JP2010238377A - Spark plug - Google Patents

Spark plug Download PDF

Info

Publication number
JP2010238377A
JP2010238377A JP2009081862A JP2009081862A JP2010238377A JP 2010238377 A JP2010238377 A JP 2010238377A JP 2009081862 A JP2009081862 A JP 2009081862A JP 2009081862 A JP2009081862 A JP 2009081862A JP 2010238377 A JP2010238377 A JP 2010238377A
Authority
JP
Japan
Prior art keywords
ground electrode
electrode
spark plug
housing
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009081862A
Other languages
Japanese (ja)
Other versions
JP5208033B2 (en
Inventor
Shinichi Okabe
伸一 岡部
Ken Hashinashi
憲 端無
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2009081862A priority Critical patent/JP5208033B2/en
Publication of JP2010238377A publication Critical patent/JP2010238377A/en
Application granted granted Critical
Publication of JP5208033B2 publication Critical patent/JP5208033B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spark Plugs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spark plug capable of restraining heated-surface ignition due to overheating of a grounding electrode, and realizing stable ignitability to fuel-air mixture even in case of an internal combustion engine with strong in-cylinder air stream existing in a combustion chamber. <P>SOLUTION: In the spark plug 1 setting in protrusion a tip part 32 of a housing 30 exposed to an inside of the combustion chamber 400 so as to cover a tip part 21 of an insulator 20 in nearly ring-shaped and making at least a part of the outer periphery face a rectifying means for rectifying the in-cylinder air flowing in the combustion chamber 400 and guiding it in a desired direction, a tip 310 of the grounding electrode 31 opposed to a central electrode 10 arranged on a center axis C/L is to be decentered toward a base-end side of the housing 30 with a given angle of eccentricity θ<SB>OFS</SB>against the center axis C/L, and at the same time, the rectifying means is to make an outer periphery face of the tip part 32 of the housing 30 a part of a slanted face of a circular cone with one point on a linear line connecting a tip 101 of the central electrode 10 and the tip 310 of the grounding electrode 31 as a virtual vertex P. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、内燃機関の点火に用いられるスパークプラグに関するもので、特に燃焼室内に強力な筒内気流が発生する過給気混合燃焼機関に好適なものである。   The present invention relates to a spark plug used for ignition of an internal combustion engine, and is particularly suitable for a supercharged mixed combustion engine in which a strong in-cylinder airflow is generated in a combustion chamber.

従来、自動車エンジン等の内燃機関の点火には、長軸状に形成した中心電極と、その外周を覆う略筒状の絶縁碍子と、該絶縁碍子を覆う略筒状のハウジングと、該ハウジングに延設して上記中心電極に対して所定の放電ギャップを設けて対向する接地電極とを具備し、高電圧の印加により上記中心電極と上記接地電極との間に火花放電を発生させて点火を行うスパークプラグが広く用いられている。
近年、内燃機関の高出力化、小型化が進み、燃焼室内におけるバルブ占有面積が増大し、スパークプラグの搭載スペースが狭小化する傾向にある。また、燃焼室内に噴射された燃料と圧縮空気との混合状態を良好にして、さらなる燃費低減を図るべく、タンブル渦等の燃焼室内に発生する筒内気流を強化する傾向にあり、高過給気化に伴い燃焼室内の温度も高温化する傾向にある。
しかし、小型化により、中心電極とハウジングとの電気絶縁を確保する絶縁碍子の肉厚が薄くなると、絶縁碍子の耐電圧が不十分となる。このため、中心電極とハウジング下端面との間で放電が起こる、いわゆる横飛びと言われる現象を生じやすくなる虞がある。
一方、筒内気流の強化により着火性が低下するためスパークプラグにはより安定した着火を実現すべくより強力な火花放電が望まれる。
Conventionally, for ignition of an internal combustion engine such as an automobile engine, a center electrode formed in a long axis, a substantially cylindrical insulator covering the outer periphery thereof, a substantially cylindrical housing covering the insulator, A grounding electrode that extends and provides a predetermined discharge gap with respect to the center electrode and is opposed to the center electrode, and generates a spark discharge between the center electrode and the ground electrode by applying a high voltage to ignite. Spark plugs to perform are widely used.
In recent years, higher output and smaller size of internal combustion engines have progressed, the valve occupation area in the combustion chamber has increased, and the space for mounting the spark plug tends to be reduced. In addition, in order to improve the mixing state of the fuel injected into the combustion chamber and compressed air and to further reduce fuel consumption, the in-cylinder airflow generated in the combustion chamber such as tumble vortices tends to be strengthened. The temperature in the combustion chamber tends to increase with vaporization.
However, if the thickness of the insulator that secures electrical insulation between the center electrode and the housing is reduced due to downsizing, the withstand voltage of the insulator becomes insufficient. For this reason, there is a possibility that a phenomenon called discharge occurs, in which discharge occurs between the center electrode and the lower end surface of the housing.
On the other hand, since the ignitability is reduced due to the enhancement of the in-cylinder airflow, a stronger spark discharge is desired for the spark plug in order to realize more stable ignition.

特許文献1には、先端に高融点金属チップが固着された中心電極と、その外側を覆う軸状の絶縁体と、両端が開放する筒状に形成され、中心電極の外側に配置される主体金具と、その主体金具に基端側が結合されると共に速報に曲げ返されて側面が中心電極先端の前記高融点金属チップと対向し、該高融点金属チップとの間に火花ギャップを形成する接地電極とを備え、前記主体金具の外周面に取付けネジ部が形成されると共に、そのネジ部の外径と前記主体金具の開口端における絶縁体の厚さを特定の範囲とすることにより絶縁体の耐電圧を高くして横飛び発生を防止したスパークプラグについて開示されている。
また、特許文献2には、内燃機関に装着され、中心電極と、前記中心電極の間で放電火花を形成する接地電極を有し前記中心電極の外周に配置された円環状のハウジングと、前記中心電極と前記ハウジングとの間に設けられ前記中心電極と前記ハウジングとの電気的絶縁をなす絶縁碍子と、を備えた内燃機関用スパークプラグにおいて、前記ハウジングの端面部の外径面に、前記内燃機関の燃焼室内の混合気のタンブル渦気流を前記燃焼室の内部中央部方向へ制御する整流手段をなすテーパ面部を設けて、燃焼室内の混合気のタンブル渦気流の方向を整流手段によって安定化させると共に、放電火花の流れ方向を安定化させ、燃焼質内の強力な筒内気流に晒されても着火不良を起こすことなく良好な点火を実現できるスパークプラグが開示されている。
In Patent Document 1, a center electrode having a refractory metal tip fixed to the tip, a shaft-like insulator covering the outside thereof, and a main body formed in a cylindrical shape having both ends open and disposed outside the center electrode The metal base and the base metal side are joined to the metal shell and bent back to the bulletin so that the side faces the refractory metal tip at the tip of the center electrode and forms a spark gap with the refractory metal tip. An attachment screw portion is formed on the outer peripheral surface of the metal shell, and the insulator has an outer diameter and a thickness of the insulator at the opening end of the metal shell within a specific range. A spark plug is disclosed in which the withstand voltage is increased to prevent side jumping.
Patent Document 2 discloses an annular housing that is mounted on an internal combustion engine and has a center electrode and a ground electrode that forms a discharge spark between the center electrodes, and is disposed on the outer periphery of the center electrode. In the spark plug for an internal combustion engine provided with an insulator provided between a center electrode and the housing and electrically insulating the center electrode and the housing, the outer diameter surface of the end surface portion of the housing has the Provided with a tapered surface that forms a rectifier that controls the tumble vortex flow of the air-fuel mixture in the combustion chamber of the internal combustion engine toward the center of the interior of the combustion chamber. And a spark plug that can stabilize the flow direction of the discharge spark and realize good ignition without causing ignition failure even when exposed to a strong in-cylinder airflow in the combustion quality. To have.

特許文献1にあるような従来のスパークプラグでは、燃焼室内に長く突出する中心電極の耐久性を高めるべく、中心電極の先端にIr等の高融点金属を用いて所定の外径範囲に形成した耐熱性の高い放電用チップが形成されている。その結果、中心電極を細くすることが可能となりその分絶縁碍子の肉厚を増加させたり、ハウジングと絶縁碍子先端との間隙を広く設けたりして、火花の横飛びの抑制を図っている。また、中心電極が細径となっているので熱引きが低下し、着火性の向上が期待される。しかし、その反面、接地電極の表面温度も高くなり易い。
このため、高負荷運転域においては、エンジン制御装置からの点火信号に従って中心電極と接地電極との間に高電圧が印加されたときに両電極間に発生する火花放電ではなく、温度の高くなった接地電極の表面で混合気が着火される過早熱面着火(プレイグニッション、又は、プレイグとも称される。)と呼ばれる現象が起こりやすくなる虞がある。
また、特許文献2にあるような従来のスパークプラグでは、実際のエンジンにスパークプラグを取り付ける際に、燃焼室内に発生する筒内気流の流れ方向に対して必ずしも一定の方向を維持して取り付けられるわけではない。
このため、接地電極が筒内気流の上流側に位置する場合と下流側に位置する場合とでは、高温化した接地電極に接触する混合気の流速に大きな差が生じて、プレイグが発生する場合と発生しない場合とがあり、点火装置としての信頼性が低下する虞があることが判明した。
In the conventional spark plug as disclosed in Patent Document 1, in order to increase the durability of the center electrode that protrudes long into the combustion chamber, the tip of the center electrode is formed in a predetermined outer diameter range using a refractory metal such as Ir. A discharge chip having high heat resistance is formed. As a result, the center electrode can be made thinner, and accordingly, the thickness of the insulator is increased, or the gap between the housing and the insulator tip is widened to suppress the horizontal jump of the spark. In addition, since the center electrode has a small diameter, heat absorption is reduced, and improvement in ignitability is expected. However, the surface temperature of the ground electrode tends to increase.
For this reason, in a high-load operation region, when a high voltage is applied between the center electrode and the ground electrode in accordance with an ignition signal from the engine control device, the temperature rises rather than the spark discharge generated between both electrodes. There is a possibility that a phenomenon called pre-heated surface ignition (also called preignition or preg) is likely to occur.
Further, in the conventional spark plug as disclosed in Patent Document 2, when the spark plug is attached to an actual engine, the spark plug is always attached while maintaining a constant direction with respect to the flow direction of the in-cylinder airflow generated in the combustion chamber. Do not mean.
For this reason, when the ground electrode is located upstream of the in-cylinder airflow and when it is located downstream, there is a large difference in the flow velocity of the air-fuel mixture that contacts the heated ground electrode, and plague occurs. It has been found that the reliability as an ignition device may be reduced.

本発明は、かかる実情に鑑みてなされたものであり、高負荷運転域において接地電極の過熱による過早熱面着火を抑制すると共に低負荷運転域又は中負荷運転域における希薄燃焼や燃焼室内に強力な筒内気流が存在する場合などの、着火性の低い状態においても安定した混合気への着火性を実現する信頼性の高いスパークプラグを提供する。   The present invention has been made in view of such circumstances, and suppresses preheated surface ignition due to overheating of the ground electrode in a high load operation region, and in lean combustion or a combustion chamber in a low load operation region or a medium load operation region. Provided is a highly reliable spark plug that realizes stable ignitability of an air-fuel mixture even in a state of low ignitability such as when a strong in-cylinder airflow exists.

第1の発明は、内燃機関に装着され、長軸状に形成した中心電極と、その外周を覆う略筒状の絶縁碍子と、該絶縁碍子を覆う略筒状のハウジングと、該ハウジングに延設して上記中心電極に対して所定の放電ギャップを設けて対向する接地電極とを具備し、上記中心電極と上記接地電極との間に高電圧を印加して火花放電を発生させて上記内燃機関の点火を行うスパークプラグであって、上記内燃機関の燃焼室内に露出する上記ハウジングの先端部を上記絶縁碍子の先端部を略環状に覆うように突設しつつ、その外周面の少なくとも一部を上記燃焼室内に流れる筒内気流を整流して所望の方向へ案内する整流手段となしたスパークプラグにおいて、該スパークプラグの中心軸上に配設せしめた上記中心電極に対向する上記接地電極の先端を上記中心軸に対して所定の偏心角θOFSをもって上記ハウジングの基端側に偏心せしめると共に、上記整流手段は、上記ハウジングの先端部の外周面において、少なくとも、上記接地電極の接続された接地電極側斜面の傾斜角θを、上記接地電極の接続されていない反接地電極側斜面の傾斜角θよりも大きい角度となしたことを特徴とする。(請求項1)。 According to a first aspect of the present invention, there is provided a central electrode mounted on an internal combustion engine and formed in a long axis shape, a substantially cylindrical insulator covering the outer periphery thereof, a substantially cylindrical housing covering the insulator, and extending to the housing. And a grounding electrode facing the center electrode with a predetermined discharge gap, and applying a high voltage between the center electrode and the ground electrode to generate a spark discharge to generate the internal combustion engine. A spark plug for igniting an engine, wherein a front end portion of the housing exposed in a combustion chamber of the internal combustion engine protrudes so as to cover a front end portion of the insulator in a substantially annular shape, and at least one of outer peripheral surfaces thereof. In the spark plug as a rectifying means for rectifying the in-cylinder airflow flowing in the combustion chamber and guiding it in a desired direction, the ground electrode facing the central electrode disposed on the central axis of the spark plug Up the tip of With a predetermined eccentricity angle theta OFS with respect to the central axis together with allowed to eccentrically on the base end side of the housing, the rectifier means is the outer peripheral surface of the distal end portion of the housing, at least, it connects the ground electrode has been grounded electrode side The slope angle θ 1 of the slope is larger than the slope angle θ 2 of the slope of the anti-ground electrode side slope not connected to the ground electrode. (Claim 1).

第1の発明によれば、上記接地電極の先端が上記ハウジング側へ近づくように配設されているので、従来の中心電極の中心軸上に接地電極の先端が位置する場合に比べ相対的に接地電極の表面温度が低くなる。加えて、上記内燃機関に対してスパークプラグの取付け状態の如何によって、上記接地電極が筒内気流に対して上流側となった場合には、相対的に大きな傾斜角θを有する上記接地電極側傾斜面に沿って、上記接地電極の先端部に到達し、上記接地電極が筒内気流に対して下流側となった場合には、相対的に小さな傾斜角θを有する上記反接地電極側傾斜面に沿って、上記接地電極の先端部に到達する。
上記接地電極が上流側となる場合には、傾斜角θが相対的に大きくても上記整流手段外周面から上記接地電極先端までの距離が相対的に短いので上記筒内気流の流速が大幅に減速されることがなく、上記接地電極が下流側となる場合には、上記整流手段外周面から上記接地電極先端までの距離が相対的に長くても傾斜角θが相対的に小さいので上記筒内気流の流速が大幅に減速されることがない。したがって、点火プラグの取付け状態に関わらず、筒内気流が接地電極先端に向かうように整流される。
このため、低負荷運転域や中負荷運転域では、希薄な混合気が常に火花放電の発生する上記中心電極と上記接地電極との間に送られるので安定した着火が実現できる。また、高負荷運転域では、強い筒内気流が比較的高い流速を維持して上記接地電極表面上を通過するので、上記接地電極の表面が比較的高い温度であっても、熱面着火することなく、エンジン制御装置から適切な点火時期に発信される点火信号に従って発生する火花放電によってのみ点火される。
したがって、本発明によれば、上記内燃機関への取付け状態によらず、常に過早熱面着火を抑制すると共に安定した着火を実現可能なスパークプラグを提供できる。
According to the first invention, since the tip of the ground electrode is disposed so as to approach the housing side, the tip of the ground electrode is relatively located on the center axis of the conventional center electrode. The surface temperature of the ground electrode is lowered. In addition, when the ground electrode is on the upstream side with respect to the in-cylinder airflow depending on the state of attachment of the spark plug to the internal combustion engine, the ground electrode has a relatively large inclination angle θ 1. The anti-ground electrode having a relatively small inclination angle θ 2 when reaching the tip of the ground electrode along the side inclined surface and the ground electrode is downstream of the in-cylinder airflow. Along the side inclined surface, the tip of the ground electrode is reached.
When the ground electrode is upstream, the distance be the inclination angle theta 1 is relatively large from the rectifying means outer peripheral surface to the ground electrode tip is relatively short flow rate of the in-cylinder air flow greatly without being deceleration in the case where the ground electrode is downstream, since the rectifying means inclined angle theta 2 even if the distance is relatively long from the outer peripheral surface to the ground electrode tip is relatively small The flow rate of the in-cylinder airflow is not significantly reduced. Therefore, the in-cylinder airflow is rectified so as to go to the tip of the ground electrode regardless of the state of attachment of the spark plug.
For this reason, in a low-load operation region or a medium-load operation region, a lean mixture is always sent between the center electrode where the spark discharge is generated and the ground electrode, so that stable ignition can be realized. Further, in a high load operation region, a strong in-cylinder airflow maintains a relatively high flow velocity and passes over the surface of the ground electrode, so that even when the surface of the ground electrode is at a relatively high temperature, hot surface ignition occurs. Without ignition, ignition is performed only by a spark discharge generated in accordance with an ignition signal transmitted at an appropriate ignition timing from the engine control device.
Therefore, according to the present invention, it is possible to provide a spark plug capable of always suppressing preheated surface ignition and realizing stable ignition regardless of the state of attachment to the internal combustion engine.

第2の発明は、上記ハウジングの先端部の外周面を、上記中心電極の先端と上記接地電極の先端とを結ぶ直線上の一点を仮想頂点とする円錐の斜面の一部となしたことを特徴とする(請求項2)。   According to a second aspect of the present invention, the outer peripheral surface of the front end portion of the housing is a part of a conical slope whose virtual vertex is one point on a straight line connecting the front end of the center electrode and the front end of the ground electrode. It is characterized (claim 2).

本発明によれば、上記スパークプラグの上記接地電極が上記燃焼室内を流れる筒内気流に対して任意の取付け位置においても、上記接地電極が上記筒内気流に対して上流側に取り付けられていようと下流側に取り付けられていようと、上記筒内気流は上記仮想頂点に向かって流れるように整流されるので、大幅に流速を低下させることなく整流可能となる。したがって、強力な筒内気流が発生する内燃機関においても優れた着火性を発揮すると共に、過早熱面着火を抑制する信頼性の高いスパークプラグが実現できる。   According to the present invention, the ground electrode of the spark plug may be attached upstream of the in-cylinder airflow even at any attachment position with respect to the in-cylinder airflow flowing through the combustion chamber. Regardless of whether it is attached to the downstream side, the in-cylinder airflow is rectified so as to flow toward the virtual apex, so that the rectification can be performed without significantly reducing the flow velocity. Therefore, it is possible to realize a highly reliable spark plug that exhibits excellent ignitability even in an internal combustion engine in which a strong in-cylinder airflow is generated and that suppresses preheated surface ignition.

第3の発明は、上記接地電極は、上記ハウジングに接続された接地電極基端部から上記燃焼室内に伸び、略L字形の屈曲部を設けて上記接地電極の先端側を上記中心電極に対向せしめたことを特徴とする。(請求項3)。   According to a third aspect of the invention, the ground electrode extends from the ground electrode base end connected to the housing into the combustion chamber, and is provided with a substantially L-shaped bent portion so that the tip end side of the ground electrode faces the center electrode. It is characterized by being damped. (Claim 3).

本発明によれば、上記中心電極と上記接地電極との間に形成される空間が上記屈曲部によって広がり、両電極間に生じた火花放電により発生した容積的に小さく、低いエネルギ状態の初期火炎核が上記接地電極の上記基端部に接触して該基端部に熱エネルギを奪われ消炎されることなく、ある程度火炎成長した状態となってから上記屈曲部に接触するので、安定した状態で火炎成長するので失火の虞がない。したがって、さらに信頼性の高いスパークプラグを提供できる。   According to the present invention, the space formed between the center electrode and the ground electrode is widened by the bent portion, and the volumetric and low energy initial flame generated by the spark discharge generated between the two electrodes. Since the nucleus contacts the base end of the ground electrode and is brought into a state of flame growth to some extent without being deprived of heat energy and extinguished by the base end, and then comes into contact with the bent portion, a stable state There is no risk of misfire because it grows in flames. Therefore, a more reliable spark plug can be provided.

(a)は、内燃機関に装着された状態における本発明のスパークプラグの概要を示す半断面図、(b)は、本発明の要部を示す斜視図。(A) is a half sectional view showing an outline of a spark plug of the present invention in a state where it is mounted on an internal combustion engine, and (b) is a perspective view showing a main part of the present invention. (a)は、本発明のスパークプラグの下面図、(b)は、要部拡大断面図、(c)は、本発明の要部であるハウジング下端面の傾斜角の変化を示す特性図。(A) is a bottom view of the spark plug of the present invention, (b) is an enlarged cross-sectional view of the main part, and (c) is a characteristic diagram showing a change in the inclination angle of the lower end surface of the housing, which is the main part of the present invention. (a)、(b)、(c)の異なる取付け状態における本発明のスパークプラグの効果を示す要部拡大図。The principal part enlarged view which shows the effect of the spark plug of this invention in the attachment state from which (a), (b), (c) differs. 本発明のスパークプラグにおける着火性向上に対する効果を(a)から(C)の順を追って示す説明図。Explanatory drawing which shows the effect with respect to the ignitability improvement in the spark plug of this invention later on in order of (a) to (C). (a)から(d)は、比較例として示す本発明の要件の一部を欠くスパークプラグの要部拡大図。(A)-(d) is a principal part enlarged view of the spark plug which lacks a part of requirement of this invention shown as a comparative example. (a)から(e)は、本発明の実施例と比較例との効果の違いを示す要部模式図であり、左側には、接地電極が筒内気流の下流側に配設された場合を示し、右側には、接地電極が筒内気流の上流側に配設された場合を示す。(A)-(e) is a principal part schematic diagram which shows the difference of the effect of the Example of this invention, and a comparative example, and the case where the ground electrode is arrange | positioned in the downstream of the in-cylinder airflow on the left side The right side shows a case where the ground electrode is disposed on the upstream side of the in-cylinder airflow. (a)は、本発明のスパークプラグの熱面着火発生率に対する効果を比較例と共に示す特性図、(b)は、本発明のスパークプラグの燃焼限界空燃比に対する効果を比較例と共に示す特性図。(A) is a characteristic diagram showing the effect on the hot surface ignition occurrence rate of the spark plug of the present invention together with a comparative example, and (b) is a characteristic diagram showing the effect on the combustion limit air-fuel ratio of the spark plug of the present invention together with a comparative example. . (a)は、本発明のスパークプラグの傾斜面の変形許容範囲を示す要部拡大図、(b)は、本発明のスパークプラグの接地電極位置の変形許容範囲を示す要部拡大図。(A) is a principal part enlarged view which shows the deformation | transformation tolerance range of the inclined surface of the spark plug of this invention, (b) is a principal part enlarged view which shows the deformation | transformation tolerance range of the ground electrode position of the spark plug of this invention. (a)は、本発明のスパークプラグの変形例を示す要部拡大図、(b)は、本発明のスパークプラグの他の変形例を示す要部拡大図。(A) is a principal part enlarged view which shows the modification of the spark plug of this invention, (b) is a principal part enlarged view which shows the other modification of the spark plug of this invention. 発明のスパークプラグの、また、別の変形例を示す要部拡大図。The principal part enlarged view which shows another modification of the spark plug of invention. 本発明のスパークプラグの、また、別の変形例を示し、(a)は下面図、(b)はその斜視図。The another example of a spark plug of the present invention is shown, (a) is a bottom view and (b) is the perspective view.

本発明は、自動車エンジン等の内燃機関の点火に用いられるスパークプラグであって特に、燃焼室内にタンブル渦等の強い筒内気流が発生する過給気混合内燃機関の点火に用いられ、過早熱面着火(プレイグニッション)の抑制に優れたスパークプラグである。なお、以下の説明において図の上方を基端側、図の下方を先端側又は燃焼室側と称す。   The present invention is a spark plug used for ignition of an internal combustion engine such as an automobile engine, and particularly used for ignition of a supercharged air-fuel mixture internal combustion engine in which a strong in-cylinder airflow such as a tumble vortex is generated in a combustion chamber. This spark plug is excellent in suppressing hot surface ignition (pre-ignition). In the following description, the upper side of the figure is referred to as the base end side, and the lower side of the figure is referred to as the front end side or the combustion chamber side.

本発明の第1の実施形態におけるスパークプラグ1の概要について、図1を参照して説明する。なお、図1(a)は、内燃機関40に装着された状態におけるスパークプラグ1の半断面図、(b)は、本発明の要部を示すスパークプラグ1の下面斜視図である。
内燃機関40は、エンジンヘッド41と図略の略筒状のシリンダと該シリンダ内に可動に収納されたピストン42とによって構成され、エンジンヘッド41の内壁とシリンダの内周壁とピストン42の頂面とによって燃焼室400が区画されている。エンジンヘッド41には吸気バルブ411によって開閉される吸気筒410と排気バルブ421によって開閉される排気筒420とが形成され、図略の燃料噴射装置から燃焼室400内に噴射された燃料と吸気筒410から燃焼室400内に導入された空気をピストン42によって圧縮し、所定の点火時期に本発明のスパークプラグ1によって混合気の点火を行う。
An outline of the spark plug 1 according to the first embodiment of the present invention will be described with reference to FIG. 1A is a half sectional view of the spark plug 1 in a state where it is mounted on the internal combustion engine 40, and FIG. 1B is a bottom perspective view of the spark plug 1 showing the main part of the present invention.
The internal combustion engine 40 includes an engine head 41, a substantially cylindrical cylinder (not shown), and a piston 42 movably housed in the cylinder. The internal wall of the engine head 41, the inner peripheral wall of the cylinder, and the top surface of the piston 42. And the combustion chamber 400 is partitioned. The engine head 41 is formed with an intake cylinder 410 that is opened and closed by an intake valve 411 and an exhaust cylinder 420 that is opened and closed by an exhaust valve 421, and fuel injected from the fuel injection device (not shown) into the combustion chamber 400 and the intake cylinder The air introduced from 410 into the combustion chamber 400 is compressed by the piston 42, and the air-fuel mixture is ignited by the spark plug 1 of the present invention at a predetermined ignition timing.

スパークプラグ1は、内燃機関40のエンジンヘッド41に穿設されたプラグホール450内に載置され、先端部を機関燃焼室400内に露出した状態で固定されている。
スパークプラグ1は、略筒状に形成された絶縁碍子20と、絶縁碍子20に設けた軸孔に挿入固定された略長軸状の中心電極10と、絶縁碍子20をその内部に収納しつつ内燃機関40のシリンダヘッド41に固定するハウジング30と、ハウジング30の先端に延設して設けられた接地電極31とによって構成されている。
The spark plug 1 is placed in a plug hole 450 formed in the engine head 41 of the internal combustion engine 40, and is fixed in a state where a tip end portion is exposed in the engine combustion chamber 400.
The spark plug 1 accommodates an insulator 20 formed in a substantially cylindrical shape, a substantially long axis center electrode 10 inserted and fixed in a shaft hole provided in the insulator 20, and the insulator 20 therein. The housing 30 is fixed to the cylinder head 41 of the internal combustion engine 40, and the ground electrode 31 is provided to extend from the tip of the housing 30.

中心電極10は、例えば内材としてCu等の熱伝導性に優れた金属材料が用いられ、外材としてNi基合金等の耐熱性及び耐食性に優れた金属材料が用いられて長軸状に形成されている。中心電極10は、その先端面を絶縁碍子20から燃焼室400内に露出するように設けられている。さらに中心電極10先端面には、耐熱性の高いイリジウム合金や特殊なNi合金からなる中心電極放電チップ101が燃焼室400側に向かって突出して設けられている。
中心電極10の基端側には、絶縁碍子20の軸孔内部において、中心電極11と導電性のガラスシールを介して電気的に接続された長軸状のステム11が設けられている。さらにその基端側には、碍子頭部25から露出し、外部の図略の点火装置に接続される中心電極端子部12が形成されている。
The center electrode 10 is formed in a long axis shape using, for example, a metal material excellent in thermal conductivity such as Cu as an inner material and using a metal material excellent in heat resistance and corrosion resistance such as a Ni-based alloy as an outer material. ing. The center electrode 10 is provided so that the front end surface thereof is exposed from the insulator 20 into the combustion chamber 400. Further, a center electrode discharge tip 101 made of an iridium alloy having high heat resistance or a special Ni alloy is provided on the front end surface of the center electrode 10 so as to protrude toward the combustion chamber 400 side.
On the proximal end side of the center electrode 10, a long-axis stem 11 that is electrically connected to the center electrode 11 via a conductive glass seal is provided inside the shaft hole of the insulator 20. Further, on the base end side, a center electrode terminal portion 12 is formed which is exposed from the insulator head 25 and connected to an external ignition device (not shown).

絶縁碍子20は、高純度アルミナ等の耐熱性、絶縁性に優れたセラミックス材料を用いて略筒状に形成されている。絶縁碍子20の軸孔には略長軸状に形成された中心電極10及びステム11が挿入・固定されている。絶縁碍子20の中腹には径大となる係止部22、23、24が形成され、ハウジング30の内側に設けられたハウジング係止部35に係止されると共に、封止部材を介してハウジング加締め部36によって加締め固定されている。
絶縁碍子20の先端部21は燃焼室400に露出しつつ、ハウジング30の先端に設けられた本発明の要部である略環状に形成された整流部32によってその外側が取り囲まれている。
絶縁碍子20の基端側は、ハウジング30の加締め部36から露出する碍子頭部25が設けられている。碍子頭部25は、コルゲート状に形成され中心電極端子部12とハウジング30との表面距離を長くして沿面リークを防止している。
The insulator 20 is formed in a substantially cylindrical shape using a ceramic material excellent in heat resistance and insulation such as high-purity alumina. A central electrode 10 and a stem 11 formed in a substantially long axis shape are inserted and fixed in the shaft hole of the insulator 20. Engagement portions 22, 23, 24 having a large diameter are formed in the middle of the insulator 20, and are engaged with a housing engagement portion 35 provided inside the housing 30. It is fixed by caulking by a caulking portion 36.
The front end portion 21 of the insulator 20 is exposed to the combustion chamber 400, and the outside thereof is surrounded by a rectifying portion 32 formed in a substantially annular shape, which is a main portion of the present invention, provided at the front end of the housing 30.
On the base end side of the insulator 20, an insulator head 25 that is exposed from the caulking portion 36 of the housing 30 is provided. The insulator head 25 is formed in a corrugated shape and increases the surface distance between the center electrode terminal portion 12 and the housing 30 to prevent creeping leakage.

ハウジング30は、例えば、導電性の低炭素鋼等の高耐熱性金属材料を用いて略筒状に形成されている。ハウジング30の先端側は中心電極10の側面に絶縁体20を介して対向する側面電極33を形成している。側面電極33の外周面には、エンジンヘッド41に設けられたねじ穴に固定するためのネジ部34が設けられている。ネジ部34の先端側にはエンジンヘッド41の内壁を基準面として燃焼室400内に露出する略環状のシュラウド部32が突設されている。シュラウド部32の外周面320は本発明の要部であり筒内気流整流手段として、中心電極放電チップ101の先端と接地電極放電チップ310の先端とを結ぶ直線上の点を仮想頂点Pとする円錐の斜面の一部を形成している。
ハウジング30の中腹内周は先端側に向かって径小となる係止部35、36が形成され、内側に絶縁碍子20の係止部22、23が係止され、基端側には加締め部36が形成され、封止部材を介して絶縁碍子20の係止部24を覆うように加締め固定している。
ハウジング30の基端側外周にはネジ部34を締めつけるためのナット部37が形成されている。ネジ部34は、エンジンヘッド41に設けられたネジ穴にガスケット39を介して螺結される。
The housing 30 is formed in a substantially cylindrical shape using a high heat-resistant metal material such as conductive low carbon steel. At the front end side of the housing 30, a side electrode 33 is formed opposite to the side surface of the center electrode 10 with the insulator 20 interposed therebetween. On the outer peripheral surface of the side electrode 33, a screw portion 34 for fixing to a screw hole provided in the engine head 41 is provided. A substantially annular shroud portion 32 that protrudes into the combustion chamber 400 with the inner wall of the engine head 41 as a reference plane is projected from the distal end side of the screw portion 34. The outer peripheral surface 320 of the shroud portion 32 is a main part of the present invention, and serves as an in-cylinder airflow rectifying means, and a point on a straight line connecting the tip of the center electrode discharge tip 101 and the tip of the ground electrode discharge tip 310 is a virtual vertex P. It forms part of the conical slope.
Locking portions 35 and 36 whose diameter decreases toward the distal end side are formed on the inner circumference of the housing 30, and the locking portions 22 and 23 of the insulator 20 are locked on the inner side, and caulking is performed on the proximal end side A portion 36 is formed and fixed by caulking so as to cover the locking portion 24 of the insulator 20 via a sealing member.
A nut portion 37 for tightening the screw portion 34 is formed on the outer periphery of the base end side of the housing 30. The screw portion 34 is screwed into a screw hole provided in the engine head 41 via a gasket 39.

ハウジング30のシュラウド部32に沿設して、接地電極31が形成されている。接地電極31は、例えばNiを主成分とするNi基合金等を用いて断面略角柱形状に形成されている。
接地電極31は、燃焼室400側に突出しつつ略L字状に形成され、接地電極放電チップ310の先端と中心電極放電チップ101の先端とを結ぶ直線が中心電極10の中心軸C/Lに対して所定の偏心角度θOFSをなすように形成されている。、また、火花放電ギャップGの大きさは、例えば1mm程度にすることができる。なお、中心電極放電チップ101及び接地電極放電チップ310は、例えば、Ir(イリジウム)合金やPt(白金)合金等からなり、それぞれ中心電極11及び接地電極31の先端の中心電極101に対向する表面上にレーザ溶接や抵抗溶接等にて接合されている。
A ground electrode 31 is formed along the shroud portion 32 of the housing 30. The ground electrode 31 is formed in a substantially prismatic cross section using, for example, a Ni-based alloy containing Ni as a main component.
The ground electrode 31 is formed in a substantially L shape while projecting toward the combustion chamber 400, and a straight line connecting the tip of the ground electrode discharge tip 310 and the tip of the center electrode discharge tip 101 is the center axis C / L of the center electrode 10. On the other hand, it is formed so as to form a predetermined eccentric angle θ OFS . Further, the size of the spark discharge gap G can be set to about 1 mm, for example. The center electrode discharge chip 101 and the ground electrode discharge chip 310 are made of, for example, an Ir (iridium) alloy, a Pt (platinum) alloy, or the like, and are surfaces facing the center electrode 101 at the tips of the center electrode 11 and the ground electrode 31, respectively. It is joined to the top by laser welding or resistance welding.

図2を参照して、本発明の要部であるシュラウド部32及び接地電極31について詳述する。図2(a)は、シュラウド部32及び接地電極31を燃焼室400側から見た下面図であり、(b)は、その断面図、(c)は、シュラウド部32の斜面の傾斜角320(ψ)の変化を示す特性図である。
シュラウド部32は、図2(b)中に太い一点破線で示したエンジンヘッド41の内壁を基準面とし、先端縁EDG32までの長さLだけ燃焼室400内に突出している。
シュラウド部32の傾斜面は図2(b)中に太い点線で示した仮想頂点Pを頂点とする円錐CON32の斜面の一部をなすように形成されている。
接地電極31の接続されている側の傾斜面を接地電極側傾斜面321として、接地電極31の接続された位置に対向する側の傾斜面を反接地電極側傾斜面322とし、接地電極側傾斜面321における先端縁EDG32との傾斜角度を接地電極側傾斜角θ1とし、反接地電極側傾斜面322における先端縁EDG32との傾斜角度を反接地電極側傾斜角θ2とし、接地電極側傾斜面321を原点として、先端縁EDG32の円周方向の任意の角度ψにおける仮想頂点Pに向かう傾斜角320(ψ)とすると、傾斜角320(ψ)は、図2(c)に示すように、接地電極側傾斜角θから反接地電極側傾斜角θまで直線的に変化するように形成されている。
また、図2(b)に示すように、接地電極31は、基端部313がハウジング30のシュラウド部32の傾斜面322に溶接などにより固定され、燃焼室400内に突出するように伸び、さらに中間部312において中心電極10に設けた中心電極放電チップ101に向かうように、曲線状、又は、略L字状に曲げられている。
接地電極31の先端側で中心電極放電チップ101に対向する表面311には、中心電極放電チップ101と所定の放電ギャップGを隔てて中心電極放電チップ101に向かって突出する接地電極放電チップ310が設けられている。
接地電極31の先端位置は、従来のように中心電極10の中心線C/L上で接地電極31の先端側表面311が中心電極10に対向するのではなく、接地電極放電チップ310の先端と中心電極放電チップ101の先端とを結ぶ直線が中心電極10の中心軸C/Lに対して所定の偏心角度θOFSをなすように形成されている。
With reference to FIG. 2, the shroud part 32 and the ground electrode 31 which are the principal parts of this invention are explained in full detail. 2A is a bottom view of the shroud portion 32 and the ground electrode 31 as viewed from the combustion chamber 400 side, FIG. 2B is a sectional view thereof, and FIG. 2C is an inclination angle 320 of the inclined surface of the shroud portion 32. It is a characteristic view which shows the change of ((psi)).
The shroud portion 32 projects into the combustion chamber 400 by a length L up to the leading edge EDG 32 with the inner wall of the engine head 41 indicated by a thick dashed line in FIG.
The inclined surface of the shroud portion 32 is formed so as to form a part of the inclined surface of the cone CON 32 having the virtual vertex P indicated by a thick dotted line in FIG.
The inclined surface on the side to which the ground electrode 31 is connected is the ground electrode side inclined surface 321, the inclined surface on the side facing the position to which the ground electrode 31 is connected is the anti-ground electrode side inclined surface 322, and the ground electrode side inclined surface is The inclination angle of the surface 321 with the tip edge EDG 32 is the ground electrode side inclination angle θ 1, and the inclination angle of the anti-ground electrode side inclination surface 322 with the tip edge EDG 32 is the anti-ground electrode side inclination angle θ 2. Assuming that the inclination angle 320 (ψ) toward the virtual vertex P at an arbitrary angle ψ in the circumferential direction of the tip edge EDG 32 with the side inclined surface 321 as the origin, the inclination angle 320 (ψ) is shown in FIG. As shown, it is formed so as to change linearly from the ground electrode side inclination angle θ 1 to the anti-ground electrode side inclination angle θ 2 .
Further, as shown in FIG. 2B, the ground electrode 31 has a base end portion 313 that is fixed to the inclined surface 322 of the shroud portion 32 of the housing 30 by welding or the like, and extends so as to protrude into the combustion chamber 400. Further, the intermediate portion 312 is bent into a curved shape or a substantially L shape so as to go toward the center electrode discharge tip 101 provided on the center electrode 10.
On the surface 311 facing the center electrode discharge chip 101 on the front end side of the ground electrode 31, a ground electrode discharge chip 310 protruding toward the center electrode discharge chip 101 with a predetermined discharge gap G from the center electrode discharge chip 101 is provided. Is provided.
The tip position of the ground electrode 31 is not the tip side surface 311 of the ground electrode 31 facing the center electrode 10 on the center line C / L of the center electrode 10 as in the prior art, but the tip position of the ground electrode discharge chip 310. A straight line connecting the tip of the center electrode discharge chip 101 is formed so as to form a predetermined eccentric angle θ OFS with respect to the center axis C / L of the center electrode 10.

本発明の効果について、図3及び図4を参照して説明する。図3は、接地電極31の表面温度分布と燃焼室400内に流れる筒内気流の状態を模式的に示し、(a)は、接地電極31が筒内気流TMBに対して下流側(EX側)に取り付けられた場合を示し、(b)は、接地電極31が筒内気流TMBを側面に受ける位置に取り付けられた場合を示し、(c)は、接地電極31が筒内気流TMBの上流側(IN側)に取り付けられた場合を示す。図4は、火花放電の発生から火炎の成長する様子を(a)から(c)の順を追って模式的に示したものである。   The effects of the present invention will be described with reference to FIGS. FIG. 3 schematically shows the surface temperature distribution of the ground electrode 31 and the state of the in-cylinder airflow flowing in the combustion chamber 400. FIG. 3A shows the downstream side (EX side) of the ground electrode 31 with respect to the in-cylinder airflow TMB. (B) shows a case where the ground electrode 31 is attached at a position where the in-cylinder airflow TMB is received on the side surface, and (c) shows an upstream of the in-cylinder airflow TMB. The case where it is attached to the side (IN side) is shown. FIG. 4 schematically shows how a flame grows from the occurrence of spark discharge in the order of (a) to (c).

本発明の基本構成として、接地電極31の先端が基端側にオフセットされているので、燃焼室400内への突出長さが比較的短くなるため接地電極の表面の温度は従来よりも低くなる。
加えて、図3(a)に示すように、接地電極31が筒内気流TMBの下流側(EX側)となった場合には、筒内気流TMBが反接地電極傾斜面322によって仮想頂点Pに向かって緩やかに方向を変更され整流されるので、流速をほとんど失うことなく、表面温度の最も高い接地電極31の先端側に接触する。したがって、高負荷運転域において、比較的接地電極の表面温度が高くなっても、混合気の流速が高いので、早期熱面着火を生じる虞がない。
また、(b)に示すように、接地電極31が側面方向から筒内気流TMBが当たる場合においても、筒内気流TMBが傾斜面323によって仮想頂点Pに向かって緩やかに方向を変更され整流されるので、流速をほとんど失うことなく、表面温度の最も高い接地電極31の先端側に接触する。したがって、高負荷運転域において、比較的接地電極の表面温度が高くなっても、混合気の流速が高いので、過早熱面着火を生じる虞がない。
さらに、(c)に示すように、接地電極31が筒内気流TMBに上流側(IN側)となった場合には、高い流速の筒内気流TMBが接地電極31に衝突すると共に、接地電極31の基端部313の周囲を流れる筒内気流TMBは、接地電極側斜面321によって仮想頂点Pに向かって緩やかに方向を変更され整流されるので、流速をほとんど失うことなく、表面温度の最も高い接地電極31の先端側に接触する。したがって、高負荷運転域において、比較的接地電極の表面温度が高くなっても、混合気の流速が高いので、過早熱面着火を生じる虞がない。
したがって、本発明によれば、スパークプラグ1の取付け方向によらず、常に、筒内気流が高い流速を維持した状態で仮想頂点Pに導かれ、高い流速を保った状態で最も温度の高い接地電極31の先端表面に到達するので過早熱面着火を生じ難くなる。
As the basic configuration of the present invention, since the tip of the ground electrode 31 is offset to the base end side, the protruding length into the combustion chamber 400 becomes relatively short, so that the temperature of the surface of the ground electrode becomes lower than the conventional one. .
In addition, as shown in FIG. 3A, when the ground electrode 31 is on the downstream side (EX side) of the in-cylinder airflow TMB, the in-cylinder airflow TMB is caused by the anti-grounding electrode inclined surface 322 to generate a virtual vertex P. Since the direction is gradually changed and rectified, the contact is made with the tip side of the ground electrode 31 having the highest surface temperature without almost losing the flow velocity. Therefore, even if the surface temperature of the ground electrode is relatively high in the high-load operation region, the air-fuel mixture has a high flow velocity, so there is no possibility of causing early hot surface ignition.
Further, as shown in (b), even when the in-cylinder airflow TMB hits the ground electrode 31 from the side surface direction, the in-cylinder airflow TMB is gradually changed in direction toward the virtual vertex P by the inclined surface 323 and rectified. Therefore, it contacts the front end side of the ground electrode 31 having the highest surface temperature without losing the flow velocity. Therefore, even if the surface temperature of the ground electrode becomes relatively high in the high load operation region, the flow rate of the air-fuel mixture is high, so there is no possibility of causing preheated surface ignition.
Further, as shown in (c), when the ground electrode 31 is on the upstream side (IN side) of the in-cylinder airflow TMB, the in-cylinder airflow TMB with a high flow velocity collides with the ground electrode 31 and the ground electrode Since the in-cylinder airflow TMB flowing around the base end portion 313 of the 31 is gradually rectified and rectified toward the virtual vertex P by the ground electrode side inclined surface 321, the surface temperature is the highest without almost losing the flow velocity. It contacts the tip side of the high ground electrode 31. Therefore, even if the surface temperature of the ground electrode becomes relatively high in the high load operation region, the flow rate of the air-fuel mixture is high, so there is no possibility of causing preheated surface ignition.
Therefore, according to the present invention, regardless of the direction in which the spark plug 1 is attached, the in-cylinder airflow is always guided to the virtual vertex P while maintaining a high flow velocity, and the highest temperature grounding is maintained while maintaining the high flow velocity. Since it reaches the tip surface of the electrode 31, it is difficult to cause preheated surface ignition.

本発明の着火性向上に対する効果について図4を参照して説明する。
中心電極10と接地電極31との間に高電圧が印加されると、図4(a)に示すように、中心電極放電チップ101と接地電極放電チップ310との間に火花放電が発生し、シュラウド部32の傾斜面によってこの放電経路途中に存在する仮想頂点Pに向かって整流された筒内気流TMBと共に、混合気が火花放電の中心に運ばれ、初期火炎核が発生する。このとき、接地電極31には、屈曲部312が形成されているので、中心電極10と接地電極31との間には、比較的広い空間が形成されている。このため、比較的低エネルギの初期火炎核が接地電極31に接触してエネルギを奪われる虞がなく、本図(b)に示すように、仮想頂点Pに向かうように整流された筒内気流TMBと共にさらに混合気が初期火炎核に供給し、比較的安定した火炎核に成長した段階で接地電極31に接触するため消炎されることなく、火炎核が成長を続ける。さらに、本図(c)に示すように、筒内気流TMBによって次々と混合気が火炎核に供給され火炎核が大きく成長しつつ筒内気流によって下流側(EX側)に運ばれ、混合気の燃焼爆発が引き起こされる。
The effect of the present invention on improving the ignitability will be described with reference to FIG.
When a high voltage is applied between the center electrode 10 and the ground electrode 31, a spark discharge is generated between the center electrode discharge chip 101 and the ground electrode discharge chip 310, as shown in FIG. Along with the in-cylinder airflow TMB rectified toward the virtual vertex P existing in the middle of the discharge path by the inclined surface of the shroud portion 32, the air-fuel mixture is carried to the center of the spark discharge, and an initial flame kernel is generated. At this time, since the bent portion 312 is formed in the ground electrode 31, a relatively wide space is formed between the center electrode 10 and the ground electrode 31. For this reason, there is no risk that the relatively low energy initial flame kernel contacts the ground electrode 31 and loses energy, and the in-cylinder airflow rectified toward the virtual vertex P as shown in FIG. The air-fuel mixture is further supplied to the initial flame kernel together with the TMB, and the flame kernel continues to grow without being extinguished because it contacts the ground electrode 31 when it has grown to a relatively stable flame kernel. Further, as shown in FIG. 4C, the air-fuel mixture is successively supplied to the flame nuclei by the in-cylinder airflow TMB, and the flame nuclei are greatly grown and conveyed to the downstream side (EX side) by the in-cylinder airflow. A combustion explosion occurs.

本発明のスパークプラグによれば、低負荷運転域や中負荷運転域では、過早頂点Pに向かうように整流された筒内気流TMBによって希薄な混合気が常に火花放電の発生する中心電極10と接地電極31との間に送られるので安定した着火が実現できる。
また、高負荷運転域では、強い筒内気流TMBが比較的高い流速を維持して接地電極31の表面上を通過するので、接地電極31の表面が比較的高い温度であっても、熱面着火することなく、エンジン制御装置から適切な点火時期に発信される点火信号に従って発生する火花放電によってのみ点火される。
According to the spark plug of the present invention, in the low-load operation region and the medium-load operation region, the center electrode 10 in which a lean air-fuel mixture always generates a spark discharge by the in-cylinder airflow TMB rectified toward the peak P. Since it is sent between the electrode and the ground electrode 31, stable ignition can be realized.
Further, in the high load operation region, the strong in-cylinder airflow TMB maintains a relatively high flow rate and passes over the surface of the ground electrode 31, so that even if the surface of the ground electrode 31 is at a relatively high temperature, Without ignition, ignition is performed only by a spark discharge generated according to an ignition signal transmitted at an appropriate ignition timing from the engine control device.

図5に本発明の要件の一部を備えていない構成を比較例として示す。
本図(a)に、比較例1として示すスパークプラグ1wでは、シュラウド部32wは、略環状で、テーパ部が形成されておらず、接地電極31wは略L字状に湾曲されているが中心電極放電チップ101wと接地電極放電チップ310wとは、中心軸C/L上で対向しており、オフセットされていない。
本図(b)に、比較例2として示すスパークプラグ1xでは、シュラウド部32xには、全周に渡って同一の傾斜角を設けて形成したテーパ部が形成してあり、接地電極31xは略L字状に湾曲されているが中心電極放電チップ101xと接地電極放電チップ310xとは、中心軸C/L上で対向しており、オフセットされていない。
本図(c)に、比較例3として示すスパークプラグ1yでは、シュラウド部32yは、略環状で、テーパ部が形成されておらず、接地電極31yは略L字状に湾曲されており、中心電極放電チップ101yと接地電極放電チップ310yとは、中心軸C/Lに対して所定の傾斜角度θOFSを設けた状態で対向している。
本図(d)に比較例4として示すスパークプラグ1zでは、シュラウド部32zには、全周に渡って同一の傾斜角を設けて形成したテーパ部が形成してあり、接地電極31zは直線上に形成され、中心電極放電チップ101zと接地電極31zとは、中心軸C/Lに対して所定の傾斜角度θOFSを設けた状態で対向している。
FIG. 5 shows a configuration that does not include some of the requirements of the present invention as a comparative example.
In this figure (a), in the spark plug 1w shown as the comparative example 1, although the shroud part 32w is substantially cyclic | annular, the taper part is not formed and the ground electrode 31w is curved by the substantially L shape, but it is centered. The electrode discharge chip 101w and the ground electrode discharge chip 310w face each other on the central axis C / L and are not offset.
In the spark plug 1x shown as Comparative Example 2 in FIG. 4B, the shroud portion 32x has a tapered portion formed with the same inclination angle over the entire circumference, and the ground electrode 31x is substantially omitted. Although curved in an L shape, the center electrode discharge tip 101x and the ground electrode discharge tip 310x face each other on the center axis C / L and are not offset.
In this figure (c), in the spark plug 1y shown as the comparative example 3, the shroud portion 32y has a substantially annular shape, is not formed with a taper portion, and the ground electrode 31y is curved in a substantially L shape. The electrode discharge tip 101y and the ground electrode discharge tip 310y are opposed to each other with a predetermined inclination angle θ OFS with respect to the central axis C / L.
In the spark plug 1z shown as Comparative Example 4 in FIG. 4D, the shroud portion 32z is formed with a taper portion formed with the same inclination angle over the entire circumference, and the ground electrode 31z is linear. The center electrode discharge tip 101z and the ground electrode 31z are opposed to each other with a predetermined inclination angle θ OFS with respect to the center axis C / L.

図6に本発明の実施例と比較例との効果の違いをまとめて示す。図の左側は、接地電極が筒内気流の下流となった場合を示し、図の右側は、接地電極が筒内気流の上流となった場合を示し、(a)は、本発明の実施例、(b)〜(e)は、それぞれ、比較例1〜比較例4を示す。
図6(a)に示すように、実施例1では、接地電極31が筒内気流TMBの上流側(IN側)となる場合には、傾斜角θが相対的に大きくても整流手段外周面321から接地電極31先端までの距離が相対的に短いので筒内気流TMBの流速が大幅に減速されることがなく、接地電極31が下流側(EX側)となる場合には、整流手段外周面322から接地電極31の先端までの距離が相対的に長くても傾斜角θが相対的に小さいので筒内気流TMBの流速が大幅に減速されることがない。したがって、接地電極31が上流側(IN側)になろうと下流側(EX側)になろうと、筒内気流TMBが高い流速を維持したまま、接地電極31の表面に接触するので、過早熱面着火を起こす虞がない。
一方、本図(b)に示すように、比較例1では、接地電極31wが長く燃焼室400内に突出しているので表面温度が高くなり易い。加えて、シュラウド部32wの外周面にテーパが形成されていないので、シュラウド部32wの側面に衝突した筒内気流TMBは、急激に方向を変えられるので、シュラウド部32wの側面を通過するときに渦流が発生し易く、接地電極31wの表面に接触するときには流速が遅く、過早熱面着火PIGを起こし易い。
本図(c)に示すように、比較例2では、接地電極32xがオフセットされていないので、比較例1と同様に表面温度は高くなり、比較的、過早熱面着火PIGを起こし易い条件となっている。接地電極32xが下流側にあるときには、シュラウド部32x外周面に設けられたテーパによって、流速が低下することなく接地電極32xの先端方向に筒内気流TMBが運ばれるので、過早熱面着火PIGが発生し難くなる。しかし、テーパが全周に渡って同じ角度で形成されているので接地電極32xが上流側となったときには、接地電極32xの周囲の気流は、接地電極32xの先端に向かうことがないので、過早熱面着火PIGを起こし易い。
本図(d)に示すように、比較例3では、接地電極31yが中心軸C/Lに対してオフセットされているために、接地電極31yの表面温度は比較的低くなっている。しかし、シュラウド部32yの外周面にテーパ部が設けられていないので、筒内気流TMBがシュラウド部32yの側面に衝突したときに、流速が低下する。このため、接地電極31yが筒内気流TMBの下流側となるときには、過早熱面着火が起こり難くなるが、接地電極31yが筒内気流TMBの上流側となったときには、流速が遅いため過早熱面着火PIGを起こし易い。
本図(e)に示すように、比較例4では、シュラウド部32zの外周面にテーパが施され、接地電極31zも中心軸C/Lに対してオフセットされているので、比較的接地電極31zの表面温度も低くなっており、過早熱面着火PIGが起こり難い。しかし、接地電極31zが直線状に形成されているので、中心電極10zと接地電極31zとの空間が狭く、点火時に発生した火炎核FKが成長していない初期の段階で接地電極31zに接触してエネルギを失って消炎する虞がある。特に、低負荷運転域から中負荷運転域では、空燃比が高く希薄であるため、強い筒内気流TMBによって、初期火炎核Fkが飛ばされ失火に至る虞がある。
FIG. 6 collectively shows the difference in effect between the example of the present invention and the comparative example. The left side of the figure shows the case where the ground electrode is downstream of the in-cylinder airflow, the right side of the figure shows the case where the ground electrode is upstream of the in-cylinder airflow, and (a) is an embodiment of the present invention. , (B) to (e) show Comparative Examples 1 to 4, respectively.
As shown in FIG. 6 (a), in Example 1, when the ground electrode 31 on the upstream side of the cylinder air flow TMB (IN side), rectifying means outer circumferential inclination angle theta 1 is also relatively large Since the distance from the surface 321 to the tip of the ground electrode 31 is relatively short, the flow velocity of the in-cylinder airflow TMB is not significantly reduced, and the rectifying means is used when the ground electrode 31 is on the downstream side (EX side). never the distance from the outer peripheral surface 322 to the tip of the ground electrode 31 is relatively longer inclined angle theta 2 is relatively small the flow velocity of the in-cylinder airflow TMB is greatly decelerated. Therefore, regardless of whether the ground electrode 31 is on the upstream side (IN side) or the downstream side (EX side), the in-cylinder airflow TMB contacts the surface of the ground electrode 31 while maintaining a high flow rate. There is no risk of surface ignition.
On the other hand, as shown in this figure (b), in the comparative example 1, since the ground electrode 31w is long and protrudes in the combustion chamber 400, surface temperature tends to become high. In addition, since the taper is not formed on the outer peripheral surface of the shroud portion 32w, the in-cylinder airflow TMB that collides with the side surface of the shroud portion 32w can be suddenly changed in direction, so that it passes through the side surface of the shroud portion 32w. Swirl is likely to occur, and when contacting the surface of the ground electrode 31w, the flow rate is slow, and preheated surface ignition PIG is likely to occur.
As shown in FIG. 6C, in Comparative Example 2, since the ground electrode 32x is not offset, the surface temperature becomes high as in Comparative Example 1, and the condition that the preheated surface ignition PIG is relatively likely to occur. It has become. When the ground electrode 32x is on the downstream side, the in-cylinder airflow TMB is carried in the tip direction of the ground electrode 32x by the taper provided on the outer peripheral surface of the shroud portion 32x without decreasing the flow velocity. Is less likely to occur. However, since the taper is formed at the same angle over the entire circumference, when the ground electrode 32x is on the upstream side, the airflow around the ground electrode 32x does not go to the tip of the ground electrode 32x. Premature heating surface ignition PIG is likely to occur.
As shown in FIG. 4D, in Comparative Example 3, since the ground electrode 31y is offset with respect to the central axis C / L, the surface temperature of the ground electrode 31y is relatively low. However, since the tapered portion is not provided on the outer peripheral surface of the shroud portion 32y, the flow velocity is reduced when the in-cylinder airflow TMB collides with the side surface of the shroud portion 32y. For this reason, when the ground electrode 31y is on the downstream side of the in-cylinder airflow TMB, preheated surface ignition is less likely to occur. However, when the ground electrode 31y is on the upstream side of the in-cylinder airflow TMB, the flow velocity is low, so Premature heating surface ignition PIG is likely to occur.
As shown in FIG. 5E, in Comparative Example 4, the outer peripheral surface of the shroud portion 32z is tapered, and the ground electrode 31z is also offset with respect to the central axis C / L. The surface temperature is low, and preheated surface ignition PIG hardly occurs. However, since the ground electrode 31z is formed in a straight line, the space between the center electrode 10z and the ground electrode 31z is narrow, and the ground electrode 31z comes into contact with the ground electrode 31z at an early stage where the flame nucleus FK generated at the time of ignition does not grow. May lose energy and extinguish. In particular, since the air-fuel ratio is high and lean in the low load operation region to the medium load operation region, there is a possibility that the initial flame kernel Fk is skipped by the strong in-cylinder airflow TMB and misfire is caused.

図7に本発明のより具体的な効果を比較例と共に示す。本図(a)は、接地電極温度に対する過早熱面着火発生率を示す特性図、本図(b)は、燃焼限界空燃比を示す特性図である。
図7(a)に示すように、比較例3の場合には、接地電極31yの表面温度が900℃以上で過早熱面着火が始まり、1000℃では、ほぼ100%の確率で過早熱面着火が起こっている。
一方、本発明の実施例では、接地電極31の表面温度が1000℃以下では過早熱面着火は起こらず、1050℃以上で過早熱面着火が起こり始めるが、1100℃でも900℃における比較例3の発生率程度で、1200℃以上となった場合に100%の確率で過早熱面着火が起こることになることが判明した。
本試験は、試験用燃焼機関を用いエンジン回転数3000rpm、400Nmの条件下で、接地電極を加熱して表面温度を変化させながら過早熱面着火の発生の有無を調査した結果である。
なお、本実施例においては、接地電極側斜面角θは40度、反接地電極側斜面角θは30度、シュラウド部32の突き出し長さLは2mmに設定したものを用いた。
図7(b)に示すように、本発明の実施例及び比較例3では、同程度の燃焼限界であり、比較例4は、燃焼限界が低く、希薄燃焼時の着火性が劣ることが確認された。
FIG. 7 shows a more specific effect of the present invention together with a comparative example. This figure (a) is a characteristic figure which shows the preheating surface ignition incidence with respect to a ground electrode temperature, and this figure (b) is a characteristic figure which shows a combustion limit air fuel ratio.
As shown in FIG. 7A, in the case of Comparative Example 3, preheated surface ignition starts when the surface temperature of the ground electrode 31y is 900 ° C. or higher, and overheated with a probability of almost 100% at 1000 ° C. Surface ignition is occurring.
On the other hand, in the embodiment of the present invention, the preheating surface ignition does not occur when the surface temperature of the ground electrode 31 is 1000 ° C. or less, and the preheating surface ignition begins to occur when the surface temperature is 1050 ° C. or more. About the rate of occurrence in Example 3, it was found that when the temperature is 1200 ° C. or higher, preheated surface ignition occurs with a probability of 100%.
This test is the result of investigating the occurrence of preheated surface ignition while heating the ground electrode and changing the surface temperature under the conditions of an engine speed of 3000 rpm and 400 Nm using a test combustion engine.
In this embodiment, the ground electrode side slope angle θ 1 is set to 40 degrees, the anti-ground electrode side slope angle θ 2 is set to 30 degrees, and the protruding length L of the shroud portion 32 is set to 2 mm.
As shown in FIG. 7 (b), the examples of the present invention and the comparative example 3 have the same combustion limit, and the comparative example 4 is confirmed to have a low combustion limit and poor ignitability during lean combustion. It was done.

図8を参照して、本発明の第1の実施形態におけるスパークプラグ1の変形例について説明する。
図8(a)は、本発明のスパークプラグ1の傾斜面32の変形許容範囲を示す要部拡大図、(b)は、本発明のスパークプラグ1の接地電極32のオフセット位置の変形許容範囲を示す要部拡大図である。
本発明のスパークプラグ1におけるシュラウド部32の外周面を形成する円錐CON32の仮想頂点Pの位置は、中心電極放電チップ101の先端と接地電極放電チップ310の先端とを結ぶ直線上で、シュラウド部32の先端縁EDG32と仮想頂点Pとのなす傾斜角度θは、図中に太い一点破線で示したエンジンヘッド41の内壁を基準面として、この基準面とシュラウド部32の外周の交わる点とシュラウド部32の先端縁EDG32とを結ぶ直線LLとの交点Pから接地電極放電チップ310の接続部下端Pまでの範囲APで適宜変更可能である。このとき、接地電極側傾斜角θはθ1minからθ1maxの範囲に設定可能で、反接地電極側傾斜角θは、θ2minからθ2maxの範囲に設定可能となる。具体的にはθは20度以上60度以下の角度が望ましい。
さらに、仮想頂点P点は、放電ギャップGの中間点から放電チップ310の接続部下端Pまでの範囲APで適宜変更可能である。また中心軸C/Lに対して接地電極31側にあり、接地電極31の先端縁より中心軸C/L側にある。
このような構成とすることにより熱面着火の抑制と着火性の両立が実現できることが判明した。
また、基準面から接地電極31の先端までの距離Lは、8mm以下とするのが望ましいことが判明した。
また、反接地電極側の傾斜面322の端縁が基準面から露出する場合、その突出長さをLとすると、Lはできるだけ小さい方が望ましいが、L/Lを0.2以下とすれば、本発明の効果が得られることが判明した。シュラウド部32の傾斜面のほとんどを気流制御に使う状態とすることができる。
また、接地電極31の傾斜角θOFSは、θOFS(min)からθOFS(max)の範囲で設定可能であり、公差ハッチングを付した範囲Aで仮想頂点Pの位置が変更可能である。 より具体的には、θOFSは0度より大きく60度以下の角度とするのが望ましい。
With reference to FIG. 8, the modification of the spark plug 1 in the 1st Embodiment of this invention is demonstrated.
FIG. 8A is an enlarged view of a main part showing a deformation allowable range of the inclined surface 32 of the spark plug 1 of the present invention, and FIG. 8B is a deformation allowable range of the offset position of the ground electrode 32 of the spark plug 1 of the present invention. FIG.
The position of the virtual vertex P of the cone CON 32 forming the outer peripheral surface of the shroud portion 32 in the spark plug 1 of the present invention is on the straight line connecting the tip of the center electrode discharge tip 101 and the tip of the ground electrode discharge tip 310. leading edge EDG 32 parts 32 and the inclination angle θ formed between the virtual apex P, as a reference surface to the inner wall of the engine head 41 shown by a bold dashed line in the figure, the intersection between the outer periphery of the reference plane and the shroud portion 32 and it can be appropriately changed in a range AP from the intersection P 1 of a straight line LL 1 connecting the leading edge EDG 32 of shroud portion 32 to the connecting portion the lower end P 2 of the ground electrode discharge tip 310. At this time, it can be set in the range of theta 1max from 1min ground electrode side inclined angle theta 1 theta, anti ground electrode inclination angle theta 2 is made possible settings from theta 2min in the range of theta 2max. Specifically, θ 2 is desirably an angle of 20 degrees or more and 60 degrees or less.
Further, the virtual vertex P point can be appropriately changed within a range AP from the intermediate point of the discharge gap G to the connection portion lower end P 2 of the discharge chip 310. Further, it is on the ground electrode 31 side with respect to the central axis C / L, and is on the central axis C / L side with respect to the tip edge of the ground electrode 31.
It has been found that such a configuration can achieve both suppression of hot surface ignition and ignitability.
The distance L 3 from the reference plane to the tip of the ground electrode 31, it has been found desirable to or less 8 mm.
Also, when the end edge of the inclined surface 322 of the anti-ground-electrode is exposed from the reference plane, when the projection length and L 2, but L 2 is as small as possible is desired, 0.2 to L 2 / L Then, it was found that the effect of the present invention can be obtained. Most of the inclined surfaces of the shroud portion 32 can be used for airflow control.
Further, the tilt angle theta OFS of the ground electrode 31, can be set in the theta range of OFS (min) from theta OFS (max), it can be changed the position of the virtual vertex P in the range A P denoted by the tolerance hatching . More specifically, it is desirable that θ OFS be an angle greater than 0 degree and 60 degrees or less.

図9(a)は、本発明のスパークプラグの変形例を示す要部拡大図、(b)は、本発明のスパークプラグの他の変形例を示す要部拡大図である。
図9(a)に示すように、本実施形態におけるスパークプラグ1aでは、シュラウド部32aの傾斜面を内側に窪んだ曲面状に形成しても良い。ただし、該凹面部のシュラウド部32aの先端縁EDG32aにおける接線が仮想頂点Pに向かうように形成するのが望ましい。このような構成とすることにより、如何なる方向にスパークプラグ1aが取り付けられても筒内気流が速度を大きく低下させることなく仮想頂点Pに向かって整流させて、着火性の向上と過早熱面着火を抑制する本発明の上記実施形態と同様の効果が発揮される。
図9(b)に示す実施形態におけるスパークプラグ1bでは、上記実施形態と同様の構成に加えて中心電極放電チップ101bの表面とを接地電極放電チップ310の表面とが平行となるように中心電極放電チップ101bを傾斜させた点が相異する。このような構成とすることにより、上記実施形態と同様の効果に加え、中心電極放電チップ101bの耐久性向上も期待できる。
FIG. 9A is an enlarged view of a main part showing a modification of the spark plug of the present invention, and FIG. 9B is an enlarged view of a main part showing another modification of the spark plug of the present invention.
As shown to Fig.9 (a), in the spark plug 1a in this embodiment, you may form in the curved surface shape in which the inclined surface of the shroud part 32a was dented inside. However, it is desirable that the tangent line at the leading edge EDG 32 a of the shroud portion 32 a of the concave surface portion is directed toward the virtual vertex P. By adopting such a configuration, the in-cylinder airflow is rectified toward the virtual apex P without greatly reducing the speed, regardless of the direction in which the spark plug 1a is attached. The same effect as the above embodiment of the present invention that suppresses ignition is exhibited.
In the spark plug 1b in the embodiment shown in FIG. 9B, in addition to the same configuration as that in the above embodiment, the center electrode discharge chip 101b and the surface of the ground electrode discharge chip 310 are parallel to the surface of the center electrode discharge chip 101b. The point that the discharge chip 101b is inclined is different. By adopting such a configuration, in addition to the same effects as those of the above-described embodiment, an improvement in durability of the center electrode discharge tip 101b can be expected.

図10は、本発明のスパークプラグの別の変形例を示す要部拡大図、図11は、本発明のスパークプラグの、また、別の変形例を示す下面図及び斜視図である。
図10に示したスパークプラグ1cでは、上記実施形態と同様の構成に加えに仮想頂点Pを頂点とする円錐面の斜面とシュラウド部32cの下端縁EDG32とのなす角度が一定となるように、下端縁EDG32が傾斜した状態に形成してある。このような構成においても上記実施形態と同様の効果が発揮される。さらに、本実施形態においては、シュラウド部32cの傾斜面の加工は容易である。
図11に示したスパークプラグ1dでは、シュラウド部32dの傾斜面を円錐の斜面ではなく、S1、S2、S3、S4で示すような複数の異なる傾斜角をもった傾斜面で構成しても良い。本実施例のように部分的に傾斜をつけても、気流が制御されれば、同様な効果が得られる。
FIG. 10 is an enlarged view of a main part showing another modification of the spark plug of the present invention, and FIG. 11 is a bottom view and a perspective view showing another modification of the spark plug of the present invention.
In the spark plug 1c shown in FIG. 10, in addition to the same configuration as that of the above embodiment, the angle formed between the inclined surface of the conical surface having the virtual vertex P as the vertex and the lower edge EDG 32 of the shroud portion 32c is constant. The lower edge EDG32 is inclined. Even in such a configuration, the same effect as in the above embodiment is exhibited. Furthermore, in the present embodiment, it is easy to process the inclined surface of the shroud portion 32c.
In the spark plug 1d shown in FIG. 11, the inclined surface of the shroud portion 32d may be formed by inclined surfaces having a plurality of different inclination angles as shown by S1, S2, S3, and S4 instead of the conical inclined surface. . Even if it is partially inclined as in this embodiment, the same effect can be obtained if the airflow is controlled.

1 スパークプラグ
10 中心電極
11 中心電極中軸部
110 中心電極放電部
12 中心電極端子部
20 絶縁碍子
21 絶縁碍子先端部
30 ハウジング
31 接地電極
32 シュラウド部(整流手段)
321 接地電極側斜面
322 反接地電極側斜面
40 内燃機関
400 燃焼室
41 エンジンヘッド
450 プラグホール
P 仮想頂点
θOFS 偏心角度
θ 接地電極側傾斜角
θ 反接地電極側傾斜角
L シュラウド部突出長さ
DESCRIPTION OF SYMBOLS 1 Spark plug 10 Center electrode 11 Center electrode center shaft part 110 Center electrode discharge part 12 Center electrode terminal part 20 Insulator 21 Insulator tip part 30 Housing 31 Ground electrode 32 Shroud part (rectifying means)
321 Ground electrode side slope 322 Anti-ground electrode side slope 40 Internal combustion engine 400 Combustion chamber 41 Engine head 450 Plug hole P Virtual vertex θ OFS eccentric angle θ 1 Ground electrode side tilt angle θ 2 Anti-ground electrode side tilt angle L Shroud protrusion length The

特開2000−243535号公報JP 2000-243535 A 特開2008−10479号公報JP 2008-10479 A

Claims (3)

内燃機関に装着され、長軸状に形成した中心電極と、その外周を覆う略筒状の絶縁碍子と、該絶縁碍子を覆う略筒状のハウジングと、該ハウジングに延設して上記中心電極に対して所定の放電ギャップを設けて対向する接地電極とを具備し、上記中心電極と上記接地電極との間に高電圧を印加して火花放電を発生させて上記内燃機関の点火を行うスパークプラグであって、
上記内燃機関の燃焼室内に露出する上記ハウジングの先端部を上記絶縁碍子の先端部を略環状に覆うように突設しつつ、その外周面の少なくとも一部を上記燃焼室内に流れる筒内気流を整流して所望の方向へ案内する整流手段となしたスパークプラグにおいて、
該スパークプラグの中心軸上に配設せしめた上記中心電極に対向する上記接地電極の先端を上記中心軸に対して所定の偏心角θOFSをもって上記ハウジングの基端側に偏心せしめると共に、
上記整流手段は、上記ハウジングの先端部の外周面において、少なくとも、上記接地電極の接続された接地電極側斜面の傾斜角θを、上記接地電極の接続されていない反接地電極側斜面の傾斜角θよりも大きい角度となしたことを特徴とするスパークプラグ。
A center electrode mounted on an internal combustion engine and formed in a long axis, a substantially cylindrical insulator covering the outer periphery thereof, a substantially cylindrical housing covering the insulator, and the center electrode extending to the housing A spark having a predetermined discharge gap and opposing ground electrode, and applying a high voltage between the center electrode and the ground electrode to generate a spark discharge to ignite the internal combustion engine A plug,
An in-cylinder airflow that flows through at least a part of the outer peripheral surface of the housing exposed in the combustion chamber of the internal combustion engine so as to cover the tip of the insulator in a substantially annular shape. In the spark plug that is a rectifying means that rectifies and guides in a desired direction
The front end of the ground electrode facing the center electrode disposed on the center axis of the spark plug is decentered toward the base end side of the housing with a predetermined eccentric angle θ OFS with respect to the center axis;
The rectifier means, the outer peripheral surface of the distal end portion of the housing, at least, the inclination angle theta 1 of the connected ground electrode-side slope of the ground electrode, the inclination of the anti-ground-electrode-side inclined surface which is not connected to the ground electrode A spark plug characterized by having an angle larger than the angle θ 2 .
上記ハウジングの先端部の外周面を、上記中心電極の先端と上記接地電極の先端とを結ぶ直線上の一点を仮想頂点とする円錐の斜面の一部となしたことを特徴とする請求項1に記載のスパークプラグ。 2. The outer peripheral surface of the front end portion of the housing is a part of a conical slope whose virtual vertex is one point on a straight line connecting the front end of the center electrode and the front end of the ground electrode. Spark plug as described in. 上記接地電極は、上記ハウジングに接続された接地電極基端部から上記燃焼室内に伸び、略L字形の屈曲部を設けて上記接地電極の先端側を上記中心電極に対向せしめたことを特徴とする請求項1又は2に記載のスパークプラグ。   The ground electrode extends from the ground electrode base end connected to the housing into the combustion chamber, and is provided with a substantially L-shaped bent portion so that the front end side of the ground electrode faces the center electrode. The spark plug according to claim 1 or 2.
JP2009081862A 2009-03-30 2009-03-30 Spark plug Active JP5208033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009081862A JP5208033B2 (en) 2009-03-30 2009-03-30 Spark plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009081862A JP5208033B2 (en) 2009-03-30 2009-03-30 Spark plug

Publications (2)

Publication Number Publication Date
JP2010238377A true JP2010238377A (en) 2010-10-21
JP5208033B2 JP5208033B2 (en) 2013-06-12

Family

ID=43092544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009081862A Active JP5208033B2 (en) 2009-03-30 2009-03-30 Spark plug

Country Status (1)

Country Link
JP (1) JP5208033B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012248389A (en) * 2011-05-27 2012-12-13 Nippon Soken Inc Spark plug for internal combustion engine
JP2013098042A (en) * 2011-11-01 2013-05-20 Denso Corp Spark plug for internal combustion engine and its mounting structure
CN104025399A (en) * 2011-11-01 2014-09-03 株式会社电装 Spark plug for internal combustion engine, and attachment structure for spark plug
JP2015222640A (en) * 2014-05-22 2015-12-10 株式会社日本自動車部品総合研究所 Spark plug for internal combustion engine
WO2017169930A1 (en) * 2016-03-30 2017-10-05 株式会社デンソー Internal combustion engine spark plug
JP2018147617A (en) * 2017-03-02 2018-09-20 株式会社豊田中央研究所 Ignition device for internal combustion engine
US10951011B2 (en) 2017-12-28 2021-03-16 Denso Corporation Spark plug for internal combustion engines
US10951012B2 (en) 2018-01-12 2021-03-16 Denso Corporation Spark plug for internal combustion engines and internal combustion engine
DE102013200176B4 (en) 2012-02-17 2023-03-09 Denso Corporation Spark plug for internal combustion engine
DE112013005889B4 (en) 2012-12-10 2023-06-07 Denso Corporation Spark plug for internal combustion engine
DE102015108043B4 (en) 2014-05-22 2023-06-07 Denso Corporation Spark plug for an internal combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200073629A (en) * 2018-12-14 2020-06-24 현대자동차주식회사 spark plug for increasing burning velocity of gasoline engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58188996U (en) * 1982-06-11 1983-12-15 トヨタ自動車株式会社 spark plug
JPH0232692U (en) * 1988-08-25 1990-02-28
JP2002324650A (en) * 2000-12-04 2002-11-08 Denso Corp Spark plug and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58188996U (en) * 1982-06-11 1983-12-15 トヨタ自動車株式会社 spark plug
JPH0232692U (en) * 1988-08-25 1990-02-28
JP2002324650A (en) * 2000-12-04 2002-11-08 Denso Corp Spark plug and its manufacturing method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012208976B4 (en) 2011-05-27 2022-04-14 Denso Corporation Spark plug for internal combustion engines
JP2012248389A (en) * 2011-05-27 2012-12-13 Nippon Soken Inc Spark plug for internal combustion engine
JP2013098042A (en) * 2011-11-01 2013-05-20 Denso Corp Spark plug for internal combustion engine and its mounting structure
CN103907252A (en) * 2011-11-01 2014-07-02 株式会社电装 Spark plug for internal combustion engine, and attachment structure for spark plug
CN104025399A (en) * 2011-11-01 2014-09-03 株式会社电装 Spark plug for internal combustion engine, and attachment structure for spark plug
US9343875B2 (en) 2011-11-01 2016-05-17 Denso Corporation Spark plug for internal combustion engines and mounting structure for the spark plug
DE112012004594B4 (en) 2011-11-01 2023-03-23 Denso Corp. Spark plug for an internal combustion engine and mounting structure for the spark plug
DE102013200176B4 (en) 2012-02-17 2023-03-09 Denso Corporation Spark plug for internal combustion engine
DE112013005889B4 (en) 2012-12-10 2023-06-07 Denso Corporation Spark plug for internal combustion engine
JP2015222640A (en) * 2014-05-22 2015-12-10 株式会社日本自動車部品総合研究所 Spark plug for internal combustion engine
DE102015108043B4 (en) 2014-05-22 2023-06-07 Denso Corporation Spark plug for an internal combustion engine
US10505347B2 (en) 2016-03-30 2019-12-10 Denso Corporation Spark plug for internal combustion engine
WO2017169930A1 (en) * 2016-03-30 2017-10-05 株式会社デンソー Internal combustion engine spark plug
JP2018147617A (en) * 2017-03-02 2018-09-20 株式会社豊田中央研究所 Ignition device for internal combustion engine
US10951011B2 (en) 2017-12-28 2021-03-16 Denso Corporation Spark plug for internal combustion engines
US10951012B2 (en) 2018-01-12 2021-03-16 Denso Corporation Spark plug for internal combustion engines and internal combustion engine

Also Published As

Publication number Publication date
JP5208033B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
JP5208033B2 (en) Spark plug
JP4762110B2 (en) Spark plug for internal combustion engine
US7893604B2 (en) Spark plug with stream shaper to shape tumble vortex into desired stream in combustion chamber
JP5321431B2 (en) In-cylinder internal combustion engine
US10833485B2 (en) Pre-chamber spark plug
CN115051242A (en) Spark plug
WO2022168371A1 (en) Spark plug
US10938184B2 (en) Spark plug
JP7220167B2 (en) Spark plug
US5650687A (en) Ground electrodes for ignition plugs
US8141532B2 (en) Spark plug
JP4457021B2 (en) Spark plug
WO2022050123A1 (en) Spark plug for internal combustion engine and internal combustion engine having same
JP7447656B2 (en) Spark plug
JP2000357578A (en) Spark plug
US11056858B2 (en) Spark plug having a housing with a channel part
JP4532009B2 (en) Spark plug
JP7183933B2 (en) Spark plug
JP4185848B2 (en) Manufacturing method of spark plug
JP2022069418A (en) Spark plug for internal combustion engine and internal combustion engine having the same
JP7360966B2 (en) Spark plug and its manufacturing method
JP6373321B2 (en) Spark plug
US10333282B2 (en) Spark plug for internal combustion engine
GB2325492A (en) Spark plug for i.c. engines
JP2022114784A (en) Spark plug for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5208033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250