JP2010237028A - Humidity measurement apparatus - Google Patents

Humidity measurement apparatus Download PDF

Info

Publication number
JP2010237028A
JP2010237028A JP2009085148A JP2009085148A JP2010237028A JP 2010237028 A JP2010237028 A JP 2010237028A JP 2009085148 A JP2009085148 A JP 2009085148A JP 2009085148 A JP2009085148 A JP 2009085148A JP 2010237028 A JP2010237028 A JP 2010237028A
Authority
JP
Japan
Prior art keywords
capacitance
humidity
unit
moisture
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009085148A
Other languages
Japanese (ja)
Other versions
JP5247562B2 (en
Inventor
Yuzo Fujita
雄三 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2009085148A priority Critical patent/JP5247562B2/en
Publication of JP2010237028A publication Critical patent/JP2010237028A/en
Application granted granted Critical
Publication of JP5247562B2 publication Critical patent/JP5247562B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a humidity measurement apparatus for simplifying a constitution, and accurately measuring the humidity due to a minute change in an electrostatic capacitance. <P>SOLUTION: The humidity measurement apparatus includes: a humidity sensing section having a humidity sensing element whose electrostatic capacitance is variable; and an output signal converting section for converting the change in the electrostatic capacitance of the humidity sensing element detected by a signal processing section into an electrical signal indicating the corresponding relative humidity, and outputting it. A stray capacitance of a first conductive cable added to the electrostatic capacitance of the humidity sensing element 14 is equal to a stray capacitance of a second conductive cable added to a reference electrostatic capacitance. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、感湿素子が相対湿度によって容量値が変化する特性を利用して計測環境の相対湿度を計測する湿度計測装置に関するものである。   The present invention relates to a humidity measuring device that measures the relative humidity of a measurement environment by using a characteristic that a humidity sensing element changes its capacitance value depending on relative humidity.

容量式センサの一つである容量式湿度センサは、その感湿素子が相対湿度の変化により容量値が変化する特性を利用して、計測環境の相対湿度を計測するものである。この容量式湿度センサでは、容量の変化量を電圧などに変換して湿度計測値として出力するものであるが、このときの容量の変化は、相対湿度100%に対して数十pF以下(20〜30pF以下)といった微少量である。このため、湿度センサの感湿素子と、この感湿素子からの検出信号を信号処理する回路部(発信回路、増幅回路、出力信号変換回路等)とをケーブルで接続すると、そのケーブルの容量が温度変化や折り曲げの影響を受けて大きく変化し、湿度計測値の精度が悪化してしまう。   A capacitive humidity sensor, which is one of the capacitive sensors, measures the relative humidity of the measurement environment by using the characteristic that the humidity sensing element changes its capacitance value due to a change in relative humidity. In this capacitive humidity sensor, the amount of change in capacitance is converted into a voltage or the like and output as a humidity measurement value. At this time, the change in capacitance is several tens of pF or less (20% relative to 100% relative humidity). ˜30 pF or less). For this reason, when a humidity sensor of a humidity sensor and a circuit unit (a transmission circuit, an amplifier circuit, an output signal conversion circuit, etc.) that processes a detection signal from the humidity sensor are connected by a cable, the capacity of the cable is reduced. It changes greatly under the influence of temperature changes and bending, and the accuracy of humidity measurement values deteriorates.

従って、望ましくは感湿素子と回路部とを近接して接続すべきであるが、湿度の計測を行う現場の温度環境が、回路部内の増幅回路を構成する電子部品の使用限界温度を越えていると、もはや感湿素子と回路部とを近接して接続することはできず、感湿素子が設置される現場から回路部を隔離して相互にケーブルで接続せざるを得ない。
このような感湿素子と回路部を接続するケーブルの容量変化に起因した湿度計測の精度悪化を解決する従来の技術としては、例えば、特許文献1,2に開示されるものがある。
Therefore, it is desirable that the moisture sensitive element and the circuit unit should be connected in close proximity, but the temperature environment of the site where the humidity is measured exceeds the limit temperature of use of the electronic components constituting the amplifier circuit in the circuit unit. If this is the case, it is no longer possible to connect the moisture sensitive element and the circuit part in close proximity, and the circuit part must be isolated from the site where the moisture sensitive element is installed and connected to each other with a cable.
For example, Patent Documents 1 and 2 disclose conventional techniques for solving the deterioration in humidity measurement accuracy caused by the change in the capacitance of the cable connecting the humidity sensing element and the circuit unit.

特許文献1のセンサシステムでは、センサヘッドが、第1電極と、この第1電極の間に所定の距離をおいて相対するよう配置された第2電極とを備え、測定装置が、信号端子、シールド端子、バイアス端子を備えており、信号端子の電圧とシールド端子の電圧とが、常に等しくなるように測定回路を構成している。また、センサヘッドと測定装置との接続に3重同軸ケーブルを用い、3重同軸ケーブルの中心軸線で第1電極を信号端子に接続し、3重同軸ケーブルの外側被覆線で第2電極をバイアス端子に接続しており、3重同軸ケーブルの内側被覆線をシールド端子に接続している。
このように、3重同軸ケーブルの中心軸線に相当する信号線が、この信号線と同電位を有するシールド手段である外側被覆線と内側被覆線とによって電気的に遮断されるので、ケーブルの容量変化が計測値の精度に及ぼす悪影響を排除できる。
In the sensor system of Patent Document 1, the sensor head includes a first electrode and a second electrode arranged to face each other with a predetermined distance between the first electrode, and the measurement device includes a signal terminal, A shield terminal and a bias terminal are provided, and the measurement circuit is configured so that the voltage at the signal terminal is always equal to the voltage at the shield terminal. Also, a triple coaxial cable is used to connect the sensor head and the measuring device, the first electrode is connected to the signal terminal at the center axis of the triple coaxial cable, and the second electrode is biased by the outer sheathed wire of the triple coaxial cable It is connected to the terminal, and the inner coated wire of the triple coaxial cable is connected to the shield terminal.
Thus, since the signal line corresponding to the central axis of the triple coaxial cable is electrically interrupted by the outer covered wire and the inner covered wire which are shielding means having the same potential as the signal line, the capacity of the cable The adverse effect of changes on the accuracy of measured values can be eliminated.

また、特許文献2に開示される静電容量−電圧変換装置は、反転入力端子、非反転入力端子及び出力端子を有し、出力端子と反転入力端子との間が帰還抵抗によって接続された演算増幅器と、反転入力端子に一端が接続され、静電容量を有する静電容量素子を他端に接続する信号線と、この信号線の少なくとも一部を包囲し、かつ、非反転入力端子に接続されたシールドと、非反転入力端子に交流信号を印加する交流信号発生器と、演算増幅器の出力信号と交流信号とが互いに相殺されるように、それらの振幅と位相を調整する調整回路とを具備する。このように構成することにより、信号線の浮遊容量に影響されることなく、信号線に接続された静電容量素子の静電容量を電圧に変換でき、微少量の静電容量であっても、対応する電圧を高精度に求めることができる。   Further, the capacitance-voltage conversion device disclosed in Patent Document 2 has an inverting input terminal, a non-inverting input terminal, and an output terminal, and an operation in which the output terminal and the inverting input terminal are connected by a feedback resistor. One end is connected to the amplifier and the inverting input terminal, a signal line connecting the capacitive element having capacitance to the other end, and at least part of the signal line is surrounded and connected to the non-inverting input terminal A shield, an AC signal generator that applies an AC signal to the non-inverting input terminal, and an adjustment circuit that adjusts the amplitude and phase of the operational amplifier so that the output signal and the AC signal cancel each other. It has. By configuring in this way, the capacitance of the capacitive element connected to the signal line can be converted into a voltage without being affected by the stray capacitance of the signal line. The corresponding voltage can be obtained with high accuracy.

特開2002−157671号公報JP 2002-157671 A 特許3302377号公報Japanese Patent No. 3302377

特許文献1は、導体の外側被覆線及び内側被覆線をシールド手段として有する3重同軸ケーブルを使用することが前提とされている。このような3重同軸ケーブルは、一般的な湿度センサには使用されておらず、特許文献1では、標準品として市販されている同軸ケーブルを用いることができず、汎用性がない。   Patent Document 1 is premised on the use of a triple coaxial cable having a conductor outer covered wire and an inner covered wire as shield means. Such a triple coaxial cable is not used for a general humidity sensor, and in Patent Document 1, a coaxial cable that is commercially available as a standard product cannot be used, and is not versatile.

特許文献2は、演算増幅器の出力信号と交流信号とが互いに相殺されるように、これらの振幅と位相とを調整する調整回路が必要であるため、回路構成が複雑になる。   Since Patent Document 2 requires an adjustment circuit that adjusts the amplitude and phase of the operational amplifier so that the output signal and the AC signal cancel each other, the circuit configuration is complicated.

この発明は、上記のような課題を解決するためになされたもので、簡易な構成で微小な静電容量の変化による湿度あっても高い精度で計測することができる湿度計測装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and it is intended to obtain a humidity measuring device capable of measuring with high accuracy even with humidity due to a minute change in capacitance with a simple configuration. Objective.

この発明に係る湿度計測装置は、計測環境雰囲気中の湿度に応じて静電容量が変化する感湿素子を有する感湿部と、基準静電容量を得る基準静電容量部と、感湿素子と接続する第1の導電ケーブルと、基準静電容量部と接続する第2の導電ケーブルと、第1の導電ケーブルを介して感湿素子の静電容量を取得するとともに、基準静電容量部の基準静電容量を取得し、感湿素子の静電容量と基準静電容量から感湿素子の静電容量の変化分を検出する信号処理部と、信号処理部で検出された感湿素子の静電容量の変化分を、対応する相対湿度を表す電気信号に変換して出力する出力信号変換部とを備えた湿度計測装置において、第1の導電ケーブルの浮遊容量と第2の導電ケーブルの浮遊容量が等しいことを特徴とするものである。   A humidity measuring device according to the present invention includes a humidity sensing unit having a humidity sensing element whose capacitance changes according to the humidity in the measurement environment atmosphere, a reference capacitance unit for obtaining a reference capacitance, and a humidity sensing element. A first conductive cable connected to the reference capacitance unit, a second conductive cable connected to the reference capacitance unit, and a capacitance of the moisture sensitive element through the first conductive cable, and a reference capacitance unit A signal processing unit that obtains the reference capacitance of the moisture sensing element and detects a change in the capacitance of the moisture sensing element from the capacitance of the moisture sensing element and the reference capacitance, and the humidity sensing element detected by the signal processing unit In a humidity measuring device comprising an output signal conversion unit that converts the change in electrostatic capacitance into an electrical signal representing the corresponding relative humidity and outputs the electrical signal, the stray capacitance of the first conductive cable and the second conductive cable The stray capacitances are equal to each other.

この発明によれば、第1の導電ケーブルの浮遊容量と第2の導電ケーブルの浮遊容量を等しくしたので、感湿素子の静電容量の変化分として第1、第2の導電ケーブルの浮遊容量が相殺され、真の静電容量の変化分が得られることから、感湿素子の静電容量の変化が微少量であっても、対応する湿度を精度良く計測できるという効果がある。   According to the present invention, since the stray capacitance of the first conductive cable is equal to the stray capacitance of the second conductive cable, the stray capacitance of the first and second conductive cables is determined as the change in the capacitance of the moisture sensitive element. Is canceled and a true change in capacitance is obtained, so that the corresponding humidity can be accurately measured even if the change in capacitance of the humidity sensing element is very small.

この発明の実施の形態1による湿度計測装置を概略的に示す図である。It is a figure which shows roughly the humidity measuring device by Embodiment 1 of this invention. 実施の形態1による湿度計測装置の構成を示すブロック図である。1 is a block diagram illustrating a configuration of a humidity measuring device according to Embodiment 1. FIG. 実施の形態1によるケーブルの一例を示す断面図である。2 is a cross-sectional view showing an example of a cable according to Embodiment 1. FIG. 実施の形態1によるケーブルの接続関係を示す図である。FIG. 3 is a diagram illustrating a connection relationship of cables according to the first embodiment. 図2中の信号処理部による処理の流れを示す図である。It is a figure which shows the flow of a process by the signal processing part in FIG. 実施の形態1によるケーブルの他の例を示す断面図である。6 is a cross-sectional view showing another example of the cable according to Embodiment 1. FIG.

実施の形態1.
図1は、この発明の実施の形態1による湿度計測装置を概略的に示す図である。図1において、実施の形態1による湿度計測装置1は、感湿素子の静電容量の変化で湿度を計測する容量式湿度センサであり、ケース2Aに収容した回路部基板に設けられる回路部2、感湿素子を有する感湿部3、及び回路部2と感湿部3とを接続するケーブル4を備える。
Embodiment 1 FIG.
FIG. 1 schematically shows a humidity measuring apparatus according to Embodiment 1 of the present invention. In FIG. 1, a humidity measuring device 1 according to Embodiment 1 is a capacitive humidity sensor that measures humidity by a change in capacitance of a moisture sensitive element, and a circuit unit 2 provided on a circuit unit substrate housed in a case 2A. And a moisture sensing part 3 having a moisture sensing element, and a cable 4 for connecting the circuit part 2 and the moisture sensing part 3.

回路部2は、感湿部3の感湿素子からの検出信号を信号処理する構成部であり、発信回路、増幅回路、電源回路、外部端子等を備える。感湿部3の感湿素子14は、計測環境の相対湿度の変化によって静電容量値が変化する特性を有した感湿素子であり、回路部2が当該感湿素子14の静電容量値の変化量を電圧等に変換して湿度計測値として出力する。なお、図1に示す例では、感湿部3が、感湿素子14と、測温抵抗体3線式計測で温度計測する測温抵抗体(温度センサ)22とを組み合わせて構成されており、湿度−温度計測が可能である。   The circuit unit 2 is a component that performs signal processing on a detection signal from the moisture sensing element of the moisture sensing unit 3, and includes a transmission circuit, an amplifier circuit, a power supply circuit, an external terminal, and the like. The moisture sensing element 14 of the moisture sensing unit 3 is a moisture sensing element having a characteristic that the capacitance value changes due to a change in relative humidity of the measurement environment, and the circuit unit 2 has a capacitance value of the moisture sensing element 14. Is converted into a voltage or the like and output as a humidity measurement value. In the example shown in FIG. 1, the moisture sensing unit 3 is configured by combining a moisture sensing element 14 and a resistance temperature detector (temperature sensor) 22 that measures temperature by a resistance temperature detector three-wire measurement. Humidity-temperature measurement is possible.

ここでは、湿度計測を行う現場が回路部2を構成する電子部品の使用限界温度を越える場合があることを想定して、図1に示すように、感湿部3を計測現場に配置し、回路部2を収納したケース2Aを計測現場の温度環境に影響を受けない場所に配置し、回路部2内の電子部品と感湿部3内の感湿素子とをケーブル4を介して接続している。   Here, assuming that the site where the humidity measurement is performed may exceed the use limit temperature of the electronic parts constituting the circuit unit 2, as shown in FIG. 1, the moisture sensitive unit 3 is arranged at the measurement site, Place the case 2A containing the circuit unit 2 in a place that is not affected by the temperature environment at the measurement site, and connect the electronic components in the circuit unit 2 and the moisture sensitive element in the moisture sensitive unit 3 via the cable 4. ing.

また、ケーブル4としては静電容量の変化が少ない同軸ケーブルが好適であるが、この実施の形態1では、図2を用いて後述するように2本の同種同長の同軸ケーブルを用い、一方の同軸ケーブルで感湿素子と回路部2の素子側回路とを接続して、もう一方の同軸ケーブルは感湿素子と接続せず、オープンとして回路部2内の基準側回路に接続する。
このとき、2本の同軸ケーブルを1本の複合同軸ケーブルとする。これにより、感湿素子に接続した同軸ケーブルの浮遊容量が折り曲げ等により変化しても、基準側の同軸ケーブルの浮遊容量も同様に変化するため、素子側回路と基準側回路との出力を差動増幅することで、ケーブルの容量変化による計測値出力への影響をキャンセルできる。
In addition, the cable 4 is preferably a coaxial cable with little change in capacitance, but in the first embodiment, two coaxial cables of the same type and length are used as described later with reference to FIG. The moisture-sensitive element and the element-side circuit of the circuit unit 2 are connected by the coaxial cable, and the other coaxial cable is not connected to the moisture-sensitive element and is connected to the reference-side circuit in the circuit unit 2 as an open circuit.
At this time, two coaxial cables are used as one composite coaxial cable. As a result, even if the stray capacitance of the coaxial cable connected to the moisture-sensitive element changes due to bending or the like, the stray capacitance of the reference-side coaxial cable also changes in the same way. By dynamically amplifying, it is possible to cancel the influence on the measurement value output due to the change in the cable capacity.

図2は、実施の形態1による湿度計測装置の構成を示すブロック図である。図2において、回路部2は、信号処理部5、電源回路6、出力信号変換部7及び外部端子8を備え、信号処理部5は、C−V変換回路(発信回路)9及び差動増幅回路10を備え、出力信号変換部7は、出力増幅回路11を備える。電源回路6は、外部端子8を介して入力された電力を信号処理部5と出力信号変換部7に供給して駆動させる。   FIG. 2 is a block diagram showing a configuration of the humidity measuring apparatus according to the first embodiment. 2, the circuit unit 2 includes a signal processing unit 5, a power supply circuit 6, an output signal conversion unit 7, and an external terminal 8. The signal processing unit 5 includes a CV conversion circuit (transmitting circuit) 9 and a differential amplification. The circuit 10 is provided, and the output signal converter 7 includes an output amplifier circuit 11. The power supply circuit 6 supplies the power input through the external terminal 8 to the signal processing unit 5 and the output signal conversion unit 7 to drive them.

C−V変換回路9は、基準容量部が与える基準静電容量を電圧に変換する基準側回路と感湿素子14の静電容量を電圧に変換する素子側回路とを備える。素子側回路には、同軸ケーブル(第1の導電ケーブル)12が接続されており、感湿素子14の静電容量Ceには、この同軸ケーブル12の浮遊容量Cc1が付加される。また、基準側回路には同軸ケーブル(第2の導電ケーブル)13が接続されており、基準容量部が与える基準静電容量Crには同軸ケーブル13の浮遊容量Cc2が付加している。   The CV conversion circuit 9 includes a reference side circuit that converts a reference capacitance provided by the reference capacitance unit into a voltage, and an element side circuit that converts the capacitance of the moisture sensitive element 14 into a voltage. A coaxial cable (first conductive cable) 12 is connected to the element side circuit, and the stray capacitance Cc1 of the coaxial cable 12 is added to the electrostatic capacitance Ce of the moisture sensitive element 14. Further, a coaxial cable (second conductive cable) 13 is connected to the reference side circuit, and the stray capacitance Cc2 of the coaxial cable 13 is added to the reference capacitance Cr provided by the reference capacitance portion.

差動増幅回路10は、C−V変換回路9の素子側回路の出力電圧と基準側回路の出力電圧を入力して差動増幅する。出力信号変換部7は、差動増幅回路10で得られた、基準静電容量に対する感湿素子14の静電容量の変化分に相当する電圧差を、これに対応する相対湿度を表す電気信号に変換して出力する構成部であり、出力増幅回路11は差動増幅回路10の出力を増幅する。   The differential amplifier circuit 10 receives the output voltage of the element side circuit of the CV conversion circuit 9 and the output voltage of the reference side circuit and differentially amplifies them. The output signal conversion unit 7 obtains the voltage difference corresponding to the change in the capacitance of the humidity sensitive element 14 with respect to the reference capacitance obtained by the differential amplifier circuit 10 as an electric signal representing the relative humidity corresponding thereto. The output amplifier circuit 11 amplifies the output of the differential amplifier circuit 10.

感湿部3に設けられる感湿素子14は、例えば2枚の電極に感湿性高分子を挟み込んで構成された高分子容量式感湿素子を用いる。この場合、計測環境の水蒸気量に応じて、感湿性高分子に吸着した水分量により変化し、この吸着水分量により感湿性高分子の誘電率が変化する。この誘電率の変化が上記電極間での静電容量の変化として測定される。この静電容量の変化は、計測環境の相対湿度に比例する。   As the moisture sensing element 14 provided in the moisture sensing unit 3, for example, a polymer capacitive humidity sensing element configured by sandwiching a moisture sensitive polymer between two electrodes is used. In this case, depending on the amount of water vapor in the measurement environment, the amount of moisture adsorbed on the moisture-sensitive polymer changes, and the dielectric constant of the moisture-sensitive polymer changes depending on the amount of moisture adsorbed. This change in dielectric constant is measured as the change in capacitance between the electrodes. This change in capacitance is proportional to the relative humidity of the measurement environment.

図3は、実施の形態1によるケーブルの一例を示す断面図である。図3に示すように、ケーブル4は、同軸ケーブル12,13がシース15及びシールド16によって被覆された複合同軸ケーブルである。同軸ケーブル12,13は、信号を伝搬する導体17と同軸に内側絶縁体18、シールド19及び外側絶縁体20を設けた同種、同長の同軸ケーブルである。   FIG. 3 is a sectional view showing an example of the cable according to the first embodiment. As shown in FIG. 3, the cable 4 is a composite coaxial cable in which coaxial cables 12 and 13 are covered with a sheath 15 and a shield 16. The coaxial cables 12 and 13 are coaxial cables of the same type and the same length provided with an inner insulator 18, a shield 19, and an outer insulator 20 coaxially with a conductor 17 that propagates a signal.

図4は、実施の形態1によるケーブルの接続関係を示す図であり、図5は、図2中の信号処理部による処理の流れを示す図である。図4に示すように、感湿素子14の一方の電極には、同軸ケーブル12の信号導体が接続され、もう一方の電極が同軸ケーブル12のシールドとともに接地される。   FIG. 4 is a diagram showing a cable connection relationship according to the first embodiment, and FIG. 5 is a diagram showing a processing flow by the signal processing unit in FIG. As shown in FIG. 4, the signal conductor of the coaxial cable 12 is connected to one electrode of the moisture sensitive element 14, and the other electrode is grounded together with the shield of the coaxial cable 12.

感湿素子14は、回路部2の素子側回路で抵抗Rと接続されており、素子側回路では、図5に示すように、感湿素子14の検出湿度に応じた矩形波信号(素子側発信波形)が出力される。この素子側発信波形において、感湿素子14の静電容量Ceが変化する変化時間T1は、感湿素子14の検出湿度(静電容量Ce)と抵抗Rとの積に依存する。   The moisture sensitive element 14 is connected to the resistor R in the element side circuit of the circuit unit 2, and in the element side circuit, as shown in FIG. 5, a rectangular wave signal (element side) corresponding to the detected humidity of the moisture sensitive element 14. Output waveform) is output. In this element-side transmission waveform, the change time T1 during which the capacitance Ce of the moisture sensitive element 14 changes depends on the product of the detected humidity (capacitance Ce) of the moisture sensitive element 14 and the resistance R.

一方、回路部2の基準側回路においても同様に、基準静電容量部に抵抗Rが接続されており、基準静電容量に応じた矩形波信号(基準側発信波形)が出力される。この基準側発信波形において、基準静電容量Crが変化する変化時間T2は、基準静電容量Crと抵抗Rとの積に依存する。   On the other hand, also in the reference side circuit of the circuit unit 2, a resistor R is connected to the reference capacitance unit, and a rectangular wave signal (reference side transmission waveform) corresponding to the reference capacitance is output. In this reference-side transmission waveform, the change time T2 when the reference capacitance Cr changes depends on the product of the reference capacitance Cr and the resistance R.

C−V変換回路9は、素子側発信波形と基準側発信波形とをそれぞれRC積分することにより、図5に示すように、感湿素子14の静電容量Ceの変化に応じた電圧値と、基準静電容量Crに応じた電圧値とを出力する。差動増幅回路10が、これら出力電圧値の電圧差を増幅することにより、図5に示す電圧出力が得られる。この電圧出力は、基準静電容量Crに対する感湿素子14の静電容量Ceの変化分に相当する電圧差である。出力信号変換部7は、この電圧出力を増幅して対応する相対湿度を表す電気信号に変換し、外部端子8を介して湿度計測値として出力する。   The CV conversion circuit 9 performs RC integration on the element-side transmission waveform and the reference-side transmission waveform, respectively, so that the voltage value corresponding to the change in the capacitance Ce of the moisture sensitive element 14 is obtained as shown in FIG. The voltage value corresponding to the reference capacitance Cr is output. The differential amplifier circuit 10 amplifies the voltage difference between these output voltage values to obtain the voltage output shown in FIG. This voltage output is a voltage difference corresponding to a change in the capacitance Ce of the moisture sensitive element 14 with respect to the reference capacitance Cr. The output signal converter 7 amplifies the voltage output and converts it into an electrical signal representing the corresponding relative humidity, and outputs it as a humidity measurement value via the external terminal 8.

上述したように、感湿素子14の静電容量Ceには同軸ケーブル12の浮遊容量が付加されており、基準静電容量Crには同軸ケーブル13の浮遊容量が付加されている。この発明では、同軸ケーブル12,13を1本の複合同軸ケーブル4として、同軸ケーブル12の浮遊容量と同軸ケーブル13の浮遊容量とを略一致させている(Cc1=Cc2)。これにより、上述の変化時間T1とT2が等しくなり、素子側と基準側の出力を差動増幅することによって、同軸ケーブル12,13の浮遊容量の電圧出力に対する影響を相殺できる。   As described above, the stray capacitance of the coaxial cable 12 is added to the capacitance Ce of the moisture-sensitive element 14, and the stray capacitance of the coaxial cable 13 is added to the reference capacitance Cr. In the present invention, the coaxial cables 12 and 13 are used as one composite coaxial cable 4, and the stray capacitance of the coaxial cable 12 and the stray capacitance of the coaxial cable 13 are substantially matched (Cc1 = Cc2). Thereby, the above-mentioned change times T1 and T2 become equal, and the influence on the voltage output of the stray capacitance of the coaxial cables 12 and 13 can be canceled by differentially amplifying the output on the element side and the reference side.

なお、ケーブル4は、図3に示した構成に限定されるものではない。
図6は、実施の形態1によるケーブルの他の例を示す断面図である。図6に示すケーブル4は5芯の複合同軸ケーブルであり、同軸ケーブル12,13の他、信号線となる3本の同軸ケーブル21を有する。例えば、図1に示した湿度−温度計測装置において、感湿素子14と同軸ケーブル12,13を接続し、測温抵抗体3線式計測で温度計測する測温抵抗体22の信号線として3本の同軸ケーブル21を利用する。
このように、感湿部3等のセンサ部と信号処理を行う回路部2とを複合同軸ケーブルで接続する構成を利用して、容量式湿度センサのみならず、他のセンサ素子の信号用の同軸ケーブルも1本の複合同軸ケーブルにまとめることができる。上記の他、風速センサ等の信号線を複合同軸ケーブルにまとめてもよい。
The cable 4 is not limited to the configuration shown in FIG.
FIG. 6 is a cross-sectional view showing another example of the cable according to the first embodiment. The cable 4 shown in FIG. 6 is a 5-core composite coaxial cable, and includes three coaxial cables 21 serving as signal lines in addition to the coaxial cables 12 and 13. For example, in the humidity-temperature measuring apparatus shown in FIG. 1, the humidity sensing element 14 and the coaxial cables 12 and 13 are connected, and 3 is used as the signal line of the resistance temperature detector 22 for measuring the temperature by the resistance temperature detector 3-wire measurement. A coaxial cable 21 is used.
In this way, the sensor unit such as the moisture sensing unit 3 and the circuit unit 2 that performs signal processing are connected by a composite coaxial cable, and thus not only for capacitive humidity sensors but also for signals of other sensor elements. Coaxial cables can also be combined into a single composite coaxial cable. In addition to the above, signal lines such as a wind speed sensor may be combined into a composite coaxial cable.

以上のように、この実施の形態1によれば、基準静電容量Crに付加されている同軸ケーブル13の浮遊容量と感湿素子14の静電容量Ceに付加されている同軸ケーブル12の浮遊容量とを等しくしたので、感湿素子14の静電容量の変化分として同軸ケーブル12,13の浮遊容量が相殺され、真の静電容量の変化分が得られることから、感湿素子14の静電容量Ceの変化が微少量であっても、対応する湿度を精度良く計測できる。   As described above, according to the first embodiment, the floating capacitance of the coaxial cable 13 added to the reference capacitance Cr and the floating capacitance of the coaxial cable 12 added to the capacitance Ce of the moisture sensitive element 14 are described. Since the capacitance is made equal, the stray capacitance of the coaxial cables 12 and 13 is canceled out as the change in the capacitance of the moisture sensing element 14, and the change in the true capacitance is obtained. Even if the change in the capacitance Ce is very small, the corresponding humidity can be measured with high accuracy.

また、この実施の形態1によれば、同軸ケーブル12,13を各々が同種同長の同軸ケーブルとし、同軸ケーブル12,13で構成した複合同軸ケーブル4によって、感湿素子14との接続及び基準静電容量部との接続を行うので、同軸ケーブル12の浮遊容量と同軸ケーブル13の浮遊容量とを容易に同一にすることができる。また、同軸ケーブル12,13が1本の複合同軸ケーブル4にまとめられていることから、ケーブルの取り扱いや計測現場への設置も容易であり、さらに、同軸ケーブル12,13が複合同軸ケーブル4として同一の場所に配置されるため、計測現場の温度等の条件も同一にでき、計測精度が向上する。   Further, according to the first embodiment, the coaxial cables 12 and 13 are coaxial cables of the same type and the same length, and the composite coaxial cable 4 constituted by the coaxial cables 12 and 13 is connected to the humidity sensitive element 14 and the reference. Since the connection with the electrostatic capacity unit is performed, the stray capacitance of the coaxial cable 12 and the stray capacitance of the coaxial cable 13 can be easily made the same. In addition, since the coaxial cables 12 and 13 are combined into one composite coaxial cable 4, the cable can be easily handled and installed at the measurement site. Further, the coaxial cables 12 and 13 are used as the composite coaxial cable 4. Since they are arranged in the same place, conditions such as the temperature at the measurement site can be made the same, and the measurement accuracy is improved.

1 湿度計測装置
2 回路部
2A ケース
3 感湿部
4 ケーブル
5 信号処理部
6 電源回路
7 出力信号変換部
8 外部端子
9 C−V変換回路
10 差動増幅回路
11 出力増幅回路
12,13 同軸ケーブル(第1の導電ケーブル、第2の導電ケーブル)
14 感湿素子
15 シース
16,19 シールド
17 導体
18,20 絶縁体
21 同軸ケーブル
22 測温抵抗体
DESCRIPTION OF SYMBOLS 1 Humidity measuring device 2 Circuit part 2A Case 3 Humidity sensing part 4 Cable 5 Signal processing part 6 Power supply circuit 7 Output signal conversion part 8 External terminal 9 CV conversion circuit 10 Differential amplification circuit 11 Output amplification circuit 12, 13 Coaxial cable (First conductive cable, second conductive cable)
14 Humidity sensing element 15 Sheath 16, 19 Shield 17 Conductor 18, 20 Insulator 21 Coaxial cable 22 Resistance temperature detector

Claims (2)

計測環境雰囲気中の湿度に応じて静電容量が変化する感湿素子を有する感湿部と、
基準静電容量を得る基準静電容量部と、
前記感湿素子と接続する第1の導電ケーブルと、
前記基準静電容量部と接続する第2の導電ケーブルと、
前記第1の導電ケーブルを介して前記感湿素子の静電容量を取得するとともに、前記基準静電容量部の基準静電容量を取得し、前記感湿素子の静電容量と前記基準静電容量から前記感湿素子の静電容量の変化分を検出する信号処理部と、
前記信号処理部で検出された前記感湿素子の静電容量の変化分を、対応する相対湿度を表す電気信号に変換して出力する出力信号変換部とを備えた湿度計測装置において、
前記第1の導電ケーブルの浮遊容量と前記第2の導電ケーブルの浮遊容量が等しいことを特徴とする湿度計測装置。
A moisture sensing part having a moisture sensing element whose capacitance changes according to the humidity in the measurement environment atmosphere;
A reference capacitance unit for obtaining a reference capacitance;
A first conductive cable connected to the moisture sensitive element;
A second conductive cable connected to the reference capacitance unit;
The capacitance of the moisture sensitive element is acquired via the first conductive cable, the reference capacitance of the reference capacitance unit is acquired, and the capacitance of the moisture sensitive element and the reference capacitance are acquired. A signal processing unit for detecting a change in capacitance of the moisture sensitive element from the capacitance;
In a humidity measuring device comprising: an output signal conversion unit that converts a change in capacitance of the humidity sensing element detected by the signal processing unit into an electrical signal representing a corresponding relative humidity, and outputs the electrical signal.
A humidity measuring apparatus, wherein the stray capacitance of the first conductive cable and the stray capacitance of the second conductive cable are equal.
第1及び第2の導電ケーブルは、各々が同種同長の同軸ケーブルであり、
前記第1及び前記第2の導電ケーブルで構成した1本の複合同軸ケーブルによって、感湿素子との接続及び基準静電容量部との接続を行うことを特徴とする請求項1記載の湿度計測装置。
The first and second conductive cables are coaxial cables of the same type and length,
The humidity measurement according to claim 1, wherein the humidity sensing element and the reference capacitance unit are connected by a single composite coaxial cable composed of the first and second conductive cables. apparatus.
JP2009085148A 2009-03-31 2009-03-31 Humidity measuring device Expired - Fee Related JP5247562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009085148A JP5247562B2 (en) 2009-03-31 2009-03-31 Humidity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009085148A JP5247562B2 (en) 2009-03-31 2009-03-31 Humidity measuring device

Publications (2)

Publication Number Publication Date
JP2010237028A true JP2010237028A (en) 2010-10-21
JP5247562B2 JP5247562B2 (en) 2013-07-24

Family

ID=43091480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009085148A Expired - Fee Related JP5247562B2 (en) 2009-03-31 2009-03-31 Humidity measuring device

Country Status (1)

Country Link
JP (1) JP5247562B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2378370A1 (en) 2010-04-09 2011-10-19 Ricoh Company, Ltd. Image forming apparatus
KR101988758B1 (en) * 2017-12-20 2019-06-12 주식회사 포스코 Method for managing power cable using tanget delta
KR20220000598A (en) * 2020-06-26 2022-01-04 한전케이디엔주식회사 System and method for analysing degradation of a underground cable

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103592342A (en) * 2013-11-20 2014-02-19 四川研成通信科技有限公司 Soil humidity detecting device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62113055A (en) * 1985-11-12 1987-05-23 Zaou Seiki Kenkyusho:Kk Moisture measuring apparatus
JPH0434581A (en) * 1990-05-31 1992-02-05 Canon Inc Image forming device with developer running out detector
JPH09145661A (en) * 1995-11-28 1997-06-06 Chino Corp Humidity measuring device
JPH11218580A (en) * 1998-02-02 1999-08-10 Sanden Corp Snowfall detector
JP2002221402A (en) * 2000-11-27 2002-08-09 Mitsutoyo Corp Measuring system and measuring method for capacitance type gap sensor
JP2008082993A (en) * 2006-09-29 2008-04-10 Chino Corp Hygrometer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62113055A (en) * 1985-11-12 1987-05-23 Zaou Seiki Kenkyusho:Kk Moisture measuring apparatus
JPH0434581A (en) * 1990-05-31 1992-02-05 Canon Inc Image forming device with developer running out detector
JPH09145661A (en) * 1995-11-28 1997-06-06 Chino Corp Humidity measuring device
JPH11218580A (en) * 1998-02-02 1999-08-10 Sanden Corp Snowfall detector
JP2002221402A (en) * 2000-11-27 2002-08-09 Mitsutoyo Corp Measuring system and measuring method for capacitance type gap sensor
JP2008082993A (en) * 2006-09-29 2008-04-10 Chino Corp Hygrometer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2378370A1 (en) 2010-04-09 2011-10-19 Ricoh Company, Ltd. Image forming apparatus
KR101988758B1 (en) * 2017-12-20 2019-06-12 주식회사 포스코 Method for managing power cable using tanget delta
KR20220000598A (en) * 2020-06-26 2022-01-04 한전케이디엔주식회사 System and method for analysing degradation of a underground cable
KR102404065B1 (en) 2020-06-26 2022-05-31 한전케이디엔주식회사 System and method for analysing degradation of a underground cable

Also Published As

Publication number Publication date
JP5247562B2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
AU729354B2 (en) Impedance-to-voltage converter
TWI779190B (en) Non-contact dc voltage measurement device with oscillating sensor
US8508217B2 (en) Output circuit of charge mode sensor
JP4611774B2 (en) Non-contact voltage detection method and non-contact voltage detection device
JP4971504B2 (en) Sensor device for capacitively detecting intervals
JP5737750B2 (en) AC power measuring device
JP5247562B2 (en) Humidity measuring device
EP1426772B1 (en) Impedance measuring circuit, its method, and capacitance measuring circuit
JP2002055126A (en) Non-contact type voltage measuring method and device therefor
KR20040040456A (en) Impedance measuring circuit and capacitance measuring circuit
JP3469586B2 (en) Impedance-voltage conversion device and conversion method
WO2003023417A1 (en) Sensor capacity sensing apparatus and sensor capacity sensing method
Baby et al. A simple analog front-end circuit for grounded capacitive sensors with offset capacitance
US9372217B2 (en) Cable detector
CN104677484B (en) Vibration and dynamic acceleration sensing using capacitors
JP2002157671A (en) Sensing system
JP2014119384A (en) Non-contact voltage measuring probe
WO2015133212A1 (en) Voltage measuring apparatus and voltage measuring method
JP2006242718A (en) Impedance detector
JP4942621B2 (en) Impedance measuring device and detection method
JP6364584B2 (en) Atmospheric electric field detector
CN113125832A (en) Full-frequency band current sensor
CN111190054B (en) Ultrahigh resistance value measuring circuit and device for alternating current characteristic detection
WO2022224325A1 (en) Non-contact voltage sensor device
RU2281470C1 (en) Device for measuring sound pressure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130409

R150 Certificate of patent or registration of utility model

Ref document number: 5247562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees