の中心線上においている。このような構成の場合には、電流はその中心線と平行な放射電極のエッジに強く流れる。スリットによって電流経路が長くなり共振周波数が低下するため、平面アンテナを小型化することが出来る。スリットは一辺に複数設けて櫛歯状としても良いし、対向する2辺にそれぞれ設けても良い。   The radiation electrode is preferably rectangular in plan view, and may be cut out by forming a part of the periphery or the inside thereof for degeneration and separation. Further, the outer periphery may be formed in a comb-teeth shape so as to make the outer peripheral length look longer. In the planar antenna of the present invention, the feeding point is on the center line of the radiation electrode. In such a configuration, the current flows strongly to the edge of the radiation electrode parallel to the center line. Since the current path is lengthened by the slit and the resonance frequency is lowered, the planar antenna can be miniaturized. A plurality of slits may be provided on one side to form a comb shape, or may be provided on two opposite sides.

第2接地電極端部の櫛歯電極は、対向する放射電極の一辺と略平行に延びるように構成するのが好ましい。ここで略平行とは、厳密に平行ではなくても櫛歯電極が延びる線分方向が放射電極の対向する辺と全体としておおよそ揃っていれば良く、課題の解決に寄与する程度に平行であるといえる場合を含むものである。従って、各電極形成時のばらつき等によって厳密には非平行となっても、放射電極の外周が櫛歯状であっても良い。   The comb electrode at the end of the second ground electrode is preferably configured to extend substantially parallel to one side of the opposing radiation electrode. Here, the term “substantially parallel” means that the line segment direction in which the comb-shaped electrode extends may be roughly aligned with the opposite sides of the radiation electrode as a whole, even if it is not strictly parallel, and is parallel enough to contribute to the solution of the problem. This includes the case where it can be said. Therefore, the outer periphery of the radiation electrode may have a comb-like shape even if it is strictly non-parallel due to variations in forming each electrode.

本発明の平面アンテナは、第2接地電極端部の櫛歯電極をトリミングすることで共振周波数を変化させることができる。櫛歯電極の端部は第2接地電極の帯状部と連接電極によって接続される。櫛歯電極の自由端側は給電電極側でも逆側でも良い。   The planar antenna of the present invention can change the resonance frequency by trimming the comb-tooth electrode at the end of the second ground electrode. The end portion of the comb electrode is connected to the band-like portion of the second ground electrode by the connecting electrode. The free end side of the comb-teeth electrode may be the feeding electrode side or the opposite side.

基板はプリント基板やセラミック基板が用いられ、基板を構成する誘電性材料は、絶縁体であり、電界強度や、基板内部を進行する電磁波の速度に効果的に影響を及ぼすことができる材料から選択される。
プリント基板としてはテフロン(登録商標)グラスファイバ基板(PTFE基板)やポリフェニレンエーテル基板(PPE基板)などが一般的に用いられる。これらの基板は低誘電率(εr=1.1〜5.0)であり、小型化には不向きであるものの、誘電体損失tanδが10−3〜10−4と小さく、利得に優れたアンテナとなる。
The substrate is a printed circuit board or a ceramic substrate, and the dielectric material constituting the substrate is an insulator, and is selected from materials that can effectively affect the electric field strength and the speed of electromagnetic waves traveling inside the substrate. Is done.
As the printed board, a Teflon (registered trademark) glass fiber board (PTFE board), a polyphenylene ether board (PPE board), or the like is generally used. Although these substrates have a low dielectric constant (εr = 1.1 to 5.0) and are not suitable for miniaturization, the dielectric loss tan δ is as small as 10 −3 to 10 −4 and the antenna has excellent gain. It becomes.

プリント基板の平面アンテナは、車載用途など比較的形状限定が少ない場合には好適であるが、携帯電話等の通信機器や小型のGPS端末などへの搭載は困難である場合がある。このような場合にはεが200以下の高誘電率を有する誘電体セラミックスを用いたセラミック基板とするのが好ましい。比誘電率が高ければ、放射電極の一辺の長さLを短くなり、もって平面アンテナを小型化することが出来る。比誘電率の選択は平面アンテナが要求される外形寸法や特性によるが、εが200を超える場合には、帯域幅の減少と利得の低下が大きくなる。 A planar antenna on a printed circuit board is suitable when the shape is relatively limited, such as in-vehicle use, but it may be difficult to mount it on a communication device such as a mobile phone or a small GPS terminal. In such a case, a ceramic substrate using dielectric ceramics having a high dielectric constant of εr of 200 or less is preferable. If the relative dielectric constant is high, the length L of one side of the radiation electrode is shortened, and the planar antenna can be miniaturized. The choice of the dielectric constant depends on the external dimensions and characteristics of the planar antenna is required, if the epsilon r exceeds 200, a reduction in loss and gain-bandwidth is increased.

本発明においては、一対の第2接地電極を、給電電極に沿ってその先端部に至るまで等間隔に配置するのが好ましい。この様に給電電極をコプレーナ構造にて構成することで給電電極での損失が少なくなり、アンテナ特性が向上する。また放射電極に他の延長部を設けるなどして、第2接地電極との容量結合を強めることで放射電極への電力供給量を大きくすることが出来る。
本発明においては、給電電極の端部と放射電極の延長部とを対向させ、ギャップを持たせて容量結合により給電するのが好ましい。また容量結合部におけるギャップ長は第2接地電極と給電電極との間の幅よりも十分に狭く構成する。このような構成によればギャップ長の調整によって、容易にインピーダンスの調整が行え、かつ比帯域幅の減少を防ぐことが出来る。特に基板を構成する誘電体が高比誘電率である場合に、顕著に効果を発揮する。
In the present invention, it is preferable that the pair of second ground electrodes be arranged at equal intervals along the power supply electrode until reaching the tip portion thereof. By configuring the power supply electrode with a coplanar structure in this way, loss at the power supply electrode is reduced, and the antenna characteristics are improved. Further, the amount of power supplied to the radiation electrode can be increased by strengthening capacitive coupling with the second ground electrode by providing another extension portion on the radiation electrode.
In the present invention, it is preferable that power is fed by capacitive coupling with the end of the power supply electrode and the extended portion of the radiation electrode facing each other and having a gap. Further, the gap length in the capacitive coupling portion is configured to be sufficiently narrower than the width between the second ground electrode and the feeding electrode. According to such a configuration, the impedance can be easily adjusted by adjusting the gap length, and the reduction of the specific bandwidth can be prevented. In particular, when the dielectric constituting the substrate has a high relative dielectric constant, the effect is remarkably exhibited.

本発明によれば、回路基板への表面実装が可能であり、共振周波数の調整が容易で、放射特性、利得に優れ、かつ小型の平面アンテナを提供することが出来る。   According to the present invention, it is possible to provide a small planar antenna which can be surface-mounted on a circuit board, can easily adjust the resonance frequency, has excellent radiation characteristics and gain, and is small.

本発明の一実施例に係る平面アンテナの斜視図である。1 is a perspective view of a planar antenna according to an embodiment of the present invention. 本発明の一実施例に係る平面アンテナの正面図である。It is a front view of the planar antenna which concerns on one Example of this invention. 本発明の他の実施例に係る平面アンテナの正面図である。It is a front view of the planar antenna which concerns on the other Example of this invention. 本発明の一実施例に係る平面アンテナのトリミングによる共振周波数の変化を示す図である。It is a figure which shows the change of the resonant frequency by trimming of the planar antenna which concerns on one Example of this invention. 本発明の一実施例に係る平面アンテナのトリミングによるVSWR特性、帯域幅を示す図である。It is a figure which shows the VSWR characteristic by the trimming of the planar antenna which concerns on one Example of this invention, and a bandwidth. 本発明の一実施例に係る平面アンテナを実装した評価ボードの斜視図である。It is a perspective view of the evaluation board which mounted the plane antenna concerning one example of the present invention. 本発明の一実施例に係る平面アンテナの評価方法を説明するための図である。It is a figure for demonstrating the evaluation method of the planar antenna which concerns on one Example of this invention. 本発明の他の実施例に係る平面アンテナの斜視図である。It is a perspective view of the planar antenna which concerns on the other Example of this invention. 本発明の他の実施例に係る平面アンテナの正面図である。It is a front view of the planar antenna which concerns on the other Example of this invention. 従来の平面アンテナの斜視図である。It is a perspective view of the conventional planar antenna. 従来の他の平面アンテナの斜視図である。It is a perspective view of the other conventional planar antenna. 従来の他の平面アンテナの斜視図である。It is a perspective view of the other conventional planar antenna.

以下、本発明の実施の形態について説明する。なお、以下に説明する平面アンテナにおいて用いた材料や作製法は本発明を限定するものではなく、本発明の趣旨の範囲内で種々改変することができる。
図1は本願発明の一実施例に係る平面アンテナの斜視図であって、図1(a)は放射電極が形成された上面側から見た斜視図であり、同(b)は接地電極が形成され実装面となる下面側から見た斜視図である。図2は第2の接地電極が形成された面を示す正面図であり、図3は他の態様で形成された正面図である。
Embodiments of the present invention will be described below. Note that the materials and manufacturing methods used in the planar antenna described below do not limit the present invention and can be variously modified within the scope of the present invention.
FIG. 1 is a perspective view of a planar antenna according to an embodiment of the present invention. FIG. 1 (a) is a perspective view seen from the upper surface side where a radiation electrode is formed, and FIG. It is the perspective view seen from the lower surface side which is formed and becomes a mounting surface. FIG. 2 is a front view showing the surface on which the second ground electrode is formed, and FIG. 3 is a front view formed in another mode.

平面アンテナ10は、直方体状の誘電体からなる基板70と、基板70の下面に形成された第1接地電極100と、上面に形成された一辺の長さがλ/2近似の放射電極50と、側面に形成された給電電極60で構成されている。このうち第1接地電極は基板70の側面にまで延長に形成されて、給電電極60を挟んで対抗する第2接地電極110a、110bを構成している。また、放射電極50の一部が帯状となり、側面に回り込んで開放端を形成する延長部55となる。給電電極60は、一端が基板70の側面上に形成された放射電極50の延長部55の開放端に近接して、ギャップ120を介して形成され、他端は基板70の下面に回り込んで、第1接地電極とギャップを介して形成されている。第2接地電極110a、110bの端部200は櫛歯状に形成されており、櫛歯電極210(210a、210b、210c、210d)を繋ぐ連接電極220で帯状電極と接続される。   The planar antenna 10 includes a substrate 70 made of a rectangular parallelepiped dielectric, a first ground electrode 100 formed on the lower surface of the substrate 70, and a radiation electrode 50 having a side length of approximately λ / 2 formed on the upper surface. The power supply electrode 60 is formed on the side surface. Among these, the first ground electrode is formed to extend to the side surface of the substrate 70, and constitutes second ground electrodes 110a and 110b opposed to each other with the feeding electrode 60 interposed therebetween. Further, a part of the radiation electrode 50 is formed in a band shape, and becomes an extended portion 55 that goes around the side surface and forms an open end. The feeding electrode 60 is formed through a gap 120 in the vicinity of the open end of the extension 55 of the radiation electrode 50 formed on one side of the substrate 70, and the other end wraps around the lower surface of the substrate 70. The first ground electrode and the gap are formed. The end portions 200 of the second ground electrodes 110a and 110b are formed in a comb-like shape, and are connected to the belt-like electrode by the connecting electrode 220 that connects the comb-like electrodes 210 (210a, 210b, 210c, and 210d).

櫛歯電極210の数や形成間隔は調整すべき容量値に応じて適宜設定される。各櫛歯電極210は帯状で上面の放射電極50の対向する一辺と平行に形成され、放射電極50と近接する櫛歯電極210の開放端側から、第2接地電極110a、110bの端部200をレーザ等でVSWRの周波数特性を計測しながらトリミングして、共振周波数を調節する。櫛歯電極210の自由端は、給電電極側でも良いし、その逆側で有っても良い。   The number and formation interval of the comb electrodes 210 are appropriately set according to the capacitance value to be adjusted. Each comb-tooth electrode 210 is formed in a strip shape and parallel to the opposite side of the radiation electrode 50 on the upper surface, and from the open end side of the comb-tooth electrode 210 adjacent to the radiation electrode 50, the end portions 200 of the second ground electrodes 110 a and 110 b. Is trimmed while measuring the frequency characteristics of VSWR with a laser or the like to adjust the resonance frequency. The free end of the comb-tooth electrode 210 may be on the power supply electrode side or on the opposite side.

基板70の側面に形成された第2接地電極110a、110bによって、放射電極50と接地電極との間に容量が形成されるが、容量値が低下すると共振周波数は増加する。従って、各電極の形成ばらつきや、基板70を構成する誘電体材料の誘電特性のばらつきを考慮し、所望の共振周波数よりも低くなるように各電極を形成し、共振周波数を確認しながら第2接地電極110a、110bの端部200をトリミングすれば、所望の共振周波数と周波数帯域が確保される。   A capacitance is formed between the radiation electrode 50 and the ground electrode by the second ground electrodes 110a and 110b formed on the side surface of the substrate 70, but the resonance frequency increases as the capacitance value decreases. Therefore, in consideration of variations in the formation of each electrode and variations in the dielectric characteristics of the dielectric material constituting the substrate 70, each electrode is formed to be lower than a desired resonance frequency, and the second is confirmed while confirming the resonance frequency. If the end portions 200 of the ground electrodes 110a and 110b are trimmed, a desired resonance frequency and frequency band are secured.

基板を構成する誘電体材料は、目的とする周波数に応じて適宜選択され得るものであるが、小型でありながら、アンテナ特性として十分な利得が得られるようにするには、比誘電率εが5〜200程度の誘電体材料を用いる。セラミックス材料としてεが10程度であればアルミナ系セラミックス、40以下であればチタン酸カルシウム系セラミックス、チタン酸マグネシウム系セラミックが、200以下であればチタン酸バリウム系セラミックスが挙げられる。他に温度特性や損失を考慮しながら選択される。 The dielectric material constituting the substrate can be appropriately selected according to the target frequency. However, in order to obtain a sufficient gain as antenna characteristics while being small in size, the relative dielectric constant ε r Is about 5 to 200 dielectric material. If epsilon r of about 10 as a ceramic material of alumina based ceramics, 40 or less value, if calcium titanate-based ceramics, magnesium titanate-based ceramics include barium titanate-based ceramics when 200 or less. In addition, it is selected in consideration of temperature characteristics and loss.

放射電極50及びその延長部55、第1、第2接地電極100、110a、110b、給電電極60は銀ペーストなどの良伝導体を基板に印刷して焼き付けることで、厚みが数μm〜20μmの導体膜として形成される。伝導体としては銀のほかに、金、銅、パラジウム、白金や銀パラジウム合金、銀白金合金を含むペーストが用いられる。その形成はスクリーン印刷法など公知の製造方法を採用でき、他の方法としてはメッキやエッチングが挙げられる。
図1においては、放射電極50や第1接地電極100を、基板の側面から内側に間隔を持って形成している。これは外力による電極の剥離を防ぐなどの目的によるものだが、それぞれ基板と同じ大きさに形成しても良く、その場合には更に平面アンテナを小型に出来る。
The radiation electrode 50 and its extension 55, the first and second ground electrodes 100, 110a, 110b, and the feeding electrode 60 have a thickness of several μm to 20 μm by printing and baking a good conductor such as silver paste on the substrate. It is formed as a conductor film. As the conductor, in addition to silver, a paste containing gold, copper, palladium, platinum, a silver palladium alloy, or a silver platinum alloy is used. A known manufacturing method such as a screen printing method can be employed for the formation, and other methods include plating and etching.
In FIG. 1, the radiation electrode 50 and the first ground electrode 100 are formed with an interval inward from the side surface of the substrate. This is for the purpose of preventing peeling of the electrode due to an external force, but each may be formed in the same size as the substrate, and in that case, the planar antenna can be further reduced in size.

放射電極50と第2接地電極110a、110bとを近接させ過ぎると、放射電極50からの帰還電流が第2接地電極110a、110bに集中するため、所望のVSWR値が得られる帯域幅が低下するので、基板70を構成する誘電体の比誘電率等を考慮しながら間隔や対向する長さを設定する。
第2接地電極110a、110bの形状は、図示したI字状に限定されず、放射電極と対応する側が幅広となるT字やL字の帯状電極など、他の形状としてもかまわない。ただし放射電極50との間で形成される容量が大きくなりすぎないように、第2接地電極110a、110bの幅を、対向する放射電極50の一辺の長さに対して1/4以下とするのが好ましい。
また、基板70の側面(第2接地電極110a、110bが形成された側面を含む)において、回路基板への実装性や固着強度を向上するように、第1接地電極100と連続する端子電極を形成しても良い。この場合の端子電極はアンテナ特性に影響を与えない程度の大きさ、位置にて形成される。
If the radiation electrode 50 and the second ground electrodes 110a and 110b are too close to each other, the feedback current from the radiation electrode 50 is concentrated on the second ground electrodes 110a and 110b, so that the bandwidth for obtaining a desired VSWR value is reduced. Therefore, the distance and the opposing length are set in consideration of the relative permittivity of the dielectric constituting the substrate 70 and the like.
The shape of the second ground electrodes 110a and 110b is not limited to the illustrated I shape, and other shapes such as a T-shaped or L-shaped strip electrode having a wide side corresponding to the radiation electrode may be used. However, the width of the second ground electrodes 110a and 110b is set to ¼ or less of the length of one side of the opposing radiation electrode 50 so that the capacitance formed between the radiation electrode 50 does not become too large. Is preferred.
Further, on the side surface of the substrate 70 (including the side surface on which the second ground electrodes 110a and 110b are formed), a terminal electrode continuous with the first ground electrode 100 is provided so as to improve the mounting property to the circuit board and the fixing strength. It may be formed. In this case, the terminal electrode is formed in such a size and position that does not affect the antenna characteristics.

本実施形態による平面アンテナ10は、基板70の上面には放射電極50のみが形成される構成である。従って、給電電極を上面にまで形成する従来の平面アンテナに比べて基板70を小さくすることができるため、平面アンテナ10そのものも小型化することが出来る。   The planar antenna 10 according to the present embodiment is configured such that only the radiation electrode 50 is formed on the upper surface of the substrate 70. Therefore, since the substrate 70 can be made smaller than the conventional planar antenna in which the feeding electrode is formed on the upper surface, the planar antenna 10 itself can also be reduced in size.

本実施例の平面アンテナの基本構造は図1と同一なのでその説明を省略する。この平面アンテナは周波数帯域が1575.42±1.023MHzのGPS用アンテナである。本実施例では基板の誘電体材料としてTi−Ba−Sm系セラミックス材料を用いた。このセラミックス材料の比誘電率εは79であり、tanδ(at 4.8GHz)が4×10−4である。
所定の組成で原料となるTiO,BaCO,Smなどの酸化物を秤量して、ボールミルで湿式にて均一となるように混合する。その後、仮焼、粉砕を経て得られた造粒粉を加圧成形にて板状に形成し、1350℃で焼成し、得られた板状体をダイサー(切断機)によって所定の形状(12.0mm×12.0mm×3.0mm)に切り出して平面アンテナに用いる基板70を作製した。
Since the basic structure of the planar antenna of this embodiment is the same as that shown in FIG. This planar antenna is a GPS antenna having a frequency band of 1575.42 ± 1.023 MHz. In this example, a Ti—Ba—Sm ceramic material was used as the dielectric material of the substrate. This ceramic material has a relative dielectric constant ε r of 79 and a tan δ (at 4.8 GHz) of 4 × 10 −4 .
Oxides such as TiO 2 , BaCO 3 , and Sm 2 O 3 that are raw materials having a predetermined composition are weighed and mixed in a ball mill so as to be uniform by a wet process. Thereafter, the granulated powder obtained through calcination and pulverization is formed into a plate shape by pressure molding, fired at 1350 ° C., and the obtained plate-like body is formed into a predetermined shape (12) by a dicer (cutting machine). 0.070 mm × 12.0 mm × 3.0 mm) to produce a substrate 70 used for a planar antenna.

得られた基板70に、銀ペーストを用いて放射電極50、第1接地電極100、第2接地電極110a、110b、給電電極60をスクリーン印刷にて印刷形成して焼き付けて平面アンテナを作製した。
放射電極50は正方形(延長部除く)に形成され、一辺の長さを11.8mmとしている。この長さは、給電周波数1575.42MHzにおける実効波長の略1/2の寸法を考慮して設定している。延長部の幅は0.65mm、上面から端部までの長さを0.5mmとしている。給電電極60は幅を前記延長部と同じとし、対向する幅を0.65mm、底面からの長さを2.0mmとし、ギャップGを0.5mmとしている。給電電極60の両側には1.525mmの間隔Wをもって第2接地電極110a、110bを形成した。第2接地電極110a、110bの底面からの長さHは共に2.0mmである。第1接地電極100も正方形に形成され、一辺の長さを11.8mmとしている。
On the obtained substrate 70, the radiation electrode 50, the first ground electrode 100, the second ground electrodes 110a and 110b, and the feeding electrode 60 were printed and formed by screen printing using a silver paste, and baked to produce a planar antenna.
The radiation electrode 50 is formed in a square shape (excluding the extension), and the length of one side is 11.8 mm. This length is set in consideration of a dimension that is approximately ½ of the effective wavelength at a feeding frequency of 1575.42 MHz. The extension has a width of 0.65 mm, and the length from the upper surface to the end is 0.5 mm. The power supply electrode 60 has the same width as the extension, the opposing width is 0.65 mm, the length from the bottom is 2.0 mm, and the gap G is 0.5 mm. Second ground electrodes 110a and 110b were formed on both sides of the power supply electrode 60 with a spacing W of 1.525 mm. The length H from the bottom surface of the second ground electrodes 110a and 110b is both 2.0 mm. The first ground electrode 100 is also formed in a square shape, and the length of one side is 11.8 mm.

第2接地電極110a、110bは、その端部と上面までの間が0.1mmであり、幅0.2mm、長さ1.5mmの3本の櫛歯電極が0.1mmの間隔で形成されている。第2接地電極110a、110bのそれぞれの櫛歯電極を一緒に上面側から順にレーザトリミングした時のVSWRのピーク周波数、ピーク値、VSWRが3.0以下の帯域幅を、ネットワークアナライザイにて測定した。結果を図4及び図5に示す。図中「なし」とはトリミングを行っていない初期状態であり、1段目とは、第2接地電極110a、110bの櫛歯電極210aをトリミングし、櫛歯電極210bが放射電極50の一辺と平行となるようにした状態である。2段目以降も同様に櫛歯電極210b、210cと順次トリミングしていった状態である。トリミングするに従い共振周波数は高周波側に移動し、VSWRのピーク値が低下するとともに帯域幅が広がった。本実施例では各櫛歯電極をトリミングして除いた場合のVSWR特性を示したが、放射電極50の一辺と対向する櫛歯電極の一部をトリミングするに従いVSWR特性も変化するので、平面アンテナの共振周波数を容易に所望の周波数とすることが出来る。   The second ground electrodes 110a and 110b have a distance of 0.1 mm between the end and the top surface, and three comb electrodes having a width of 0.2 mm and a length of 1.5 mm are formed at intervals of 0.1 mm. ing. Measure the VSWR peak frequency, peak value, and bandwidth with a VSWR of 3.0 or less with the network analyzer when the comb-tooth electrodes of the second ground electrodes 110a and 110b are laser-trimmed together from the upper surface side. did. The results are shown in FIGS. “None” in the figure is an initial state in which trimming is not performed, and the first stage is trimming the comb-tooth electrode 210a of the second ground electrodes 110a and 110b, and the comb-tooth electrode 210b is connected to one side of the radiation electrode 50. It is in a state of being parallel. The second and subsequent stages are similarly trimmed with the comb electrodes 210b and 210c in the same manner. As the trimming was performed, the resonance frequency moved to the high frequency side, and the peak value of VSWR decreased and the bandwidth widened. Although the present embodiment shows the VSWR characteristics when each comb-tooth electrode is trimmed and removed, the VSWR characteristics also change as a part of the comb-tooth electrode facing one side of the radiation electrode 50 is trimmed. The resonance frequency can be easily set to a desired frequency.

共振周波数が1575.42MHzに調整された平面アンテナ10を試料とし、縦横それぞれ35mmで厚みが0.6mmのプリント基板200に半田付けして実装し、電波暗室(電波無響室)内にてアンテナ特性を評価した。図6に平面アンテナを実装した評価ボードの斜視図を示す。基板70の給電電極60と接続される線路パターン以外の領域は、全て接地導体パターンGNDが形成されている。前記線路パターンには整合回路を構成するリアクタンス素子(チップ部品)250が実装され、その端部は同軸線路300が接続されるように、同軸コネクタ(図示せず)が形成されている。   A planar antenna 10 having a resonance frequency adjusted to 1575.42 MHz is used as a sample, and is soldered and mounted on a printed board 200 having a thickness of 35 mm and a thickness of 0.6 mm, and the antenna is placed in an anechoic chamber (an anechoic chamber). Characteristics were evaluated. FIG. 6 shows a perspective view of an evaluation board on which a planar antenna is mounted. The ground conductor pattern GND is formed in all regions other than the line pattern connected to the power supply electrode 60 of the substrate 70. A reactance element (chip component) 250 constituting a matching circuit is mounted on the line pattern, and a coaxial connector (not shown) is formed at the end so that the coaxial line 300 is connected.

図7はアンテナ特性の評価方法を説明する為の図である。内壁に電波吸収体が隙間なく敷設された暗室500に、測定用アンテナ(右旋回円偏波型ログ・スパイラル・アンテナ)300を配置し、3m離れて配置されたターンテーブル上で回転するアンテナ試料200へ電波を送信し、平面アンテナ10で受信する構成であり、得られた受信電力をもとに利得および放射指向性、VSWRを求めた。測定用アンテナ300とアンテナ試料200は、それぞれ室外に配置されたネットワークアナライザのポートに同軸ケーブルで接続されている。測定用アンテナ300への給電はネットワークアナライザにて行った。Y−Z面、X−Y面、Z−X面を含めた全平均利得は−5.40dBicであった。トリミングによる共振周波数の調整が容易であり、個々の平面アンテナにおいて、ばらつきが少なく、優れた利得特性を得ることが出来る。   FIG. 7 is a diagram for explaining an antenna characteristic evaluation method. An antenna for measurement (a right-handed circularly polarized log / spiral antenna) 300 is arranged in a dark room 500 in which an electromagnetic wave absorber is laid on the inner wall without any gaps, and an antenna that rotates on a turntable arranged 3 m away In this configuration, radio waves are transmitted to the sample 200 and received by the planar antenna 10, and gain, radiation directivity, and VSWR are obtained based on the obtained received power. The measurement antenna 300 and the antenna sample 200 are each connected to a port of a network analyzer disposed outside the room by a coaxial cable. The power supply to the measurement antenna 300 was performed by a network analyzer. The total average gain including the YZ plane, the XY plane, and the ZX plane was −5.40 dBic. Adjustment of the resonance frequency by trimming is easy, and there is little variation among individual planar antennas, and excellent gain characteristics can be obtained.

他の実施態様として、給電電極60と第2接地電極110a、110bとの間隔Wを0.5mm〜2.675mmとして変更し、他の寸法形状は前記平面アンテナと同じとした試料を同様の手順で作製し、測定評価した。間隔Wが1.525mmを超えると、VSWRと特性に顕著な差は見られないが、利得が緩やかに低下した。また間隔Wが狭まると利得が著しく低下し、Wが0.5mmであると実用に供し得ない程度に利得が低下した。   As another embodiment, the same procedure is applied to a sample in which the interval W between the feeding electrode 60 and the second ground electrodes 110a and 110b is changed to 0.5 mm to 2.675 mm and other dimensions are the same as those of the planar antenna. And measured and evaluated. When the interval W exceeded 1.525 mm, no significant difference was observed between the VSWR and the characteristics, but the gain decreased slowly. Further, when the interval W was narrowed, the gain was remarkably lowered, and when W was 0.5 mm, the gain was lowered to such an extent that it could not be put to practical use.

次に給電電極60と放射電極50の延長部55とのギャップGを0.1〜0.5mmとして変更し、他の寸法形状は前記平面アンテナと同じとした試料を同様の手順で作製し、測定評価した。ギャップGを狭めていくと、VSWRと特性に顕著な差は見られないが、利得が緩やかに向上した。   Next, a gap G between the feeding electrode 60 and the extended portion 55 of the radiation electrode 50 was changed to 0.1 to 0.5 mm, and a sample having the same dimensions and shape as those of the planar antenna was prepared in the same procedure. Measurement was evaluated. As the gap G was narrowed, there was no significant difference between the VSWR and the characteristics, but the gain was improved moderately.

次に第2放射電極100a、110bの長さHを変更し、他の寸法形状は前記平面アンテナと同じとした試料を同様の手順で作製し、測定評価した。長さHが短いほどVSWRは広帯域化するが、長さHが1.5mm未満(基板厚みの1/2)では実用に供し得ない程度に利得が低下した。   Next, the length H of the second radiation electrodes 100a and 110b was changed, and a sample having the same dimensions and shape as those of the planar antenna was prepared in the same procedure, and measured and evaluated. The shorter the length H, the wider the VSWR, but when the length H was less than 1.5 mm (1/2 of the substrate thickness), the gain decreased to the extent that it could not be put to practical use.

次に図8の斜視図に示すように、放射電極に3つの延長部55、56a、56bを形成し、内2つの延長部56a、56bを0.5mmのギャップを介して第2接地電極110a、110bと対向させ、他の寸法形状は前記平面アンテナと同じとした試料を同様の手順で作製し、測定評価した。その結果、延長部56a、56bを形成しない場合よりも利得が向上した。
また図9の正面図に示すように、延長部56a、56bと第2接地電極110a、110bと対向部を傾斜して形成すれば容量が増加するとともに、トリミングによる調整しろも増加させることが出来る。
Next, as shown in the perspective view of FIG. 8, three extending portions 55, 56a, and 56b are formed on the radiation electrode, and the two extending portions 56a and 56b are connected to the second ground electrode 110a through a gap of 0.5 mm. , 110b, and other dimensions and shapes were the same as those of the planar antenna, and the same procedure was used for measurement and evaluation. As a result, the gain was improved as compared with the case where the extensions 56a and 56b were not formed.
Further, as shown in the front view of FIG. 9, if the extension portions 56a and 56b and the second ground electrodes 110a and 110b and the facing portion are formed to be inclined, the capacity increases and the adjustment margin by trimming can also be increased. .

本発明によれば、回路基板への表面実装が可能であり、共振周波数の調整が容易で、放射特性、利得に優れ、かつ小型の平面アンテナを提供することが出来る。   According to the present invention, it is possible to provide a small planar antenna which can be surface-mounted on a circuit board, can easily adjust the resonance frequency, has excellent radiation characteristics and gain, and is small.

10 平面アンテナ
50 放射電極
55、56a、56b 放射電極の延長部
60 給電電極
70 基板
100 第1接地電極
110a、110b 第2接地電極
200 プリント基板(評価ボード)
DESCRIPTION OF SYMBOLS 10 Planar antenna 50 Radiation electrodes 55, 56a, 56b Radiation electrode extension 60 Feed electrode 70 Substrate 100 First ground electrodes 110a, 110b Second ground electrode 200 Printed circuit board (evaluation board)

Claims (3)

上下面と前記上下面間を繋ぐ側面を備えた矩形の基板と、前記基板の一方の上面に形成された矩形の放射電極と、基板の下面に形成された第1接地電極と、基板の側面に形成され下面側から上面側へ延びる帯状の給電電極と、給電電極と同じ側面に形成され、前記給電電極を挟んで対向し前記第1接地電極から延び、その端部と前記放射電極との間隔が等しい一対の第2接地電極を備え、前記放射電極の端部を前記給電電極の端部と対向させて容量結合により給電し、前記第2接地電極の放射電極側の端部が櫛歯状に形成されていることを特徴とする平面アンテナ。   A rectangular substrate having a side surface connecting the upper and lower surfaces and the upper and lower surfaces, a rectangular radiation electrode formed on one upper surface of the substrate, a first ground electrode formed on the lower surface of the substrate, and a side surface of the substrate Formed on the same side surface as the power supply electrode, opposed to the power supply electrode and extending from the first ground electrode, and an end portion of the power supply electrode and the radiation electrode A pair of second ground electrodes having the same interval are provided, power is fed by capacitive coupling with the end of the radiation electrode facing the end of the power supply electrode, and the end of the second ground electrode on the side of the radiation electrode is comb-toothed A planar antenna characterized by being formed in a shape. 第2接地電極端部の櫛歯電極は、対向する放射電極の一辺と略平行に延びることを特徴とする請求項1に記載の平面アンテナ。   The planar antenna according to claim 1, wherein the comb electrode at the end of the second ground electrode extends substantially parallel to one side of the opposing radiation electrode. 第2接地電極端部の櫛歯電極をトリミングして共振周波数を変化させることを特徴とする請求項2に記載の平面アンテナ。   The planar antenna according to claim 2, wherein the resonance frequency is changed by trimming the comb electrode at the end of the second ground electrode.
JP2009086722A 2009-03-31 2009-03-31 Planar antenna Pending JP2010239496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009086722A JP2010239496A (en) 2009-03-31 2009-03-31 Planar antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009086722A JP2010239496A (en) 2009-03-31 2009-03-31 Planar antenna

Publications (1)

Publication Number Publication Date
JP2010239496A true JP2010239496A (en) 2010-10-21

Family

ID=43093424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009086722A Pending JP2010239496A (en) 2009-03-31 2009-03-31 Planar antenna

Country Status (1)

Country Link
JP (1) JP2010239496A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013031142A (en) * 2011-06-23 2013-02-07 Cirocomm Technology Corp Surface-mount signal transceiver module set
JP2014241549A (en) * 2013-06-12 2014-12-25 株式会社村田製作所 Antenna device
CN115149255A (en) * 2022-06-24 2022-10-04 四川大学 Central sawtooth broadband microstrip antenna

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013031142A (en) * 2011-06-23 2013-02-07 Cirocomm Technology Corp Surface-mount signal transceiver module set
JP2014241549A (en) * 2013-06-12 2014-12-25 株式会社村田製作所 Antenna device
CN115149255A (en) * 2022-06-24 2022-10-04 四川大学 Central sawtooth broadband microstrip antenna
CN115149255B (en) * 2022-06-24 2023-09-05 四川大学 Center sawtooth broadband microstrip antenna

Similar Documents

Publication Publication Date Title
KR101705742B1 (en) Antenna
JP4570552B2 (en) Loop antenna and communication equipment
EP0829917B1 (en) Antenna device
KR101027089B1 (en) Surface mount antena and antena equipment
JP2006067259A (en) Surface-mounted antenna, antenna unit using same, and radio communication apparatus
JP4263972B2 (en) Surface mount antenna, antenna device, and wireless communication device
JP2002330018A (en) Meandering antenna and its resonance frequency adjusting method
US20050030230A1 (en) Antenna device and method for manufacturing the same
JP2004023624A (en) Surface mount antenna and antenna system
JP4238325B2 (en) Multi-frequency microstrip antenna
JP2010239496A (en) Planar antenna
EP2418730B1 (en) Antenna apparatus having device carrier with magneto-dielectric material
JP2005020433A (en) Surface mounted antenna, antenna device and radio communication equipment
WO2005081364A1 (en) Dielectric antenna
JP4045459B2 (en) ANTENNA ELEMENT AND RADIO COMMUNICATION DEVICE USING THE SAME
JP2004208202A (en) Antenna and communication equipment using the same
JP2010136186A (en) Flat antenna
JP4991451B2 (en) Antenna, method for adjusting resonance frequency thereof, and communication apparatus using the same
JP3838973B2 (en) Multilayer dielectric antenna
Liu et al. Broadband surface-mount differential-fed dipole antenna and its array for 5G millimeter-wave applications
JP2000201015A (en) Antenna element and radio communication device using the same
JP4841398B2 (en) Loop antenna, antenna board, antenna integrated module and communication device
JPH1093319A (en) Surface mount antenna
JPH06350331A (en) Plane patch antenna
JP3735582B2 (en) Multilayer dielectric antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20120213

Free format text: JAPANESE INTERMEDIATE CODE: A621

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20130614