JP2010239134A - Organic electroluminescent element, organic el display and organic el illumination - Google Patents

Organic electroluminescent element, organic el display and organic el illumination Download PDF

Info

Publication number
JP2010239134A
JP2010239134A JP2010056022A JP2010056022A JP2010239134A JP 2010239134 A JP2010239134 A JP 2010239134A JP 2010056022 A JP2010056022 A JP 2010056022A JP 2010056022 A JP2010056022 A JP 2010056022A JP 2010239134 A JP2010239134 A JP 2010239134A
Authority
JP
Japan
Prior art keywords
group
layer
compound
organic electroluminescent
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010056022A
Other languages
Japanese (ja)
Inventor
Koichiro Iida
宏一朗 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2010056022A priority Critical patent/JP2010239134A/en
Publication of JP2010239134A publication Critical patent/JP2010239134A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic electroluminescent element of low driving voltage and high current efficiency in the organic electroluminescent element having an arylamine compound containing light-emitting layer formed by a wet deposition method. <P>SOLUTION: The organic electroluminescent element includes a positive electrode, a charge transport layer, a light-emitting layer and a negative electrode on a substrate in this order, the charge transport layer and the light-emitting layer adjacently provided, and the charge transport layer and the light-emitting layer are formed by the wet deposition method. The charge transport layer is a layer formed of a composition containing a polymer compound whose terminal group is an aromatic hydrocarbon group which may have a group selected from a group consisting of an alkyl group, an alkoxy group and an aromatic group as a substituent. The light-emitting layer is the layer containing an arylamine compound. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、有機電界発光素子、並びに有機ELディスプレイ及び有機EL照明に関する。   The present invention relates to an organic electroluminescent element, an organic EL display, and organic EL illumination.

近年、有機薄膜を用いた電界発光素子(有機電界発光素子)の開発が行われている。湿式成膜法は真空プロセスが要らず、大面積化が容易で、1つの層及びその形成用の塗布液に様々な機能をもった複数の材料を混合することが容易である等の利点がある。
特許文献1及び2には、正孔輸送層及び発光層を湿式成膜法により形成され、正孔輸送層は高分子材料を含む組成物を用いて形成され、発光層は、発光材料としてアリールアミン化合物を含む組成物を用いて形成されることが開示されているが、電流効率、駆動電圧の面で更なる改良が必要であった。
In recent years, an electroluminescent element (organic electroluminescent element) using an organic thin film has been developed. The wet film formation method does not require a vacuum process, is easy to increase in area, and has an advantage that it is easy to mix a plurality of materials having various functions in one layer and a coating liquid for forming the layer. is there.
In Patent Documents 1 and 2, a hole transport layer and a light-emitting layer are formed by a wet film formation method, the hole transport layer is formed using a composition containing a polymer material, and the light-emitting layer is aryl as a light-emitting material. Although it is disclosed that it is formed using a composition containing an amine compound, further improvements in terms of current efficiency and driving voltage are required.

また、特許文献3には、末端基が芳香族炭化水素基である高分子化合物を有機電界発光素子の材料として用いることが開示されている。   Patent Document 3 discloses the use of a polymer compound whose terminal group is an aromatic hydrocarbon group as a material for an organic electroluminescence device.

特開2007−73814号公報JP 2007-73814 A 特開2008−166629号公報JP 2008-166629 A 特開2004−292782号公報JP 2004-292882 A

本発明は、湿式成膜法で形成された、アリールアミン化合物を含む発光層を有する有機電界発光素子において、駆動電圧が低く、また電流効率が高い有機電界発光素子を提供することを課題とする。   An object of the present invention is to provide an organic electroluminescent device having a low driving voltage and high current efficiency in an organic electroluminescent device having a light emitting layer containing an arylamine compound, formed by a wet film formation method. .

本発明者らは、上記課題を解決するために鋭意検討した結果、アリールアミンを含有する発光層に隣接して形成される、高分子化合物を含有する電荷輸送層において、該高分子化合物が末端基を有することによって、上記課題を解決することを見出して、本発明に到達した。
即ち、本発明は、基板上に、陽極、電荷輸送層、発光層、及び陰極をこの順に有し、該電荷輸送層と該発光層は隣接して設けられ、該電荷輸送層、及び該発光層は湿式成膜法で形成された有機電界発光素子であって、該電荷輸送層は、末端基が、置換基を有してもよい芳香族炭化水素基である高分子化合物を含む組成物を用いて形成された層であり、該発光層は、アリールアミン化合物を含む層であることを特徴とする有機電界発光素子、並びにこれを備えた有機ELディスプレイ及び有機EL照明に存する。
As a result of intensive studies to solve the above problems, the present inventors have found that the polymer compound has a terminal end in the charge transport layer containing the polymer compound formed adjacent to the light emitting layer containing the arylamine. The inventors have found that the above problems can be solved by having a group, and have reached the present invention.
That is, the present invention has an anode, a charge transport layer, a light emitting layer, and a cathode on a substrate in this order, and the charge transport layer and the light emitting layer are provided adjacent to each other, and the charge transport layer and the light emitting layer are provided. The layer is an organic electroluminescent device formed by a wet film-forming method, and the charge transporting layer includes a polymer compound in which the terminal group is an aromatic hydrocarbon group which may have a substituent. And the light emitting layer is an organic electroluminescent element characterized by being an arylamine compound-containing layer, and an organic EL display and an organic EL illumination provided with the organic electroluminescent element.

本発明の有機電界発光素子は、高い電流効率及び低い駆動電圧を有し、さらに、定電流駆動時の発光輝度の低下、電圧上昇、非発光部分(ダークスポット)の発生、短絡欠陥等が抑制される。   The organic electroluminescence device of the present invention has high current efficiency and low driving voltage, and further suppresses a decrease in light emission luminance, a voltage increase, generation of a non-light emitting portion (dark spot), a short circuit defect, etc. during constant current driving. Is done.

本発明の有機電界発光素子の構造の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the structure of the organic electroluminescent element of this invention.

本発明の有機電界発光素子、並びに有機ELディスプレイ及び有機EL照明の実施態様を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、これらの内容に特定されない。
本発明の有機電界発光素子は、基板上に、陽極、電荷輸送層、発光層、及び陰極をこの順に有し、該電荷輸送層と該発光層は隣接して設けられ、該電荷輸送層、及び該発光層は湿式成膜法で形成された有機電界発光素子であって、該電荷輸送層は、末端基が、置換基を有してもよい芳香族炭化水素基である高分子化合物を含む組成物で形成した層であり、該発光層は、アリールアミン化合物を含む層であることを特徴とする有機電界発光素子である。
The embodiment of the organic electroluminescent element of the present invention, and the organic EL display and organic EL illumination will be described in detail. The description of the constituent elements described below is an example (representative example) of the embodiment of the present invention. The present invention is not limited to these contents unless it exceeds the gist.
The organic electroluminescent element of the present invention has an anode, a charge transport layer, a light emitting layer, and a cathode in this order on a substrate, and the charge transport layer and the light emitting layer are provided adjacent to each other, and the charge transport layer, And the light-emitting layer is an organic electroluminescent device formed by a wet film-forming method, and the charge transport layer comprises a polymer compound in which a terminal group is an aromatic hydrocarbon group which may have a substituent. An organic electroluminescent element, wherein the light emitting layer is a layer containing an arylamine compound.

<発光層>
以下、発光層の構成要件について説明するが、本発明はこれらに限定されるものではない。
[アリールアミン化合物]
本発明における発光層は、湿式成膜法で形成された、アリールアミン化合物を含有する層である。
<Light emitting layer>
Hereinafter, although the structural requirement of a light emitting layer is demonstrated, this invention is not limited to these.
[Arylamine compound]
The light emitting layer in the present invention is a layer containing an arylamine compound formed by a wet film forming method.

アリールアミン化合物としては、耐久性に優れる点からから下記式(I’)で表される、N,N,N’,N’−テトラアリールアリーレンジアミン化合物が好ましい。   As the arylamine compound, an N, N, N ′, N′-tetraarylarylenediamine compound represented by the following formula (I ′) is preferable from the viewpoint of excellent durability.

Figure 2010239134
Figure 2010239134

(式(I’)中、Ar〜Arは、各々独立して、置換基を有してもよい芳香族炭化水素基を表す。)
Ar〜Arの芳香族炭化水素基としては、ベンゼン環、ナフタレン環、フェナントレン環、アントラセン環、ピレン環、クリセン環、ナフタセン環、ベンゾフェナントレン環等の、ベンゼン環、或いは、ベンゼン環の2〜5個が縮合してなる縮合環由来の基が挙げられる。
(In formula (I ′), Ar 1 to Ar 4 each independently represents an aromatic hydrocarbon group which may have a substituent.)
Examples of the aromatic hydrocarbon group of Ar 1 to Ar 5 include a benzene ring, a benzene ring such as a benzene ring, a naphthalene ring, a phenanthrene ring, an anthracene ring, a pyrene ring, a chrysene ring, a naphthacene ring, and a benzophenanthrene ring. A group derived from a condensed ring formed by condensing ˜5.

中でも、電流効率が高い点で、Arはクリセン環由来の基であることが好ましく、特に、下記式(I)で表される化合物であることが好ましい。 Among them, Ar 5 is preferably a group derived from a chrysene ring in view of high current efficiency, and particularly preferably a compound represented by the following formula (I).

Figure 2010239134
Figure 2010239134

(式(I)中、Ar〜Arは、各々独立して、置換基を有してもよい芳香族炭化水素基を表す。)
Ar〜Arは、各々独立して、置換基を有していてもよい芳香族炭化水素基を表す。Ar〜Arの芳香族炭化水素基としては、ベンゼン環、ナフタレン環、フェナントレン環、アントラセン環、ピレン環、クリセン環、ナフタセン環、ベンゾフェナントレン環等の、ベンゼン環、或いは、ベンゼン環の2〜5個が縮合してなる縮合環由来の基が挙げられる。特に、青色の発光を得るためにはフェニル基が好ましい。
(In formula (I), Ar 1 to Ar 4 each independently represents an aromatic hydrocarbon group which may have a substituent.)
Ar 1 to Ar 4 each independently represents an aromatic hydrocarbon group which may have a substituent. Examples of the aromatic hydrocarbon group represented by Ar 1 to Ar 4 include a benzene ring such as a benzene ring, a naphthalene ring, a phenanthrene ring, an anthracene ring, a pyrene ring, a chrysene ring, a naphthacene ring, and a benzophenanthrene ring. A group derived from a condensed ring formed by condensing ˜5. In particular, a phenyl group is preferable for obtaining blue light emission.

Ar〜Arにおける芳香族炭化水素基が有していてもよい置換基としては、アルキル基、アルケニル基、アルコキシ基、芳香族炭化水素基、芳香族複素環基などが好ましく、特に、親油性置換基のアルキル基が好ましい。
また、置換基の分子量は、通常400以下、中でも250以下程度が好ましい。
Ar1〜Arが置換基を有する場合、その置換位置は、窒素原子の置換位置に対して、パラ位、メタ位であることが好ましく、特にパラ位であることが好ましい。
As the substituent that the aromatic hydrocarbon group in Ar 1 to Ar 4 may have, an alkyl group, an alkenyl group, an alkoxy group, an aromatic hydrocarbon group, an aromatic heterocyclic group, and the like are preferable. Alkyl groups of oily substituents are preferred.
Further, the molecular weight of the substituent is usually 400 or less, preferably about 250 or less.
When Ar 1 to Ar 4 have a substituent, the substitution position is preferably para-position or meta-position, particularly preferably para-position, with respect to the substitution position of the nitrogen atom.

アリールアミン化合物の分子量は、本発明の効果を著しく損なわない限り任意であるが、通常10000以下、好ましくは5000以下、より好ましくは4000以下、更に好ましくは3000以下、また、通常100以上、好ましくは200以上、より好ましくは300以上、更に好ましくは400以上の範囲である。アリールアミン化合物の分子量が小さ過ぎると、耐熱性が著しく低下したり、ガス発生の原因となったり、膜を形成した際の膜質の低下を招いたり、或いはマイグレーションなどによる有機電界発光素子のモルフォロジー変化を来たしたりする場合がある。一方、アリールアミン化合物の分子量が大き過ぎると、アリールアミン化合物の精製が困難となってしまったり、溶媒に溶解させる際に時間を要したりする傾向がある。   The molecular weight of the arylamine compound is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 10,000 or less, preferably 5000 or less, more preferably 4000 or less, still more preferably 3000 or less, and usually 100 or more, preferably It is 200 or more, more preferably 300 or more, and still more preferably 400 or more. If the molecular weight of the arylamine compound is too small, the heat resistance is remarkably reduced, gas is generated, the film quality is deteriorated when the film is formed, or the morphology of the organic electroluminescent device is changed due to migration, etc. Or may come. On the other hand, if the molecular weight of the arylamine compound is too large, purification of the arylamine compound tends to be difficult, or it may take time to dissolve the arylamine compound in a solvent.

以下に、式(I)で表される化合物の好ましい具体例を示すが、本発明はこれらに限定されるものではない。
<式(I)で表される化合物の具体例>
Although the preferable specific example of a compound represented by a formula (I) below is shown, this invention is not limited to these.
<Specific Example of Compound Represented by Formula (I)>

Figure 2010239134
Figure 2010239134

[発光材料]
本発明の有機電界発光素子は、発光層に、アリールアミン化合物を含有するが、本発明の効果を損なわない限り、その他の発光材料を含有していてもよい。
以下、その他の発光材料のうち蛍光発光材料の例を挙げるが、蛍光発光材料は以下の例示物に限定されるものではない。
[Light emitting material]
Although the organic electroluminescent element of this invention contains an arylamine compound in a light emitting layer, unless the effect of this invention is impaired, it may contain the other luminescent material.
Hereinafter, examples of the fluorescent light emitting material among other light emitting materials will be given, but the fluorescent light emitting material is not limited to the following examples.

青色発光を与える蛍光発光材料(青色蛍光発光材料)としては、例えば、ナフタレン、ペリレン、ピレン、アントラセン、クマリン、p−ビス(2−フェニルエテニル)ベンゼン及びそれらの誘導体等が挙げられる。
緑色発光を与える蛍光発光材料(緑色蛍光発光材料)としては、例えば、キナクリドン誘導体、クマリン誘導体、Al(CNO)などのアルミニウム錯体等が挙げられる。
Examples of the fluorescent light-emitting material (blue fluorescent light-emitting material) that emits blue light include naphthalene, perylene, pyrene, anthracene, coumarin, p-bis (2-phenylethenyl) benzene, and derivatives thereof.
Examples of the fluorescent light emitting material that gives green light emission (green fluorescent light emitting material) include quinacridone derivatives, coumarin derivatives, aluminum complexes such as Al (C 9 H 6 NO) 3, and the like.

黄色発光を与える蛍光発光材料(黄色蛍光発光材料)としては、例えば、ルブレン、ペリミドン誘導体等が挙げられる。
赤色発光を与える蛍光発光材料(赤色蛍光発光材料)としては、例えば、DCM(4−(dicyanomethylene)−2−methyl−6−(p−dimethylaminostyryl)−4H−pyran)系化合物、ベンゾピラン誘導体、ローダミン誘導体、ベンゾチオキサンテン誘導体、アザベンゾチオキサンテン等が挙げられる。
Examples of the fluorescent light-emitting material that gives yellow light (yellow fluorescent light-emitting material) include rubrene and perimidone derivatives.
Examples of fluorescent light-emitting materials that give red light (red fluorescent light-emitting materials) include DCM (4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran) compounds, benzopyran derivatives, rhodamine derivatives. Benzothioxanthene derivatives, azabenzothioxanthene and the like.

燐光発光材料としては、例えば、長周期型周期表(以下、特に断り書きの無い限り「周期表」という場合には、長周期型周期表を指すものとする。)第7〜11族から選ばれる金属を含む有機金属錯体が挙げられる。
周期表第7〜11族から選ばれる金属として、好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金、金等が挙げられる。
As the phosphorescent material, for example, a long-period type periodic table (hereinafter referred to as a long-period type periodic table when referred to as “periodic table” unless otherwise specified) is selected from the seventh to eleventh groups. And an organometallic complex containing a metal.
Preferred examples of the metal selected from Groups 7 to 11 of the periodic table include ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, and gold.

錯体の配位子としては、(ヘテロ)アリールピリジン配位子、(ヘテロ)アリールピラゾール配位子などの(ヘテロ)アリール基とピリジン、ピラゾール、フェナントロリンなどが連結した配位子が好ましく、特にフェニルピリジン配位子、フェニルピラゾール配位子が好ましい。ここで、(ヘテロ)アリールとは、アリール基またはヘテロアリール基を表す。   As the ligand of the complex, a ligand in which a (hetero) aryl group such as a (hetero) arylpyridine ligand or a (hetero) arylpyrazole ligand and a pyridine, pyrazole, phenanthroline, or the like is connected is preferable. A pyridine ligand and a phenylpyrazole ligand are preferable. Here, (hetero) aryl represents an aryl group or a heteroaryl group.

燐光発光材料として、具体的には、トリス(2−フェニルピリジン)イリジウム、トリス(2−フェニルピリジン)ルテニウム、トリス(2−フェニルピリジン)パラジウム、ビス(2−フェニルピリジン)白金、トリス(2−フェニルピリジン)オスミウム、トリス(2−フェニルピリジン)レニウム、オクタエチル白金ポルフィリン、オクタフェニル白金ポルフィリン、オクタエチルパラジウムポルフィリン、オクタフェニルパラジウムポルフィリン等が挙げられる。   Specific examples of the phosphorescent material include tris (2-phenylpyridine) iridium, tris (2-phenylpyridine) ruthenium, tris (2-phenylpyridine) palladium, bis (2-phenylpyridine) platinum, tris (2- Phenylpyridine) osmium, tris (2-phenylpyridine) rhenium, octaethyl platinum porphyrin, octaphenyl platinum porphyrin, octaethyl palladium porphyrin, octaphenyl palladium porphyrin, and the like.

発光材料として用いる化合物の分子量は、前記[アリールアミン化合物]の項に記載のものと同様である。また、好ましい態様も同様である。
なお、上述した発光材料は、いずれか1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
The molecular weight of the compound used as the light emitting material is the same as that described in the above section [Arylamine compound]. Moreover, a preferable aspect is also the same.
In addition, any 1 type may be used for the luminescent material mentioned above, and 2 or more types may be used together by arbitrary combinations and a ratio.

[電荷輸送材料]
本発明における電荷輸送材料とは、正孔輸送性や電子輸送性などの電荷輸送性を有する化合物である。
本発明においては、電荷輸送材料は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
発光層において、発光性低分子化合物をドーパント材料とし、電荷輸送材料をホスト材料として用いることが好ましい。
電荷輸送材料は、従来有機電界発光素子の発光層に用いられている化合物であればよく、特に発光層のホスト材料として使用されている化合物が好ましい。
[Charge transport material]
The charge transport material in the present invention is a compound having charge transport properties such as hole transport properties and electron transport properties.
In the present invention, only one type of charge transport material may be used, or two or more types may be used in any combination and ratio.
In the light emitting layer, it is preferable to use a light emitting low molecular weight compound as a dopant material and a charge transport material as a host material.
The charge transport material may be a compound that has been conventionally used in a light emitting layer of an organic electroluminescent device, and particularly a compound that is used as a host material of the light emitting layer.

電荷輸送材料として具体的には、芳香族アミン系化合物、フタロシアニン系化合物、ポルフィリン系化合物、オリゴチオフェン系化合物、ポリチオフェン系化合物、ベンジルフェニル系化合物、フルオレン基で3級アミンを連結した化合物、ヒドラゾン系化合物、シラザン系化合物、シラナミン系化合物、ホスファミン系化合物、キナクリドン系化合物、アントラセン系化合物、ピレン系化合物、カルバゾール系化合物、ピリジン系化合物、フェナントロリン系化合物、オキサジアゾール系化合物、シロール系化合物等が挙げられる。   Specific examples of charge transport materials include aromatic amine compounds, phthalocyanine compounds, porphyrin compounds, oligothiophene compounds, polythiophene compounds, benzylphenyl compounds, compounds in which tertiary amines are linked by a fluorene group, hydrazone compounds Compounds, silazane compounds, silanamine compounds, phosphamine compounds, quinacridone compounds, anthracene compounds, pyrene compounds, carbazole compounds, pyridine compounds, phenanthroline compounds, oxadiazole compounds, silole compounds, etc. It is done.

例えば、4,4'−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニルで代表わされる2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族ジアミン(特開平5−234681号公報)、4,4',4''−トリス(1−ナフチルフェニルアミノ)トリフェニルアミン等のスターバースト構造を有する芳香族アミン系化合物(J.Lumin.,72−74巻、985頁、1997年)、トリフェニルアミンの四量体から成る芳香族アミン系化合物(Chem.Commun.,2175頁、1996年)、2,2',7,7'−テトラキス−(ジフェニルアミノ)−9,9'−スピロビフルオレン等のフルオレン系化合物(Synth.Metals,91巻、209頁、1997年)、4,4'−N,N'−ジカルバゾールビフェニルなどのカルバゾール系化合物、2−(4−ビフェニリル)−5−(p−ターシャルブチルフェニル)−1,3,4−オキサジアゾール(tBu−PBD)、2,5−ビス(1−ナフチル)−1,3,4−オキサジアゾール(BND)などのオキサジアゾール系化合物、2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロール(PyPySPyPy)等のシロール系化合物、バソフェナントロリン(BPhen)、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(BCP、バソクプロイン)などのフェナントロリン系化合物等が挙げられる。   For example, two or more condensed aromatic rings including two or more tertiary amines represented by 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl are substituted with nitrogen atoms. Aromatic amine compounds having a starburst structure (J. Lumin, etc.) such as aromatic diamines (Japanese Patent Laid-Open No. 5-234681), 4,4 ′, 4 ″ -tris (1-naphthylphenylamino) triphenylamine, etc. , 72-74, 985, 1997), an aromatic amine compound comprising a tetramer of triphenylamine (Chem. Commun., 2175, 1996), 2, 2 ′, 7, 7 ′. -Fluorene compounds such as tetrakis- (diphenylamino) -9,9'-spirobifluorene (Synth. Metals, 91, 209, 1997), 4,4'-N, N'- Carbazole compounds such as carbazole biphenyl, 2- (4-biphenylyl) -5- (p-tertiarybutylphenyl) -1,3,4-oxadiazole (tBu-PBD), 2,5-bis (1- Oxadiazole compounds such as naphthyl) -1,3,4-oxadiazole (BND), 2,5-bis (6 ′-(2 ′, 2 ″ -bipyridyl))-1,1-dimethyl-3 , 4-diphenylsilol (PyPySPyPy) and other silole compounds, bathophenanthroline (BPhen), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP, bathocuproin) and other phenanthroline compounds It is done.

(発光層の形成方法)
本発明における発光層は、湿式成膜法で形成される。
湿式成膜法で形成するには、前記アリールアミン化合物、及び必要に応じてその他の発光材料、又は電荷輸送材料に、更に溶媒を含む組成物を用いる。
発光層を形成する為の組成物(以下、「発光層形成用組成物」と称する場合がある)に含まれる溶媒は、発光性低分子化合物及び電荷輸送材料が良好に溶解する溶媒であれば特に限定されない。
(Method for forming light emitting layer)
The light emitting layer in the present invention is formed by a wet film forming method.
In order to form by the wet film-forming method, a composition further containing a solvent is used for the arylamine compound and, if necessary, other light-emitting materials or charge transport materials.
The solvent contained in the composition for forming the light emitting layer (hereinafter sometimes referred to as “the composition for forming the light emitting layer”) is a solvent in which the light emitting low molecular weight compound and the charge transporting material are well dissolved. There is no particular limitation.

溶媒の溶解性としては、常温・常圧下で、発光性低分子化合物および電荷輸送材料を、各々、通常0.01重量%以上、好ましくは0.05重量%以上、さらに好ましくは0.1重量%以上溶解することが好ましい。
以下に溶媒の具体例を挙げるが、本発明の効果を損なわない限り、これらに限定されるものではない。
The solubility of the solvent is usually 0.01% by weight or more, preferably 0.05% by weight or more, and more preferably 0.1% by weight of the light-emitting low molecular weight compound and the charge transport material at normal temperature and normal pressure, respectively. % Or more is preferable.
Although the specific example of a solvent is given to the following, as long as the effect of this invention is not impaired, it is not limited to these.

例えば、n−デカン、シクロヘキサン、エチルシクロヘキサン、デカリン、ビシクロヘキサン等のアルカン類;トルエン、キシレン、メチシレン、シクロヘキシルベンゼン、テトラリン等の芳香族炭化水素類;クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化芳香族炭化水素類;1,2−ジメトキシベンゼン、1,3−ジメトキシベンゼン、アニソール、フェネトール、2−メトキシトルエン、3−メトキシトルエン、4−メトキシトルエン、2,3−ジメチルアニソール、2,4−ジメチルアニソール、ジフェニルエーテル等の芳香族エーテル類;酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸エチル、安息香酸プロピル、安息香酸n−ブチル等の芳香族エステル類、シクロヘキサノン、シクロオクタノン、フェンコン等の脂環族ケトン類;シクロヘキサノール、シクロオクタノール等の脂環族アルコール類;メチルエチルケトン、ジブチルケトン等の脂肪族ケトン類;ブタノール、ヘキサノール等の脂肪族アルコール類;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール−1−モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル類;等が挙げられる。   For example, alkanes such as n-decane, cyclohexane, ethylcyclohexane, decalin, and bicyclohexane; aromatic hydrocarbons such as toluene, xylene, methicylene, cyclohexylbenzene, and tetralin; halogenated fragrances such as chlorobenzene, dichlorobenzene, and trichlorobenzene Group hydrocarbons: 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethyl Aromatic ethers such as anisole and diphenyl ether; aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, ethyl benzoate, propyl benzoate, and n-butyl benzoate; Alicyclic ketones such as Sanone, Cyclooctanone and Fencon; Alicyclic alcohols such as cyclohexanol and cyclooctanol; Aliphatic ketones such as methyl ethyl ketone and dibutyl ketone; Aliphatic alcohols such as butanol and hexanol; Ethylene And aliphatic ethers such as glycol dimethyl ether, ethylene glycol diethyl ether, and propylene glycol-1-monomethyl ether acetate (PGMEA).

中でも好ましくは、アルカン類や芳香族炭化水素類である。これらの溶媒は1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよい。
また、より均一な膜を得るためには、成膜直後の液膜から溶媒が適当な速度で蒸発することが好ましい。このため、溶媒の沸点は通常80℃以上、好ましくは100℃以上、より好ましくは120℃以上、また、通常270℃以下、好ましくは250℃以下、より好ましくは沸点230℃以下である。
Of these, alkanes and aromatic hydrocarbons are preferable. One of these solvents may be used alone, or two or more thereof may be used in any combination and ratio.
In order to obtain a more uniform film, it is preferable that the solvent evaporates from the liquid film immediately after the film formation at an appropriate rate. For this reason, the boiling point of the solvent is usually 80 ° C or higher, preferably 100 ° C or higher, more preferably 120 ° C or higher, and usually 270 ° C or lower, preferably 250 ° C or lower, more preferably 230 ° C or lower.

溶媒の使用量は、本発明の効果を著しく損なわない限り任意であるが、発光層形成用組成物100重量部に対して、好ましくは10重量部以上、より好ましくは50重量部以上、特に好ましくは80重量部以上、また、好ましくは99.95重量部以下、より好ましくは99.9重量部以下、特に好ましくは99.8重量部以下である。含有量が下限を下回ると、粘性が高くなりすぎ、成膜作業性が低下する可能性がある。一方、上限を上回ると、成膜後、溶媒を除去して得られる膜の厚みが稼げなくなるため、成膜が困難となる傾向がある。なお、発光層形成用組成物として2種以上の溶媒を混合して用いる場合には、これらの溶媒の合計がこの範囲を満たすようにする。   The amount of the solvent used is arbitrary as long as the effects of the present invention are not significantly impaired, but is preferably 10 parts by weight or more, more preferably 50 parts by weight or more, particularly preferably 100 parts by weight of the composition for forming a light emitting layer. Is 80 parts by weight or more, preferably 99.95 parts by weight or less, more preferably 99.9 parts by weight or less, and particularly preferably 99.8 parts by weight or less. When the content is lower than the lower limit, the viscosity becomes too high, and the film forming workability may be lowered. On the other hand, when the value exceeds the upper limit, the film thickness obtained by removing the solvent after film formation cannot be obtained, so that film formation tends to be difficult. In addition, when mixing and using 2 or more types of solvents as a composition for light emitting layer formation, it is made for the sum total of these solvents to satisfy | fill this range.

また、本発明における発光層形成用組成物は、成膜性の向上を目的として、レベリング剤や消泡剤等の各種添加剤を含有してもよい。
発光層形成用組成物の塗布後、得られた塗膜を乾燥し、発光層用溶媒を除去することにより、発光層が形成される。湿式成膜法の方式は、本発明の効果を著しく損なわない限り限定されないが、例えば、後述の<電荷輸送能>[成膜方法]の項で記載した湿式成膜法が挙げられ、中でも好ましくは、スピンコート法及びインクジェット法である。
発光層の膜厚は本発明の効果を著しく損なわない限り任意であるが、通常3nm以上、好ましくは5nm以上、また、通常200nm以下、好ましくは100nm以下の範囲である。発光層の膜厚が、薄すぎると膜に欠陥が生じる可能性があり、厚すぎると駆動電圧が上昇する可能性がある。
Moreover, the composition for light emitting layer formation in this invention may contain various additives, such as a leveling agent and an antifoamer, for the purpose of improving film forming property.
After application of the composition for forming a light emitting layer, the obtained coating film is dried, and the light emitting layer is removed by removing the solvent for the light emitting layer. The method of the wet film formation method is not limited as long as the effects of the present invention are not significantly impaired. Are a spin coating method and an inkjet method.
The thickness of the light emitting layer is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 3 nm or more, preferably 5 nm or more, and usually 200 nm or less, preferably 100 nm or less. If the light emitting layer is too thin, defects may occur in the film, and if it is too thick, the driving voltage may increase.

<電荷輸送層>
本発明における電荷輸送層は、末端基が、置換基を有してもよい芳香族炭化水素基である高分子化合物を含む組成物で形成した層である。
末端基は、置換基を有していてもよい芳香族炭化水素基である。芳香族炭化水素基としては、ベンゼン環、ナフタレン環、フェナントレン環、アントラセン環、ピレン環、クリセン環、ナフタセン環、ベンゾフェナントレン環等の、ベンゼン環、或いは、ベンゼン環の2〜5個が縮合してなる縮合環由来の基、フルオレン環由来の基、インデノフルオレン環由来の基などが挙げられる。中でも、フェニル基、1−ナフチル基、2−ナフチル基、9−フェナントリル基、2−フルオレニル基が電荷輸送性及び電気化学的耐久性の点から好ましい。
<Charge transport layer>
The charge transport layer in the present invention is a layer formed of a composition containing a polymer compound whose terminal group is an aromatic hydrocarbon group which may have a substituent.
The terminal group is an aromatic hydrocarbon group which may have a substituent. As the aromatic hydrocarbon group, 2 to 5 benzene rings or benzene rings such as a benzene ring, naphthalene ring, phenanthrene ring, anthracene ring, pyrene ring, chrysene ring, naphthacene ring, benzophenanthrene ring are condensed. A group derived from a condensed ring, a group derived from a fluorene ring, a group derived from an indenofluorene ring, and the like. Among these, a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 9-phenanthryl group, and a 2-fluorenyl group are preferable from the viewpoint of charge transportability and electrochemical durability.

末端基における芳香族炭化水素基が有していてもよい置換基としては、アルキル基、アルケニル基、アルコキシ基、芳香族炭化水素基、芳香族複素環基などが挙げられ、中でも、フェニル基、1−ナフチル基、2−ナフチル基、9−フェナントリル基、2−フルオレニル基などの芳香族炭化水素基、メチル基、エチル基、イソプロピル基、n−ブチル基、tert−ブチル基などのアルキル基、N,N−ジフェニルアミノ基、N−カルバゾリル基、N,N−ビス(4−ジフェニル)アミノ基などのジアリールアミノ基が電荷輸送性及び電気化学的耐久性の点から好ましい。   Examples of the substituent that the aromatic hydrocarbon group in the terminal group may have include an alkyl group, an alkenyl group, an alkoxy group, an aromatic hydrocarbon group, and an aromatic heterocyclic group. Among them, a phenyl group, 1-naphthyl group, 2-naphthyl group, 9-phenanthryl group, aromatic hydrocarbon group such as 2-fluorenyl group, alkyl group such as methyl group, ethyl group, isopropyl group, n-butyl group, tert-butyl group, A diarylamino group such as an N, N-diphenylamino group, an N-carbazolyl group, or an N, N-bis (4-diphenyl) amino group is preferred from the viewpoint of charge transportability and electrochemical durability.

本発明における高分子化合物は、下記式(II)で表される繰り返し単位を含む高分子化合物であることが好ましい。   The polymer compound in the present invention is preferably a polymer compound containing a repeating unit represented by the following formula (II).

Figure 2010239134
Figure 2010239134

(式(II)中、qは0〜3の整数を表し、 Ar11及びAr12は、各々独立に、置換基を有していてもよい芳香族炭化水素基、置換基を有していてもよい芳香族複素環基又は直接結合を表し、 Ar13〜Ar15は、各々独立に、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。 (In formula (II), q represents an integer of 0 to 3, and Ar 11 and Ar 12 each independently have an aromatic hydrocarbon group which may have a substituent, or a substituent. Represents an aromatic heterocyclic group or a direct bond, and Ar 13 to Ar 15 are each independently an aromatic hydrocarbon group which may have a substituent or an aromatic which may have a substituent. Represents a heterocyclic group.

但し、Ar11及びAr12のいずれもが、直接結合であることはない。) 式(II)中、Ar11及びAr12は、各々独立して、直接結合、置換基を有していてもよい芳香族炭化水素基、又は置換基を有していてもよい芳香族複素環基を表し、Ar13〜Ar15は、各々独立に、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。 However, neither Ar 11 nor Ar 12 is a direct bond. In formula (II), Ar 11 and Ar 12 are each independently a direct bond, an aromatic hydrocarbon group which may have a substituent, or an aromatic heterocycle which may have a substituent. Ar 13 to Ar 15 each independently represent an aromatic hydrocarbon group that may have a substituent or an aromatic heterocyclic group that may have a substituent.

置換基を有していてもよい芳香族炭化水素基としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環などの、6員環の単環又は2〜5縮合環由来の基が挙げられる。
置換基を有していてもよい芳香族複素環基としては、例えばフラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、フェナントリジン環、ベンゾイミダゾール環、ペリミジン環、キナゾリン環、キナゾリノン環、アズレン環などの、5又は6員環の単環又は2〜4縮合環由来の基が挙げられる。
Examples of the aromatic hydrocarbon group which may have a substituent include, for example, a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, triphenylene ring, and acenaphthene. Examples thereof include a group derived from a 6-membered monocyclic ring or a 2-5 condensed ring, such as a ring, a fluoranthene ring, and a fluorene ring.
Examples of the aromatic heterocyclic group which may have a substituent include a furan ring, a benzofuran ring, a thiophene ring, a benzothiophene ring, a pyrrole ring, a pyrazole ring, an imidazole ring, an oxadiazole ring, an indole ring, and a carbazole ring. , Pyrroloimidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, thienopyrrole ring, thienothiophene ring, furopyrrole ring, furofuran ring, thienofuran ring, benzoisoxazole ring, benzoisothiazole ring, benzimidazole ring, pyridine ring, pyrazine ring, pyridazine Ring, pyrimidine ring, triazine ring, quinoline ring, isoquinoline ring, sinoline ring, quinoxaline ring, phenanthridine ring, benzimidazole ring, perimidine ring, quinazoline ring, quinazolinone ring, azulene ring, etc. ring It can be mentioned groups derived from 2-4 fused rings.

溶媒に対する溶解性、及び耐熱性の点から、Ar11〜Ar15は、各々独立に、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、トリフェニレン環、ピレン環、チオフェン環、ピリジン環、フルオレン環からなる群より選ばれる環由来の基が好ましい。
また、Ar11〜Ar15としては、前記群から選ばれる1種又は2種以上の環を直接結合、又は―CH=CH―基により連結した2価の基も好ましく、ビフェニレン基及びターフェニレン基、がさらに好ましい。
Ar11〜Ar15における芳香族炭化水素基及び芳香族複素環基が後述の不溶化基以外に有していてもよい置換基としては、特に制限はないが、例えば、下記[置換基群Z]から選ばれる1種又は2種以上が挙げられる。
Ar 11 to Ar 15 are each independently from a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a triphenylene ring, a pyrene ring, a thiophene ring, a pyridine ring, and a fluorene ring from the viewpoint of solubility in a solvent and heat resistance. A group derived from a ring selected from the group consisting of
In addition, as Ar 11 to Ar 15 , a divalent group in which one or two or more rings selected from the above group are directly bonded or connected by a —CH═CH— group is preferable, and a biphenylene group and a terphenylene group are also preferable. Is more preferable.
The substituent that the aromatic hydrocarbon group and the aromatic heterocyclic group in Ar 11 to Ar 15 may have in addition to the insolubilizing group described later is not particularly limited. For example, the following [Substituent group Z] 1 type (s) or 2 or more types selected from are mentioned.

[置換基群Z]
メチル基、エチル基等の好ましくは炭素数1〜24、更に好ましくは炭素数1〜12のアルキル基;
ビニル基等の好ましくは炭素数2〜24、更に好ましくは炭素数2〜12のアルケニル基;
エチニル基等の好ましくは炭素数2〜24、更に好ましくは炭素数2〜12のアルキニル基;
メトキシ基、エトキシ基等の好ましくは炭素数1〜24、更に好ましくは炭素数1〜12のアルコキシ基;
フェノキシ基、ナフトキシ基、ピリジルオキシ基等の好ましくは炭素数4〜36、更に好ましくは炭素数5〜24のアリールオキシ基;
メトキシカルボニル基、エトキシカルボニル基等の好ましくは炭素数2〜24、更に好ましくは炭素数2〜12のアルコキシカルボニル基;
ジメチルアミノ基、ジエチルアミノ基等の好ましくは炭素数2〜24、更に好ましくは炭素数2〜12のジアルキルアミノ基;
ジフェニルアミノ基、ジトリルアミノ基、N−カルバゾリル基等の好ましくは炭素数10〜36、更に好ましくは炭素数12〜24のジアリールアミノ基;
フェニルメチルアミノ基等の好ましくは炭素数6〜36、更に好ましくは炭素数7〜24のアリールアルキルアミノ基;
アセチル基、ベンゾイル基等の好ましくは炭素数2〜24、好ましくは炭素数2〜12のアシル基;
[Substituent group Z]
Preferably an alkyl group having 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, such as a methyl group or an ethyl group;
An alkenyl group having preferably 2 to 24 carbon atoms, more preferably 2 to 12 carbon atoms, such as a vinyl group;
An alkynyl group having preferably 2 to 24 carbon atoms, more preferably 2 to 12 carbon atoms, such as an ethynyl group;
Preferably an alkoxy group having 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, such as a methoxy group and an ethoxy group;
Preferably an aryloxy group having 4 to 36 carbon atoms, more preferably 5 to 24 carbon atoms, such as a phenoxy group, a naphthoxy group, and a pyridyloxy group;
An alkoxycarbonyl group having preferably 2 to 24 carbon atoms, more preferably 2 to 12 carbon atoms, such as a methoxycarbonyl group and an ethoxycarbonyl group;
A dialkylamino group having preferably 2 to 24 carbon atoms, more preferably 2 to 12 carbon atoms, such as a dimethylamino group and a diethylamino group;
A diarylamino group having preferably 10 to 36 carbon atoms, more preferably 12 to 24 carbon atoms, such as a diphenylamino group, a ditolylamino group, and an N-carbazolyl group;
An arylalkylamino group having preferably 6 to 36 carbon atoms, more preferably 7 to 24 carbon atoms, such as a phenylmethylamino group;
An acyl group having preferably 2 to 24 carbon atoms, preferably 2 to 12 carbon atoms, such as an acetyl group and a benzoyl group;

フッ素原子、塩素原子等のハロゲン原子;
トリフルオロメチル基等の好ましくは炭素数1〜12、更に好ましくは炭素数1〜6のハロアルキル基;
メチルチオ基、エチルチオ基等の好ましくは炭素数1〜24、更に好ましくは炭素数1〜12のアルキルチオ基;
フェニルチオ基、ナフチルチオ基、ピリジルチオ基等の好ましくは炭素数4〜36、更に好ましくは炭素数5〜24のアリールチオ基;
トリメチルシリル基、トリフェニルシリル基等の好ましくは炭素数2〜36、更に好ましくは炭素数3〜24のシリル基;
トリメチルシロキシ基、トリフェニルシロキシ基等の好ましくは炭素数2〜36、更に好ましくは炭素数3〜24のシロキシ基;
シアノ基;
フェニル基、ナフチル基等の好ましくは炭素数6〜36、更に好ましくは炭素数6〜24の芳香族炭化水素基;
チエニル基、ピリジル基等の好ましくは炭素数3〜36、更に好ましくは炭素数4〜24の芳香族複素環基
上記各置換基は、さらに置換基を有していてもよく、その例としては前記置換基群Zに例示した基が挙げられる。
Halogen atoms such as fluorine atoms and chlorine atoms;
A haloalkyl group having preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, such as a trifluoromethyl group;
Preferably an alkylthio group having 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, such as a methylthio group and an ethylthio group;
A phenylthio group, a naphthylthio group, a pyridylthio group and the like, preferably an arylthio group having 4 to 36 carbon atoms, more preferably 5 to 24 carbon atoms;
A silyl group having preferably 2 to 36 carbon atoms, more preferably 3 to 24 carbon atoms, such as a trimethylsilyl group and a triphenylsilyl group;
A siloxy group having preferably 2 to 36 carbon atoms, more preferably 3 to 24 carbon atoms, such as a trimethylsiloxy group and a triphenylsiloxy group;
A cyano group;
An aromatic hydrocarbon group having preferably 6 to 36 carbon atoms, more preferably 6 to 24 carbon atoms, such as a phenyl group and a naphthyl group;
Preferably an aromatic heterocyclic group having 3 to 36 carbon atoms, more preferably 4 to 24 carbon atoms, such as a thienyl group and a pyridyl group. Each of the above substituents may further have a substituent. The group illustrated to the said substituent group Z is mentioned.

Ar11〜Ar15における芳香族炭化水素基及び芳香族複素環基が後述の不溶化基以外に有してもよい置換基の分子量としては、さらに置換した基を含めて500以下が好ましく、250以下がさらに好ましい。
溶解性の点から、Ar11〜Ar15における芳香族炭化水素基及び芳香族複素環基が有していてもよい置換基としては、各々独立に、炭素数1〜12のアルキル基及び炭素数1〜12のアルコキシ基が好ましい。
The molecular weight of the substituent that the aromatic hydrocarbon group and the aromatic heterocyclic group in Ar 11 to Ar 15 may have in addition to the insolubilizing group described below is preferably 500 or less, including the substituted group, and is 250 or less. Is more preferable.
From the viewpoint of solubility, the substituents that the aromatic hydrocarbon group and aromatic heterocyclic group in Ar 11 to Ar 15 may have are each independently an alkyl group having 1 to 12 carbon atoms and a carbon number. 1-12 alkoxy groups are preferred.

なお、mが2以上である場合、前記式(II)で表される繰り返し単位は、2個以上のAr14及びAr15を有することになる。その場合、Ar14同士及びAr15同士は、各々、同じでもよく、異なっていてもよい。さらに、Ar14同士、Ar15同士は、各々互いに直接又は連結基を介して結合して環状構造を形成していてもよい。 In addition, when m is 2 or more, the repeating unit represented by the formula (II) has two or more Ar 14 and Ar 15 . In that case, Ar 14 and Ar 15 may be the same or different. Further, Ar 14 and Ar 15 may be bonded to each other directly or via a linking group to form a cyclic structure.

[qの説明]
前記式(II)においてqは、0〜3の整数を表す。
qは、通常0以上であり、通常3以下、好ましくは2以下である。qが2以下である方が、原料となるモノマーの合成が容易である。
[繰り返し単位の割合等]
本発明における高分子化合物は、1種又は2種以上の式(II)で表される繰り返し単位を含む高分子化合物であることが好ましい。
[Explanation of q]
In the formula (II), q represents an integer of 0 to 3.
q is usually 0 or more, usually 3 or less, preferably 2 or less. When q is 2 or less, synthesis of a monomer as a raw material is easier.
[Repetition unit ratio, etc.]
The polymer compound in the present invention is preferably a polymer compound containing one or more repeating units represented by the formula (II).

本発明における高分子化合物が2種以上の繰り返し単位を有する場合は、ランダム共重合体、交互共重合体、ブロック共重合体、グラフト共重合体が挙げられる。溶媒に対する溶解性の点からランダム共重合体であることが好ましい。電荷輸送能がさらに高められる点で交互共重合体であることが好ましい。   When the polymer compound in the present invention has two or more kinds of repeating units, examples thereof include a random copolymer, an alternating copolymer, a block copolymer, and a graft copolymer. A random copolymer is preferable from the viewpoint of solubility in a solvent. An alternating copolymer is preferable in that the charge transport ability is further enhanced.

[不溶化基]
本発明における高分子化合物は、置換基として不溶化基を含む基を有することが好ましい。
不溶化基とは、熱及び/又は活性エネルギー線の照射により反応する基であり、反応後は反応前に比べて有機溶媒や水への溶解性を低下させる効果を有する基である。
本発明においては、不溶化基は、解離基又は架橋性基であることが好ましい。
高分子化合物は、置換基として不溶化基を含む基を有するが、不溶化基を有する位置は、式(II)で表される繰り返し単位中にあってもよく、また式(II)で表される繰り返し単位以外の部分、例えば、末端基に有していてもよい。
[Insolubilized group]
The polymer compound in the present invention preferably has a group containing an insolubilizing group as a substituent.
The insolubilizing group is a group that reacts by irradiation with heat and / or active energy rays, and is a group having an effect of lowering solubility in an organic solvent or water after the reaction than before the reaction.
In the present invention, the insolubilizing group is preferably a dissociating group or a crosslinkable group.
The polymer compound has a group containing an insolubilizing group as a substituent, but the position having the insolubilizing group may be in the repeating unit represented by the formula (II) or represented by the formula (II). You may have in parts other than a repeating unit, for example, a terminal group.

(解離基)
本発明における高分子化合物は、不溶化基として、解離基を有していることが不溶化後(解離反応後)の電荷輸送能に優れる点で好ましい。
(Dissociable group)
The polymer compound in the present invention preferably has a dissociation group as an insolubilizing group from the viewpoint of excellent charge transport ability after insolubilization (after dissociation reaction).

ここで、解離基とは、結合している芳香族炭化水素環から70℃以上で解離し、さらに溶媒に対して可溶性を示す基をいう。ここで、溶媒に対して可溶性を示すとは、化合物が熱及び/又は活性エネルギー線の照射によって反応する前の状態で、常温でトルエンに0.1重量%以上溶解することをいい、化合物のトルエンへの溶解性は、好ましくは0.5重量%以上、より好ましくは1重量%以上である。   Here, the dissociating group refers to a group that dissociates from a bonded aromatic hydrocarbon ring at 70 ° C. or more and is soluble in a solvent. Here, being soluble in a solvent means that the compound is dissolved in toluene at 0.1% by weight or more at room temperature in a state before reacting by irradiation with heat and / or active energy rays. The solubility in toluene is preferably 0.5% by weight or more, more preferably 1% by weight or more.

このような解離基として好ましくは、芳香族炭化水素環側に極性基を形成せずに熱解離する基であり、逆ディールスアルダー反応により熱解離する基であることがより好ましい。
またさらに、100℃以上で熱解離する基であることが好ましく、300℃以下で熱解離する基であることが好ましい。
Such a dissociating group is preferably a group that thermally dissociates without forming a polar group on the aromatic hydrocarbon ring side, and more preferably a group that dissociates thermally by a reverse Diels-Alder reaction.
Furthermore, it is preferably a group that thermally dissociates at 100 ° C. or higher, and preferably a group that thermally dissociates at 300 ° C. or lower.

解離基の具体例は、以下の通りであるが、本発明はこれらに限定されるものではない。
解離基が2価の基である場合の具体例は、以下の<2価の解離基群A>の通りである。
<2価の解離基群A>
Specific examples of the dissociating group are as follows, but the present invention is not limited thereto.
A specific example in the case where the dissociating group is a divalent group is as shown in <Divalent dissociating group group A> below.
<Divalent dissociation group A>

Figure 2010239134
Figure 2010239134

解離基が1価の基である場合の具体例は、以下の<1価の解離基群B>の通りである。
<1価の解離基群B>
A specific example in the case where the dissociating group is a monovalent group is as shown in <Monovalent dissociating group B> below.
<Monovalent dissociation group B>

Figure 2010239134
Figure 2010239134

(解離基の位置と割合)
本発明において、1つの高分子化合物鎖の中に含まれる解離基は、好ましくは平均5以上、より好ましくは平均10以上、より好ましくは平均50以上である。この下限値を下回ると加熱前の該高分子化合物の塗布溶媒に対する溶解性が低い場合があり、またさらに加熱後の化合物の溶媒への溶解性の低下の効果も低くなる可能性がある。
(Dissociation group position and ratio)
In the present invention, the number of dissociation groups contained in one polymer compound chain is preferably 5 or more on average, more preferably 10 or more on average, more preferably 50 or more on average. Below this lower limit, the solubility of the polymer compound in the coating solvent before heating may be low, and the effect of lowering the solubility of the compound in the solvent after heating may also be reduced.

また、本発明における高分子化合物が有する解離基の数は、高分子化合物の分子量1000あたり、通常0.01個以上、好ましくは0.1個以上であり、さらに好ましくは0.2個以上であり、また、通常10個以下、好ましくは5個以下である。この範囲内であると、不溶化(解離反応)前後で、適度な溶解度差が得られるため好ましい。
尚、本発明における高分子化合物が、不溶化基として解離基を有する場合、Ar11、Ar12又はAr14が少なくとも一つが<2価の解離基群A>から選ばれる基であってもよく、またAr13及びAr15が<1価の解離基群B>から選ばれる基であってもよい。
Further, the number of dissociation groups possessed by the polymer compound in the present invention is usually 0.01 or more, preferably 0.1 or more, more preferably 0.2 or more, per 1000 molecular weight of the polymer compound. In addition, it is usually 10 or less, preferably 5 or less. Within this range, a suitable solubility difference is obtained before and after insolubilization (dissociation reaction), which is preferable.
When the polymer compound in the present invention has a dissociation group as an insolubilizing group, Ar 11 , Ar 12 or Ar 14 may be a group in which at least one is selected from <divalent dissociation group A>. Ar 13 and Ar 15 may be a group selected from <monovalent dissociation group B>.

(架橋性基)
また、本発明における高分子化合物は、不溶化基として、架橋性基を有していることが、熱及び/又は活性エネルギー線の照射により起こる反応(不溶化反応)の前後で、溶媒に対する溶解性に大きな差を生じさせることができる点で好ましい。
ここで、架橋性基とは、熱及び/又は活性エネルギー線の照射により近傍に位置するほかの分子の同一又は異なる基と反応して、新規な化学結合を生成する基のことをいう。
架橋性基としては、不溶化がしやすいという点で、例えば、架橋性基群Tに示す基が挙げられる。
(Crosslinkable group)
In addition, the polymer compound in the present invention has a crosslinkable group as an insolubilizing group, so that it can be dissolved in a solvent before and after a reaction (insolubilizing reaction) caused by irradiation with heat and / or active energy rays. This is preferable in that a large difference can be generated.
Here, the crosslinkable group refers to a group that reacts with the same or different groups of other molecules located nearby by irradiation with heat and / or active energy rays to form a new chemical bond.
Examples of the crosslinkable group include groups shown in the crosslinkable group group T in that it is easily insolubilized.

[架橋性基群T]   [Crosslinkable group T]

Figure 2010239134
Figure 2010239134

(式中、R〜Rは、各々独立に、水素原子又はアルキル基を表す。Ar31は置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。)
エポキシ基、オキセタン基などの環状エーテル基、ビニルエーテル基などのカチオン重合によって不溶化反応する基が、反応性が高く不溶化が容易な点で好ましい。中でも、カチオン重合の速度を制御しやすい点でオキセタン基が特に好ましく、カチオン重合の際に素子の劣化をまねくおそれのあるヒドロキシル基が生成しにくい点でビニルエーテル基が好ましい。
(In formula, R < 1 > -R < 5 > represents a hydrogen atom or an alkyl group each independently. Ar < 31 > may have the aromatic hydrocarbon group or substituent which may have a substituent. Represents an aromatic heterocyclic group.)
Groups that are insolubilized by cationic polymerization, such as cyclic ether groups such as epoxy groups and oxetane groups, and vinyl ether groups are preferred because they are highly reactive and easily insolubilized. Among these, an oxetane group is particularly preferable from the viewpoint that the rate of cationic polymerization can be easily controlled, and a vinyl ether group is preferable from the viewpoint that a hydroxyl group that may cause deterioration of the device during the cationic polymerization is hardly generated.

シンナモイル基などアリールビニルカルボニル基、ベンゾシクロブテン環由来の基などの環化付加反応する基が、電気化学的安定性をさらに向上させる点で好ましい。
また、架橋性基の中でも、不溶化後の構造が特に安定な点で、ベンゾシクロブテン環由来の基が特に好ましい。
架橋性基は分子内の芳香族炭化水素基又は芳香族複素環基に直接結合してもよいが、2価の基を介して結合してもよい。この2価の基としては、−O−基、−C(=O)−基又は(置換基を有していてもよい)−CH−基から選ばれる基を任意の順番で1〜30個連結してなる2価の基を介して、芳香族炭化水素基又は芳香族複素環基に結合することが好ましい。
A group that undergoes a cycloaddition reaction, such as an arylvinylcarbonyl group such as a cinnamoyl group, or a group derived from a benzocyclobutene ring, is preferred from the viewpoint of further improving electrochemical stability.
Among the crosslinkable groups, a group derived from a benzocyclobutene ring is particularly preferable in that the structure after insolubilization is particularly stable.
The crosslinkable group may be directly bonded to the aromatic hydrocarbon group or aromatic heterocyclic group in the molecule, but may be bonded via a divalent group. As the divalent group, a group selected from an —O— group, a —C (═O) — group, or an (optionally substituted) —CH 2 — group may be selected from 1 to 30 in any order. It is preferable to bind to an aromatic hydrocarbon group or an aromatic heterocyclic group via a divalent group formed by connecting them individually.

[合成法]
末端基を有する化合物は、目的とする化合物の構造に応じて原料を選択し、公知の手法を用いて合成することができる。
末端基を有する化合物は、下記式のように一般式(Va)で表されるハロゲン化物と、一般式(Vb)で表される二級アミン化合物とを、炭酸カリウム、tert-ブトキシナトリウム、トリエチルアミン等の塩基存在下、逐次重合した後、同様の条件で、一般式(Vd)で表されるハロゲン化物および一般式(Ve)で表される二級アミン化合物と反応させることで得られる。必要に応じて、銅やパラジウム錯体等の遷移金属触媒を用いることも出来る。
また、末端基を有する化合物は、下記式のように一般式(Va)で表されるハロゲン化物と、一般式(Vc)であらわされるホウ素化合物とを、炭酸カリウム、tert-ブトキシナトリウム、トリエチルアミン等の塩基存在下、逐次重合した後、同様の条件で、一般式(Vd)で表されるハロゲン化物および一般式(Vf)で表されるホウ素化合物と反応させることで得られる。必要に応じて、銅やパラジウム錯体等の遷移金属触媒を用いることも出来る。
[Synthesis method]
The compound having a terminal group can be synthesized by selecting a raw material according to the structure of the target compound and using a known method.
The compound having a terminal group comprises a halide represented by the general formula (Va) and a secondary amine compound represented by the general formula (Vb) as in the following formula: potassium carbonate, tert-butoxy sodium, triethylamine. In the presence of a base such as, it is obtained by reacting with a halide represented by the general formula (Vd) and a secondary amine compound represented by the general formula (Ve) under the same conditions. If necessary, a transition metal catalyst such as copper or a palladium complex can also be used.
Further, the compound having a terminal group includes a halide represented by the general formula (Va) as shown in the following formula and a boron compound represented by the general formula (Vc) such as potassium carbonate, tert-butoxy sodium, triethylamine, etc. In the presence of a base, the polymer is successively polymerized and then reacted under the same conditions with a halide represented by the general formula (Vd) and a boron compound represented by the general formula (Vf). If necessary, a transition metal catalyst such as copper or a palladium complex can also be used.

つまり、末端基を有する化合物は、式(Va)と式(Vb)とをN−Ar結合を形成する反応(例えば、Buchwald-Hartwigカップリング、Ullmannカップリングなど)により、また、式(Va)と式(Vc)とをAr−Ar結合を形成する反応(例えば、Suzukiカップリングなど)によって、それぞれ逐次重合させ、ポリマーを形成した後、両側の末端基と反応し得る試薬を作用させることによって得られる。   That is, a compound having a terminal group is obtained by reacting Formula (Va) with Formula (Vb) to form an N—Ar bond (for example, Buchwald-Hartwig coupling, Ullmann coupling, etc.), or by formula (Va). And the formula (Vc) are sequentially polymerized by a reaction (for example, Suzuki coupling) to form an Ar-Ar bond, and after forming a polymer, a reagent capable of reacting with end groups on both sides is allowed to act. can get.

Figure 2010239134
Figure 2010239134

(式中、Xはハロゲン原子又は、CFSOO−基のようなスルホン酸エステル基を示し、Ar’は置換基を有してもよい芳香族炭化水素基又は置換基を有してもよい芳香族複素環基を示し、R’はヒドロキシ基又は互いに結合して環を形成してもよいアルコキシ基を示し、Ara〜Arは各々独立に置換基を有してもよい2価の芳香族炭化水素基又は置換基を有してもよい2価の芳香族複素環基を示す。)
末端基を有する化合物は、Ar又はAr、並びにAr又はAr、の少なくとも1つは下記式(VI)で表される2価の基を含むことが好ましい。
(In the formula, X represents a halogen atom or a sulfonate group such as a CF 3 SO 2 O— group, and Ar ′ has an aromatic hydrocarbon group or a substituent which may have a substituent. R ′ represents a hydroxy group or an alkoxy group that may be bonded to each other to form a ring, and Ar a to Ar g may each independently have a substituent. And a divalent aromatic heterocyclic group which may have a valent aromatic hydrocarbon group or a substituent.)
In the compound having a terminal group, at least one of Ar a or Ar b and Ar a or Ar c preferably contains a divalent group represented by the following formula (VI).

Figure 2010239134
Figure 2010239134

(式中、R51、及びR52は、各々独立に、水素原子、置換基を有していてもよい芳香族炭化水素基、置換基を有していてもよい芳香族複素環基又は置換基を有していてもよいアルキル基を表し、R51、及びR52は互いに結合して環を形成してもよい。)
以下に、Ara、及びArの好ましい具体例を以下に示すが、本発明はこれらに限定されるものではない。
(In the formula, each of R 51 and R 52 independently represents a hydrogen atom, an aromatic hydrocarbon group which may have a substituent, an aromatic heterocyclic group which may have a substituent, or a substituent. Represents an alkyl group which may have a group, and R 51 and R 52 may be bonded to each other to form a ring.)
Hereinafter, preferred specific examples of Ar a and Ar c are shown below, but the present invention is not limited thereto.

Figure 2010239134
Figure 2010239134

Figure 2010239134
Figure 2010239134

Figure 2010239134
Figure 2010239134

以下に、式(Vb)の好ましい具体例を示すが、本発明はこれらに限定されるものではない。   Although the preferable specific example of a formula (Vb) is shown below, this invention is not limited to these.

Figure 2010239134
Figure 2010239134

以下に、式(Vb)の、好ましい具体例を示すが、本発明はこれらに限定されるものではない。 Although the preferable specific example of a formula (Vb) is shown below, this invention is not limited to these.

Figure 2010239134
Figure 2010239134

Figure 2010239134
Figure 2010239134

以下に、Ar及びArの、好ましい具体例を示すが、本発明はこれらに限定されるものではない。 Hereinafter, preferred specific examples of Ar d and Ar f are shown, but the present invention is not limited thereto.

Figure 2010239134
Figure 2010239134

以下に、式(Ve)の好ましい具体例を示すが、本発明はこれらに限定されるものではない。 Although the preferable specific example of a formula (Ve) is shown below, this invention is not limited to these.

Figure 2010239134
Figure 2010239134

化合物の精製方法としては、「分離精製技術ハンドブック」(1993年、(財)日本化学会編)、「化学変換法による微量成分および難精製物質の高度分離」(1988年、(株)アイ ピー シー発行)、あるいは「実験化学講座(第4版)1」(1990年、(財)日本化学会編)の「分離と精製」の項に記載の方法をはじめとし、公知の技術を利用可能である。具体的には、抽出(懸濁洗浄、煮沸洗浄、超音波洗浄、酸塩基洗浄を含む)、吸着、吸蔵、融解、晶析(溶剤からの再結晶、再沈殿を含む)、蒸留(常圧蒸留、減圧蒸留)、蒸発、昇華(常圧昇華、減圧昇華)、イオン交換、透析、濾過、限外濾過、逆浸透、圧浸透、帯域溶解、電気泳動、遠心分離、浮上分離、沈降分離、磁気分離、各種クロマトグラフィー(形状分類:カラム、ペーパー、薄層、キャピラリー、移動相分類:ガス、液体、ミセル、超臨界流体。分離機構:吸着、分配、イオン交換、分子ふるい、キレート、ゲル濾過、排除、アフィニティー)などが挙げられる。   Methods for purifying compounds include “Separation and Purification Technology Handbook” (1993, edited by The Chemical Society of Japan), “Advanced separation of trace components and difficult-to-purify substances by chemical conversion method” (1988, IP Corporation). Issued by C.), or the methods described in the section “Separation and purification” of “Experimental Chemistry Course (4th edition) 1” (1990, edited by The Chemical Society of Japan) can be used. It is. Specifically, extraction (including suspension washing, boiling washing, ultrasonic washing, acid-base washing), adsorption, occlusion, melting, crystallization (including recrystallization from solvent, reprecipitation), distillation (atmospheric pressure) Distillation, vacuum distillation), evaporation, sublimation (atmospheric pressure sublimation, vacuum sublimation), ion exchange, dialysis, filtration, ultrafiltration, reverse osmosis, pressure osmosis, zone lysis, electrophoresis, centrifugation, flotation separation, sedimentation separation, Magnetic separation, various chromatography (shape classification: column, paper, thin layer, capillary, mobile phase classification: gas, liquid, micelle, supercritical fluid. Separation mechanism: adsorption, distribution, ion exchange, molecular sieve, chelate, gel filtration , Exclusion, affinity) and the like.

生成物の確認や純度の分析方法としては、ガスクロマトグラフ(GC)、高速液体クロマトグラフ(HPLC)、高速アミノ酸分析計(高分子化合物)、キャピラリー電気泳動測定(CE)、サイズ排除クロマトグラフ(SEC)、ゲル浸透クロマトグラフ(GPC)、交差分別クロマトグラフ(CFC)、質量分析(MS、LC/MS,GC/MS,MS/MS)、核磁気共鳴装置(NMR(1HNMR,13CNMR))、フーリエ変換赤外分光高度計(FT−IR)、紫外可視近赤外分光高度計(UV.VIS,NIR)、電子スピン共鳴装置(ESR)、透過型電子顕微鏡(TEM−EDX)電子線マイクロアナライザー(EPMA)、金属元素分析(イオンクロマトグラフ、誘導結合プラズマ−発光分光(ICP−AES)原子吸光分析(AAS)、蛍光X線分析装置(XRF))、非金属元素分析、微量成分分析(ICP−MS,GF−AAS,GD−MS)等を必要に応じ、適用可能である。   Product confirmation and purity analysis methods include gas chromatograph (GC), high performance liquid chromatograph (HPLC), high speed amino acid analyzer (polymer compound), capillary electrophoresis measurement (CE), size exclusion chromatograph (SEC). ), Gel permeation chromatography (GPC), cross-fractionation chromatography (CFC), mass spectrometry (MS, LC / MS, GC / MS, MS / MS), nuclear magnetic resonance apparatus (NMR (1HNMR, 13CNMR)), Fourier Conversion infrared spectrophotometer (FT-IR), UV-visible near-infrared spectrophotometer (UV.VIS, NIR), electron spin resonance apparatus (ESR), transmission electron microscope (TEM-EDX), electron beam microanalyzer (EPMA) , Metal elemental analysis (ion chromatograph, inductively coupled plasma-emission spectroscopy (ICP-AES) atomic absorption Analysis (AAS), fluorescent X-ray analyzer (XRF)), nonmetal element analysis, trace analysis (ICP-MS, GF-AAS, optionally a GD-MS), etc., are applicable.

[高分子化合物の分子量など]
本発明における高分子化合物の重量平均分子量(Mw)は、通常20000以上、好ましくは40000以上であり、また通常2000000以下、好ましくは1000000以下である。
また、数平均分子量(Mn)は、通常1000000以下、好ましくは800000以下、より好ましくは500000以下であり、また通常5000以上、好ましくは10000以上、より好ましくは20000以上である。
[Molecular weight of polymer compounds]
The weight average molecular weight (Mw) of the polymer compound in the present invention is usually 20000 or more, preferably 40000 or more, and usually 2000000 or less, preferably 1000000 or less.
The number average molecular weight (Mn) is usually 1000000 or less, preferably 800000 or less, more preferably 500000 or less, and usually 5000 or more, preferably 10,000 or more, more preferably 20000 or more.

重量平均分子量がこの上限値を超えると、不純物の高分子量化によって精製が困難となる場合があり、また重量平均分子量がこの下限値を下回ると、ガラス転移温度及び、融点、気化温度などが低下するため、耐熱性が著しく損なわれるおそれがある。
また、本発明の高分子化合物の分散度(Mw/Mn:Mwは重量平均分子量を表し、Mnは数平均分子量を表す)は、通常2.40以下、好ましくは2.10以下、より好ましくは2.00以下であり、また好ましくは1.00以上、さらに好ましくは1.10以上、特に好ましくは1.20以上である。この上限値を上回ると、精製が困難となったり、溶媒に対する溶解性が低下したり、電荷輸送能が低下したりする等、本発明の効果が得られないおそれがある。
If the weight average molecular weight exceeds this upper limit, purification may become difficult due to the high molecular weight of impurities, and if the weight average molecular weight falls below this lower limit, the glass transition temperature, melting point, vaporization temperature, etc. will decrease. Therefore, heat resistance may be significantly impaired.
Further, the dispersity (Mw / Mn: Mw represents a weight average molecular weight and Mn represents a number average molecular weight) of the polymer compound of the present invention is usually 2.40 or less, preferably 2.10 or less, more preferably It is 2.00 or less, Preferably it is 1.00 or more, More preferably, it is 1.10 or more, Most preferably, it is 1.20 or more. If this upper limit is exceeded, the effects of the present invention may not be obtained, for example, purification becomes difficult, solubility in a solvent decreases, or charge transport ability decreases.

通常、重量平均分子量及び数平均分子量はSEC(サイズ排除クロマトグラフィー)測定により決定される。SEC測定では高分子量成分ほど溶出時間が短く、低分子量成分ほど溶出時間が長くなるが、分子量既知のポリスチレン(標準試料)の溶出時間から算出した校正曲線を用いて、サンプルの溶出時間を分子量に換算することによって、重量平均分子量及び数平均分子量が算出される。   Usually, the weight average molecular weight and the number average molecular weight are determined by SEC (size exclusion chromatography) measurement. In SEC measurement, the elution time is shorter for higher molecular weight components and the elution time is longer for lower molecular weight components, but using the calibration curve calculated from the elution time of polystyrene (standard sample) with a known molecular weight, the elution time of the sample is changed to the molecular weight. By converting, the weight average molecular weight and the number average molecular weight are calculated.

ここで、SEC測定条件を示す。
カラムは、TSKgel GMHXL(東ソー社製)又はこれと同等以上の分離能を示すもの、すなわち、
粒子径:9mm
カラムサイズ:7.8mm内径×30cm長さ
保証理論段数:14000TP/30cm程度
のものを2本用い、カラム温度は40℃とする。
Here, SEC measurement conditions are shown.
The column is TSKgel GMHXL (manufactured by Tosoh Corporation) or a column having a resolution equal to or higher than this,
Particle size: 9mm
Column size: 7.8 mm inner diameter × 30 cm length Guaranteed number of theoretical plates: Two of about 14000 TP / 30 cm are used, and the column temperature is 40 ° C.

移動層はテトラヒドロフラン、クロロホルムのうち充填材への吸着のないものを選択し、流量は1.0ml/分とする。インジェクション濃度は0.1重量%とし、インジェクション量は0.10mlとする。検出器としてはRIを用いる。
分子量既知のポリスチレン(標準試料)の溶出時間から算出した校正曲線を用いて、サンプルの溶出時間を分子量に換算することによって、分子量分布が決定される。なお、SEC測定では高分子量成分ほど溶出時間が短く、低分子量成分ほど溶出時間が長くなる。
The moving bed is selected from tetrahydrofuran and chloroform that do not adsorb to the filler, and the flow rate is 1.0 ml / min. The injection concentration is 0.1% by weight, and the injection amount is 0.10 ml. RI is used as a detector.
The molecular weight distribution is determined by converting the elution time of the sample into the molecular weight using a calibration curve calculated from the elution time of polystyrene (standard sample) having a known molecular weight. In the SEC measurement, the elution time is shorter for the high molecular weight component, and the elution time is longer for the low molecular weight component.

尚、本発明の重量平均分子量(Mw)、及び分散度(Mw/Mn)を測定するのに用いる測定機器は、上記と同等の測定が可能であれば、上記の測定機器に限定されるものではなく、その他の測定機器を用いてもよいが、上記の測定機器を用いることが好ましい。
以下に、本発明における、末端基が、置換基を有してもよい芳香族炭化水素基である高分子化合物の好ましい具体例を示すが、本発明はこれらに限定されるものではない。
<高分子化合物の具体例>
In addition, the measuring instrument used for measuring the weight average molecular weight (Mw) and the degree of dispersion (Mw / Mn) of the present invention is limited to the measuring instrument as long as it can perform the same measurement as above. Instead, other measuring devices may be used, but the above measuring devices are preferably used.
Hereinafter, preferred specific examples of the polymer compound in which the terminal group in the present invention is an aromatic hydrocarbon group which may have a substituent are shown, but the present invention is not limited thereto.
<Specific examples of polymer compounds>

Figure 2010239134
Figure 2010239134

(組成物)
電荷輸送層を湿式成膜法により形成する場合、電荷輸送層を構成する正孔輸送性化合物、及び必要に応じて、その他の成分を適切な溶媒と混合して成膜用の組成物(以下、「電荷輸送層形成用組成物」と称する場合がある)を調製して用いる。
電荷輸送層形成用組成物における、正孔輸送性化合物の含有量は、通常0.1重量%以上、好ましくは0.5重量%以上、通常50重量%以下、好ましくは20重量%以下である。尚、電荷輸送層形成用組成物には、正孔輸送性化合物が2種以上含まれていてもよく、その場合は2種以上の合計が上記範囲となることが好ましい。
(Composition)
When the charge transport layer is formed by a wet film-forming method, a hole-transporting compound constituting the charge transport layer and, if necessary, other components are mixed with an appropriate solvent to form a film-forming composition (hereinafter referred to as a film-forming composition) And may be referred to as “composition for forming a charge transport layer”).
The content of the hole transporting compound in the charge transport layer forming composition is usually 0.1% by weight or more, preferably 0.5% by weight or more, usually 50% by weight or less, preferably 20% by weight or less. . In addition, in the composition for charge transport layer formation, 2 or more types of hole transportable compounds may be contained, In that case, it is preferable that the sum total of 2 or more types becomes said range.

本発明にかかる、電荷輸送層形成用組成物は、通常溶媒を含む。
本発明にかかる、電荷輸送層形成用組成物に含有される溶媒としては、特に制限されるものではないが、通常0.1重量%、好ましくは0.5重量%、さらに好ましくは1.0重量%以上溶解する溶媒である。
溶媒の沸点は、通常110℃以上、好ましくは140℃以上、中でも200℃以上、通常400℃以下、中でも300℃以下であることが好ましい。溶媒の沸点が低すぎると、乾燥速度が速すぎ、膜質が悪化する可能性がある。また、溶媒の沸点が高すぎると乾燥工程の温度を高くする必要があり、他の層や基板に悪影響を与える可能性がある。
The composition for forming a charge transport layer according to the present invention usually contains a solvent.
The solvent contained in the composition for forming a charge transport layer according to the present invention is not particularly limited, but is usually 0.1% by weight, preferably 0.5% by weight, more preferably 1.0%. It is a solvent that dissolves by weight% or more.
The boiling point of the solvent is usually 110 ° C. or higher, preferably 140 ° C. or higher, particularly 200 ° C. or higher, usually 400 ° C. or lower, and preferably 300 ° C. or lower. If the boiling point of the solvent is too low, the drying speed is too high and the film quality may be deteriorated. Further, if the boiling point of the solvent is too high, it is necessary to increase the temperature of the drying step, which may adversely affect other layers and the substrate.

具体例としては、トルエン、キシレン、メチシレン、シクロヘキシルベンゼン等の芳香族化合物;1,2−ジクロロエタン、クロロベンゼン、o−ジクロロベンゼン等の含ハロゲン溶媒;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール−1−モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル、1,2−ジメトキシベンゼン、1,3−ジメトキシベンゼン、アニソール、フェネトール、2−メトキシトルエン、3−メトキシトルエン、4−メトキシトルエン、2,3−ジメチルアニソール、2,4−ジメチルアニソール等の芳香族エーテル等のエーテル系溶媒;酢酸エチル、酢酸n−ブチル、乳酸エチル、乳酸n−ブチル等の脂肪族エステル;酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸イソプロピル、安息香酸プロピル、安息香酸n−ブチル等のエステル系溶媒等の有機溶媒が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。   Specific examples include aromatic compounds such as toluene, xylene, methicylene, cyclohexylbenzene; halogen-containing solvents such as 1,2-dichloroethane, chlorobenzene, o-dichlorobenzene; ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1 -Aliphatic ethers such as monomethyl ether acetate (PGMEA), 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3 Ether solvents such as aromatic ethers such as dimethylanisole and 2,4-dimethylanisole; aliphatic esters such as ethyl acetate, n-butyl acetate, ethyl lactate and n-butyl lactate; phenyl acetate, propion Phenyl, methyl benzoate, ethyl benzoate, isopropyl benzoate, propyl benzoate, organic solvent an ester solvents such as benzoic acid n- butyl. These may be used alone or in combination of two or more.

電荷輸送層形成用組成物には、本発明の効果を損なわない限り、その他の成分を含んでいてもよい。その他の成分としては、各種の電子受容性化合物、発光材料、バインダー樹脂、レベリング剤、消泡剤等の塗布性改良剤などが挙げられる。尚、その他の成分は、1種のみを用いてもよく、2種以上を任煮の組み合わせ及び比率で併用してもよい。
陽極と発光層との間に有機層が一層である場合、つまり、電荷輸送層のみである場合は、電荷輸送層形成用組成物に、電子受容性化合物を含有することが好ましい。
The composition for forming a charge transport layer may contain other components as long as the effects of the present invention are not impaired. Examples of other components include various electron-accepting compounds, light emitting materials, binder resins, leveling agents, coating properties improving agents such as antifoaming agents, and the like. In addition, only 1 type may be used for another component, and 2 or more types may be used together in the combination and ratio of simmering.
When there is a single organic layer between the anode and the light emitting layer, that is, when there is only a charge transport layer, the charge transport layer forming composition preferably contains an electron accepting compound.

電子受容性化合物としては、酸化力を有し、上述の正孔輸送性化合物から一電子受容する能力を有する化合物が好ましい。具体的には、電子親和力が4eV以上である化合物が好ましく、5eV以上の化合物である化合物がさらに好ましい。
電子受容性化合物の例としては、例えば、4−イソプロピル−4’−メチルジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボラート等の有機基の置換したオニウム塩、塩化鉄(III)(特開平11−251067号公報)、ペルオキソ二硫酸アンモニウム等の高原子価の無機化合物、テトラシアノエチレン等のシアノ化合物、トリス(ペンタフルオロフェニル)ボラン(特開2003−31365号公報)等の芳香族ホウ素化合物、フラーレン誘導体、ヨウ素等が挙げられる。
As the electron-accepting compound, a compound having an oxidizing power and an ability to accept one electron from the above-described hole-transporting compound is preferable. Specifically, a compound with an electron affinity of 4 eV or more is preferable, and a compound with a compound of 5 eV or more is more preferable.
Examples of the electron-accepting compound include onium salts substituted with an organic group such as 4-isopropyl-4′-methyldiphenyliodonium tetrakis (pentafluorophenyl) borate, iron (III) chloride (Japanese Patent Laid-Open No. 11-251067). Publication), high valence inorganic compounds such as ammonium peroxodisulfate, cyano compounds such as tetracyanoethylene, aromatic boron compounds such as tris (pentafluorophenyl) borane (Japanese Patent Laid-Open No. 2003-31365), fullerene derivatives, iodine Etc.

上記の化合物のうち、強い酸化力を有する点で、有機基の置換したオニウム塩、高原子価の無機化合物等が好ましい。また、種々の溶媒に対する溶解性が高く湿式成膜法で膜を形成するのに適用可能である点で、有機基の置換したオニウム塩、シアノ化合物、芳香族ホウ素化合物等が好ましい。
電子受容性化合物として好適な有機基の置換したオニウム塩、シアノ化合物、芳香族ホウ素化合物の具体例としては、国際公開第2005/089024号パンフレットに記載のものが挙げられ、その好ましい例も同様である。例えば、下記構造式で表わされる化合物が挙げられるが、これらに限定されるものではない。
Of the above-mentioned compounds, an onium salt substituted with an organic group, a high-valence inorganic compound, and the like are preferable because they have strong oxidizing power. In addition, an onium salt substituted with an organic group, a cyano compound, an aromatic boron compound, or the like is preferable because it is highly soluble in various solvents and can be applied to form a film by a wet film formation method.
Specific examples of onium salts substituted with organic groups, cyano compounds, and aromatic boron compounds suitable as electron-accepting compounds include those described in WO 2005/089024, and preferred examples thereof are also the same. is there. Examples thereof include compounds represented by the following structural formulas, but are not limited thereto.

Figure 2010239134
Figure 2010239134

なお、電子受容性化合物は1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよい。
電荷輸送層形成用組成物における、電子受容性化合物の含有量は、通常0.01重量%以上、好ましくは0.05重量%以上、通常20重量%以下、好ましくは10重量%以下である。尚、第一の電荷輸送層形成用組成物には、電子受容性化合物が2種以上含まれていてもよく、その場合は2種以上の合計が上記範囲となることが好ましい。
In addition, an electron-accepting compound may be used individually by 1 type, and may use 2 or more types by arbitrary combinations and a ratio.
The content of the electron-accepting compound in the composition for forming a charge transport layer is usually 0.01% by weight or more, preferably 0.05% by weight or more, and usually 20% by weight or less, preferably 10% by weight or less. The first charge transport layer forming composition may contain two or more types of electron accepting compounds, and in that case, the total of the two or more types is preferably within the above range.

また、レベリング剤を含む場合、レベリング剤の例としては、シリコン系界面活性剤、フッ素系界面活性剤などが挙げられる。レベリング剤は、いずれか一種を単独で用いてもよく、二種以上を任意の組み合わせ及び比率で併用してもよい。第一の電荷輸送層形成用組成物中におけるレベリング剤の含有率は、通常0.0001重量%以上、好ましくは0.001重量%以上、また、通常1重量%以下、好ましくは0.1重量%以下の範囲である。レベリング剤の含有率が低すぎるとレベリング不良となる場合があり、高すぎると膜の電荷輸送能が低下する場合がある。   Moreover, when a leveling agent is included, examples of the leveling agent include a silicon-based surfactant and a fluorine-based surfactant. Any one of the leveling agents may be used alone, or two or more thereof may be used in any combination and ratio. The content of the leveling agent in the first charge transport layer forming composition is usually 0.0001% by weight or more, preferably 0.001% by weight or more, and usually 1% by weight or less, preferably 0.1% by weight. % Or less. If the content of the leveling agent is too low, the leveling may be poor. If it is too high, the charge transport ability of the film may be reduced.

また、消泡剤を含む場合、消泡剤の例としては、シリコンオイル、脂肪酸エステル、リン酸エステルなどが挙げられる。消泡剤は、いずれか一種を単独で用いてもよく、二種以上を任意の組み合わせ及び比率で併用してもよい。第一の電荷輸送層形成用組成物中における消泡剤の含有率は、通常0.0001重量%以上、好ましくは0.001重量%以上、また、通常1重量%以下、好ましくは0.1重量%以下の範囲である。消泡剤の含有率が低すぎると消泡効果が十分でない場合があり、高すぎると膜の電荷輸送能が低下する場合がある。   Moreover, when an antifoamer is included, examples of the antifoamer include silicon oil, fatty acid ester, and phosphate ester. Any one type of antifoaming agent may be used alone, or two or more types may be used in any combination and ratio. The content of the antifoaming agent in the first charge transport layer forming composition is usually 0.0001% by weight or more, preferably 0.001% by weight or more, and usually 1% by weight or less, preferably 0.1%. It is in the range of weight percent or less. If the content of the antifoaming agent is too low, the defoaming effect may not be sufficient, and if it is too high, the charge transporting ability of the film may be reduced.

[成膜方法]
本発明における電荷輸送層は、湿式成膜法で形成される。
尚、本発明において湿式成膜法とは、例えば、スピンコート法、ディップコート法、ダイコート法、バーコート法、ブレードコート法、ロールコート法、スプレーコート法、キャピラリーコート法、インクジェット法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法等湿式で成膜される方法をいう。これらの成膜方法の中でも、スピンコート法、スプレーコート法、インクジェット法が好ましい。これは、有機電界発光素子に用いられる塗布用組成物特有の液性に合うためである。
[Film formation method]
The charge transport layer in the present invention is formed by a wet film formation method.
In the present invention, the wet film forming method includes, for example, spin coating method, dip coating method, die coating method, bar coating method, blade coating method, roll coating method, spray coating method, capillary coating method, ink jet method, screen printing. This method is a wet film formation method such as a method, a gravure printing method, or a flexographic printing method. Among these film forming methods, a spin coating method, a spray coating method, and an ink jet method are preferable. This is because the liquid property specific to the coating composition used for the organic electroluminescent element is matched.

湿式成膜法で層を形成する場合、通常は、電荷輸送層の材料を適切な溶媒と混合して成膜用の組成物を用意して、該組成物を適切な手法により、下層に該当する層上に塗布して、乾燥することにより成膜する。この乾燥は、加熱乾燥であっても、減圧乾燥であってもよい。
不溶化性化合物を用いて膜を形成する場合は、上記の通り塗布後、加熱及び/または活性エネルギー線の照射により、不溶化性化合物が不溶化反応を起こして層を形成する。
When a layer is formed by a wet film forming method, usually, a charge transport layer material is mixed with an appropriate solvent to prepare a film forming composition, and the composition is applied to the lower layer by an appropriate method. It coats on the layer to perform and forms into a film by drying. This drying may be heat drying or reduced pressure drying.
When forming a film using an insolubilizing compound, the insolubilizing compound undergoes an insolubilizing reaction and forms a layer by heating and / or irradiation with active energy rays after application as described above.

不溶化方法が加熱による場合、加熱の手法は特に限定されないが、加熱条件としては、通常120℃以上、好ましくは400℃以下に成膜された膜を加熱する。加熱時間としては、通常1分以上、好ましくは24時間以下である。
また、加熱手段としては特に限定されないが、形成された膜を有する基板あるいは積層体をホットプレート上にのせたり、オーブン内で加熱したりするなどの手段が用いられる。例えば、ホットプレート上で120℃以上、1分間以上加熱する等の条件を用いることができる。
When the insolubilization method is heating, the heating method is not particularly limited, but the heating condition is that a film formed at 120 ° C. or higher, preferably 400 ° C. or lower is heated. The heating time is usually 1 minute or longer, preferably 24 hours or shorter.
The heating means is not particularly limited, and means such as placing a substrate or a laminate having the formed film on a hot plate or heating in an oven is used. For example, conditions such as heating on a hot plate at 120 ° C. or more for 1 minute or more can be used.

不溶化方法が活性エネルギー線の照射による場合には、超高圧水銀ランプ、高圧水銀ランプ、ハロゲンランプ、赤外ランプ等の紫外・可視・赤外光源を直接用いて照射する方法、あるいは前述の光源を内蔵するマスクアライナ、コンベア型光照射装置を用いて照射する方法などが挙げられる。また、例えばマグネトロンにより発生させたマイクロ波を照射する装置、いわゆる電子レンジを用いて照射する方法が挙げられる。照射時間としては、膜の溶解性を低下させるために必要な条件を設定することが好ましいが、通常、0.1秒以上、好ましくは10時間以下照射される。   When the insolubilization method is based on irradiation with active energy rays, direct irradiation using an ultraviolet, visible or infrared light source such as an ultra high pressure mercury lamp, high pressure mercury lamp, halogen lamp or infrared lamp, or the aforementioned light source Examples include a mask aligner incorporated and a method of irradiation using a conveyor type light irradiation device. Further, for example, there is a method of irradiating using a so-called microwave oven that irradiates a microwave generated by a magnetron. As the irradiation time, it is preferable to set conditions necessary for reducing the solubility of the film, but irradiation is usually performed for 0.1 seconds or longer, preferably 10 hours or shorter.

加熱及び/または活性エネルギー線の照射は、それぞれ単独、あるいは組み合わせて行ってもよい。組み合わせる場合、実施する順序は特に限定されない。
加熱及び/または活性エネルギー線の照射は、実施後に層が含有する水分及び/または層の表面に吸着する水分の量を低減するために、窒素ガス雰囲気等の水分を含まない雰囲気で行うことが好ましい。同様の目的で加熱及び/または活性エネルギー線の照射を組み合わせて行う場合には、少なくとも上の層の形成直前の工程を窒素ガス雰囲気等の水分を含まない雰囲気で行うことが特に好ましい。
このようにして形成される本発明における不溶化膜の膜厚は、通常3nm以上、好ましくは5nm以上、より好ましくは10nm以上、また通常100nm以下、好ましくは80nm以下、さらに好ましくは50nm以下である。
You may perform a heating and / or irradiation of an active energy ray individually or in combination, respectively. When combined, the order of implementation is not particularly limited.
In order to reduce the amount of moisture contained in the layer and / or the amount of moisture adsorbed on the surface of the layer after the heating and / or irradiation with active energy rays, it is performed in an atmosphere not containing moisture such as a nitrogen gas atmosphere. preferable. When performing heating and / or irradiation with active energy rays for the same purpose, it is particularly preferable to perform at least the process immediately before the formation of the upper layer in an atmosphere containing no moisture such as a nitrogen gas atmosphere.
The thickness of the insolubilized film thus formed in the present invention is usually 3 nm or more, preferably 5 nm or more, more preferably 10 nm or more, and usually 100 nm or less, preferably 80 nm or less, more preferably 50 nm or less.

<本発明が効果を奏する理由>
本発明の構成とすることで、得られる素子の電流効率が高く、定電流時駆動時の発光輝度の低下、電圧上昇などの効果が得られる理由を以下の通り推測する。
発光層を湿式成膜法で形成する場合、真空蒸着法で形成した場合に比べて、発光層の下層、本発明における、発光層の陽極側に隣接して設けられる電荷輸送層との相互作用が、塗布液が下層へ浸透しやすく、また、下層の成分が発光層へ溶出しやすいため、大きい。
さらに、電荷輸送層に含有する高分子化合物の末端基が、置換基を有していてもよい芳香族炭化水素基であると、該末端基から、構造が類似したアリールアミン化合物への電荷の受け渡しが行われる。
これより、末端基が芳香族炭化水素基であると、上記の効果を奏するものと推測される。
<Reason why the present invention is effective>
The reason why the device according to the present invention has a high current efficiency of the obtained element and can provide effects such as a decrease in light emission luminance and a voltage increase during driving at a constant current is estimated as follows.
When the light emitting layer is formed by a wet film forming method, the interaction with the lower layer of the light emitting layer, the charge transport layer provided adjacent to the anode side of the light emitting layer in the present invention, as compared with the case of forming by a vacuum deposition method However, it is large because the coating liquid easily penetrates into the lower layer, and the lower layer component easily elutes into the light emitting layer.
Furthermore, when the terminal group of the polymer compound contained in the charge transport layer is an aromatic hydrocarbon group which may have a substituent, the charge from the terminal group to the arylamine compound having a similar structure can be reduced. Delivery takes place.
From this, it is presumed that when the terminal group is an aromatic hydrocarbon group, the above-described effect is exhibited.

<有機電界発光素子>
以下に、本発明の方法で製造される有機電界発光素子の層構成およびその一般的形成方法等について、図1を参照して説明する。
<Organic electroluminescent device>
Below, the layer structure of the organic electroluminescent element manufactured with the method of this invention, its general formation method, etc. are demonstrated with reference to FIG.

図1は本発明にかかる有機電界発光素子の構造例を示す断面の模式図であり、図1において、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は正孔阻止層、7は電子輸送層、8は電子注入層、9は陰極を各々表す。
尚、図1に示す素子の場合、正孔輸送層が電荷輸送層に相当する。
FIG. 1 is a schematic cross-sectional view showing a structural example of an organic electroluminescent device according to the present invention. In FIG. 1, 1 is a substrate, 2 is an anode, 3 is a hole injection layer, 4 is a hole transport layer, 5 Represents a light-emitting layer, 6 represents a hole blocking layer, 7 represents an electron transport layer, 8 represents an electron injection layer, and 9 represents a cathode.
In the case of the element shown in FIG. 1, the hole transport layer corresponds to the charge transport layer.

(基板)
基板1は有機電界発光素子の支持体となるものであり、石英やガラスの板、金属板や金属箔、プラスチックフィルムやシート等が用いられる。特にガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホン等の透明な合成樹脂の板が好ましい。合成樹脂基板を使用する場合にはガスバリア性に留意する必要がある。基板のガスバリア性が小さすぎると、基板を通過した外気により有機電界発光素子が劣化することがあるので好ましくない。このため、合成樹脂基板の少なくとも片面に緻密なシリコン酸化膜等を設けてガスバリア性を確保する方法も好ましい方法の一つである。
(substrate)
The substrate 1 serves as a support for the organic electroluminescent element, and a quartz or glass plate, a metal plate or a metal foil, a plastic film, a sheet, or the like is used. In particular, a glass plate or a transparent synthetic resin plate such as polyester, polymethacrylate, polycarbonate, polysulfone or the like is preferable. When using a synthetic resin substrate, it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too small, the organic electroluminescent element may be deteriorated by the outside air that has passed through the substrate, which is not preferable. For this reason, a method of providing a gas barrier property by providing a dense silicon oxide film or the like on at least one surface of the synthetic resin substrate is also a preferable method.

(陽極)
陽極2は発光層側の層への正孔注入の役割を果たすものである。
この陽極2は、通常、アルミニウム、金、銀、ニッケル、パラジウム、白金等の金属、インジウムおよび/またはスズの酸化物等の金属酸化物、ヨウ化銅等のハロゲン化金属、カーボンブラック、或いは、ポリ(3−メチルチオフェン)、ポリピロール、ポリアニリン等の導電性高分子等により構成される。
(anode)
The anode 2 serves to inject holes into the layer on the light emitting layer side.
This anode 2 is usually a metal such as aluminum, gold, silver, nickel, palladium, platinum, a metal oxide such as an oxide of indium and / or tin, a metal halide such as copper iodide, carbon black, or It is composed of a conductive polymer such as poly (3-methylthiophene), polypyrrole, or polyaniline.

陽極2の形成は通常、スパッタリング法、真空蒸着法等により行われることが多い。また、銀等の金属微粒子、ヨウ化銅等の微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性高分子微粉末等を用いて陽極2を形成する場合には、適当なバインダー樹脂溶液に分散させて、基板1上に塗布することにより陽極2を形成することもできる。さらに、導電性高分子の場合は、電解重合により直接基板1上に薄膜を形成したり、基板1上に導電性高分子を塗布して陽極2を形成することもできる(Appl.Phys.Lett.,60巻,2711頁,1992年)。   In general, the anode 2 is often formed by a sputtering method, a vacuum deposition method, or the like. In addition, when forming the anode 2 using fine metal particles such as silver, fine particles such as copper iodide, carbon black, conductive metal oxide fine particles, and conductive polymer fine powder, an appropriate binder resin solution It is also possible to form the anode 2 by dispersing it and applying it onto the substrate 1. Furthermore, in the case of a conductive polymer, a thin film can be directly formed on the substrate 1 by electrolytic polymerization, or the anode 2 can be formed by applying a conductive polymer on the substrate 1 (Appl. Phys. Lett. 60, 2711, 1992).

陽極2は通常は単層構造であるが、所望により複数の材料からなる積層構造とすることも可能である。
陽極2の厚みは、必要とする透明性により異なる。透明性が必要とされる場合は、可視光の透過率を、通常60%以上、好ましくは80%以上とすることが好ましい。この場合、陽極2の厚みは通常5nm以上、好ましくは10nm以上であり、また、通常1000nm以下、好ましくは500nm以下程度である。不透明でよい場合は陽極2の厚みは任意であり、陽極2は基板1と同一でもよい。また、さらには、上記の陽極2の上に異なる導電材料を積層することも可能である。
The anode 2 usually has a single-layer structure, but it can also have a laminated structure made of a plurality of materials if desired.
The thickness of the anode 2 varies depending on the required transparency. When transparency is required, the visible light transmittance is usually 60% or more, preferably 80% or more. In this case, the thickness of the anode 2 is usually 5 nm or more, preferably 10 nm or more, and is usually 1000 nm or less, preferably about 500 nm or less. When it may be opaque, the thickness of the anode 2 is arbitrary, and the anode 2 may be the same as the substrate 1. Furthermore, it is also possible to laminate different conductive materials on the anode 2 described above.

陽極2に付着した不純物を除去し、イオン化ポテンシャルを調整して正孔注入性を向上させることを目的に、陽極2表面を紫外線(UV)/オゾン処理したり、酸素プラズマ、アルゴンプラズマ処理したりすることは好ましい。   For the purpose of removing impurities adhering to the anode 2 and adjusting the ionization potential to improve the hole injection property, the surface of the anode 2 is treated with ultraviolet (UV) / ozone, or with oxygen plasma or argon plasma. It is preferable to do.

(正孔注入層)
正孔注入層3は、陽極2から発光層5へ正孔を輸送する層であり、通常、陽極2上に形成される。
本発明に係る正孔注入層3の形成方法は真空蒸着法でも、湿式成膜法でもよく、特に制限はないが、ダークスポット低減の観点から正孔注入層3を湿式成膜法により形成することが好ましい。
正孔注入層3の膜厚は、通常5nm以上、好ましくは10nm以上、また、通常1000nm以下、好ましくは500nm以下の範囲である。
(Hole injection layer)
The hole injection layer 3 is a layer that transports holes from the anode 2 to the light emitting layer 5, and is usually formed on the anode 2.
The method for forming the hole injection layer 3 according to the present invention may be a vacuum deposition method or a wet film formation method, and is not particularly limited, but the hole injection layer 3 is formed by a wet film formation method from the viewpoint of reducing dark spots. It is preferable.
The thickness of the hole injection layer 3 is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 500 nm or less.

<湿式成膜法による正孔注入層の形成>
湿式成膜により正孔注入層3を形成する場合、通常は、正孔注入層3を構成する材料を適切な溶剤(正孔注入層用溶剤)と混合して成膜用の組成物(正孔注入層形成用組成物)を調製し、この正孔注入層形成用組成物を適切な手法により、正孔注入層3の下層に該当する層(通常は、陽極)上に塗布して成膜し、乾燥することにより正孔注入層3を形成する。
<Formation of hole injection layer by wet film formation method>
When forming the hole injection layer 3 by wet film formation, the material for forming the hole injection layer 3 is usually mixed with an appropriate solvent (hole injection layer solvent) to form a film-forming composition (positive A composition for forming a hole injection layer), and applying the composition for forming a hole injection layer on a layer (usually an anode) corresponding to the lower layer of the hole injection layer 3 by an appropriate technique. The hole injection layer 3 is formed by coating and drying.

(正孔輸送性化合物)
正孔注入層形成用組成物は通常、正孔注入層の構成材料として正孔輸送性化合物および溶剤を含有する。
正孔輸送性化合物は、通常、有機電界発光素子の正孔注入層に使用される、正孔輸送性を有する化合物であれば、重合体などの高分子化合物であっても、単量体などの低分子化合物であってもよいが、高分子化合物であることが好ましい。
正孔輸送性化合物としては、陽極2から正孔注入層3への電荷注入障壁の観点から4.5eV〜6.0eVのイオン化ポテンシャルを有する化合物が好ましい。正孔輸送性化合物の例としては、芳香族アミン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、オリゴチオフェン誘導体、ポリチオフェン誘導体、ベンジルフェニル誘導体、フルオレン基で3級アミンを連結した化合物、ヒドラゾン誘導体、シラザン誘導体、シラナミン誘導体、ホスファミン誘導体、キナクリドン誘導体、ポリアニリン誘導体、ポリピロール誘導体、ポリフェニレンビニレン誘導体、ポリチエニレンビニレン誘導体、ポリキノリン誘導体、ポリキノキサリン誘導体、カーボン等が挙げられる。
(Hole transporting compound)
The composition for forming a hole injection layer usually contains a hole transporting compound and a solvent as constituent materials of the hole injection layer.
As long as the hole transporting compound is a compound having a hole transporting property, which is usually used in a hole injection layer of an organic electroluminescence device, a monomer or the like may be a polymer compound or the like. Although it may be a low molecular weight compound, it is preferably a high molecular weight compound.
The hole transporting compound is preferably a compound having an ionization potential of 4.5 eV to 6.0 eV from the viewpoint of a charge injection barrier from the anode 2 to the hole injection layer 3. Examples of hole transporting compounds include aromatic amine derivatives, phthalocyanine derivatives, porphyrin derivatives, oligothiophene derivatives, polythiophene derivatives, benzylphenyl derivatives, compounds in which tertiary amines are linked by a fluorene group, hydrazone derivatives, silazane derivatives, silanamines Derivatives, phosphamine derivatives, quinacridone derivatives, polyaniline derivatives, polypyrrole derivatives, polyphenylene vinylene derivatives, polythienylene vinylene derivatives, polyquinoline derivatives, polyquinoxaline derivatives, carbon and the like.

尚、本発明において誘導体とは、例えば、芳香族アミン誘導体を例にするならば、芳香族アミンそのもの及び芳香族アミンを主骨格とする化合物を含むものであり、重合体であっても、単量体であってもよい。
正孔注入層3の材料として用いられる正孔輸送性化合物は、このような化合物のうち何れか1種を単独で含有していてもよく、2種以上を含有していてもよい。2種以上の正孔輸送性化合物を含有する場合、その組み合わせは任意であるが、芳香族三級アミン高分子化合物1種または2種以上と、その他の正孔輸送性化合物1種または2種以上とを併用することが好ましい。
In the present invention, the derivative includes, for example, an aromatic amine derivative and includes an aromatic amine itself and a compound having an aromatic amine as a main skeleton. It may be a mer.
The hole transporting compound used as the material for the hole injection layer 3 may contain any one of these compounds alone, or may contain two or more. When two or more hole transporting compounds are contained, the combination thereof is arbitrary, but one or more aromatic tertiary amine polymer compounds and one or two other hole transporting compounds are used. It is preferable to use the above in combination.

上記例示した中でも非晶質性、可視光の透過率の点から、芳香族アミン化合物が好ましく、特に芳香族三級アミン化合物が好ましい。ここで、芳香族三級アミン化合物とは、芳香族三級アミン構造を有する化合物であって、芳香族三級アミン由来の基を有する化合物も含む。
芳香族三級アミン化合物の種類は特に制限されないが、表面平滑化効果による均一な発光の点から、重量平均分子量が1000以上、1000000以下の高分子化合物(繰り返し単位が連なる重合型化合物)がさらに好ましい。芳香族三級アミン高分子化合物の好ましい例として、下記式(I)で表される繰り返し単位を有する高分子化合物が挙げられる。
Among the above-mentioned examples, an aromatic amine compound is preferable from the viewpoint of amorphousness and visible light transmittance, and an aromatic tertiary amine compound is particularly preferable. Here, the aromatic tertiary amine compound is a compound having an aromatic tertiary amine structure, and includes a compound having a group derived from an aromatic tertiary amine.
The type of the aromatic tertiary amine compound is not particularly limited, but from the viewpoint of uniform light emission due to the surface smoothing effect, a polymer compound having a weight average molecular weight of 1,000 or more and 1,000,000 or less (a polymerizable compound in which repeating units are linked) is further included. preferable. Preferable examples of the aromatic tertiary amine polymer compound include a polymer compound having a repeating unit represented by the following formula (I).

Figure 2010239134
Figure 2010239134

(式(I)中、ArおよびArは、それぞれ独立して、置換基を有していてもよい芳香族炭化水素基または置換基を有していてもよい芳香族複素環基を表す。Ar〜Arは、それぞれ独立して、置換基を有していてもよい芳香族炭化水素基または置換基を有していてもよい芳香族複素環基を表す。Yは、下記の連結基群の中から選ばれる連結基を表す。また、Ar〜Arのうち、同一のN原子に結合する二つの基は互いに結合して環を形成してもよい。 (In Formula (I), Ar 1 and Ar 2 each independently represent an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent. Ar 3 to Ar 5 each independently represents an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent. Represents a linking group selected from the group of linking groups, and among Ar 1 to Ar 5 , two groups bonded to the same N atom may be bonded to each other to form a ring.

Figure 2010239134
Figure 2010239134

(上記各式中、Ar〜Ar16は、それぞれ独立して、置換基を有していてもよい芳香族炭化水素基または置換基を有していてもよい芳香族複素環基を表す。RおよびRは、それぞれ独立して、水素原子または任意の置換基を表す。))
Ar〜Ar16の芳香族炭化水素基および芳香族複素環基としては、高分子化合物の溶解性、耐熱性、正孔注入・輸送性の点から、ベンゼン環、ナフタレン環、フェナントレン環、チオフェン環、ピリジン環由来の基が好ましく、ベンゼン環、ナフタレン環由来の基がさらに好ましい。
(In said each formula, Ar < 6 > -Ar < 16 > represents each independently the aromatic hydrocarbon group which may have a substituent, or the aromatic heterocyclic group which may have a substituent. R 1 and R 2 each independently represents a hydrogen atom or an arbitrary substituent.))
As the aromatic hydrocarbon group and the aromatic heterocyclic group of Ar 1 to Ar 16 , a benzene ring, a naphthalene ring, a phenanthrene ring, a thiophene from the viewpoint of the solubility, heat resistance, hole injection / transport property of the polymer compound A group derived from a ring or a pyridine ring is preferred, and a group derived from a benzene ring or a naphthalene ring is more preferred.

Ar〜Ar16の芳香族炭化水素基および芳香族複素環基は、さらに置換基を有していてもよい。置換基の分子量としては、通常400以下、中でも250以下程度が好ましい。置換基としては、アルキル基、アルケニル基、アルコキシ基、芳香族炭化水素基、芳香族複素環基などが好ましい。
およびRが任意の置換基である場合、該置換基としては、アルキル基、アルケニル基、アルコキシ基、シリル基、シロキシ基、芳香族炭化水素基、芳香族複素環基などが挙げられる。
The aromatic hydrocarbon group and aromatic heterocyclic group of Ar 1 to Ar 16 may further have a substituent. The molecular weight of the substituent is usually 400 or less, preferably about 250 or less. As the substituent, an alkyl group, an alkenyl group, an alkoxy group, an aromatic hydrocarbon group, an aromatic heterocyclic group and the like are preferable.
When R 1 and R 2 are optional substituents, examples of the substituent include an alkyl group, an alkenyl group, an alkoxy group, a silyl group, a siloxy group, an aromatic hydrocarbon group, and an aromatic heterocyclic group. .

式(I)で表される繰り返し単位を有する芳香族三級アミン高分子化合物の具体例としては、国際公開第2005/089024号パンフレットに記載のものが挙げられる。
また、正孔輸送性化合物としては、ポリチオフェンの誘導体である3,4-ethylenedioxythiophene(3,4-エチレンジオキシチオフェン)を高分子量ポリスチレンスルホン酸中で重合してなる導電性ポリマー(PEDOT/PSS)もまた好ましい。また、このポリマーの末端をメタクリレート等でキャップしたものであってもよい。
Specific examples of the aromatic tertiary amine polymer compound having a repeating unit represented by the formula (I) include those described in International Publication No. 2005/089024.
In addition, as a hole transporting compound, a conductive polymer (PEDOT / PSS) obtained by polymerizing 3,4-ethylenedioxythiophene (3,4-ethylenedioxythiophene), a polythiophene derivative, in high molecular weight polystyrene sulfonic acid. Is also preferred. Moreover, the end of this polymer may be capped with methacrylate or the like.

正孔注入層形成用組成物中の、正孔輸送性化合物の濃度は本発明の効果を著しく損なわない限り任意であるが、膜厚の均一性の点で通常0.01重量%以上、好ましくは0.1重量%以上、さらに好ましくは0.5重量%以上、また、通常70重量%以下、好ましくは60重量%以下、さらに好ましくは50重量%以下である。この濃度が大きすぎると膜厚ムラが生じる可能性があり、また、小さすぎると成膜された正孔注入層に欠陥が生じる可能性がある。   The concentration of the hole transporting compound in the composition for forming a hole injection layer is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 0.01% by weight or more, preferably in terms of film thickness uniformity. Is 0.1% by weight or more, more preferably 0.5% by weight or more, and usually 70% by weight or less, preferably 60% by weight or less, more preferably 50% by weight or less. If this concentration is too high, film thickness unevenness may occur, and if it is too low, defects may occur in the formed hole injection layer.

(電子受容性化合物)
正孔注入層形成用組成物は正孔注入層の構成材料として、電子受容性化合物を含有していることが好ましい。
電子受容性化合物とは、酸化力を有し、上述の正孔輸送性化合物から一電子受容する能力を有する化合物が好ましく、具体的には、電子親和力が4eV以上である化合物が好ましく、5eV以上の化合物である化合物がさらに好ましい。
このような電子受容性化合物としては、例えば、トリアリールホウ素化合物、ハロゲン化金属、ルイス酸、有機酸、オニウム塩、アリールアミンとハロゲン化金属との塩、アリールアミンとルイス酸との塩よりなる群から選ばれる1種または2種以上の化合物等が挙げられる。さらに具体的には、4−イソプロピル−4’−メチルジフェニルヨードニウムテトラキス(ペンダフルオロフェニル)ボラート、トリフェニルスルホニウムテトラフルオロボラート等の有機基の置換したオニウム塩(国際公開2005/089024号パンフレット);塩化鉄(III)(特開平11−251067号公報)、ペルオキソ二硫酸アンモニウム等の高原子価の無機化合物;テトラシアノエチレン等のシアノ化合物、トリス(ペンダフルオロフェニル)ボラン(特開2003−31365号公報)等の芳香族ホウ素化合物;フラーレン誘導体;ヨウ素;ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、ショウノウスルホン酸イオン等のスルホン酸イオン等が挙げられる。
(Electron-accepting compound)
The composition for forming a hole injection layer preferably contains an electron accepting compound as a constituent material of the hole injection layer.
The electron-accepting compound is preferably a compound having an oxidizing power and the ability to accept one electron from the above-described hole transporting compound, specifically, a compound having an electron affinity of 4 eV or more is preferable, and 5 eV or more. The compound which is the compound of these is further more preferable.
Examples of such electron-accepting compounds include triarylboron compounds, metal halides, Lewis acids, organic acids, onium salts, salts of arylamines and metal halides, and salts of arylamines and Lewis acids. Examples thereof include one or more compounds selected from the group. More specifically, an onium salt substituted with an organic group such as 4-isopropyl-4′-methyldiphenyliodonium tetrakis (pentafluorophenyl) borate, triphenylsulfonium tetrafluoroborate (International Publication No. WO 2005/089024); High-valent inorganic compounds such as iron (III) chloride (Japanese Patent Laid-Open No. 11-251067), ammonium peroxodisulfate; cyano compounds such as tetracyanoethylene; Aromatic boron compounds such as); fullerene derivatives; iodine; sulfonate ions such as polystyrene sulfonate ions, alkylbenzene sulfonate ions, camphor sulfonate ions, and the like.

これらの電子受容性化合物は、正孔輸送性化合物を酸化することにより正孔注入層の導電率を向上させることができる。
正孔注入層或いは正孔注入層形成用組成物中の電子受容性化合物の正孔輸送性化合物に対する含有量は、通常0.1モル%以上、好ましくは1モル%以上である。但し、通常100モル%以下、好ましくは40モル%以下である。
These electron accepting compounds can improve the conductivity of the hole injection layer by oxidizing the hole transporting compound.
The content of the electron-accepting compound in the hole-injecting layer or the composition for forming a hole-injecting layer with respect to the hole-transporting compound is usually 0.1 mol% or more, preferably 1 mol% or more. However, it is usually 100 mol% or less, preferably 40 mol% or less.

(その他の構成材料)
正孔注入層の材料としては、本発明の効果を著しく損なわない限り、上述の正孔輸送性化合物や電子受容性化合物に加えて、さらに、その他の成分を含有させてもよい。その他の成分の例としては、各種の発光材料、電子輸送性化合物、バインダー樹脂、塗布性改良剤などが挙げられる。なお、その他の成分は、1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
(Other components)
As a material for the hole injection layer, other components may be further contained in addition to the above-described hole transporting compound and electron accepting compound as long as the effects of the present invention are not significantly impaired. Examples of other components include various light emitting materials, electron transporting compounds, binder resins, and coating property improving agents. In addition, only 1 type may be used for another component and it may use 2 or more types together by arbitrary combinations and a ratio.

(溶剤)
湿式成膜法に用いる正孔注入層形成用組成物の溶剤のうち少なくとも1種は、上述の正孔注入層の構成材料を溶解しうる化合物であることが好ましい。また、この溶剤の沸点は通常110℃以上、好ましくは140℃以上、中でも200℃以上、通常400℃以下、中でも300℃以下であることが好ましい。溶剤の沸点が低すぎると、乾燥速度が速すぎ、膜質が悪化する可能性がある。また、溶剤の沸点が高すぎると乾燥工程の温度を高くする必要があり、他の層や基板に悪影響を与える可能性がある。
(solvent)
At least one of the solvents of the composition for forming a hole injection layer used in the wet film formation method is preferably a compound that can dissolve the constituent material of the hole injection layer. The boiling point of this solvent is usually 110 ° C. or higher, preferably 140 ° C. or higher, particularly 200 ° C. or higher, usually 400 ° C. or lower, and preferably 300 ° C. or lower. If the boiling point of the solvent is too low, the drying speed is too high and the film quality may be deteriorated. Further, if the boiling point of the solvent is too high, it is necessary to increase the temperature of the drying process, which may adversely affect other layers and the substrate.

溶剤として例えば、エーテル系溶剤、エステル系溶剤、芳香族炭化水素系溶剤、アミド系溶剤などが挙げられる。
エーテル系溶剤としては、例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール−1−モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル;1,2−ジメトキシベンゼン、1,3−ジメトキシベンゼン、アニソール、フェネトール、2−メトキシトルエン、3−メトキシトルエン、4−メトキシトルエン、2,3−ジメチルアニソール、2,4−ジメチルアニソール等の芳香族エーテル、等が挙げられる。
Examples of the solvent include ether solvents, ester solvents, aromatic hydrocarbon solvents, amide solvents, and the like.
Examples of ether solvents include aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and propylene glycol-1-monomethyl ether acetate (PGMEA); 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole , Phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, aromatic ethers such as 2,4-dimethylanisole, and the like.

エステル系溶剤としては、例えば、酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n−ブチル等の芳香族エステル、等が挙げられる。
芳香族炭化水素系溶剤としては、例えば、トルエン、キシレン、シクロヘキシルベンゼン、3−イロプロピルビフェニル、1,2,3,4−テトラメチルベンゼン、1,4−ジイソプロピルベンゼン、シクロヘキシルベンゼン、メチルナフタレン等が挙げられる。
アミド系溶剤としては、例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、等が挙げられる。
Examples of the ester solvent include aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, and n-butyl benzoate.
Examples of the aromatic hydrocarbon solvent include toluene, xylene, cyclohexylbenzene, 3-isopropylpropylphenyl, 1,2,3,4-tetramethylbenzene, 1,4-diisopropylbenzene, cyclohexylbenzene, and methylnaphthalene. Can be mentioned.
Examples of the amide solvent include N, N-dimethylformamide, N, N-dimethylacetamide, and the like.

その他、ジメチルスルホキシド、等も用いることができる。
これらの溶剤は1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で用いてもよい。
In addition, dimethyl sulfoxide and the like can also be used.
These solvent may use only 1 type and may use 2 or more types by arbitrary combinations and a ratio.

(成膜方法)
正孔注入層形成用組成物を調製後、この組成物を湿式成膜により、正孔注入層3の下層に該当する層(通常は、陽極2)上に塗布成膜し、乾燥することにより正孔注入層3を形成する。
成膜工程における温度は、組成物中に結晶が生じることによる膜の欠損を防ぐため、10℃以上が好ましく、50℃以下が好ましくい。
成膜工程における相対湿度は、本発明の効果を著しく損なわない限り限定されないが、通常0.01ppm以上、通常80%以下である。
成膜後、通常加熱等により正孔注入層形成用組成物の膜を乾燥させる。加熱工程において使用する加熱手段の例を挙げると、クリーンオーブン、ホットプレート、赤外線、ハロゲンヒーター、マイクロ波照射などが挙げられる。中でも、膜全体に均等に熱を与えるためには、クリーンオーブンおよびホットプレートが好ましい。
(Film formation method)
After preparing the composition for forming the hole injection layer, the composition is applied on the layer corresponding to the lower layer of the hole injection layer 3 (usually the anode 2) by wet film formation, and dried. The hole injection layer 3 is formed.
The temperature in the film forming step is preferably 10 ° C. or higher, and preferably 50 ° C. or lower, in order to prevent film loss due to the formation of crystals in the composition.
Although the relative humidity in a film-forming process is not limited unless the effect of this invention is impaired remarkably, it is 0.01 ppm or more normally and 80% or less normally.
After the film formation, the film of the composition for forming a hole injection layer is usually dried by heating or the like. Examples of the heating means used in the heating step include a clean oven, a hot plate, infrared rays, a halogen heater, microwave irradiation and the like. Among them, a clean oven and a hot plate are preferable in order to uniformly apply heat to the entire film.

加熱工程における加熱温度は、本発明の効果を著しく損なわない限り、正孔注入層形成用組成物に用いた溶剤の沸点以上の温度で加熱することが好ましい。また、正孔注入層に用いた溶剤が2種類以上含まれている混合溶剤の場合、少なくとも1種類がその溶剤の沸点以上の温度で加熱されるのが好ましい。溶剤の沸点上昇を考慮すると、加熱工程においては、好ましくは120℃以上、好ましくは410℃以下で加熱することが好ましい。   The heating temperature in the heating step is preferably heated at a temperature equal to or higher than the boiling point of the solvent used in the composition for forming a hole injection layer as long as the effects of the present invention are not significantly impaired. In the case of a mixed solvent containing two or more types of solvents used in the hole injection layer, at least one type is preferably heated at a temperature equal to or higher than the boiling point of the solvent. In consideration of an increase in the boiling point of the solvent, the heating step is preferably performed at 120 ° C. or higher, preferably 410 ° C. or lower.

加熱工程において、加熱温度が正孔注入層形成用組成物の溶剤の沸点以上であり、かつ塗布膜の十分な不溶化が起こらなければ、加熱時間は限定されないが、好ましくは10秒以上、通常180分以下である。加熱時間が長すぎると他の層の成分が拡散する傾向があり、短すぎると正孔注入層が不均質になる傾向がある。加熱は2回に分けて行ってもよい。   In the heating step, the heating time is not limited as long as the heating temperature is not lower than the boiling point of the solvent of the composition for forming a hole injection layer and sufficient insolubilization of the coating film does not occur. Is less than a minute. If the heating time is too long, the components of the other layers tend to diffuse, and if it is too short, the hole injection layer tends to be inhomogeneous. Heating may be performed in two steps.

<真空蒸着法による正孔注入層の形成>
真空蒸着により正孔注入層3を形成する場合には、正孔注入層3の構成材料(前述の正孔輸送性化合物、電子受容性化合物等)の1種または2種以上を真空容器内に設置されたるつぼに入れ(2種以上の材料を用いる場合は各々のるつぼに入れ)、真空容器内を適当な真空ポンプで10−4Pa程度まで排気した後、るつぼを加熱して(2種以上の材料を用いる場合は各々のるつぼを加熱して)、蒸発量を制御して蒸発させ(2種以上の材料を用いる場合はそれぞれ独立に蒸発量を制御して蒸発させ)、るつぼと向き合って置かれた基板の陽極2上に正孔注入層3を形成させる。なお、2種以上の材料を用いる場合は、それらの混合物をるつぼに入れ、加熱、蒸発させて正孔注入層3を形成することもできる。
<Formation of hole injection layer by vacuum deposition>
When the hole injection layer 3 is formed by vacuum deposition, one or more of the constituent materials of the hole injection layer 3 (the aforementioned hole transporting compound, electron accepting compound, etc.) are placed in a vacuum container. Put in crucibles installed (in case of using two or more materials, put them in each crucible), evacuate the inside of the vacuum vessel to about 10 −4 Pa with a suitable vacuum pump, and then heat the crucible (two types When using the above materials, heat each crucible) and evaporate by controlling the amount of evaporation (when using two or more materials, evaporate by independently controlling the amount of evaporation) and face the crucible Then, the hole injection layer 3 is formed on the anode 2 of the substrate placed on the substrate. In addition, when using 2 or more types of materials, the hole injection layer 3 can also be formed by putting those mixtures into a crucible, heating and evaporating.

蒸着時の真空度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1×10−6Torr(0.13×10−4Pa)以上、通常9.0×10−6Torr(12.0×10−4Pa)以下である。 蒸着速度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1Å/秒以上、通常5.0Å/秒以下である。蒸着時の成膜温度は、本発明の効果を著しく損なわない限り限定されないが、好ましくは10℃以上で、好ましくは50℃以下で行われる。 The degree of vacuum at the time of vapor deposition is not limited as long as the effect of the present invention is not significantly impaired, but is usually 0.1 × 10 −6 Torr (0.13 × 10 −4 Pa) or more, usually 9.0 × 10 −6 Torr. (12.0 × 10 −4 Pa) or less. The deposition rate is not limited as long as the effect of the present invention is not significantly impaired, but is usually 0.1 Å / second or more and usually 5.0 Å / second or less. The film forming temperature at the time of vapor deposition is not limited as long as the effect of the present invention is not significantly impaired, but is preferably 10 ° C. or higher, preferably 50 ° C. or lower.

[正孔輸送層]
本発明に係る正孔輸送層4の形成方法は真空蒸着法でも、湿式成膜法でもよく、特に制限はないが、ダークスポット低減の観点から正孔輸送層4を湿式成膜法により形成することが好ましい。
正孔輸送層4は、正孔注入層がある場合には正孔注入層3の上に、正孔注入層3が無い場合には陽極2の上に形成することができる。
正孔輸送層を形成する材料、及び成膜方法は、前記<電荷輸送層>の項で記載した材料及び方法を用いることができる。好ましい態様も同様である。
このようにして形成される正孔輸送層4の膜厚は、通常5nm以上、好ましくは10nm以上であり、また通常300nm以下、好ましくは100nm以下である。
[Hole transport layer]
The method for forming the hole transport layer 4 according to the present invention may be a vacuum deposition method or a wet film formation method, and is not particularly limited, but the hole transport layer 4 is formed by a wet film formation method from the viewpoint of reducing dark spots. It is preferable.
The hole transport layer 4 can be formed on the hole injection layer 3 when there is a hole injection layer and on the anode 2 when there is no hole injection layer 3.
As the material for forming the hole transport layer and the film forming method, the materials and methods described in the above section <Charge transport layer> can be used. The preferred embodiment is also the same.
The film thickness of the hole transport layer 4 thus formed is usually 5 nm or more, preferably 10 nm or more, and usually 300 nm or less, preferably 100 nm or less.

{発光層}
正孔輸送層4の上には発光層5が設けられる。発光層5は、電界を与えられた電極間において、陽極2から注入された正孔と、陰極9から注入された電子との再結合により励起されて、主たる発光源となる層である。
発光層を形成するための材料、及び方法は、前記<発光層>の項で記載の材料及び方法で形成する。好ましい態様も同様である。
{Light emitting layer}
A light emitting layer 5 is provided on the hole transport layer 4. The light emitting layer 5 is a layer that is excited by recombination of holes injected from the anode 2 and electrons injected from the cathode 9 between electrodes to which an electric field is applied, and becomes a main light emitting source.
The material and method for forming the light emitting layer are formed by the material and method described in the above section <Light emitting layer>. The preferred embodiment is also the same.

{正孔阻止層}
発光層5と後述の電子注入層8との間に、正孔阻止層6を設けてもよい。正孔阻止層6は、発光層5の上に、発光層5の陰極9側の界面に接するように積層される層である。
この正孔阻止層6は、陽極2から移動してくる正孔を陰極9に到達するのを阻止する役割と、陰極9から注入された電子を効率よく発光層5の方向に輸送する役割とを有する。
正孔阻止層6を構成する材料に求められる物性としては、電子移動度が高く正孔移動度が低いこと、エネルギーギャップ(HOMO、LUMOの差)が大きいこと、励起三重項準位(T1)が高いことが挙げられる。このような条件を満たす正孔阻止層の材料としては、例えば、ビス(2−メチル−8−キノリノラト)(フェノラト)アルミニウム、ビス(2−メチル−8−キノリノラト)(トリフェニルシラノラト)アルミニウム等の混合配位子錯体、ビス(2−メチル−8−キノラト)アルミニウム−μ−オキソ−ビス−(2−メチル−8−キノリラト)アルミニウム二核金属錯体等の金属錯体、ジスチリルビフェニル誘導体等のスチリル化合物(特開平11−242996号公報)、3−(4−ビフェニルイル)−4−フェニル−5(4−tert−ブチルフェニル)−1,2,4−トリアゾール等のトリアゾール誘導体(特開平7−41759号公報)、バソクプロイン等のフェナントロリン誘導体(特開平10−79297号公報)などが挙げられる。更に、国際公開第2005−022962号公報に記載の2,4,6位が置換されたピリジン環を少なくとも1個有する化合物も、正孔阻止層6の材料として好ましい。
{Hole blocking layer}
A hole blocking layer 6 may be provided between the light emitting layer 5 and an electron injection layer 8 described later. The hole blocking layer 6 is a layer laminated on the light emitting layer 5 so as to be in contact with the interface of the light emitting layer 5 on the cathode 9 side.
The hole blocking layer 6 has a role of blocking holes moving from the anode 2 from reaching the cathode 9 and a role of efficiently transporting electrons injected from the cathode 9 toward the light emitting layer 5. Have
The physical properties required for the material constituting the hole blocking layer 6 include high electron mobility, low hole mobility, a large energy gap (difference between HOMO and LUMO), and excited triplet level (T1). Is high. Examples of the material for the hole blocking layer satisfying such conditions include bis (2-methyl-8-quinolinolato) (phenolato) aluminum, bis (2-methyl-8-quinolinolato) (triphenylsilanolato) aluminum, and the like. Mixed metal complexes such as bis (2-methyl-8-quinolato) aluminum-μ-oxo-bis- (2-methyl-8-quinolinato) aluminum binuclear metal complexes, distyrylbiphenyl derivatives, etc. Triazole derivatives such as styryl compounds (JP-A-11-242996), 3- (4-biphenylyl) -4-phenyl-5 (4-tert-butylphenyl) -1,2,4-triazole (JP-A-7 -41759), phenanthroline derivatives such as bathocuproine (JP-A-10-79297), and the like. That. Further, a compound having at least one pyridine ring substituted at positions 2, 4, and 6 described in International Publication No. 2005-022962 is also preferable as a material for the hole blocking layer 6.

なお、正孔阻止層6の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
正孔阻止層6の形成方法に制限はない。従って、湿式成膜法、蒸着法や、その他の方法で形成できる。
正孔阻止層6の膜厚は、本発明の効果を著しく損なわない限り任意であるが、通常0.3nm以上、好ましくは0.5nm以上、また、通常100nm以下、好ましくは50nm以下である。
In addition, the material of the hole-blocking layer 6 may use only 1 type, and may use 2 or more types together by arbitrary combinations and ratios.
There is no restriction | limiting in the formation method of the hole-blocking layer 6. FIG. Therefore, it can be formed by a wet film forming method, a vapor deposition method, or other methods.
The thickness of the hole blocking layer 6 is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 0.3 nm or more, preferably 0.5 nm or more, and usually 100 nm or less, preferably 50 nm or less.

{電子輸送層}
発光層5と後述の電子注入層8の間に、電子輸送層7を設けてもよい。
電子輸送層7は、素子の電流効率を更に向上させることを目的として設けられるもので、電界を与えられた電極間において陰極
9から注入された電子を効率よく発光層5の方向に輸送することができる化合物より形成される。
電子輸送層7に用いられる電子輸送性化合物としては、通常、陰極9または電子注入層8からの電子注入効率が高く、かつ、高い電子移動度を有し注入された電子を効率よく輸送することができる化合物を用いる。このような条件を満たす化合物としては、例えば、8−ヒドロキシキノリンのアルミニウム錯体などの金属錯体(特開昭59−194393号公報)、10−ヒドロキシベンゾ[h]キノリンの金属錯体、オキサジアゾール誘導体、ジスチリルビフェニル誘導体、シロール誘導体、3−ヒドロキシフラボン金属錯体、5−ヒドロキシフラボン金属錯体、ベンズオキサゾール金属錯体、ベンゾチアゾール金属錯体、トリスベンズイミダゾリルベンゼン(米国特許第5645948号明細書)、キノキサリン化合物(特開平6−207169号公報)、フェナントロリン誘導体(特開平5−331459号公報)、2−t−ブチル−9,10−N,N’−ジシアノアントラキノンジイミン、n型水素化非晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛などが挙げられる。
{Electron transport layer}
An electron transport layer 7 may be provided between the light emitting layer 5 and an electron injection layer 8 described later.
The electron transport layer 7 is provided for the purpose of further improving the current efficiency of the device, and efficiently transports electrons injected from the cathode 9 between the electrodes to which an electric field is applied in the direction of the light emitting layer 5. Formed from a compound capable of
As an electron transport compound used for the electron transport layer 7, usually, the electron injection efficiency from the cathode 9 or the electron injection layer 8 is high, and the injected electrons are transported efficiently with high electron mobility. The compound which can be used is used. Examples of the compound satisfying such conditions include metal complexes such as aluminum complexes of 8-hydroxyquinoline (Japanese Patent Laid-Open No. 59-194393), metal complexes of 10-hydroxybenzo [h] quinoline, oxadiazole derivatives , Distyrylbiphenyl derivatives, silole derivatives, 3-hydroxyflavone metal complexes, 5-hydroxyflavone metal complexes, benzoxazole metal complexes, benzothiazole metal complexes, trisbenzimidazolylbenzene (US Pat. No. 5,645,948), quinoxaline compounds ( JP-A-6-207169), phenanthroline derivative (JP-A-5-331459), 2-t-butyl-9,10-N, N'-dicyanoanthraquinonediimine, n-type hydrogenated amorphous silicon carbide , N-type zinc sulfide, n-type Sele Zinc oxide and the like.

なお、電子輸送層7の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
電子輸送層7の形成方法に制限はない。従って、湿式成膜法、蒸着法や、その他の方法で形成することができる。
電子輸送層7の膜厚は、本発明の効果を著しく損なわない限り任意であるが、通常1nm以上、好ましくは5nm以上、また、通常300nm以下、好ましくは100nm以下の範囲である。
In addition, the material of the electron carrying layer 7 may use only 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
There is no restriction | limiting in the formation method of the electron carrying layer 7. FIG. Therefore, it can be formed by a wet film forming method, a vapor deposition method, or other methods.
The film thickness of the electron transport layer 7 is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 1 nm or more, preferably 5 nm or more, and usually 300 nm or less, preferably 100 nm or less.

{電子注入層}
電子注入層8は、陰極9から注入された電子を効率良く発光層5へ注入する役割を果たす。電子注入を効率よく行なうには、電子注入層8を形成する材料は、仕事関数の低い金属が好ましい。例としては、ナトリウムやセシウム等のアルカリ金属、バリウムやカルシウムなどのアルカリ土類金属等が用いられ、その膜厚は通常0.1nm以上、5nm以下が好ましい。
{Electron injection layer}
The electron injection layer 8 plays a role of efficiently injecting electrons injected from the cathode 9 into the light emitting layer 5. In order to perform electron injection efficiently, the material for forming the electron injection layer 8 is preferably a metal having a low work function. Examples include alkali metals such as sodium and cesium, alkaline earth metals such as barium and calcium, and the film thickness is preferably from 0.1 nm to 5 nm.

更に、バソフェナントロリン等の含窒素複素環化合物や8−ヒドロキシキノリンのアルミニウム錯体などの金属錯体に代表される有機電子輸送化合物に、ナトリウム、カリウム、セシウム、リチウム、ルビジウム等のアルカリ金属をドープする(特開平10−270171号公報、特開2002−100478号公報、特開2002−100482号公報などに記載)ことにより、電子注入・輸送性が向上し優れた膜質を両立させることが可能となるため好ましい。この場合の膜厚は、通常、5nm以上、中でも10nm以上が好ましく、また、通常200nm以下、中でも100nm以下が好ましい。   Furthermore, an organic electron transport compound represented by a metal complex such as a nitrogen-containing heterocyclic compound such as bathophenanthroline or an aluminum complex of 8-hydroxyquinoline is doped with an alkali metal such as sodium, potassium, cesium, lithium, or rubidium ( (As described in JP-A-10-270171, JP-A-2002-1000047, JP-A-2002-1000048, etc.), it is possible to improve the electron injection / transport properties and achieve excellent film quality. preferable. In this case, the film thickness is usually 5 nm or more, preferably 10 nm or more, and is usually 200 nm or less, preferably 100 nm or less.

なお、電子注入層8の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
電子注入層8の形成方法に制限はない。従って、湿式成膜法、蒸着法や、その他の方法で形成することができる。
In addition, the material of the electron injection layer 8 may use only 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
There is no restriction | limiting in the formation method of the electron injection layer 8. FIG. Therefore, it can be formed by a wet film forming method, a vapor deposition method, or other methods.

{陰極}
陰極9は、発光層5側の層(電子注入層8または発光層5など)に電子を注入する役割を果たすものである。
陰極9の材料としては、前記の陽極2に使用される材料を用いることが可能であるが、効率良く電子注入を行なうには、仕事関数の低い金属が好ましく、例えば、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀等の適当な金属またはそれらの合金が用いられる。具体例としては、マグネシウム−銀合金、マグネシウム−インジウム合金、アルミニウム−リチウム合金等の低仕事関数合金電極が挙げられる。
{cathode}
The cathode 9 plays a role of injecting electrons into a layer (such as the electron injection layer 8 or the light emitting layer 5) on the light emitting layer 5 side.
As the material of the cathode 9, the material used for the anode 2 can be used. However, in order to perform electron injection efficiently, a metal having a low work function is preferable. For example, tin, magnesium, indium, A suitable metal such as calcium, aluminum, silver, or an alloy thereof is used. Specific examples include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy.

なお、陰極9の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
陰極9の膜厚は、通常、陽極2と同様である。
さらに、低仕事関数金属から成る陰極9を保護する目的で、この上に更に、仕事関数が高く大気に対して安定な金属層を積層すると、素子の安定性が増すので好ましい。この目的のために、例えば、アルミニウム、銀、銅、ニッケル、クロム、金、白金等の金属が使われる。なお、これらの材料は、1種のみで用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
In addition, the material of the cathode 9 may use only 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
The film thickness of the cathode 9 is usually the same as that of the anode 2.
Further, for the purpose of protecting the cathode 9 made of a low work function metal, it is preferable to further stack a metal layer having a high work function and stable to the atmosphere because the stability of the device is increased. For this purpose, for example, metals such as aluminum, silver, copper, nickel, chromium, gold and platinum are used. In addition, these materials may be used only by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.

{その他の層}
本発明に係る有機電界発光素子は、その趣旨を逸脱しない範囲において、別の構成を有していてもよい。例えば、その性能を損なわない限り、陽極2と陰極9との間に、上記説明にある層の他に任意の層を有していてもよく、また、任意の層が省略されていてもよい。
{Other layers}
The organic electroluminescent element according to the present invention may have another configuration without departing from the gist thereof. For example, as long as the performance is not impaired, an arbitrary layer may be provided between the anode 2 and the cathode 9 in addition to the layers described above, and an arbitrary layer may be omitted. .

<電子阻止層>
有していてもよい層としては、例えば、電子阻止層が挙げられる。
電子阻止層は、正孔注入層3または正孔輸送層4と発光層5との間に設けられ、発光層5から移動してくる電子が正孔注入層3に到達するのを阻止することで、発光層5内で正孔と電子との再結合確率を増やし、生成した励起子を発光層5内に閉じこめる役割と、正孔注入層3から注入された正孔を効率よく発光層5の方向に輸送する役割とがある。特に、発光材料として燐光材料を用いたり、青色発光材料を用いたりする場合は電子阻止層を設けることが効果的である。
<Electron blocking layer>
Examples of the layer that may be included include an electron blocking layer.
The electron blocking layer is provided between the hole injection layer 3 or the hole transport layer 4 and the light emitting layer 5 and prevents electrons moving from the light emitting layer 5 from reaching the hole injection layer 3. Thus, the probability of recombination of holes and electrons in the light emitting layer 5 is increased, the excitons generated are confined in the light emitting layer 5, and the holes injected from the hole injection layer 3 are efficiently collected. There is a role to transport in the direction of. In particular, when a phosphorescent material or a blue light emitting material is used as the light emitting material, it is effective to provide an electron blocking layer.

電子阻止層に求められる特性としては、正孔輸送性が高く、エネルギーギャップ(HOMO、LUMOの差)が大きいこと、励起三重項準位(T1)が高いこと等が挙げられる。更に、本発明においては、発光層5を本発明に係る有機層として湿式成膜法で作製する場合には、電子阻止層にも湿式成膜の適合性が求められる。このような電子阻止層に用いられる材料としては、F8−TFBに代表されるジオクチルフルオレンとトリフェニルアミンの共重合体(国際公開第2004/084260号パンフレット)等が挙げられる。   The characteristics required for the electron blocking layer include high hole transportability, a large energy gap (difference between HOMO and LUMO), and a high excited triplet level (T1). Furthermore, in the present invention, when the light emitting layer 5 is formed as an organic layer according to the present invention by a wet film formation method, the electron blocking layer is also required to be compatible with the wet film formation. Examples of the material used for such an electron blocking layer include a copolymer of dioctylfluorene and triphenylamine typified by F8-TFB (International Publication No. 2004/084260).

なお、電子阻止層の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
電子阻止層の形成方法に制限はない。従って、湿式成膜法、蒸着法や、その他の方法で形成することができる。
In addition, the material of an electron blocking layer may use only 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
There is no restriction | limiting in the formation method of an electron blocking layer. Therefore, it can be formed by a wet film forming method, a vapor deposition method, or other methods.

さらに陰極9と発光層5または電子輸送層7との界面に、例えばフッ化リチウム(LiF)、フッ化マグネシウム(MgF2)、酸化リチウム(Li2O)、炭酸セシウム(II)(CsCO3)等で形成された極薄絶縁膜(0.1〜5nm)を挿入することも、素子の効率を向上させる有効な方法である(Applied Physics Letters,1997年,Vol.70,pp.152;特開平10−74586号公報;IEEE Transactions on Electron Devices,1997年,Vol.44, pp.1245;SID 04 Digest,pp.154等参照)。 Further, at the interface between the cathode 9 and the light emitting layer 5 or the electron transport layer 7, for example, lithium fluoride (LiF), magnesium fluoride (MgF 2 ), lithium oxide (Li 2 O), cesium carbonate (II) (CsCO 3 ). It is also an effective method to improve the efficiency of the device (Applied Physics Letters, 1997, Vol. 70, pp. 152; (Kaihei 10-74586; IEEE Transactions on Electron Devices, 1997, Vol. 44, pp. 1245; SID 04 Digest, pp. 154, etc.).

また、以上説明した層構成において、基板以外の構成要素を逆の順に積層することも可能である。例えば、図1の層構成であれば、基板1上に他の構成要素を陰極9、電子注入層8、電子輸送層7、正孔阻止層6、発光層5、正孔輸送層4、正孔注入層3、陽極2の順に設けてもよい。
更には、少なくとも一方が透明性を有する2枚の基板の間に、基板以外の構成要素を積層することにより、本発明に係る有機電界発光素子を構成することも可能である。
Moreover, in the layer structure demonstrated above, it is also possible to laminate | stack components other than a board | substrate in reverse order. For example, in the case of the layer configuration in FIG. The hole injection layer 3 and the anode 2 may be provided in this order.
Furthermore, it is also possible to constitute the organic electroluminescent element according to the present invention by laminating components other than the substrate between two substrates, at least one of which is transparent.

また、基板以外の構成要素(発光ユニット)を複数段重ねた構造(発光ユニットを複数積層させた構造)とすることも可能である。その場合には、各段間(発光ユニット間)の界面層(陽極がITO、陰極がAlの場合は、それら2層)の代わりに、例えば五酸化バナジウム(V25)等からなる電荷発生層(Carrier Generation Layer:CGL)を設けると、段間の障壁が少なくなり、電流効率・駆動電圧の観点からより好ましい。 Further, a structure in which a plurality of components (light emitting units) other than the substrate are stacked in a plurality of layers (a structure in which a plurality of light emitting units are stacked) may be employed. In that case, instead of the interface layer between the steps (between the light emitting units) (when the anode is ITO and the cathode is Al, these two layers), for example, a charge made of vanadium pentoxide (V 2 O 5 ) or the like. When a generation layer (Carrier Generation Layer: CGL) is provided, the barrier between stages is reduced, which is more preferable from the viewpoint of current efficiency and driving voltage.

更には、本発明に係る有機電界発光素子は、単一の有機電界発光素子として構成してもよく、複数の有機電界発光素子がアレイ状に配置された構成に適用してもよく、陽極と陰極がX−Yマトリックス状に配置された構成に適用してもよい。
また、上述した各層には、本発明の効果を著しく損なわない限り、材料として説明した以外の成分が含まれていてもよい。
Furthermore, the organic electroluminescent device according to the present invention may be configured as a single organic electroluminescent device, or may be applied to a configuration in which a plurality of organic electroluminescent devices are arranged in an array. You may apply to the structure by which the cathode is arrange | positioned at XY matrix form.
Each layer described above may contain components other than those described as materials unless the effects of the present invention are significantly impaired.

<有機ELディスプレイ及び有機EL照明>
本発明の有機ELディスプレイ及び有機EL照明は、上述のような本発明の有機電界発光素子を備えるものである。有機ELディスプレイ及び有機EL照明の型式や構造については特に制限はなく、本発明の有機電界発光素子を用いて常法に従って組み立てることができる。
例えば、「有機ELディスプレイ」(オーム社、平成16年8月20日発行、時任静士、安達千波矢、村田英幸著)に記載されているような方法で、本発明の有機ELディスプレイ及び有機EL照明を形成することができる。
<Organic EL display and organic EL lighting>
The organic EL display and the organic EL illumination of the present invention are provided with the organic electroluminescent element of the present invention as described above. There is no restriction | limiting in particular about the type and structure of an organic electroluminescent display and organic electroluminescent illumination, It can assemble in accordance with a conventional method using the organic electroluminescent element of this invention.
For example, the organic EL display and the organic EL display of the present invention can be obtained by the method described in “Organic EL display” (Ohm, August 20, 2004, published by Shizushi Tokito, Chiba Adachi, Hideyuki Murata). EL illumination can be formed.

以下、実施例を示して本発明について更に具体的に説明する。ただし、本発明は以下の実施例に限定されるものではなく、本発明はその要旨を逸脱しない限り任意に変更して実施できる。
(合成例1)
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples, and the present invention can be arbitrarily modified and implemented without departing from the gist thereof.
(Synthesis Example 1)

Figure 2010239134
Figure 2010239134

アニリン(0.951g、10.2mmol)、化合物M1(0.125g、0.642mmol)、化合物M2(3.50g、5.43mmol)、及びtert−ブトキシナトリウム(3.34g、34.8mmol)、トルエン(25ml)を仕込み、系内を十分に窒素置換して、50℃まで加温した(溶液A)。トリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体(0.11g、0.11mmol)のトルエン5ml溶液に、トリ−t−ブチルホスフィン(0.18g、0.87mmol)を加え、50℃まで加温した(溶液B)。窒素気流中、溶液Aに溶液Bを添加し、1.5時間、加熱還流反応した。原料が消失したことを確認し、化合物M2(3.22g、5.00mmol)を添加した。2時間加熱還流した後、さらに、化合物M2(0.07g、0.11mmol)を添加した。さらに2時間加熱還流し、反応液を放冷して、反応液をエタノール(250ml)中に滴下し、粗ポリマーを晶出させた。   Aniline (0.951 g, 10.2 mmol), Compound M1 (0.125 g, 0.642 mmol), Compound M2 (3.50 g, 5.43 mmol), and sodium tert-butoxy (3.34 g, 34.8 mmol), Toluene (25 ml) was charged, the inside of the system was sufficiently purged with nitrogen, and the mixture was heated to 50 ° C. (solution A). Tri-t-butylphosphine (0.18 g, 0.87 mmol) was added to a 5 ml toluene solution of tris (dibenzylideneacetone) dipalladium chloroform complex (0.11 g, 0.11 mmol) and heated to 50 ° C. ( Solution B). In a nitrogen stream, solution B was added to solution A and heated to reflux for 1.5 hours. After confirming disappearance of the raw material, Compound M2 (3.22 g, 5.00 mmol) was added. After heating to reflux for 2 hours, more compound M2 (0.07 g, 0.11 mmol) was added. The mixture was further heated under reflux for 2 hours, the reaction solution was allowed to cool, and the reaction solution was dropped into ethanol (250 ml) to crystallize the crude polymer.

得られた粗ポリマーをトルエン200mlに溶解させ、ブロモベンゼン(0.34g、2.1mmol)、tert−ブトキシナトリウム(3.34g、34.8mmol)を仕込み、系内を十分に窒素置換して、50℃まで加温した(溶液C)。トリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体(0.06g、0.06mmol)のトルエン5ml溶液に、トリ−t−ブチルホスフィン(0.09g、0.48mmol)を加え、50℃まで加温した(溶液D)。窒素気流中、溶液Cに溶液Dを添加し、2.5時間、加熱還流反応した。この反応液に、N,N−ジフェニルアミン(1.84g、10.9mmol)のトルエン(2ml)溶液、及び、再度調製した溶液Dを添加し、さらに、6時間、加熱還流反応した。反応液を放冷し、トルエンを留去した後、エタノール(300ml)中に滴下し、粗ポリマーを得た。   The obtained crude polymer was dissolved in 200 ml of toluene, bromobenzene (0.34 g, 2.1 mmol) and tert-butoxy sodium (3.34 g, 34.8 mmol) were charged, and the inside of the system was sufficiently purged with nitrogen. Warmed to 50 ° C. (Solution C). Tri-t-butylphosphine (0.09 g, 0.48 mmol) was added to a 5 ml toluene solution of tris (dibenzylideneacetone) dipalladium chloroform complex (0.06 g, 0.06 mmol) and heated to 50 ° C. ( Solution D). In a nitrogen stream, solution D was added to solution C, and heated to reflux for 2.5 hours. To this reaction solution, a toluene (2 ml) solution of N, N-diphenylamine (1.84 g, 10.9 mmol) and a solution D prepared again were added, and the mixture was further heated and refluxed for 6 hours. The reaction solution was allowed to cool and toluene was distilled off, followed by dropwise addition to ethanol (300 ml) to obtain a crude polymer.

この粗ポリマーをトルエンに溶解し、アセトンに再沈殿し、析出したポリマーを濾別した。得られたポリマーをトルエンに溶解させ、希塩酸にて洗浄し、アンモニア含有エタノールにて再沈殿した。濾取したポリマーをカラムクロマトグラフィーにより3回精製し、目的物1を得た(3.59g)。   This crude polymer was dissolved in toluene, reprecipitated in acetone, and the precipitated polymer was separated by filtration. The obtained polymer was dissolved in toluene, washed with dilute hydrochloric acid, and reprecipitated with ammonia-containing ethanol. The polymer collected by filtration was purified three times by column chromatography to obtain Target 1 (3.59 g).

(実施例1)
図1に示す有機電界発光素子を作製した。
ガラス基板1上に、インジウム・スズ酸化物(ITO)透明導電膜を120nmの厚さに堆積したもの(三容真空社製、スパッタ成膜品)を、通常のフォトリソグラフィー技術と塩酸エッチングを用いて2mm幅のストライプにパターニングして陽極2を形成した。
パターン形成したITO基板を、界面活性剤水溶液による超音波洗浄、超純水による水洗、超純水による超音波洗浄、超純水による水洗の順で洗浄後、圧縮空気で乾燥させ、最後に紫外線オゾン洗浄を行った。
Example 1
The organic electroluminescent element shown in FIG. 1 was produced.
An indium tin oxide (ITO) transparent conductive film deposited on a glass substrate 1 with a thickness of 120 nm (manufactured by Sanyo Vacuum Co., Ltd., sputtered film product) using ordinary photolithography technology and hydrochloric acid etching Then, the anode 2 was formed by patterning into stripes having a width of 2 mm.
The patterned ITO substrate is cleaned in the order of ultrasonic cleaning with an aqueous surfactant solution, water cleaning with ultrapure water, ultrasonic cleaning with ultrapure water, and water cleaning with ultrapure water, followed by drying with compressed air, and finally UV irradiation. Ozone cleaning was performed.

まず、下記式(PX1)に示す繰り返し構造を有する正孔輸送性高分子材料(重量平均分子量:93000,数平均分子量:55000)、下記式(A1)に示す4−イソプロピル−4’−メチルジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボラートおよび安息香酸エチルを含有する正孔注入層形成用塗布液を調製した。この塗布液を下記条件で陽極2上にスピンコートにより成膜して、膜厚40nmの正孔注入層3を得た。   First, a hole transporting polymer material having a repeating structure represented by the following formula (PX1) (weight average molecular weight: 93000, number average molecular weight: 55000), 4-isopropyl-4′-methyldiphenyl represented by the following formula (A1) A coating solution for forming a hole injection layer containing iodonium tetrakis (pentafluorophenyl) borate and ethyl benzoate was prepared. This coating solution was formed on the anode 2 by spin coating under the following conditions to obtain a hole injection layer 3 having a thickness of 40 nm.

Figure 2010239134
Figure 2010239134

<正孔注入層形成用塗布液>
溶媒 安息香酸エチル
塗布液濃度 PX1:2.0重量%
A1:0.4重量%
<正孔注入層3の成膜条件>
スピナ回転数 1500rpm
スピナ回転時間 30秒
スピンコート雰囲気 大気中
加熱条件 大気中 230℃ 3時間
<Coating liquid for hole injection layer formation>
Solvent Ethyl benzoate Coating solution concentration PX1: 2.0% by weight
A1: 0.4% by weight
<Film formation conditions for hole injection layer 3>
Spinner speed 1500rpm
Spinner rotation time 30 seconds Spin coat atmosphere In air Heating condition In air 230 ° C 3 hours

引き続き、下記式(P1)に示す繰り返し構造を有する正孔輸送性高分子材料(重量平均分子量:55000,数平均分子量:35000)(合成例1で合成した目的物1)を含有する有機電界発光素子用組成物を調製し、下記の条件でスピンコートにより成膜して、加熱により不溶化させることにより膜厚20nmの正孔輸送層4を形成した。   Subsequently, an organic electroluminescence containing a hole transporting polymer material having a repeating structure represented by the following formula (P1) (weight average molecular weight: 55000, number average molecular weight: 35000) (target product 1 synthesized in Synthesis Example 1) A device composition was prepared, formed into a film by spin coating under the following conditions, and insolubilized by heating to form a hole transport layer 4 having a thickness of 20 nm.

Figure 2010239134
Figure 2010239134

<正孔輸送層形成用組成物>
溶媒 シクロヘキシルベンゼン
固形分濃度 P1:1.4重量%
<正孔輸送層4の成膜条件>
スピナ回転数 1500rpm
スピナ回転時間 30秒
スピンコート雰囲気 窒素中
加熱条件 窒素中、230℃、1時間

次に、発光層5を形成するにあたり、下記式(H1)及び(D1)を用いて下記に示す有機電界発光素子組成物を調製し、以下に示す条件で正孔輸送層4上にスピンコートして膜厚40nmで発光層5を得た。
<Composition for forming hole transport layer>
Solvent Cyclohexylbenzene Solid Concentration P1: 1.4 wt%
<Film formation conditions for hole transport layer 4>
Spinner speed 1500rpm
Spinner rotation time 30 seconds Spin coating atmosphere In nitrogen Heating conditions In nitrogen, 230 ° C, 1 hour

Next, in forming the light emitting layer 5, the organic electroluminescent element composition shown below is prepared using the following formulas (H1) and (D1), and spin coating is performed on the hole transport layer 4 under the following conditions. Thus, the light emitting layer 5 was obtained with a film thickness of 40 nm.

Figure 2010239134
Figure 2010239134

<発光層形成用塗布液>
溶媒 シクロヘキシルベンゼン
塗布液濃度 H1:3.40重量%
D1:0.34重量%
<発光層5の成膜条件>
スピナ回転数 1500rpm
スピナ回転時間 30秒
スピンコート雰囲気 窒素中
加熱条件 減圧下(0.1MPa)、130℃、1時間
<Light emitting layer forming coating solution>
Solvent Cyclohexylbenzene Coating solution concentration H1: 3.40% by weight
D1: 0.34% by weight
<Film-forming conditions of the light emitting layer 5>
Spinner speed 1500rpm
Spinner rotation time 30 seconds Spin coat atmosphere In nitrogen Heating condition Under reduced pressure (0.1 MPa), 130 ° C., 1 hour

ここで、発光層5までを成膜した基板を、窒素グローブボックスに連結された真空蒸着装置内に移し、装置内の真空度が1.5×10−4Pa以下になるまで排気した後、下記式(C1)を真空蒸着法によって積層し正孔阻止層6を得た。蒸着速度を0.5〜1.5Å/秒の範囲で制御し、発光層5の上に積層して膜厚10nmの膜の正孔阻止層6を形成した。蒸着時の真空度は2〜4×10−5Paであった。 Here, the substrate on which the light emitting layer 5 has been formed is transferred into a vacuum vapor deposition apparatus connected to a nitrogen glove box, and exhausted until the degree of vacuum in the apparatus is 1.5 × 10 −4 Pa or less. The following formula (C1) was laminated by a vacuum deposition method to obtain a hole blocking layer 6. The deposition rate was controlled in the range of 0.5 to 1.5 liters / second, and the hole blocking layer 6 having a film thickness of 10 nm was formed by being laminated on the light emitting layer 5. The degree of vacuum at the time of vapor deposition was 2-4 × 10 −5 Pa.

Figure 2010239134
Figure 2010239134

続いて、下記式3(C2)で表される化合物を加熱して蒸着を行い、電子輸送層7を成膜した。蒸着時の真空度は2〜4×10−5Pa、蒸着速度は0.5〜1.0Å/秒の範囲で制御し、膜厚30nmの膜を正孔阻止層6の上に積層して電子輸送層7を形成した。 Subsequently, the compound represented by the following formula 3 (C2) was heated and evaporated to form the electron transport layer 7. The degree of vacuum during vapor deposition is 2-4 × 10 −5 Pa, the vapor deposition rate is controlled in the range of 0.5-1.0 〜 / sec, and a film with a film thickness of 30 nm is laminated on the hole blocking layer 6. An electron transport layer 7 was formed.

Figure 2010239134
Figure 2010239134

ここで、電子輸送層7までの蒸着を行った素子を正孔阻止層6、および電子輸送層7を蒸着したチャンバーに連結されたチャンバーへと真空中で搬送し、陰極蒸着用のマスクとして2mm幅のストライプ状シャドーマスクを、陽極2のITOストライプとは直交するように素子に密着させた。   Here, the element that has been vapor-deposited up to the electron transport layer 7 is transported in vacuum to a chamber connected to the hole blocking layer 6 and the chamber in which the electron transport layer 7 is vapor-deposited, and 2 mm as a mask for cathode vapor deposition. A stripe-shaped shadow mask having a width was brought into close contact with the element so as to be orthogonal to the ITO stripe of the anode 2.

電子注入層8として、先ずフッ化リチウム(LiF)を、モリブデンボートを用いて、蒸着速度0.08〜0.15Å/秒、真空度2.5〜5.5×10−5Paで制御し、0.5nmの膜厚で電子輸送層7の上に成膜した。次に、陰極9としてアルミニウムを同様にモリブデンボートにより加熱して、蒸着速度0.5〜1.5Å/秒、真空度2.0〜5.5×10−5Paで制御して膜厚80nmのアルミニウム層を形成した。以上の2層の蒸着時の基板温度は室温に保持した。 First, lithium fluoride (LiF) is controlled as the electron injection layer 8 at a deposition rate of 0.08 to 0.15 liters / second and a degree of vacuum of 2.5 to 5.5 × 10 −5 Pa using a molybdenum boat. A film having a thickness of 0.5 nm was formed on the electron transport layer 7. Next, aluminum is similarly heated as a cathode 9 by a molybdenum boat and controlled at a deposition rate of 0.5 to 1.5 liters / second and a degree of vacuum of 2.0 to 5.5 × 10 −5 Pa to a film thickness of 80 nm. An aluminum layer was formed. The substrate temperature during the above two-layer deposition was kept at room temperature.

引き続き、素子が保管中に大気中の水分等で劣化することを防ぐため、以下に記載の方法で封止処理を行った。
窒素グローブボックス中で、23mm×23mmサイズのガラス板の外周部に、約1mmの幅で光硬化性樹脂30Y−437(スリーボンド社製)を塗布し、中央部に水分ゲッターシート(ダイニック社製)を設置した。この上に、陰極形成を終了した基板を、蒸着された面が乾燥剤シートと対向するように貼り合わせた。その後、光硬化性樹脂が塗布された領域のみに紫外光を照射し、樹脂を硬化させた。
Subsequently, in order to prevent the element from being deteriorated by moisture in the atmosphere during storage, sealing treatment was performed by the method described below.
In a nitrogen glove box, a photocurable resin 30Y-437 (manufactured by Three Bond) is applied to the outer periphery of a 23 mm × 23 mm size glass plate with a width of about 1 mm, and a moisture getter sheet (manufactured by Dynic) is applied to the center. Was installed. On this, the board | substrate which completed cathode formation was bonded together so that the vapor-deposited surface might oppose a desiccant sheet. Thereafter, only the region where the photocurable resin was applied was irradiated with ultraviolet light to cure the resin.

以上の様にして、2mm×2mmのサイズの発光面積部分を有する有機電界発光素子が得られた。
この素子の特性を表1に表す。
As described above, an organic electroluminescent element having a light emitting area portion having a size of 2 mm × 2 mm was obtained.
Table 1 shows the characteristics of this element.

Figure 2010239134
表1に示すが如く、本発明の有機電界発光素子は、駆動電圧が低く、電流効率が高い素子であることが分かる。
(合成例2)
Figure 2010239134
As shown in Table 1, it can be seen that the organic electroluminescent element of the present invention is an element having a low driving voltage and high current efficiency.
(Synthesis Example 2)

Figure 2010239134
Figure 2010239134

アニリン(5.955g、63.94mmol)、化合物M1(0.657g、3.365mmol)、9,9−ヘキシルー2,7−ジブロモフルオレン(16.56g、33.64mmol)、及びtert−ブトキシナトリウム(20.6g、215mmol)、トルエン(100ml)を仕込み、系内を十分に窒素置換して、50℃まで加温した(溶液A)。トリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体(0.7g、0.67mmol)のトルエン5ml溶液に、トリ−t−ブチルホスフィン(1.1g、5.38mmol)を加え、50℃まで加温した(溶液B)。窒素気流中、溶液Aに溶液Bを添加し、1.5時間、加熱還流反応した。原料が消失したことを確認し、4,4’−ジブロモビフェニル(10.29g、32.98mmol)を添加した。1.5時間加熱還流した後、反応液を放冷して、反応液をエタノール中に滴下し、粗ポリマーを晶出させ、濾取、乾燥させた。   Aniline (5.955 g, 63.94 mmol), Compound M1 (0.657 g, 3.365 mmol), 9,9-hexyl 2,7-dibromofluorene (16.56 g, 33.64 mmol), and sodium tert-butoxy ( 20.6 g, 215 mmol) and toluene (100 ml) were charged, and the system was sufficiently purged with nitrogen and heated to 50 ° C. (solution A). Tri-t-butylphosphine (1.1 g, 5.38 mmol) was added to a 5 ml toluene solution of tris (dibenzylideneacetone) dipalladium chloroform complex (0.7 g, 0.67 mmol) and heated to 50 ° C. ( Solution B). In a nitrogen stream, solution B was added to solution A and heated to reflux for 1.5 hours. After confirming disappearance of the raw material, 4,4'-dibromobiphenyl (10.29 g, 32.98 mmol) was added. After heating to reflux for 1.5 hours, the reaction solution was allowed to cool, and the reaction solution was dropped into ethanol to crystallize the crude polymer, which was collected by filtration and dried.

得られた粗ポリマー25.9gをトルエン500mlに溶解させ、ブロモベンゼン(4.2g、26.5mmol)、tert−ブトキシナトリウム(8.2g、85.3mmol)を仕込み、系内を十分に窒素置換して、50℃まで加温した(溶液C)。トリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体(0.28g、0.27mmol)のトルエン5ml溶液に、トリ−t−ブチルホスフィン(43g、2.16mmol)を加え、50℃まで加温した(溶液D)。窒素気流中、溶液Cに溶液Dを添加し、2時間、加熱還流反応した。この反応液に、N,N−ジフェニルアミン(13.2g、78.1mmol)を添加し、さらに、4.5時間、加熱還流反応した。反応液を放冷し、エタノール/水混合液中に滴下し、粗ポリマーを晶出させ、濾取、乾燥させた。   25.9 g of the resulting crude polymer was dissolved in 500 ml of toluene, and bromobenzene (4.2 g, 26.5 mmol) and tert-butoxy sodium (8.2 g, 85.3 mmol) were charged, and the system was sufficiently purged with nitrogen And heated to 50 ° C. (solution C). Tri-t-butylphosphine (43 g, 2.16 mmol) was added to a 5 ml toluene solution of tris (dibenzylideneacetone) dipalladium chloroform complex (0.28 g, 0.27 mmol) and heated to 50 ° C. (solution D ). In a nitrogen stream, solution D was added to solution C, and heated to reflux for 2 hours. N, N-diphenylamine (13.2 g, 78.1 mmol) was added to the reaction solution, and the mixture was further heated to reflux for 4.5 hours. The reaction solution was allowed to cool and dropped into an ethanol / water mixture to crystallize the crude polymer, which was collected by filtration and dried.

得られた粗ポリマー24.1gをトルエン490mlに溶解させ、N,N−ジフェニルアミン(6.6g、33.64mmol)、tert−ブトキシナトリウム(10.3g、107mmol)を仕込み、系内を十分に窒素置換して、50℃まで加温した(溶液E)。トリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体(0.35g、0.34mmol)のトルエン5ml溶液に、トリ−t−ブチルホスフィン(0.55g、2.96mmol)を加え、50℃まで加温した(溶液F)。窒素気流中、溶液Eに溶液Fを添加し、4時間、加熱還流反応した。反応液を放冷し、エタノール/水混合液中に滴下し、粗ポリマーを晶出させ、濾取、乾燥させた。   24.1 g of the obtained crude polymer was dissolved in 490 ml of toluene, and N, N-diphenylamine (6.6 g, 33.64 mmol) and tert-butoxy sodium (10.3 g, 107 mmol) were charged, and the system was sufficiently filled with nitrogen. Replace and warm to 50 ° C. (solution E). Tri-t-butylphosphine (0.55 g, 2.96 mmol) was added to a 5 ml toluene solution of tris (dibenzylideneacetone) dipalladium chloroform complex (0.35 g, 0.34 mmol) and heated to 50 ° C. ( Solution F). In a nitrogen stream, solution F was added to solution E, and the mixture was heated to reflux for 4 hours. The reaction solution was allowed to cool and dropped into an ethanol / water mixture to crystallize the crude polymer, which was collected by filtration and dried.

この粗ポリマーをトルエンに溶解し、希塩酸にて洗浄し、アンモニア含有エタノールにて再沈殿した。得られたポリマーをトルエンに溶解させ、アセトンに再沈殿し、析出したポリマーを濾別した。濾取したポリマーをカラムクロマトグラフィーにより精製し、16.0gの目的物2を得た。   This crude polymer was dissolved in toluene, washed with dilute hydrochloric acid, and reprecipitated with ammonia-containing ethanol. The obtained polymer was dissolved in toluene, reprecipitated in acetone, and the precipitated polymer was separated by filtration. The polymer collected by filtration was purified by column chromatography to obtain 16.0 g of the target compound 2.

(合成例3)
アニリン(5.955g、63.94mmol)、化合物M1(0.657g、3.365mmol)、9,9−ヘキシルー2,7−ジブロモフルオレン(16.56g、33.64mmol)、及びtert−ブトキシナトリウム(20.6g、215mmol)、トルエン(100ml)を仕込み、系内を十分に窒素置換して、50℃まで加温した(溶液A)。トリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体(0.7g、0.67mmol)のトルエン5ml溶液に、トリ−t−ブチルホスフィン(1.1g、5.38mmol)を加え、50℃まで加温した(溶液B)。窒素気流中、溶液Aに溶液Bを添加し、1.5時間、加熱還流反応した。原料が消失したことを確認し、4,4’−ジブロモビフェニル(10.29g、32.98mmol)を添加した。1.5時間加熱還流した後、反応液を放冷して、反応液をエタノール中に滴下し、粗ポリマーを晶出させ、濾取、乾燥させた。
(Synthesis Example 3)
Aniline (5.955 g, 63.94 mmol), Compound M1 (0.657 g, 3.365 mmol), 9,9-hexyl 2,7-dibromofluorene (16.56 g, 33.64 mmol), and sodium tert-butoxy ( 20.6 g, 215 mmol) and toluene (100 ml) were charged, and the system was sufficiently purged with nitrogen and heated to 50 ° C. (solution A). Tri-t-butylphosphine (1.1 g, 5.38 mmol) was added to a 5 ml toluene solution of tris (dibenzylideneacetone) dipalladium chloroform complex (0.7 g, 0.67 mmol) and heated to 50 ° C. ( Solution B). In a nitrogen stream, solution B was added to solution A and heated to reflux for 1.5 hours. After confirming disappearance of the raw material, 4,4′-dibromobiphenyl (10.29 g, 32.98 mmol) was added. After heating to reflux for 1.5 hours, the reaction solution was allowed to cool, and the reaction solution was dropped into ethanol to crystallize the crude polymer, which was collected by filtration and dried.

得られた粗ポリマー25.9gをトルエン500mlに溶解させ、ブロモベンゼン(4.2g、26.5mmol)、tert−ブトキシナトリウム(8.2g、85.3mmol)を仕込み、系内を十分に窒素置換して、50℃まで加温した(溶液C)。トリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体(0.28g、0.27mmol)のトルエン5ml溶液に、トリ−t−ブチルホスフィン(43g、2.16mmol)を加え、50℃まで加温した(溶液D)。窒素気流中、溶液Cに溶液Dを添加し、2時間、加熱還流反応した。この反応液に、N,N−ジフェニルアミン(13.2g、78.1mmol)を添加し、さらに、4.5時間、加熱還流反応した。反応液を放冷し、エタノール/水混合液中に滴下し、粗ポリマーを晶出させ、濾取、乾燥させた。
この粗ポリマーをトルエンに溶解し、希塩酸にて洗浄し、アンモニア含有エタノールにて再沈殿した。得られたポリマーをトルエンに溶解させ、アセトンに再沈殿し、析出したポリマーを濾別した。濾取したポリマーをカラムクロマトグラフィーにより精製し、16.0gの目的物3を得た。
25.9 g of the resulting crude polymer was dissolved in 500 ml of toluene, and bromobenzene (4.2 g, 26.5 mmol) and tert-butoxy sodium (8.2 g, 85.3 mmol) were charged, and the system was sufficiently purged with nitrogen And heated to 50 ° C. (solution C). Tri-t-butylphosphine (43 g, 2.16 mmol) was added to a toluene 5 ml solution of tris (dibenzylideneacetone) dipalladium chloroform complex (0.28 g, 0.27 mmol) and heated to 50 ° C. (solution D ). In a nitrogen stream, solution D was added to solution C, and heated to reflux for 2 hours. N, N-diphenylamine (13.2 g, 78.1 mmol) was added to the reaction solution, and the mixture was further heated to reflux for 4.5 hours. The reaction solution was allowed to cool and dropped into an ethanol / water mixture to crystallize the crude polymer, which was collected by filtration and dried.
This crude polymer was dissolved in toluene, washed with dilute hydrochloric acid, and reprecipitated with ammonia-containing ethanol. The obtained polymer was dissolved in toluene, reprecipitated in acetone, and the precipitated polymer was separated by filtration. The polymer collected by filtration was purified by column chromatography to obtain 16.0 g of the target product 3.

(実施例2)
実施例1と同様にして正孔注入層3まで形成した。
引き続き、合成例2で合成した目的物2を含有する有機電界発光素子用組成物を調製し、下記の条件でスピンコートにより成膜して、加熱により不溶化させることにより膜厚20nmの正孔輸送層4を形成した。
(Example 2)
The hole injection layer 3 was formed in the same manner as in Example 1.
Subsequently, a composition for an organic electroluminescence device containing the target compound 2 synthesized in Synthesis Example 2 was prepared, formed into a film by spin coating under the following conditions, and insolubilized by heating to transport a hole having a thickness of 20 nm. Layer 4 was formed.

<正孔輸送層形成用組成物>
溶媒 シクロヘキシルベンゼン
固形分 ポリマー2−1:1.4重量%
<正孔輸送層4の成膜条件>
スピナ回転数 1500rpm
スピナ回転時間 30秒
スピンコート雰囲気 窒素中
加熱条件 窒素中、230℃、1時間
<Composition for forming hole transport layer>
Solvent Cyclohexylbenzene Solid content Polymer 2-1: 1.4% by weight
<Film formation conditions for hole transport layer 4>
Spinner speed 1500rpm
Spinner rotation time 30 seconds Spin coating atmosphere In nitrogen Heating conditions In nitrogen, 230 ° C, 1 hour

次に、発光層5を形成するにあたり、下記式(H2)及び(D1)を用いて下記に示す有機電界発光素子組成物を調製し、以下に示す条件で正孔輸送層4上にスピンコートして膜厚40nmで発光層5を得た。   Next, in forming the light emitting layer 5, the organic electroluminescent element composition shown below is prepared using the following formulas (H2) and (D1), and spin coating is performed on the hole transport layer 4 under the following conditions. Thus, the light emitting layer 5 was obtained with a film thickness of 40 nm.

Figure 2010239134
Figure 2010239134

<発光層形成用塗布液>
溶媒 シクロヘキシルベンゼン
塗布液濃度 H2:3.40重量%
D1:0.34重量%
<発光層5の成膜条件>
スピナ回転数 1500rpm
スピナ回転時間 30秒
スピンコート雰囲気 窒素中
加熱条件 減圧下(0.1MPa)、130℃、1時間
<Light emitting layer forming coating solution>
Solvent Cyclohexylbenzene Coating solution concentration H2: 3.40% by weight
D1: 0.34% by weight
<Film-forming conditions of the light emitting layer 5>
Spinner speed 1500rpm
Spinner rotation time 30 seconds Spin coat atmosphere In nitrogen Heating condition Under reduced pressure (0.1 MPa), 130 ° C., 1 hour

続いて、実施例1と同様にして正孔阻止層6を形成した。
続いて、膜厚30nmとなるようにトリス(8-キノリノラト)アルミニウム(Alq3)を加熱して蒸着を行い、電子輸送層7を成膜した。
続いて、実施例1と同様にして、電子注入層8、陰極9を形成し、封止処理を行った。
以上の様にして、2mm×2mmのサイズの発光面積部分を有する有機電界発光素子が得られた。
この素子の特性を表2に表す。
Subsequently, a hole blocking layer 6 was formed in the same manner as in Example 1.
Subsequently, vapor deposition was performed by heating tris (8-quinolinolato) aluminum (Alq3) so as to have a film thickness of 30 nm, whereby the electron transport layer 7 was formed.
Subsequently, in the same manner as in Example 1, an electron injection layer 8 and a cathode 9 were formed, and sealing treatment was performed.
As described above, an organic electroluminescent element having a light emitting area portion having a size of 2 mm × 2 mm was obtained.
Table 2 shows the characteristics of this element.

(実施例3)
実施例2において、目的物2のかわりに、合成例3で合成した目的物3を用いた他は、実施例2と同様にして、有機電界発光素子を作成した。
この素子の特性を表2に表す。
Example 3
In Example 2, an organic electroluminescence device was produced in the same manner as in Example 2, except that the target 3 synthesized in Synthesis Example 3 was used instead of the target 2.
Table 2 shows the characteristics of this element.

Figure 2010239134
Figure 2010239134

表2に示すが如く、本発明の有機電界発光素子は、電流効率および電力効率が高い素子であることが分かる。   As shown in Table 2, it can be seen that the organic electroluminescent device of the present invention is a device having high current efficiency and high power efficiency.

本発明は、有機電界発光素子が使用される各種の分野、例えば、フラットパネル・ディスプレイ(例えばOAコンピュータ用や壁掛けテレビ)や面発光体としての特徴を生かした光源(例えば、複写機の光源、液晶ディスプレイや計器類のバックライト光源)、表示板、標識灯等の分野において、好適に使用することが出来る。   The present invention relates to various fields in which organic electroluminescent elements are used, for example, light sources (for example, light sources of copiers, flat panel displays (for example, for OA computers and wall-mounted televisions) and surface light emitters). It can be suitably used in the fields of liquid crystal displays and backlights of instruments), display panels, indicator lamps and the like.

1 基板
2 陽極
3 正孔注入層
4 正孔輸送層
5 発光層
6 正孔阻止層
7 電子輸送層
8 電子注入層
9 陰極
DESCRIPTION OF SYMBOLS 1 Substrate 2 Anode 3 Hole injection layer 4 Hole transport layer 5 Light emitting layer 6 Hole blocking layer 7 Electron transport layer 8 Electron injection layer 9 Cathode

Claims (10)

基板上に、陽極、電荷輸送層、発光層、及び陰極をこの順に有し、該電荷輸送層と該発光層は隣接して設けられ、該電荷輸送層、及び該発光層は湿式成膜法で形成された有機電界発光素子であって、該電荷輸送層は、末端基が、アルキル基、アルコキシル基および芳香族基よりなる群から選ばれる基を置換基として有してもよい芳香族炭化水素基である高分子化合物を含む組成物を用いて形成された層であり、
該発光層は、アリールアミン化合物を含む層であることを特徴とする有機電界発光素子。
On a substrate, an anode, a charge transport layer, a light emitting layer, and a cathode are provided in this order. The charge transport layer and the light emitting layer are provided adjacent to each other, and the charge transport layer and the light emitting layer are formed by a wet film formation method. The charge transport layer is an aromatic carbonization which may have a substituent whose group is selected from the group consisting of an alkyl group, an alkoxyl group and an aromatic group. It is a layer formed using a composition containing a polymer compound that is a hydrogen group,
The light emitting layer is a layer containing an arylamine compound.
上記アリールアミン化合物が下記式(I)で表される化合物であることを特徴とする、請求項1に記載の有機電界発光素子。
Figure 2010239134
(式(I)中、Ar〜Arは、各々独立して、置換基を有してもよい芳香族炭化水素
基を表す。)
The organic electroluminescent element according to claim 1, wherein the arylamine compound is a compound represented by the following formula (I).
Figure 2010239134
(In formula (I), Ar 1 to Ar 4 each independently represents an aromatic hydrocarbon group which may have a substituent.)
上記高分子化合物が下記式(II)で表される繰り返し単位を含む高分子化合物であることを特徴とする、請求項1又は2に記載の有機電界発光素子。
Figure 2010239134
(式(II)中、qは0〜3の整数を表し、Ar11及びAr12は、各々独立に、置換基を有していてもよい芳香族炭化水素基、置換基を有していてもよい芳香族複素環基又は直接結合を表し、Ar13〜Ar15は、各々独立に、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。但し、Ar11及びAr12のいずれもが、直接結合であることはない。)
The organic electroluminescent element according to claim 1 or 2, wherein the polymer compound is a polymer compound containing a repeating unit represented by the following formula (II).
Figure 2010239134
(In Formula (II), q represents an integer of 0 to 3, Ar 11 and Ar 12 each independently have an aromatic hydrocarbon group which may have a substituent, or a substituent. Represents an aromatic heterocyclic group or a direct bond, and Ar 13 to Ar 15 are each independently an aromatic hydrocarbon group which may have a substituent or an aromatic which may have a substituent. Represents a heterocyclic group, provided that neither Ar 11 nor Ar 12 is a direct bond.)
上記高分子化合物が、不溶化基を有することを特徴とする、請求項1〜3のいずれか一項に記載の有機電界発光素子。   The organic electroluminescent element according to claim 1, wherein the polymer compound has an insolubilizing group. 上記不溶化基が、架橋性基であることを特徴とする、請求項4に記載の有機電界発光素子。   The organic electroluminescent element according to claim 4, wherein the insolubilizing group is a crosslinkable group. 架橋性基が、下記架橋性基群Tの中から選ばれることを特徴とする、請求項5に記載の有機電界発光素子。
<架橋性基群T>
Figure 2010239134
The organic electroluminescent element according to claim 5, wherein the crosslinkable group is selected from the following crosslinkable group T.
<Crosslinkable group T>
Figure 2010239134
前記不溶化基が、解離基であることを特徴とする、請求項4に記載の有機電界発光素子。   The organic electroluminescent device according to claim 4, wherein the insolubilizing group is a dissociating group. 解離基が、下記<2価の解離基群A>及び<1価の解離基群B>の中から選ばれることを特徴とする、請求項7に記載の有機電界発光素子。
<2価の解離基群A>
Figure 2010239134
<1価の解離基群B>
Figure 2010239134
The organic electroluminescent element according to claim 7, wherein the dissociating group is selected from the following <divalent dissociating group A> and <monovalent dissociating group B>.
<Divalent dissociation group A>
Figure 2010239134
<Monovalent dissociation group B>
Figure 2010239134
請求項1〜8のいずれか一項に記載の有機電界発光素子を備えたことを特徴とする、有機ELディスプレイ。   An organic EL display comprising the organic electroluminescent element according to claim 1. 請求項1〜8のいずれか一項に記載の有機電界発光素子を備えたことを特徴とする、有機EL照明。   An organic EL illumination comprising the organic electroluminescent element according to claim 1.
JP2010056022A 2009-03-13 2010-03-12 Organic electroluminescent element, organic el display and organic el illumination Pending JP2010239134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010056022A JP2010239134A (en) 2009-03-13 2010-03-12 Organic electroluminescent element, organic el display and organic el illumination

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009061667 2009-03-13
JP2010056022A JP2010239134A (en) 2009-03-13 2010-03-12 Organic electroluminescent element, organic el display and organic el illumination

Publications (1)

Publication Number Publication Date
JP2010239134A true JP2010239134A (en) 2010-10-21

Family

ID=43093148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010056022A Pending JP2010239134A (en) 2009-03-13 2010-03-12 Organic electroluminescent element, organic el display and organic el illumination

Country Status (1)

Country Link
JP (1) JP2010239134A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017160A (en) * 2014-07-10 2016-02-01 東洋紡株式会社 Composite polymer electrolyte film, method for producing the same and application thereof
JP2018206984A (en) * 2017-06-06 2018-12-27 株式会社Joled Organic electroluminescent element, organic electroluminescent device, and electronic device
JP2018207030A (en) * 2017-06-08 2018-12-27 株式会社Joled Organic electroluminescent element, organic electroluminescent device, and electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001154350A (en) * 1999-11-30 2001-06-08 Mitsubishi Chemicals Corp Photosensitive composition and photosensitive planographic printing plate
JP2004292782A (en) * 2003-02-06 2004-10-21 Tosoh Corp New triarylamine polymer, method for producing the same and its application
JP2007520858A (en) * 2003-12-19 2007-07-26 ケンブリッジ ディスプレイ テクノロジー リミテッド Optical device
US20080138655A1 (en) * 2006-11-13 2008-06-12 Daniel David Lecloux Organic electronic device
JP2008166629A (en) * 2006-12-29 2008-07-17 Idemitsu Kosan Co Ltd Organic-el-material-containing solution, organic el material synthesizing method, compound synthesized by the synthesizing method, method of forming thin film of organic el material, thin film of organic el material, and organic el element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001154350A (en) * 1999-11-30 2001-06-08 Mitsubishi Chemicals Corp Photosensitive composition and photosensitive planographic printing plate
JP2004292782A (en) * 2003-02-06 2004-10-21 Tosoh Corp New triarylamine polymer, method for producing the same and its application
JP2007520858A (en) * 2003-12-19 2007-07-26 ケンブリッジ ディスプレイ テクノロジー リミテッド Optical device
US20080138655A1 (en) * 2006-11-13 2008-06-12 Daniel David Lecloux Organic electronic device
JP2008166629A (en) * 2006-12-29 2008-07-17 Idemitsu Kosan Co Ltd Organic-el-material-containing solution, organic el material synthesizing method, compound synthesized by the synthesizing method, method of forming thin film of organic el material, thin film of organic el material, and organic el element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017160A (en) * 2014-07-10 2016-02-01 東洋紡株式会社 Composite polymer electrolyte film, method for producing the same and application thereof
JP2018206984A (en) * 2017-06-06 2018-12-27 株式会社Joled Organic electroluminescent element, organic electroluminescent device, and electronic device
JP2018207030A (en) * 2017-06-08 2018-12-27 株式会社Joled Organic electroluminescent element, organic electroluminescent device, and electronic device

Similar Documents

Publication Publication Date Title
JP6057003B2 (en) Conjugated polymer, organic electroluminescent element material, composition for organic electroluminescent element, method for producing polymer, organic electroluminescent element, organic EL display, and organic EL lighting
JP5880654B2 (en) Luminescent layer material, composition for organic electroluminescent element, organic electroluminescent element using these, organic EL display device, and organic EL lighting
JP4935952B2 (en) Charge transporting polymer, composition for organic electroluminescent device, organic electroluminescent device, organic EL display and organic EL lighting
JP5707672B2 (en) Polymer compound, network polymer compound obtained by crosslinking polymer compound, composition for organic electroluminescence device, organic electroluminescence device, organic EL display and organic EL lighting
JP5434088B2 (en) Crosslinkable organic compound, composition for organic electroluminescence device, organic electroluminescence device and organic EL display
WO2010018851A1 (en) Organic electroluminescent element, organic el display device and organic el illuminating device
JP6551394B2 (en) Polymer, composition for organic electroluminescence device, organic electroluminescence device, organic EL display device and organic EL lighting
JP5672858B2 (en) Charge transport material, composition for charge transport film, organic electroluminescence device, organic EL display and organic EL lighting
JP2008248241A (en) Composition for organic device, polymer membrane and organic electroluminescent element
JP5857743B2 (en) Polymer, electronic device material, composition for electronic device, organic electroluminescent device, organic solar cell device, display device and lighting device
JP5343818B2 (en) Arylamine polymer, organic electroluminescent element material, composition for organic electroluminescent element, organic electroluminescent element, organic EL display device, and organic EL lighting
JP4985441B2 (en) Polymer compound, organic electroluminescent device material, composition for organic electroluminescent device, and organic electroluminescent device
JP5151812B2 (en) Organic compound, polymer compound, cross-linked polymer compound, composition for organic electroluminescence device, and organic electroluminescence device
WO2019177175A1 (en) Polymer, composition for organic electroluminescent element, organic electroluminescent element, organic el display device, organic el lighting, and manufacturing method for organic electroluminescent element
JP2010239125A (en) Organic electroluminescent element, organic el display, and organic el illumination
JP5423064B2 (en) Composition for organic electroluminescence device, organic electroluminescence device, organic EL display and organic EL lighting
JP2010239134A (en) Organic electroluminescent element, organic el display and organic el illumination
JP5685882B2 (en) Charge transport material, composition for charge transport film, organic electroluminescence device, organic electroluminescence device display device, and organic electroluminescence device illumination device
JP2010239127A (en) Organic electroluminescent element, organic el display, and organic el illumination
JP2010212441A (en) Organic electroluminescent element, organic el display, and organic el lighting
JP2022136017A (en) Aromatic compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140722