JP2010236961A - Analysis method of volatile organic component - Google Patents

Analysis method of volatile organic component Download PDF

Info

Publication number
JP2010236961A
JP2010236961A JP2009083954A JP2009083954A JP2010236961A JP 2010236961 A JP2010236961 A JP 2010236961A JP 2009083954 A JP2009083954 A JP 2009083954A JP 2009083954 A JP2009083954 A JP 2009083954A JP 2010236961 A JP2010236961 A JP 2010236961A
Authority
JP
Japan
Prior art keywords
volatile organic
organic component
volatile
analyzed
wiping material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009083954A
Other languages
Japanese (ja)
Other versions
JP5005725B2 (en
Inventor
Tomoyoshi Ushiogi
知良 潮木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2009083954A priority Critical patent/JP5005725B2/en
Publication of JP2010236961A publication Critical patent/JP2010236961A/en
Application granted granted Critical
Publication of JP5005725B2 publication Critical patent/JP5005725B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple analysis method of sensitively detecting many volatile organic components volatilizing from a deposit on a surface of a member to be analyzed. <P>SOLUTION: In this analysis method, the volatile organic component volatilizing from the deposit on the surface of the member to be analyzed is analyzed. In the analysis method, the surface of the member to be analyzed is wiped by a wiping material into which a specific volatile solvent is infiltrated and/or a wiping material into which a mixed solvent of the volatile solvent and water is infiltrated, the wiping material is supplied into a vessel, gas is injected into the vessel, and the volatilizing volatile organic component is extracted by a solid phase micro extraction method and analyzed by a gas chromatograph mass spectrometry. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、揮発性有機成分の分析方法に関する。   The present invention relates to a method for analyzing volatile organic components.

鉄道施設を構成する地下空間、トンネルや、喫煙室等の室内等の閉鎖空間では、臭気の発生によりその中にいる人が不快に感じることがある(非特許文献1)。そのため、閉鎖空間における衛生環境を評価・把握することは、該空間の環境を向上させるうえで非常に重要である。閉鎖空間における臭気の発生源としては、壁面等に付着している付着物が考えられる。つまり、該付着物から臭い物質となる揮発性有機成分が揮発することにより臭気が発生していると考えられる。
閉鎖空間における揮発性有機成分の分析方法としては、該空間内において空気中の揮発性有機成分を直接捕集し、ガスクロマトグラフ分析等で分析する方法が挙げられる。
In a closed space such as an underground space, a tunnel, or a smoking room that constitutes a railway facility, people in the space may feel uncomfortable due to the generation of odor (Non-Patent Document 1). Therefore, evaluating and grasping the sanitary environment in a closed space is very important for improving the environment of the space. As a generation source of odor in the closed space, an adhering substance adhering to a wall surface or the like can be considered. That is, it is considered that odor is generated by volatilization of volatile organic components that become odorous substances from the deposits.
Examples of the analysis method of the volatile organic component in the closed space include a method in which the volatile organic component in the air is directly collected in the space and analyzed by gas chromatography analysis or the like.

しかし、前記分析方法は、揮発性有機成分の検出感度が充分に得られないことがあり、臭気に関与している多数の揮発性有機成分を高感度で網羅的に把握することは困難である。また、空気中の揮発性有機成分を直接捕集して分析を行う方法は、その捕集作業に長時間を要し、分析工程も煩雑になる。   However, the analysis method may not provide sufficient detection sensitivity for volatile organic components, and it is difficult to comprehensively grasp a large number of volatile organic components involved in odor with high sensitivity. . Moreover, the method of directly collecting and analyzing volatile organic components in the air requires a long time for the collecting operation, and the analysis process becomes complicated.

鈴木浩明他:衛生・清潔に関する利用者意識の実態と要望の分析,鉄道総研報告,Vol.19,No.1,pp.15−20,2005Hiroaki Suzuki et al .: Analysis of user consciousness and requests regarding hygiene and cleanliness, Railway Research Institute report, Vol. 19, no. 1, pp. 15-20, 2005

本発明は、被分析部材の表面の付着物から揮発する揮発性有機成分を、高感度でより多く検出することができる簡便な分析方法の提供を目的とする。   An object of the present invention is to provide a simple analysis method that can detect more volatile organic components that volatilize from deposits on the surface of a member to be analyzed with high sensitivity.

本発明は、前記課題を解決するために、以下の構成を採用した。
[1]被分析部材の表面の付着物から揮発する揮発性有機成分を分析する方法であって、沸点が72.4〜82.4℃の揮発性溶媒を染み込ませた拭取り材、及び/又は該揮発性溶媒と水との混合溶媒を染み込ませた拭取り材により、被分析部材の表面の付着物を拭き取る工程(1)と、付着物を拭き取った拭取り材を容器に投入して該容器内にガスを吹き込む工程(2)と、工程(2)により前記揮発性溶媒を除去した拭取り材の付着物から揮発した揮発性有機成分を固相マイクロ抽出法にて抽出する工程(3)と、ガスクロマトグラフ質量分析法により揮発性有機成分を分析する工程(4)とを有する揮発性有機成分の分析方法。
[2]前記揮発性溶媒が2−プロパノールである、前記[1]に記載の揮発性有機成分の分析方法。
The present invention employs the following configuration in order to solve the above problems.
[1] A method for analyzing a volatile organic component that volatilizes from deposits on the surface of a member to be analyzed, the wiping material impregnated with a volatile solvent having a boiling point of 72.4 to 82.4 ° C., and / or Alternatively, the step (1) of wiping off the deposit on the surface of the member to be analyzed with a wiping material soaked with a mixed solvent of the volatile solvent and water, and the wiping material from which the deposit has been wiped off are put into a container. Step (2) for blowing gas into the container, and step (2) for extracting the volatile organic component volatilized from the deposit of the wiping material from which the volatile solvent has been removed by step (2) by solid phase microextraction method ( The analysis method of a volatile organic component which has 3) and the process (4) which analyzes a volatile organic component by a gas chromatograph mass spectrometry.
[2] The method for analyzing a volatile organic component according to [1], wherein the volatile solvent is 2-propanol.

本発明の揮発性有機成分の分析方法によれば、被分析部材の表面の付着物から揮発する揮発性有機成分をより多く検出することができる。また、本発明の分析方法は非常に簡便である。   According to the volatile organic component analysis method of the present invention, more volatile organic components that volatilize from the deposits on the surface of the member to be analyzed can be detected. Moreover, the analysis method of the present invention is very simple.

本実施例における揮発性有機成分のガスクロマトグラフ質量分析の結果を示す図である。It is a figure which shows the result of the gas chromatograph mass spectrometry of the volatile organic component in a present Example. 図1における検出時間18分までの拡大図である。It is an enlarged view to detection time 18 minutes in FIG. 図1における検出時間18分以降の拡大図である。It is an enlarged view after detection time 18 minutes in FIG. 参考例1におけるガスクロマトグラフ質量分析の結果を示す図である。It is a figure which shows the result of the gas chromatograph mass spectrometry in Reference Example 1.

本発明の揮発性有機成分の分析方法(以下、「本分析方法」という。)は、被分析部材の表面の付着物から揮発する揮発性有機成分を分析する方法である。室内等における臭気の発生源としては、その壁面等に付着している付着物(有機成分)から揮発する揮発性有機成分が考えられる。本分析方法により該付着物から揮発する揮発性有機成分を分析することは環境の向上等に有効である。
本分析方法における分析対象である被分析部材の表面としては、鉄道施設を構成する地下空間、トンネルや、喫煙室等の室内といった閉鎖空間における壁面が好ましい。また、被分析部材の表面は、閉鎖空間内にある椅子、机等の表面であってもよい。さらには、被分析部材の表面は屋外の建築部材表面等であってもよい。
The volatile organic component analysis method of the present invention (hereinafter referred to as “the present analysis method”) is a method of analyzing a volatile organic component that volatilizes from deposits on the surface of the member to be analyzed. As a generation source of odor in the room or the like, a volatile organic component that volatilizes from an adhering substance (organic component) adhering to the wall surface or the like can be considered. Analyzing volatile organic components that volatilize from the deposits by this analysis method is effective for improving the environment.
The surface of the member to be analyzed in the present analysis method is preferably a wall surface in a closed space such as an underground space constituting a railway facility, a tunnel, or a room such as a smoking room. Further, the surface of the member to be analyzed may be a surface of a chair, a desk or the like in the closed space. Further, the surface of the member to be analyzed may be an outdoor building member surface or the like.

本分析方法における検出対象の揮発性有機成分は、被分析部材の表面に付着している付着物から揮発する成分であり、臭気の要因となっている有機成分である。
揮発性有機成分としては、例えば、たばこに含まれるアルデヒド化合物、オレフィン、複素環化合物、芳香族化合物等の有機成分、テルペン類が挙げられる。
The volatile organic component to be detected in this analysis method is a component that volatilizes from the deposits that adhere to the surface of the member to be analyzed, and is an organic component that causes odor.
Examples of the volatile organic component include organic components such as aldehyde compounds, olefins, heterocyclic compounds, and aromatic compounds contained in tobacco, and terpenes.

本分析方法は、以下の工程(1)〜(4)を有する。
工程(1):沸点が72.4〜82.4℃の揮発性溶媒(以下、「揮発性溶媒A」という。)を染み込ませた拭取り材、及び/又は揮発性溶媒Aと水との混合溶媒(以下、「混合溶媒B」という。)を染み込ませた拭取り材により、被分析部材の表面の付着物を拭き取る。
工程(2):付着物を拭き取った拭取り材を容器に投入して該容器内にガスを吹き込む。
工程(3):工程(2)により拭取り材から過剰の揮発性溶媒Aを除去した後、揮発性有機成分を固相マイクロ抽出法(Solid Phase Micro Extraction、以下「SPME法」という。)にて抽出する。
工程(4):ガスクロマトグラフ質量分析法(以下、「GC/MS法」という。)により揮発性有機成分を分析する。
本分析方法は、揮発性溶媒A、混合溶媒Bを用いて付着物を拭取り、それら溶媒と共に揮発性有機成分を揮発させて採取することにより、該揮発性有機成分の高感度な検出を可能とするものである。
This analysis method includes the following steps (1) to (4).
Step (1): a wiping material soaked with a volatile solvent having a boiling point of 72.4 to 82.4 ° C. (hereinafter referred to as “volatile solvent A”) and / or volatile solvent A and water. The deposit on the surface of the member to be analyzed is wiped with a wiping material soaked with a mixed solvent (hereinafter referred to as “mixed solvent B”).
Step (2): The wiping material from which the deposits have been wiped is put into a container and gas is blown into the container.
Step (3): After removing the excess volatile solvent A from the wiping material in step (2), the volatile organic component is subjected to solid phase micro extraction (hereinafter referred to as “SPME method”). To extract.
Step (4): A volatile organic component is analyzed by gas chromatography mass spectrometry (hereinafter referred to as “GC / MS method”).
This analysis method enables highly sensitive detection of volatile organic components by wiping off deposits using volatile solvent A and mixed solvent B, and volatilizing volatile organic components together with these solvents. It is what.

工程(1)では、揮発性溶媒Aを染み込ませた拭取り材、及び/又は混合溶媒Bを染み込ませた拭取り材で、被分析部材の表面の付着物を拭き取る。すなわち、本発明における工程(1)は、揮発性溶媒Aを染み込ませた拭取り材と混合溶媒Bを染み込ませた拭取り材の両方を使用する態様(i)、揮発性溶媒Aを染み込ませた拭取り材のみを使用する態様(ii)、混合溶媒Bを染み込ませた拭取り材のみを用いる態様(iii)の3態様である。なかでも、より多くの揮発性有機成分を検出できる点から態様(i)が好ましい。
工程(1)を態様(i)にて行った場合は、続く工程(2)〜(4)は、揮発性有機成分を高感度で検出しやすい点から、それぞれの拭取り材について別々に行うことが好ましい。ただし、それら拭取り材を合わせて同時に行ってもよい。
In the step (1), the deposit on the surface of the member to be analyzed is wiped with a wiping material soaked with the volatile solvent A and / or a wiping material soaked with the mixed solvent B. That is, the step (1) in the present invention uses the wiping material soaked with the volatile solvent A and the wiping material soaked with the mixed solvent B (i), soaking the volatile solvent A. The mode (ii) in which only the wiping material is used and the mode (iii) in which only the wiping material soaked with the mixed solvent B is used. Especially, aspect (i) is preferable from the point which can detect more volatile organic components.
When the step (1) is performed in the mode (i), the subsequent steps (2) to (4) are performed separately for each wiping material from the viewpoint that the volatile organic component can be detected with high sensitivity. It is preferable. However, these wiping materials may be combined and performed simultaneously.

拭取り材としては、工程(2)及び工程(3)において揮発性有機成分が充分に採取でき、揮発性溶媒Aに対して耐性があるものであればよく、例えば、脱脂綿、ウエス等が挙げられる。なかでも、取り扱い性に優れ、ガスの吹き込みにより揮発性溶媒Aを除去させやすい点から、脱脂綿が好ましい。   As a wiping material, what can collect | recover volatile organic components fully in a process (2) and a process (3), and should just have tolerance with respect to the volatile solvent A, for example, absorbent cotton, a waste, etc. are mentioned. It is done. Among these, absorbent cotton is preferable because it is easy to handle and can easily remove the volatile solvent A by blowing gas.

揮発性溶媒Aは、沸点が72.4〜82.4℃の溶媒である。
沸点が72.4℃以上であれば、付着物を拭き取っている際に揮発性溶媒Aが揮発することで充分な検出感度が得られなくなることを防止できる。
また、沸点が82.4℃以下であれば、工程(2)においてガスの過剰な吹き込みを行わなくても揮発性溶媒Aを充分に揮発させることが可能になるため、揮発性有機成分を拡散させすぎることなくその抽出を安定して行うことができる。また、ガスの吹き込みにより室温であっても揮発性溶媒Aを揮発させることができるため、分析対象の揮発性有機成分が熱変性することを防止できる。さらに、工程(4)のGC/MS法による分析において、揮発性溶媒のピークと揮発性有機成分のピークとが重なって分析の妨げになることを防止できる。
また、使用する揮発性溶媒Aは、人体や被分析部材に対する影響が小さいものが好ましい。
The volatile solvent A is a solvent having a boiling point of 72.4 to 82.4 ° C.
When the boiling point is 72.4 ° C. or higher, it is possible to prevent the detection of sufficient detection sensitivity due to volatilization of the volatile solvent A when the deposit is wiped off.
Further, if the boiling point is 82.4 ° C. or less, the volatile solvent A can be sufficiently volatilized without excessive gas blowing in the step (2), so that the volatile organic component is diffused. The extraction can be stably performed without excessively. Further, since the volatile solvent A can be volatilized even at room temperature by blowing gas, it is possible to prevent the volatile organic component to be analyzed from being thermally denatured. Further, in the analysis by the GC / MS method in step (4), it is possible to prevent the analysis from being hindered by the overlap of the peak of the volatile solvent and the peak of the volatile organic component.
Further, the volatile solvent A to be used is preferably one that has a small influence on the human body and the member to be analyzed.

揮発性溶媒Aの具体例としては、例えば、エタノール、2−プロパノール(IPA)等のアルコールが挙げられる。なかでも、工程(1)の拭き取り時において揮発し難く、かつ工程(2)において揮発性有機成分が拡散しすぎない程度のガスの吹き込みでも効率的に揮発させることができる点から、IPAが特に好ましい。
また、IPAは、GC/MS法による分析において得られるピークの検出時間が短く、分析対象の揮発性有機成分のピークと重なり難いため、分析の妨げになり難い点で有利である。また、IPAは人体に対する影響が小さく(LD50=5840mg/kg(ラット、経口))、被分析部材に剥離、膨潤、剥離等の損傷を生じさせ難い。
さらに、IPAは殺菌力がある点でも有利である。特に混合溶媒Bを染み込ませた拭取り材の場合は、揮発性溶媒Aのみを染み込ませた拭取り材に比べ、水が存在することで拭き取り後の拭取り材中における細菌の活動が活発になりやすく、生分解による新たな物質の生成が起こりやすくなると考えられる。しかし、IPAを用いた混合溶媒Bであれば、水が存在していてもIPAの殺菌力によって生分解による新たな物質の生成を防止できる。
Specific examples of the volatile solvent A include alcohols such as ethanol and 2-propanol (IPA). In particular, IPA is particularly preferable because it is difficult to volatilize at the time of wiping in step (1) and can be efficiently volatilized even by blowing a gas that does not allow diffusion of volatile organic components in step (2). preferable.
In addition, IPA is advantageous in that the detection time of a peak obtained in the analysis by the GC / MS method is short and it is difficult to overlap with the peak of the volatile organic component to be analyzed. IPA has little influence on the human body (LD 50 = 5840 mg / kg (rat, oral)), and hardly causes damage such as peeling, swelling, peeling, etc. to the member to be analyzed.
Furthermore, IPA is also advantageous in that it has bactericidal power. In particular, in the case of the wiping material soaked with the mixed solvent B, compared to the wiping material soaked with only the volatile solvent A, the activity of bacteria in the wiping material after wiping is more active due to the presence of water. It is likely that new substances will be generated by biodegradation. However, the mixed solvent B using IPA can prevent the generation of a new substance due to biodegradation by the sterilizing power of IPA even if water is present.

混合溶媒BにおけるIPAの混合比率は特に制限されない。混合溶媒B中のIPAの混合比率は、70〜80%であることが好ましい。IPAの混合比率が70%以上であれば、IPAによる殺菌効果等が得られやすい。また、IPAの混合比率が80%以下であれば、IPAのみを染み込ませた拭取り材と併用したときに、より多くの揮発性有機成分を高感度で検出しやすくなる。
混合溶媒Bとしては、例えば、消毒液として使用されているIPA70%と水30%の混合溶媒(以下、「混合溶媒B1」という。)が挙げられる。
The mixing ratio of IPA in the mixed solvent B is not particularly limited. The mixing ratio of IPA in the mixed solvent B is preferably 70 to 80%. If the mixing ratio of IPA is 70% or more, the bactericidal effect by IPA can be easily obtained. Further, when the IPA mixing ratio is 80% or less, more volatile organic components can be easily detected with high sensitivity when used in combination with a wiping material soaked with only IPA.
Examples of the mixed solvent B include a mixed solvent of IPA 70% and water 30% (hereinafter referred to as “mixed solvent B1”) used as a disinfectant.

本分析方法では、揮発性溶媒Aを染み込ませた拭取り材を用いる場合と、混合溶媒Bを染み込ませた拭取り材を用いる場合とでは、高感度で検出される揮発性有機成分の種類が異なる。例えば、IPAと混合溶媒B1を比較すると、GC/MS法による分析において検出時間(保持時間)がより短い領域で検出される揮発性有機成分の感度はIPAを用いた場合の方が高く、検出時間がより長い領域で検出される揮発性有機成分の感度は混合溶媒B1を用いた場合の方が高い。これは、IPAと混合溶媒B1とでは、水の有無により付着物の溶解性が異なり、被分析部材の表面から高効率で回収できる付着物の種類が変化するためであると考えられる。
したがって、IPAと混合溶媒B1の組み合わせ等、揮発性溶媒Aを染み込ませた拭取り材と、混合溶媒Bを染み込ませた拭取り材を併用することにより、より多くの揮発性有機成分を簡便な手法で高感度に検出することができる。本分析方法では、IPAと、IPA及び水の混合溶媒の併用が好ましく、IPAと混合溶媒B1の併用が特に好ましい。
In this analysis method, the type of the volatile organic component detected with high sensitivity is used when the wiping material soaked with the volatile solvent A is used and when the wiping material soaked with the mixed solvent B is used. Different. For example, when comparing IPA and mixed solvent B1, the sensitivity of volatile organic components detected in the region where the detection time (retention time) is shorter in the analysis by the GC / MS method is higher when IPA is used. The sensitivity of the volatile organic component detected in a longer time region is higher when the mixed solvent B1 is used. This is presumably because the solubility of the deposit differs between IPA and mixed solvent B1 depending on the presence or absence of water, and the type of deposit that can be recovered with high efficiency from the surface of the member to be analyzed changes.
Therefore, by using a wiping material soaked with volatile solvent A such as a combination of IPA and mixed solvent B1 and a wiping material soaked with mixed solvent B, more volatile organic components can be easily used. It can be detected with high sensitivity by this method. In this analysis method, the combined use of IPA and a mixed solvent of IPA and water is preferable, and the combined use of IPA and mixed solvent B1 is particularly preferable.

揮発性溶媒A又は混合溶媒Bを拭取り材に染み込ませる方法は、それらの溶媒を充分に染み込ませることができる方法であれば特に限定されない。例えば、揮発性溶媒A又は混合溶媒B中に拭取り材を浸漬する方法が挙げられる。   The method of soaking the volatile solvent A or the mixed solvent B into the wiping material is not particularly limited as long as the solvent can be sufficiently soaked. For example, the method of immersing a wiping material in the volatile solvent A or the mixed solvent B is mentioned.

工程(1)で拭取り材により被分析部材の表面を拭取った後、工程(2)及び工程(3)において拭取り材の付着物から揮発する揮発性有機成分を採取する。工程(2)及び工程(3)は、付着物から揮発した揮発性有機成分を効率良く採取するため容器内で行う。   After the surface of the member to be analyzed is wiped with the wiping material in the step (1), the volatile organic components that volatilize from the deposits of the wiping material are collected in the step (2) and the step (3). Step (2) and step (3) are performed in a container in order to efficiently collect volatile organic components volatilized from the deposits.

工程(2)では、付着物を拭き取った拭取り材を容器に投入し、該容器にガスを拭き込む。これにより、拭取り材に染み込んでいる揮発性溶媒A、混合溶媒Bを除去することができ、高感度で揮発性有機成分を検出することが可能となる。
前記容器は、揮発性有機成分が容器内壁に吸着し難いものが好ましく、例えば、バイアル等が挙げられる。容器の大きさは、用いる拭取り材の大きさによって適宜選定すればよく、投入された拭取り材の付着物から揮発する揮発性有機成分が過度に拡散されずに、効率良く抽出が行える大きさであればよい。
In the step (2), the wiping material from which the deposits are wiped is put into a container, and the gas is wiped into the container. Thereby, the volatile solvent A and the mixed solvent B that have permeated the wiping material can be removed, and the volatile organic component can be detected with high sensitivity.
The container is preferably one in which a volatile organic component hardly adsorbs to the inner wall of the container, and examples thereof include a vial. The size of the container may be appropriately selected depending on the size of the wiping material to be used, and the volatile organic component that volatilizes from the deposits of the wiping material that has been input is not excessively diffused and can be efficiently extracted. That's fine.

容器内に吹き込むガスは、GC/MS法による分析に対する影響が小さいものを用いることができ、例えば、窒素ガス、希ガスが挙げられる。なかでも、溶媒及び揮発性有機成分の揮発の効率、経済性の点から、窒素ガスが好ましい。   As the gas blown into the container, one having a small influence on the analysis by the GC / MS method can be used, and examples thereof include nitrogen gas and rare gas. Among these, nitrogen gas is preferable from the viewpoints of the efficiency of volatilization of the solvent and the volatile organic component, and economical efficiency.

工程(2)におけるガスの流量は、用いる容器の大きさによっても異なるが、例えば50mLバイアルを用いる場合は、2L/分以下であることが好ましい。ガス流量が2L/分以下であれば、揮発性有機成分の揮発を抑えやすく、揮発性有機成分の検出感度が向上する。また、ガス流量が2L/分を超えると、揮発性溶媒Aの除去は効率的に行うことができるが、揮発性有機成分も容器外に排出されやすくなる。またガスの吹き込みは、前記流量で15〜30分間行うことが好ましい。   Although the gas flow rate in the step (2) varies depending on the size of the container to be used, for example, when a 50 mL vial is used, it is preferably 2 L / min or less. When the gas flow rate is 2 L / min or less, volatilization of the volatile organic component is easily suppressed, and the detection sensitivity of the volatile organic component is improved. When the gas flow rate exceeds 2 L / min, the volatile solvent A can be removed efficiently, but volatile organic components are also easily discharged out of the container. Further, it is preferable that the gas is blown at the above flow rate for 15 to 30 minutes.

工程(2)における温度は、25〜30℃が好ましい。温度が30℃以下であれば、揮発性有機成分の揮発を抑えやすく、揮発性有機成分の検出感度が向上する。   As for the temperature in a process (2), 25-30 degreeC is preferable. If temperature is 30 degrees C or less, it will be easy to suppress volatilization of a volatile organic component, and the detection sensitivity of a volatile organic component will improve.

工程(3)では、拭取り材の付着物から揮発した揮発性有機成分をSPME法により抽出する。SPME法とは、細いニードルに結合された固相(SPMEファイバー)に試料中の化学物質を吸着させる方法である。SPME法により揮発性有機成分を吸着して抽出した後、ニードルをガスクロマトグラフ質量分析装置(GC/MS装置)の注入口に挿入することにより、吸着した化学物質を加熱脱着させて測定する。SPME法を利用することにより、少量の試料でも充分な抽出量が確保できるため、短時間で簡便に測定を行うことが可能となる。   In the step (3), volatile organic components volatilized from the wiping material deposits are extracted by the SPME method. The SPME method is a method in which a chemical substance in a sample is adsorbed on a solid phase (SPME fiber) bonded to a thin needle. After the volatile organic component is adsorbed and extracted by the SPME method, the needle is inserted into the injection port of a gas chromatograph mass spectrometer (GC / MS device) to measure the adsorbed chemical substance by heating and desorption. By using the SPME method, a sufficient amount of extraction can be ensured even with a small amount of sample, so that measurement can be easily performed in a short time.

SPMEファイバーとしては、例えば、ポリジメチルシロキサン系(PDMS)、PDMS/ジビニルベンゼン(DVB)系、ポリアクリレート系、カーボキセン/PDMS系、DVB/カーボキセン/PDMS系、カーボワックス/DVB系、DVB/メタクリレート共重合体系のSPMEファイバーが挙げられる。なかでも、揮発性有機成分の検出感度が良好な点から、PDMS、PDMS/DVB系、カーボキセン/PDMS系、DVB/カーボキセン/PDMS系が好ましい。
SPMEファイバーの具体例としては、例えば、カーボキセン/PDMS、PDMS/DVB(以上、スペルコ社製)が挙げられる。
Examples of SPME fibers include polydimethylsiloxane (PDMS), PDMS / divinylbenzene (DVB), polyacrylate, carboxene / PDMS, DVB / carboxene / PDMS, carbowax / DVB, DVB / methacrylate. Examples include polymer-based SPME fibers. Of these, PDMS, PDMS / DVB, carboxene / PDMS, and DVB / carboxene / PDMS are preferred from the viewpoint of good detection sensitivity of volatile organic components.
Specific examples of SPME fibers include carboxene / PDMS and PDMS / DVB (manufactured by Spelco).

具体的には、SPMEファイバーを拭取り材に触れさせないように容器内に挿し込んだ状態で該容器を密封し、一定時間保持する。これにより、付着物から揮発する成分のみを抽出することができる。
SPMEファイバーの保持時間は、GC/MS法により揮発性有機成分を充分な感度で検出できる抽出量が確保でき、かつ分析に要する時間が必要以上に長くならない時間であればよく、2〜3時間が好ましい。
Specifically, the container is sealed in a state where the SPME fiber is inserted into the container so as not to touch the wiping material, and is held for a certain period of time. Thereby, only the component which volatilizes from a deposit can be extracted.
The retention time of the SPME fiber may be a time that can secure an extraction amount capable of detecting a volatile organic component with sufficient sensitivity by the GC / MS method, and does not become unnecessarily long, and is 2 to 3 hours. Is preferred.

SPMEファイバーを保持させる温度は、常温の25〜30℃が好ましい。温度が30℃を超えると、常温では揮発しない揮発性有機成分を検出してしまいやすい。また、温度が25℃未満であると、常温で揮発する揮発性有機成分が揮発し難くなる。   The temperature at which the SPME fiber is held is preferably 25 to 30 ° C. at room temperature. When temperature exceeds 30 degreeC, it will be easy to detect the volatile organic component which does not volatilize at normal temperature. Further, when the temperature is lower than 25 ° C., volatile organic components that volatilize at room temperature are difficult to volatilize.

工程(4)では、工程(3)で抽出した揮発性有機成分をGC/MS法により分析する。具体的には、抽出を行った後のニードルをGC/MS装置の注入口に挿入して分析を行う。本分析方法では、使用するGC/MS装置は特に限定されず、既存のGC/MS装置を使用することができる。
また、GC/MS法による分析は、特別な条件を設定する必要はなく、室内等の空気の分析等で通常採用される条件を用いることができる。
In step (4), the volatile organic component extracted in step (3) is analyzed by the GC / MS method. Specifically, the needle after the extraction is inserted into the injection port of the GC / MS apparatus for analysis. In this analysis method, the GC / MS apparatus to be used is not particularly limited, and an existing GC / MS apparatus can be used.
Further, the analysis by the GC / MS method does not need to set special conditions, and the conditions usually employed in the analysis of air in the room or the like can be used.

以上説明した本発明の分析方法は、簡便な手法で、被分析部材の表面の付着物から発生する揮発性有機成分を高感度でかつ多種類にわたって検出することができる。
本分析方法は、鉄道施設を構成する地下空間やトンネル、喫煙室等の室内等における臭気の発生源の分析等に利用できる。
The analysis method of the present invention described above can detect a wide variety of volatile organic components generated from deposits on the surface of a member to be analyzed with a simple technique.
This analysis method can be used for analysis of odor sources in underground spaces, tunnels, smoking rooms, and the like that constitute railway facilities.

以下、実施例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によっては限定されない。
[実施例1]
2−プロパノール(IPA)溶液に脱脂綿(縦1.5cm×横1.5cm)を浸漬した後、該脱脂綿により喫煙室の壁面のうち一定領域(面積4,050cm、縦45cm×横90cm)を拭き取り、該脱脂綿を50mLバイアル内に投入した。
次いで、バイアル内に窒素ガスを流量2L/分で30分間吹き込んだ後、バイアル内にSPMEファイバー(PDMS/DVB、スペルコ社製)を挿し込んだ状態でバイアルを密封し、そのまま3時間保持した。その後、バイアルからSPMEファイバーを取り出してGC/MS分析計により揮発性有機成分の分析を行った。
GC/MS分析の条件は、以下に示す通りである。
測定機器 :6890N,5975B(アジレント社製)
カラム :HP−INNOWAX(アジレント社製)
GC注入口温度:250℃
カラム温度 :45〜250℃
キャリアガス :ヘリウム
カラム流量 :1.4mL/分
スプリット比 :スプリットレス
Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited by the following description.
[Example 1]
After dipping absorbent cotton (length 1.5 cm x width 1.5 cm) in 2-propanol (IPA) solution, a certain area (area 4,050 cm 2 , height 45 cm x width 90 cm) of the wall surface of the smoking room with the absorbent cotton. Wipe off and put the absorbent cotton into a 50 mL vial.
Next, nitrogen gas was blown into the vial at a flow rate of 2 L / min for 30 minutes, and then the vial was sealed with SPME fiber (PDMS / DVB, manufactured by Spellco) inserted into the vial, and held for 3 hours. Then, the SPME fiber was taken out from the vial and the volatile organic component was analyzed with a GC / MS analyzer.
The conditions of GC / MS analysis are as shown below.
Measuring instrument: 6890N, 5975B (manufactured by Agilent)
Column: HP-INNOWAX (manufactured by Agilent)
GC inlet temperature: 250 ° C
Column temperature: 45-250 ° C
Carrier gas: Helium Column flow rate: 1.4 mL / min Split ratio: Splitless

[実施例2]
IPA70質量%と水30質量%の混合溶液B1に浸漬した脱脂綿(縦1.5cm×横1.5cm)を用いて、喫煙室の壁面における実施例1で拭き取りを行った領域の近傍に位置する同面積の領域を拭き取った以外は、実施例1と同様にして揮発性有機成分の分析を行った。
実施例1におけるGC/MS分析結果を図1〜3(A)、実施例2におけるGC/MS分析結果を図1〜3(B)に示す。
[Example 2]
Using absorbent cotton (1.5 cm in length x 1.5 cm in width) dipped in a mixed solution B1 of IPA 70% by mass and water 30% by mass, it is located in the vicinity of the area wiped in Example 1 on the wall surface of the smoking room. A volatile organic component was analyzed in the same manner as in Example 1 except that the area of the same area was wiped off.
1-3 (A) shows the GC / MS analysis results in Example 1, and FIGS. 1-3 (B) show the GC / MS analysis results in Example 2. FIG.

図1〜3に示すように、揮発性溶媒AであるIPAのみを染み込ませた脱脂綿を用いた実施例1、及び混合溶媒B1を染み込ませた脱脂綿を用いた実施例2はいずれも、壁面の付着物から揮発する揮発性有機成分を高感度に検出することができた。
また、実施例1と実施例2を比較すると、IPAのみを用いた実施例1では、混合溶媒B1を用いた実施例2に比べて検出時間18分までの間に検出される揮発性有機成分に対する感度が優れていた(図2(A)、(B))。一方、混合溶媒B1を用いた実施例2は、検出時間18分以降に検出される揮発性有機成分に対する感度が優れていた(図3(A)、(B))。このように、揮発性溶媒Aと混合溶媒B1を用いた場合では、それぞれ高感度で検出される揮発性有機成分の種類が異なることがわかった。
実施例1及び2のように、揮発性溶媒Aを染み込ませた拭取り材と、混合溶媒Bを染み込ませた拭取り材とを併用することは、被分析部材の付着物から揮発する揮発性有機成分をより多く検出し、網羅的に把握することがさらに容易になるため、非常に有用である。
As shown in FIGS. 1 to 3, Example 1 using the absorbent cotton soaked only with IPA as the volatile solvent A and Example 2 using the absorbent cotton soaked with the mixed solvent B1 are both of the wall surface. Volatile organic components volatilized from the deposits could be detected with high sensitivity.
Further, when Example 1 and Example 2 are compared, in Example 1 using only IPA, volatile organic components detected within a detection time of 18 minutes compared to Example 2 using mixed solvent B1. The sensitivity to was excellent (FIGS. 2A and 2B). On the other hand, Example 2 using the mixed solvent B1 was excellent in sensitivity to volatile organic components detected after a detection time of 18 minutes (FIGS. 3A and 3B). Thus, it was found that when the volatile solvent A and the mixed solvent B1 were used, the types of volatile organic components detected with high sensitivity were different.
The combined use of the wiping material soaked with the volatile solvent A and the wiping material soaked with the mixed solvent B as in Examples 1 and 2 causes the volatility to volatilize from the deposit on the member to be analyzed. This is very useful because it becomes easier to detect more organic components and grasp them comprehensively.

[参考例1]
揮発性溶媒であるメタノール、エタノール、IPA、2−メチルプロパン−1−オール、1−ブタノール、2−ブタノール、及び2−ペンタノールをGC/MS分析計により分析した。分析条件は実施例1と同じとした。その結果を図4に示す。
[Reference Example 1]
The volatile solvents methanol, ethanol, IPA, 2-methylpropan-1-ol, 1-butanol, 2-butanol, and 2-pentanol were analyzed with a GC / MS analyzer. The analysis conditions were the same as in Example 1. The result is shown in FIG.

図4に示すように、IPAは2−メチルプロパン−1−オール、1−ブタノール、2−ブタノール、及び2−ペンタノールに比べて検出される時間が短く、分析対象の揮発性有機成分のピークと重なり難いことが確認された。   As shown in FIG. 4, IPA has a shorter detection time than 2-methylpropan-1-ol, 1-butanol, 2-butanol, and 2-pentanol, and the peak of the volatile organic component to be analyzed. It was confirmed that it was difficult to overlap.

Claims (2)

被分析部材の表面の付着物から揮発する揮発性有機成分を分析する方法であって、
沸点が72.4〜82.4℃の揮発性溶媒を染み込ませた拭取り材、及び/又は該揮発性溶媒と水との混合溶媒を染み込ませた拭取り材により、被分析部材の表面の付着物を拭き取る工程(1)と、付着物を拭き取った拭取り材を容器に投入して該容器内にガスを吹き込む工程(2)と、工程(2)により前記揮発性溶媒を除去した拭取り材の付着物から揮発した揮発性有機成分を固相マイクロ抽出法にて抽出する工程(3)と、ガスクロマトグラフ質量分析法により揮発性有機成分を分析する工程(4)とを有する揮発性有機成分の分析方法。
A method for analyzing a volatile organic component that volatilizes from deposits on the surface of a member to be analyzed,
By using a wiping material soaked with a volatile solvent having a boiling point of 72.4-82.4 ° C. and / or a wiping material soaked with a mixed solvent of the volatile solvent and water, Step (1) for wiping off deposits, Step (2) for injecting a wiping material from which deposits have been wiped into a container, and blowing gas into the container, and wiping from which the volatile solvent has been removed by Step (2) Volatility which has the process (3) which extracts the volatile organic component which volatilized from the deposit | attachment of news gathering by a solid-phase microextraction method, and the process (4) which analyzes a volatile organic component by a gas chromatography mass spectrometry Analysis method of organic components.
前記揮発性溶媒が2−プロパノールである、請求項1に記載の揮発性有機成分の分析方法。   The method for analyzing a volatile organic component according to claim 1, wherein the volatile solvent is 2-propanol.
JP2009083954A 2009-03-31 2009-03-31 Analysis method of volatile organic components Expired - Fee Related JP5005725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009083954A JP5005725B2 (en) 2009-03-31 2009-03-31 Analysis method of volatile organic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009083954A JP5005725B2 (en) 2009-03-31 2009-03-31 Analysis method of volatile organic components

Publications (2)

Publication Number Publication Date
JP2010236961A true JP2010236961A (en) 2010-10-21
JP5005725B2 JP5005725B2 (en) 2012-08-22

Family

ID=43091423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009083954A Expired - Fee Related JP5005725B2 (en) 2009-03-31 2009-03-31 Analysis method of volatile organic components

Country Status (1)

Country Link
JP (1) JP5005725B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104034820A (en) * 2014-06-25 2014-09-10 上海应用技术学院 Method for rapidly distinguishing brand of kirschwasser
CN105241977A (en) * 2015-10-29 2016-01-13 云南中烟工业有限责任公司 Method for characterizing cigarette baking aroma characteristic by using index
CN106338555A (en) * 2016-08-11 2017-01-18 云南中烟工业有限责任公司 Method for quantification prediction of cigarette baking incense type
CN106442774A (en) * 2016-09-07 2017-02-22 云南中烟工业有限责任公司 Quantitative prediction method of cigarette cream odor type
CN106442775A (en) * 2016-09-07 2017-02-22 云南中烟工业有限责任公司 Quantitative prediction method for aroma types of cigarettes and flue cured tobaccos
CN114324664A (en) * 2021-12-30 2022-04-12 广州酒家集团利口福食品有限公司 Method for detecting volatile components in lotus paste stuffing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110243960A (en) * 2019-06-11 2019-09-17 华中农业大学 The separation of Carnation flowers external source volatilization fragrance component and identification method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000002632A (en) * 1998-04-13 2000-01-07 Shimizu Corp Contaminant defection method
WO2008156199A1 (en) * 2007-06-18 2008-12-24 Gl Sciences Incorporated Monolith adsorbent and method and apparatus for adsorbing samples with the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000002632A (en) * 1998-04-13 2000-01-07 Shimizu Corp Contaminant defection method
WO2008156199A1 (en) * 2007-06-18 2008-12-24 Gl Sciences Incorporated Monolith adsorbent and method and apparatus for adsorbing samples with the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104034820A (en) * 2014-06-25 2014-09-10 上海应用技术学院 Method for rapidly distinguishing brand of kirschwasser
CN105241977A (en) * 2015-10-29 2016-01-13 云南中烟工业有限责任公司 Method for characterizing cigarette baking aroma characteristic by using index
CN106338555A (en) * 2016-08-11 2017-01-18 云南中烟工业有限责任公司 Method for quantification prediction of cigarette baking incense type
CN106442774A (en) * 2016-09-07 2017-02-22 云南中烟工业有限责任公司 Quantitative prediction method of cigarette cream odor type
CN106442775A (en) * 2016-09-07 2017-02-22 云南中烟工业有限责任公司 Quantitative prediction method for aroma types of cigarettes and flue cured tobaccos
CN114324664A (en) * 2021-12-30 2022-04-12 广州酒家集团利口福食品有限公司 Method for detecting volatile components in lotus paste stuffing
CN114324664B (en) * 2021-12-30 2024-05-03 广州酒家集团利口福食品有限公司 Method for detecting volatile components in lotus paste stuffing

Also Published As

Publication number Publication date
JP5005725B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5005725B2 (en) Analysis method of volatile organic components
Tang et al. Volatile organic compound emissions from humans indoors
Szulejko et al. Review of progress in solvent-extraction techniques for the determination of polyaromatic hydrocarbons as airborne pollutants
Sánchez-Rojas et al. A review of stir bar sorptive extraction
Koziel et al. Sampling and analysis of airborne particulate matter and aerosols using in-needle trap and SPME fiber devices
Murray Limitations to the use of solid-phase microextraction for quantitation of mixtures of volatile organic sulfur compounds
Matysik et al. Determination of microbial volatile organic compounds (MVOCs) by passive sampling onto charcoal sorbents
CN105842378B (en) The assay method of flavor component in a kind of electronics smoke sol
Król et al. Occurrence and levels of polybrominated diphenyl ethers (PBDEs) in house dust and hair samples from Northern Poland; an assessment of human exposure
DeGreeff et al. Evaluation of selected sorbent materials for the collection of volatile organic compounds related to human scent using non-contact sampling mode
Liu et al. Occupational exposure to synthetic musks in barbershops, compared with the common exposure in the dormitories and households
Van Loy et al. Dynamic behavior of semivolatile organic compounds in indoor air. 1. Nicotine in a stainless steel chamber
Armstrong et al. Development of a passive air sampler to measure airborne organophosphorus pesticides and oxygen analogs in an agricultural community
WO2006079846A1 (en) A method of detecting and identifying bacteria
Abdullah et al. Recoveries of trace pseudoephedrine and methamphetamine residues from impermeable household surfaces: Implications for sampling methods used during remediation of clandestine methamphetamine laboratories
US20220341822A1 (en) Device and Method for In Situ Sampling of Volatiles from Surfaces
Gevao et al. Seasonal variations in the atmospheric concentrations of polybrominated diphenyl ethers in Kuwait
Shin et al. Volatilization of low vapor pressure–volatile organic compounds (LVP–VOCs) during three cleaning products-associated activities: Potential contributions to ozone formation
Melymuk et al. Uncertainties in monitoring of SVOCs in air caused by within-sampler degradation during active and passive air sampling
Nojima et al. Qualitative and quantitative analysis of chemicals emitted from the pheromone gland of individual Heliothis subflexa females
Gallego et al. Outdoor air monitoring: Performance evaluation of a gas sensor to assess episodic nuisance/odorous events using active multi-sorbent bed tube sampling coupled to TD-GC/MS analysis
Streibel et al. Thermal desorption/pyrolysis coupled with photoionization time-of-flight mass spectrometry for the analysis of molecular organic compounds and oligomeric and polymeric fractions in urban particulate matter
Mauri-Aucejo et al. Determination of phenolic compounds in air by using cyclodextrin-silica hybrid microporous composite samplers
Pang et al. Analysis of biogenic carbonyl compounds in rainwater by stir bar sorptive extraction technique with chemical derivatization and gas chromatography‐mass spectrometry
Yeh et al. Ozonolysis Lifetime of Tetrahydrocannabinol in Thirdhand Cannabis Smoke

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees