JP2010238534A - Membrane-electrode assembly for fuel cell, and method of manufacturing the same - Google Patents

Membrane-electrode assembly for fuel cell, and method of manufacturing the same Download PDF

Info

Publication number
JP2010238534A
JP2010238534A JP2009085125A JP2009085125A JP2010238534A JP 2010238534 A JP2010238534 A JP 2010238534A JP 2009085125 A JP2009085125 A JP 2009085125A JP 2009085125 A JP2009085125 A JP 2009085125A JP 2010238534 A JP2010238534 A JP 2010238534A
Authority
JP
Japan
Prior art keywords
diffusion layer
layer
hydrophilic
water
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009085125A
Other languages
Japanese (ja)
Inventor
Keiko Mori
恵子 森
Seiko Uehara
聖子 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009085125A priority Critical patent/JP2010238534A/en
Publication of JP2010238534A publication Critical patent/JP2010238534A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane-electrode assembly for a fuel cell, having improved drainage and gas distributing performance, resulting in no occurrence of flooding. <P>SOLUTION: The membrane-electrode assembly for the fuel cell includes a solid electrolyte membrane on each side of which an electrode catalyst layer, a porous base layer 3, and a porous diffusion layer 4 having coarser pores than the base layer 3 are laminated in sequence. On the base layer 3 and the diffusion layer 4, water repellent portions 3a, 4a and hydrophilic portions 3b, 4b are formed separating each other in their interlayer directions. The water repellent portions 3a, 4a and the hydrophilic portions 3b, 4b range over the base layer 3 and the diffusion layer 4. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、燃料電池用膜電極複合体とその製造方法に係り、特に、電極触媒層と拡散層との間に中間層を設けた構造の改良に関する。   The present invention relates to a fuel cell membrane electrode assembly and a method for producing the same, and more particularly to an improvement in a structure in which an intermediate layer is provided between an electrode catalyst layer and a diffusion layer.

燃料電池は、平板状の膜電極複合体の両側にセパレータが積層されて構成され、膜電極複合体は、正極側の電極触媒層と負極側の電極触媒層との間に高分子電解質膜が挟まれ、各電極触媒層の外側にガス拡散層がそれぞれ積層された積層体である。このような燃料電池によると、例えば、負極側に配されたセパレータのガス通路に水素ガスを流し、正極側に配されたセパレータのガス通路に酸化性ガスを流すと、電気化学反応が起こって電流が発生する。燃料電池の作動中においては、ガス拡散層は電気化学反応によって生成した電子を電極触媒層とセパレータとの間で伝達させると同時に燃料ガスおよび酸化性ガスを拡散させる。また、負極側の電極触媒層は燃料ガスに化学反応を起こさせプロトン(H)と電子を発生させ、正極側の電極触媒層は酸素とプロトンと電子から水を生成し、電解質膜はプロトンをイオン伝導させる。そして、正負の電極触媒層を通して電力が取り出される。 A fuel cell is configured by laminating separators on both sides of a flat membrane electrode assembly. The membrane electrode assembly has a polymer electrolyte membrane between a positive electrode catalyst layer and a negative electrode catalyst layer. It is a laminate in which a gas diffusion layer is laminated on the outside of each electrode catalyst layer. According to such a fuel cell, for example, when hydrogen gas is caused to flow through the gas passage of the separator disposed on the negative electrode side and an oxidizing gas is caused to flow through the gas passage of the separator disposed on the positive electrode side, an electrochemical reaction occurs. Electric current is generated. During operation of the fuel cell, the gas diffusion layer transmits electrons generated by the electrochemical reaction between the electrode catalyst layer and the separator, and simultaneously diffuses the fuel gas and the oxidizing gas. The electrode catalyst layer on the negative electrode side causes a chemical reaction to the fuel gas to generate protons (H + ) and electrons, the electrode catalyst layer on the positive electrode side generates water from oxygen, protons and electrons, and the electrolyte membrane is a proton. Is ion-conducted. Then, electric power is taken out through the positive and negative electrode catalyst layers.

発生した水は、拡散層を通して外部へ排出されるが、排水が良好に行われないと拡散層の細孔内に水が溜まり、燃料ガスや空気の供給が阻害されるフラッディングと呼ばれる現象が生じる。したがって、拡散層では、水の排水が良好に行われることが燃料電池の性能を向上させるためには不可欠である。   The generated water is discharged to the outside through the diffusion layer, but if drainage is not performed well, water accumulates in the pores of the diffusion layer, causing a phenomenon called flooding that inhibits the supply of fuel gas and air . Therefore, in the diffusion layer, it is indispensable to improve the performance of the fuel cell that water is drained well.

上記のような課題を解決するものとして、たとえば特許文献1には、ガス拡散層と電極触媒層の間に、カーボン粒子と撥水剤を混合してなる微細気孔層(下地層)を形成することが記載されている。この微細気孔層の役割は、燃料ガス及び酸化剤ガスをアノード側ガス拡散電極及びカソード側ガス拡散電極に移動し易くし、あるいは電極反応の際にカソード側ガス拡散電極で生成する水を酸化剤ガス流通溝に排出し易くするものである。
さらに、特許文献2には、ガス拡散層と電極触媒層との間に微多孔質層(撥水層)として、撥水処理されたカーボン粒子と親水処理されたカーボン粒子とが撥水層の厚さ方向に連続するように構成したものが開示されている。これにより、撥水層の一部に水の浸透経路を設け、排水性を向上させる。
また、特許文献3には、排水性等の向上を目的とし、ガス拡散層そのものの面内に撥水性の高い部分を分布させたものも記載されている。
In order to solve the above problems, for example, in Patent Document 1, a microporous layer (underlayer) formed by mixing carbon particles and a water repellent agent is formed between a gas diffusion layer and an electrode catalyst layer. It is described. The role of the microporous layer is to facilitate the movement of the fuel gas and the oxidant gas to the anode side gas diffusion electrode and the cathode side gas diffusion electrode, or the water generated at the cathode side gas diffusion electrode during the electrode reaction It is easy to discharge into the gas distribution groove.
Further, Patent Document 2 discloses that a water-repellent treated carbon particle and a hydrophilic treated carbon particle are formed as a microporous layer (water-repellent layer) between a gas diffusion layer and an electrode catalyst layer. What was comprised so that it might continue in the thickness direction was disclosed. Thereby, a water permeation path is provided in a part of the water repellent layer to improve drainage.
Patent Document 3 also describes a product in which highly water-repellent portions are distributed in the plane of the gas diffusion layer for the purpose of improving drainage and the like.

特開2004−172095号公報JP 2004-172095 A 特開2006−179317号公報JP 2006-179317 A 特開2003−132898号公報JP 2003-132898 A

しかしながら、特許文献2に記載の技術では、撥水性カーボン粒子と親水性カーボン粒子を混合して撥水層を形成しているため、厚さ方向に連続して同一種のカーボン粒子を効率的に並べることは困難である。さらに、特許文献2と特許文献3に記載の技術を組み合わせたとしても、撥水層とガス拡散層は別々に作成されるので、撥水層の水の流路とガス拡散層の水の流路とをが充分に連通させることが困難であり、排水性とガス流通性は不充分である。   However, in the technique described in Patent Document 2, since the water-repellent layer is formed by mixing the water-repellent carbon particles and the hydrophilic carbon particles, the same type of carbon particles are efficiently removed continuously in the thickness direction. It is difficult to line up. Furthermore, even if the techniques described in Patent Document 2 and Patent Document 3 are combined, the water-repellent layer and the gas diffusion layer are created separately. It is difficult to sufficiently communicate with the road, and drainage and gas flow are insufficient.

上記の課題に鑑み、本発明は、下地層および拡散層において撥水部と親水部とが連続することにより、排水性とガス流通性を向上させることができるとともに、そのような構成を簡単に製造することができる燃料電池用膜電極複合体およびその製造方法を提供することを目的としている。   In view of the above-described problems, the present invention can improve drainage and gas flowability by providing a continuous water-repellent part and a hydrophilic part in the base layer and the diffusion layer, and can simplify such a configuration. It aims at providing the membrane electrode composite for fuel cells which can be manufactured, and its manufacturing method.

本発明の燃料電池用膜電極複合体は、固体電解質膜の両面に、電極層と、多孔質の下地層と、前記下地層よりも気孔が粗い多孔質の拡散層とをこの順に積層してなる燃料電池用膜電極複合体であって、前記下地層および前記拡散層には、それらの層間方向に向けて撥水部と親水部とが互いに分離して形成され、前記撥水部および前記親水部は、前記下地層および前記拡散層に亘って連続していることを特徴とする。   The membrane electrode assembly for a fuel cell of the present invention comprises an electrode layer, a porous underlayer, and a porous diffusion layer having pores coarser than the underlayer in this order on both surfaces of a solid electrolyte membrane. A membrane electrode assembly for a fuel cell, wherein a water repellent part and a hydrophilic part are formed separately from each other in the interlayer direction in the base layer and the diffusion layer, The hydrophilic portion is characterized by being continuous over the base layer and the diffusion layer.

また、本発明の燃料電池用膜電極複合体の製造方法は、拡散層構成部材の一表面の一部に、撥水性成分を含む第1下地ペーストを塗布し、前記拡散層構成部材の一表面であって前記第1下地ペーストが塗布されていない部分に、親水性成分を含む第2下地ペーストを塗布し、前記撥水性成分および前記親水性成分を前記拡散層構成部材に浸透させる工程と、前記第1、第2下地ペーストが塗布された前記拡散層構成部材を乾燥する工程を備えたことを特徴とする。   Further, in the method for producing a membrane electrode assembly for a fuel cell of the present invention, a first base paste containing a water repellent component is applied to a part of one surface of the diffusion layer constituting member, and one surface of the diffusion layer constituting member And applying a second base paste containing a hydrophilic component to a portion where the first base paste is not applied, and allowing the water repellent component and the hydrophilic component to penetrate into the diffusion layer constituting member; A step of drying the diffusion layer constituting member to which the first and second base pastes are applied is provided.

上記燃料電池用膜電極複合体にあっては、撥水部および親水部が下地層および拡散層に亘って連続しているから、下地層および拡散層に亘って親水部を水が流通し、下地層および拡散層に亘って撥水部をガスが流通する。このように、本発明では、下地層および拡散層の間で水およびガスの流路が遮断されることがないので、それらを円滑に流通させることができる。   In the fuel cell membrane electrode assembly, since the water repellent part and the hydrophilic part are continuous over the base layer and the diffusion layer, water flows through the hydrophilic part over the base layer and the diffusion layer, Gas flows through the water-repellent part over the base layer and the diffusion layer. Thus, in this invention, since the flow path of water and gas is not interrupted | blocked between a base layer and a diffusion layer, they can be distribute | circulated smoothly.

また、本発明の燃料電池用膜電極複合体の製造方法にあっては、拡散層構成部材の一表面に、撥水性の第1下地ペーストと親水性の第2下地ペーストを塗布し浸透させるから、下地層の形成と同時に拡散層構成部材に撥水部と親水部とを形成することができる。したがって、撥水部および親水部が下地層および拡散層で連続した構成を単純な工程で形成することができる。   In the method for producing a membrane electrode assembly for a fuel cell according to the present invention, the water-repellent first base paste and the hydrophilic second base paste are applied and penetrated on one surface of the diffusion layer constituting member. The water repellent part and the hydrophilic part can be formed on the diffusion layer constituting member simultaneously with the formation of the base layer. Therefore, a structure in which the water repellent part and the hydrophilic part are continuous with the base layer and the diffusion layer can be formed by a simple process.

本発明によれば、下地層および拡散層において撥水部と親水部とが連続することにより、良好な排水性とガス流通性を得ることができ、フラッディングの発生を未然に防止することができる。また、本発明によれば、下地層および拡散層において撥水部と親水部とが連続する構成を簡単に製造することができる。   According to the present invention, since the water-repellent part and the hydrophilic part are continuous in the base layer and the diffusion layer, it is possible to obtain good drainage properties and gas flowability, and to prevent flooding from occurring. . Further, according to the present invention, it is possible to easily manufacture a configuration in which the water repellent part and the hydrophilic part are continuous in the underlayer and the diffusion layer.

本発明の一実施形態の膜電極複合体を示す断面図である。It is sectional drawing which shows the membrane electrode assembly of one Embodiment of this invention. 本発明の一実施形態の膜電極複合体の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the membrane electrode assembly of one Embodiment of this invention. 本発明の実施例で製造した膜電極複合体の写真である。It is a photograph of the membrane electrode assembly manufactured in the Example of this invention.

図1および図2を参照して本発明の一実施形態を説明する。図1は実施形態の膜電極複合体Aを示す断面図である。この膜電極複合体Aは、固体電解質膜1の両面に正極側の電極触媒層2aと負極側の電極触媒層2bとが積層され、各電極触媒層2a,2bの外側に下地層3がそれぞれ積層されるとともに、下地層3の外側に拡散層4がそれぞれ積層されて構成されている。   An embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a cross-sectional view showing a membrane electrode assembly A of the embodiment. In this membrane electrode assembly A, a positive electrode catalyst layer 2a and a negative electrode catalyst layer 2b are laminated on both surfaces of the solid electrolyte membrane 1, and a base layer 3 is formed outside each of the electrode catalyst layers 2a and 2b. In addition to being laminated, the diffusion layer 4 is laminated outside the base layer 3.

高分子電解質膜1と電極触媒層2a,2bの積層構造は、例えば触媒を分散させた触媒ペーストをシートに塗布・乾燥して電極シートを作製し、この電極シートをデカール法にて高分子電解膜1の面に転写することで構成されている。また、拡散層4は、例えば多孔質のカーボンペーパーなどによって構成され、下地層3は、黒鉛やアセチレンブラックあるいは気相成長炭素繊維などのカーボン材料とポリテトラフルオロエチレン(PTFE)、フッ化エチレン・プロピレン共重合体(FEP)やポリフッ化ビニリデン(PVDF)などの撥水成分を混合して構成されている。   The laminated structure of the polymer electrolyte membrane 1 and the electrode catalyst layers 2a and 2b is prepared, for example, by applying and drying a catalyst paste in which a catalyst is dispersed on a sheet to produce an electrode sheet. It is configured by transferring onto the surface of the film 1. The diffusion layer 4 is made of, for example, porous carbon paper, and the underlayer 3 is made of carbon material such as graphite, acetylene black, or vapor grown carbon fiber, and polytetrafluoroethylene (PTFE), fluorinated ethylene. A water repellent component such as propylene copolymer (FEP) or polyvinylidene fluoride (PVDF) is mixed.

次に、図2を参照して拡散層4と下地層3との積層構造を構成する手順を説明する。まず、拡散層4の一面にマスクを設ける。このマスクとしては、例えば格子状にマスク部が断続するものを用いることができる。次いで、マスクの上から例えば筆やローラ等で撥水性ペーストを塗布する。この撥水性ペーストには撥水成分が含まれている。   Next, with reference to FIG. 2, a procedure for forming a laminated structure of the diffusion layer 4 and the underlayer 3 will be described. First, a mask is provided on one surface of the diffusion layer 4. As this mask, for example, a mask in which mask portions are intermittently formed in a lattice shape can be used. Next, a water repellent paste is applied from above the mask with, for example, a brush or a roller. This water repellent paste contains a water repellent component.

撥水性ペーストを拡散層4に塗布すると、図2(A)に示すように、撥水性ペーストに含まれる撥水成分が拡散層4の内部に浸み込む。そして、浸み込んだ撥水成分が拡散層4の裏面に達するまで放置し、その後、乾燥する。次いで、マスクを拡散層4から剥がし、別のマスクを拡散層4に設けて撥水性ペーストを塗布した部分を覆う。   When the water repellent paste is applied to the diffusion layer 4, the water repellent component contained in the water repellent paste soaks into the diffusion layer 4 as shown in FIG. The soaked water-repellent component is allowed to stand until it reaches the back surface of the diffusion layer 4 and then dried. Next, the mask is peeled off from the diffusion layer 4 and another mask is provided on the diffusion layer 4 to cover the portion where the water-repellent paste is applied.

次いで、マスクの上から親水性ペーストを塗布する。この親水性ペーストには親水成分が含まれている。親水性ペーストを拡散層4に塗布すると、図2(B)に示すように、親水性ペーストに含まれる親水成分が拡散層4の内部に浸み込む。そして、浸み込んだ親水性成分が拡散層4の裏面に達するまで放置し、その後、乾燥する。次いで、マスクを拡散層4から剥がし、拡散層4を焼成する。このようにして、拡散層4および下地層3の積層構造が構成される。なお、上記のようにマスクを用いる代わりに、例えばスクリーン印刷法で撥水性ペーストと親水性ペーストを順に塗布することもできる。   Next, a hydrophilic paste is applied over the mask. This hydrophilic paste contains a hydrophilic component. When the hydrophilic paste is applied to the diffusion layer 4, the hydrophilic component contained in the hydrophilic paste soaks into the diffusion layer 4 as shown in FIG. Then, the soaked hydrophilic component is left until it reaches the back surface of the diffusion layer 4 and then dried. Next, the mask is peeled off from the diffusion layer 4 and the diffusion layer 4 is baked. In this way, a laminated structure of the diffusion layer 4 and the underlayer 3 is configured. Instead of using a mask as described above, for example, a water-repellent paste and a hydrophilic paste can be sequentially applied by a screen printing method.

上記のようにして構成された拡散層4および下地層3の積層構造は、平面視では下地層3の撥水部3aと親水部3bが格子状に配列されている。一方、断面視では、図2(C)に示すように、下地層3の撥水部3aと撥水成分が浸み込んだ拡散層4の撥水部4aが連続し、下地層3の親水部3bと親水成分が浸み込んだ拡散層4の親水部4bが連続している。そして、下地層3が電極触媒層2a,2bに接触するように積層され、これにより膜電極複合体Aが構成される。下地層3は、拡散層4よりも細孔が細かい多孔質体であり、拡散層4から流れて来る燃料ガスおよび空気を均一にして電極触媒層2a,2bに送る。   In the laminated structure of the diffusion layer 4 and the base layer 3 configured as described above, the water-repellent portions 3a and the hydrophilic portions 3b of the base layer 3 are arranged in a lattice shape in plan view. On the other hand, in a cross-sectional view, as shown in FIG. 2C, the water-repellent part 3a of the base layer 3 and the water-repellent part 4a of the diffusion layer 4 in which the water-repellent component is immersed are continuous, The portion 3b and the hydrophilic portion 4b of the diffusion layer 4 in which the hydrophilic component is immersed are continuous. The underlayer 3 is laminated so as to be in contact with the electrode catalyst layers 2a and 2b, whereby the membrane electrode assembly A is configured. The underlayer 3 is a porous body with finer pores than the diffusion layer 4, and the fuel gas and air flowing from the diffusion layer 4 are made uniform and sent to the electrode catalyst layers 2a and 2b.

上記構成の膜電極複合体Aの両側にセパレータが積層されて燃料電池が構成される。このような燃料電池では、負極側の電極触媒層2bは燃料ガスに化学反応を起こさせてプロトン(H)と電子を発生させ、正極側の電極触媒層2aは酸素とプロトンと電子から水を生成し、電解質膜はプロトンを正極側の電極触媒層2aへイオン伝導させる。そして、正負の電極触媒層2a,2bを通して電力が取り出される。 A separator is laminated on both sides of the membrane electrode assembly A having the above structure to constitute a fuel cell. In such a fuel cell, the electrode catalyst layer 2b on the negative electrode side causes a chemical reaction to the fuel gas to generate protons (H + ) and electrons, and the electrode catalyst layer 2a on the positive electrode side generates water from oxygen, protons and electrons. And the electrolyte membrane conducts protons to the electrode catalyst layer 2a on the positive electrode side. And electric power is taken out through the positive and negative electrode catalyst layers 2a and 2b.

ここで、図2(C)は、正極側の拡散層4および下地層3の積層構造を示している。正極側の電極触媒層2aで生成された水は、下地層3および拡散層4の親水部3b,4bを通ってセパレータに排出される。また、セパレータからは燃料ガスが下地層3および拡散層4の撥水部3a,4aを通って正極側の電極触媒層2aに供給される。この場合において、撥水部3a,4aおよび親水部3b,4bが下地層3および拡散層4で連続しているから、下地層3および拡散層4に亘って親水部3b,4bを水が流通し、下地層3および拡散層4に亘って撥水部3a,4aを燃料ガスが流通する。したがって、下地層3および拡散層4の間で水および燃料ガスの流路が遮断されることがないので、水および燃料ガスを円滑に流通させることができ、フラッディングの発生を未然に防止することができる。   Here, FIG. 2C shows a laminated structure of the diffusion layer 4 and the base layer 3 on the positive electrode side. The water produced in the electrode catalyst layer 2a on the positive electrode side is discharged to the separator through the base layer 3 and the hydrophilic portions 3b and 4b of the diffusion layer 4. Further, the fuel gas is supplied from the separator to the electrode catalyst layer 2a on the positive electrode side through the base layer 3 and the water repellent portions 3a, 4a of the diffusion layer 4. In this case, since the water repellent parts 3 a and 4 a and the hydrophilic parts 3 b and 4 b are continuous with the base layer 3 and the diffusion layer 4, water flows through the hydrophilic parts 3 b and 4 b across the base layer 3 and the diffusion layer 4. Then, the fuel gas flows through the water repellent portions 3 a and 4 a across the base layer 3 and the diffusion layer 4. Therefore, since the flow path of water and fuel gas is not blocked between the base layer 3 and the diffusion layer 4, water and fuel gas can be smoothly circulated and flooding can be prevented from occurring. Can do.

また、上記した燃料電池用膜電極複合体の製造方法にあっては、下地層3の形成と同時に拡散層4に撥水部4aと親水部4bとを形成することができるから、撥水部3a,4aおよび親水部3b,4bが下地層3および拡散層4で連続した構成を単純な工程で形成することができる。   Moreover, in the manufacturing method of the membrane electrode assembly for a fuel cell described above, since the water repellent part 4a and the hydrophilic part 4b can be formed on the diffusion layer 4 simultaneously with the formation of the base layer 3, the water repellent part A configuration in which 3a, 4a and hydrophilic portions 3b, 4b are continuous with the underlayer 3 and the diffusion layer 4 can be formed by a simple process.

次に、実施例により本発明をさらに詳細に説明する。
FEP(撥水成分)を水に分散させたディスパージョンとエチレングリコールを混合し、FEP溶液を作成した。この溶液100重量部に気相成長炭素繊維(VGCF)を5重量部加えて攪拌・混練し、撥水性ペーストを作成した。
Next, the present invention will be described in more detail with reference to examples.
A dispersion in which FEP (water repellent component) was dispersed in water and ethylene glycol were mixed to prepare an FEP solution. 5 parts by weight of vapor grown carbon fiber (VGCF) was added to 100 parts by weight of this solution and stirred and kneaded to prepare a water-repellent paste.

また、高分子電解質(デュポン社製ナフィオン、親水成分)をN−メチルピロリドン(NMP)に溶解して電解質溶液を作成し、この溶液100重量部にケッチェンブラックとVGCFを混合したカーボン材5重量部を添加・混練して親水性ペーストを作成した。   In addition, an electrolyte solution was prepared by dissolving a polymer electrolyte (Nafion, hydrophilic component, manufactured by DuPont) in N-methylpyrrolidone (NMP), and 5 parts by weight of a carbon material obtained by mixing 100 parts by weight of this solution with ketjen black and VGCF. Part was added and kneaded to prepare a hydrophilic paste.

上記撥水性ペーストおよび親水性ペーストを5mm角の格子状にカーボンペーパー上にスクリーン印刷により塗布した。その30分間放置して撥水性ペーストの撥水成分と親水性ペーストの親水成分とをカーボンペーパーに浸み込ませた。その後、カーボンペーパーを乾燥して焼成し、下地層および拡散層の積層構造を得た。   The water-repellent paste and the hydrophilic paste were applied to a 5 mm square lattice pattern on carbon paper by screen printing. The carbon paper was immersed in the water-repellent component of the water-repellent paste and the hydrophilic component of the hydrophilic paste by leaving for 30 minutes. Thereafter, the carbon paper was dried and fired to obtain a laminated structure of an underlayer and a diffusion layer.

下地層および拡散層の積層構造を、拡散層を下にして水に浸したところ、図3に示すように、親水性ペーストを塗布した部分に水の玉が形成された。このことは、親水成分がカーボンペーパーの裏面まで浸透していることを示している。   When the laminated structure of the base layer and the diffusion layer was immersed in water with the diffusion layer facing down, water balls were formed in the portion where the hydrophilic paste was applied, as shown in FIG. This indicates that the hydrophilic component has penetrated to the back surface of the carbon paper.

なお上記実施例では、各ペーストを5mm角の格子状としたが、格子の一辺は1〜5mmであることが好ましい。また、格子状に限らず別の形態とすることもできる。例えば、セパレータのガス通路に相対するガス拡散層の部分を撥水性とし、その他の部分を親水性とすることができる。   In each of the above examples, each paste is formed in a 5 mm square grid, but one side of the grid is preferably 1 to 5 mm. Moreover, it can also be set as another form not only in a grid | lattice form. For example, the part of the gas diffusion layer facing the gas passage of the separator can be made water-repellent and the other part can be made hydrophilic.

本発明は、水および燃料ガスを円滑に流通させてフラッディングの発生を未然に防止することができるので、高い信頼性が求められる自動車用燃料電池に適用して極めて有望である。   Since the present invention can prevent the occurrence of flooding by smoothly flowing water and fuel gas, it is extremely promising when applied to an automotive fuel cell that requires high reliability.

1 固体電解質膜
2a,2b 電極触媒層(電極層)
3 下地層
4 拡散層
1 Solid electrolyte membrane 2a, 2b Electrocatalyst layer (electrode layer)
3 Underlayer 4 Diffusion layer

Claims (2)

固体電解質膜の両面に、電極層と、多孔質の下地層と、前記下地層よりも気孔が粗い多孔質の拡散層とをこの順に積層してなる燃料電池用膜電極複合体であって、前記下地層および前記拡散層には、それらの層間方向に向けて撥水部と親水部とが互いに分離して形成され、前記撥水部および前記親水部は、前記下地層および前記拡散層に亘って連続していることを特徴とする燃料電池用膜電極複合体。   A fuel cell membrane electrode composite comprising, on both sides of a solid electrolyte membrane, an electrode layer, a porous underlayer, and a porous diffusion layer having pores coarser than the underlayer in this order, In the base layer and the diffusion layer, a water repellent part and a hydrophilic part are formed separately from each other in the direction of the interlayer, and the water repellent part and the hydrophilic part are formed on the base layer and the diffusion layer. A membrane electrode assembly for a fuel cell, characterized in that the membrane electrode assembly is continuous. 拡散層構成部材の一表面の一部に、撥水性成分を含む第1下地ペーストを塗布し、前記拡散層構成部材の一表面であって前記第1下地ペーストが塗布されていない部分に、親水性成分を含む第2下地ペーストを塗布し、前記撥水性成分および前記親水性成分を前記拡散層構成部材に浸透させる工程と、
前記第1、第2下地ペーストが塗布された前記拡散層構成部材を乾燥する工程を備えたことを特徴とする燃料電池用膜電極複合体の製造方法。
A first base paste containing a water repellent component is applied to a part of one surface of the diffusion layer constituting member, and a hydrophilic portion is applied to a part of the surface of the diffusion layer constituting member that is not coated with the first base paste. Applying a second base paste containing a sexual component and allowing the water repellent component and the hydrophilic component to penetrate into the diffusion layer constituting member;
A method of producing a membrane electrode assembly for a fuel cell, comprising the step of drying the diffusion layer constituting member to which the first and second base pastes are applied.
JP2009085125A 2009-03-31 2009-03-31 Membrane-electrode assembly for fuel cell, and method of manufacturing the same Pending JP2010238534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009085125A JP2010238534A (en) 2009-03-31 2009-03-31 Membrane-electrode assembly for fuel cell, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009085125A JP2010238534A (en) 2009-03-31 2009-03-31 Membrane-electrode assembly for fuel cell, and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010238534A true JP2010238534A (en) 2010-10-21

Family

ID=43092683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009085125A Pending JP2010238534A (en) 2009-03-31 2009-03-31 Membrane-electrode assembly for fuel cell, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010238534A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245801A (en) * 1996-03-11 1997-09-19 Tanaka Kikinzoku Kogyo Kk Electrode for polymer solid electrolyte fuel cell and manufacture thereof
JP2001236976A (en) * 2000-02-22 2001-08-31 Sanyo Electric Co Ltd Fuel cell
JP2005038780A (en) * 2003-07-18 2005-02-10 Nissan Motor Co Ltd Solid polymer fuel cell
JP2005228755A (en) * 1999-09-21 2005-08-25 Matsushita Electric Ind Co Ltd Polymer electrolyte fuel cell
JP2007242417A (en) * 2006-03-08 2007-09-20 Nissan Motor Co Ltd Fuel cell
JP2008123866A (en) * 2006-11-13 2008-05-29 Noritake Co Ltd Layer built fuel cell and its manufacturing method
JP2010205723A (en) * 2009-03-04 2010-09-16 Samsung Sdi Co Ltd Mea for fuel cell and fuel cell stack containing this

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245801A (en) * 1996-03-11 1997-09-19 Tanaka Kikinzoku Kogyo Kk Electrode for polymer solid electrolyte fuel cell and manufacture thereof
JP2005228755A (en) * 1999-09-21 2005-08-25 Matsushita Electric Ind Co Ltd Polymer electrolyte fuel cell
JP2001236976A (en) * 2000-02-22 2001-08-31 Sanyo Electric Co Ltd Fuel cell
JP2005038780A (en) * 2003-07-18 2005-02-10 Nissan Motor Co Ltd Solid polymer fuel cell
JP2007242417A (en) * 2006-03-08 2007-09-20 Nissan Motor Co Ltd Fuel cell
JP2008123866A (en) * 2006-11-13 2008-05-29 Noritake Co Ltd Layer built fuel cell and its manufacturing method
JP2010205723A (en) * 2009-03-04 2010-09-16 Samsung Sdi Co Ltd Mea for fuel cell and fuel cell stack containing this

Similar Documents

Publication Publication Date Title
JP6408562B2 (en) Self-humidifying membrane / electrode assembly and fuel cell equipped with the same
KR102084568B1 (en) Component for fuel cell including graphene foam and functioning as flow field and gas diffusion layer
JP2004192950A (en) Solid polymer fuel cell and its manufacturing method
JP2009176610A (en) Porous body for gas diffusion layer, its manufacturing method, membrane-electrode assembly for fuel cell, and fuel cell
JP2006339018A (en) Gas diffusion layer for fuel cell and its manufacturing method
KR101728206B1 (en) Separator for fuel cell and fuel cell comprising the same
JP2007128671A (en) Gas diffusion electrode, film-electrode assembly and manufacturing method of the same, and solid polymer fuel cell
JP2006338939A (en) Electrolyte membrane-electrode assembly
JP2007095582A (en) Manufacturing method of membrane electrode assembly
JP2008010173A (en) Membrane/electrode assembly for fuel cell
KR102175009B1 (en) Membrane-electrode assembly for fuel cell, method for manufacturing of the same, and fuel cell comprising the same
JP2007012424A (en) Gas diffusion electrode, membrane-electrode joined body and its manufacturing method, and solid polymer fuel cell
JP2005032681A (en) Junction body of electrolyte film for fuel cell and electrode, as well as its manufacturing method
JP2005108770A (en) Manufacturing method of electrolyte membrane electrode joint body
JP2008027810A (en) Fuel cell, membrane-electrode assembly for fuel cell, and manufacturing method of fuel cell
JP5339261B2 (en) Fuel cell
JP2005222720A (en) Fuel cell
JP2006147522A (en) Manufacturing method for membrane electrode assembly, fuel cell and manufacturing method for conductive particle layer
JP2006120508A (en) Solid polymer fuel cell
JP2005243295A (en) Gas diffusion layer, and mea for fuel cell using the same
JP2010146765A (en) Assembly for fuel cell, fuel cell, and manufacturing method of them
JP2017037745A (en) Gas diffusion layer for battery, battery member, membrane electrode assembly, fuel cell, and method for producing gas diffusion layer for battery
JP2003303595A (en) Gas diffusion electrode for fuel cell
JP2010238534A (en) Membrane-electrode assembly for fuel cell, and method of manufacturing the same
JP2006318790A (en) Solid polymer type fuel cell, gas diffusion electrode therefor, and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131029