JP2010236710A - Hybrid type water heater - Google Patents

Hybrid type water heater Download PDF

Info

Publication number
JP2010236710A
JP2010236710A JP2009082590A JP2009082590A JP2010236710A JP 2010236710 A JP2010236710 A JP 2010236710A JP 2009082590 A JP2009082590 A JP 2009082590A JP 2009082590 A JP2009082590 A JP 2009082590A JP 2010236710 A JP2010236710 A JP 2010236710A
Authority
JP
Japan
Prior art keywords
hot water
temperature
water temperature
gas
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009082590A
Other languages
Japanese (ja)
Inventor
Kenji Yamada
研治 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2009082590A priority Critical patent/JP2010236710A/en
Publication of JP2010236710A publication Critical patent/JP2010236710A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To use heating by a gas heating means together so as to excel also in an aspect of running cost while capitalizing on an efficiency of an electric heat pump water heater in accordance with an inflow water temperature, an outside air temperature, and a required tapping temperature. <P>SOLUTION: Based on the inflow water temperature, the outside air temperature, and the required tapping temperature, a temperature of hot water minimizing the running cost is extracted as a set hot water temperature by a set hot water temperature extracting means 25. An electric motor 2 of a compressor is controlled by a compressor control means 29. While the hot water at the set hot water temperature is obtained by operating the electric heat pump water heater with a high coefficient of performance, a flow regulating valve 24 of a gas burner is controlled by a gas supply amount control means 32. The hot water at the set hot water temperature is heated by the gas burner. Thus, the hot water at the required tapping temperature set by a hot water temperature setting unit 20 is obtained. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電気式ヒートポンプ給湯器と、ガス瞬間湯沸し器のガスバーナなどのガス加熱手段による給湯構成とを備えたハイブリッド型給湯装置に関する。   The present invention relates to a hybrid type hot water supply apparatus including an electric heat pump water heater and a hot water supply configuration by gas heating means such as a gas burner of a gas instantaneous water heater.

上述のようなハイブリッド型給湯装置としては、従来、次のようなものが知られている。
冷媒を循環流動する冷媒配管に、冷媒を圧縮して高温化する電動型の圧縮機と、圧縮機からの高温冷媒の熱を放熱して給水管内を流動する水を加熱する熱交換器と、熱交換器からの冷媒を断熱膨張する膨張弁と、膨張弁からの冷媒を加熱する蒸発器とを、その順に設けて電気式ヒートポンプ給湯器を構成し、ガスバーナによって加熱する加熱部を設け、熱交換器の下流側で給水管を加熱部に伝熱可能に付設し、成績係数が高い電気式ヒートポンプ給湯器で加熱して湯を得ながら、その湯をガス瞬間湯沸し器のガスバーナで加熱して高温の湯を得るように構成されている(特許文献、図1参照)。
Conventionally, the following is known as a hybrid hot water supply apparatus as described above.
An electric compressor that compresses the refrigerant and heats it to a refrigerant pipe that circulates and flows the refrigerant, a heat exchanger that radiates the heat of the high-temperature refrigerant from the compressor and heats the water flowing in the water supply pipe, An expansion valve that adiabatically expands the refrigerant from the heat exchanger and an evaporator that heats the refrigerant from the expansion valve are provided in that order to form an electric heat pump water heater, and a heating unit that is heated by a gas burner is provided, At the downstream side of the exchanger, a water supply pipe is attached to the heating part so that heat can be transferred, and heated with an electric heat pump water heater with a high coefficient of performance to obtain hot water, the hot water is heated with a gas burner of a gas instantaneous water heater It is comprised so that high temperature hot water may be obtained (refer patent document and FIG. 1).

特開2007−255775号公報   JP 2007-255775 A

電気式ヒートポンプ給湯器は、定格時の効率は優れるものの、外気温度が低い場合や要求される出湯温度が高い場合に効率が低下する問題があり、また、電気式ヒートポンプ給湯器に供給される水の温度、すなわち、入水温度の変動によって効率が変動する問題があった。
一方、ガス瞬間湯沸し器のガスバーナでは、外気温度が低い場合や要求される出湯温度が高い場合における効率の低下が少なく、また、入水温度の変動に伴う効率の変動が少ない。
しかしながら、上記従来例では、所定の湯を得るうえで、電気式ヒートポンプ給湯器を成績係数の高い効率に優れた状態で稼動していても、その電力消費量が必要以上に多くなっているなど、電気式ヒートポンプ給湯器の電力消費量、および、ガス瞬間湯沸し器での燃料ガス消費量まで考慮しているものでは無く、ランニングコスト面で改善の余地があった。
Although the electric heat pump water heater has excellent efficiency at the time of rating, there is a problem that the efficiency decreases when the outside air temperature is low or the required hot water temperature is high, and the water supplied to the electric heat pump water heater There was a problem that the efficiency fluctuated depending on the temperature of the water, that is, the fluctuation of the water temperature.
On the other hand, in the gas burner of the gas instantaneous water heater, there is little decrease in efficiency when the outside air temperature is low or when the required hot water temperature is high, and there is little fluctuation in efficiency due to fluctuations in the incoming water temperature.
However, in the above conventional example, even when the electric heat pump water heater is operated in a state of high efficiency with high coefficient of performance in obtaining predetermined hot water, its power consumption is more than necessary. This does not take into consideration the power consumption of the electric heat pump water heater and the fuel gas consumption of the gas instantaneous water heater, and there is room for improvement in terms of running cost.

本発明は、このような事情に鑑みてなされたものであって、入水温度と外気温度と要求出湯温度に対応させて、電気式ヒートポンプ給湯器の効率の良さを生かしながら、ランニングコスト面でも優れるようにガス加熱手段による加熱を併用できるようにすることを目的とする。   The present invention has been made in view of such circumstances, and is excellent in running cost while making good use of the efficiency of the electric heat pump water heater in correspondence with the incoming water temperature, the outside air temperature, and the required hot water temperature. Thus, it aims at enabling it to use together the heating by a gas heating means.

請求項1に係る発明のハイブリッド型給湯装置は、上述のような目的を達成するために、
冷媒を循環流動する冷媒配管に、冷媒を圧縮して高温化する電動型の圧縮機と、前記圧縮機からの高温冷媒の熱を放熱して給水管内を流動する水を加熱する熱交換器と、前記熱交換器からの冷媒を断熱膨張する膨張手段と、前記膨張手段からの冷媒を加熱する蒸発器とを、その順に設けて電気式ヒートポンプ給湯器を構成し、ガス加熱手段によって加熱する加熱部を設け、前記熱交換器の下流側で前記給水管を前記加熱部に伝熱可能に付設したハイブリッド型給湯装置において、
前記電気式ヒートポンプ給湯器に供給される水の温度を計測する入水温度センサと、
外気温度を計測する外気温度センサと、
前記熱交換器と前記加熱部間での給水管内を流れる湯の温度を計測する第1の湯温センサと、
電気式ヒートポンプ給湯器で得る湯の温度として、予め、入水温度と外気温度と要求出湯温度とに基づいて求めた、ランニングコストが最小となる湯の温度を設定湯温として記憶した設定湯温テーブルと、
出湯要求を感知して給湯信号を出力する出湯感知手段と、
前記出湯感知手段からの給湯信号に応答して電気式ヒートポンプ給湯器を起動する給湯起動手段と、
前記入水温度センサで計測された入水温度と前記外気温度センサで計測された外気温度と要求出湯温度とに基づいて前記設定湯温テーブルから設定湯温を抽出する設定湯温抽出手段と、
前記第1の湯温センサによる計測湯温と設定湯温とを比較して計測湯温が設定湯温になるように前記圧縮機を制御する圧縮機制御手段と、
前記第1の湯温センサによる計測湯温が設定湯温になったときに前記ガス加熱手段を起動するガス加熱起動手段と、
前記加熱部を経た湯の温度を計測する第2の湯温センサと、
前記第2の湯温センサで計測された湯の温度が要求出湯温度になるようにガス加熱手段へのガス供給量を制御するガス供給量制御手段とを備えて構成する。
In order to achieve the above-described object, the hybrid hot water supply device of the invention according to claim 1
An electric compressor that compresses the refrigerant and heats it to a refrigerant pipe that circulates and flows the refrigerant; and a heat exchanger that dissipates the heat of the high-temperature refrigerant from the compressor and heats the water flowing in the water supply pipe. And an expansion means for adiabatic expansion of the refrigerant from the heat exchanger and an evaporator for heating the refrigerant from the expansion means in that order to constitute an electric heat pump water heater, and heating by the gas heating means In the hybrid hot water supply apparatus provided with a portion, and the water supply pipe is attached downstream of the heat exchanger so that heat can be transferred to the heating unit.
An incoming water temperature sensor for measuring the temperature of water supplied to the electric heat pump water heater,
An outside temperature sensor for measuring the outside temperature;
A first hot water temperature sensor for measuring a temperature of hot water flowing in a water supply pipe between the heat exchanger and the heating unit;
A set hot water temperature table that stores, as the set hot water temperature, the hot water temperature that minimizes the running cost, previously obtained based on the incoming water temperature, the outside air temperature, and the required hot water temperature, as the hot water temperature obtained by the electric heat pump water heater. When,
Hot water detection means for detecting a hot water request and outputting a hot water supply signal;
Hot water supply starting means for starting an electric heat pump water heater in response to a hot water supply signal from the hot water detection means;
Set hot water temperature extraction means for extracting a set hot water temperature from the set hot water temperature table based on the incoming water temperature measured by the incoming water temperature sensor, the outside air temperature measured by the outside air temperature sensor and the required hot water temperature;
Compressor control means for controlling the compressor so that the measured hot water temperature becomes the set hot water temperature by comparing the hot water temperature measured by the first hot water temperature sensor with the set hot water temperature;
Gas heating starting means for starting the gas heating means when the hot water temperature measured by the first hot water temperature sensor reaches a set hot water temperature;
A second hot water temperature sensor for measuring the temperature of the hot water that has passed through the heating section;
Gas supply amount control means for controlling the gas supply amount to the gas heating means so that the temperature of the hot water measured by the second hot water temperature sensor becomes the required hot water temperature.

請求項1に係る発明のハイブリッド型給湯装置の構成によれば、給湯に際して、入水温度と外気温度と要求出湯温度とに基づいて、ランニングコストが最小となる湯の温度を設定湯温として抽出し、成績係数が高い電気式ヒートポンプ給湯器を運転して設定湯温の湯を得ながら、電気式ヒートポンプ給湯器の熱交換器を経た湯をガス加熱手段で加熱し、要求出湯温度の湯を得ることができる。
したがって、入水温度と外気温度と要求出湯温度に対応させて、電気式ヒートポンプ給湯器の効率の良さを生かしながら、ランニングコスト面でも優れるようにガス加熱手段による加熱を併用でき、経済性を向上できる。
According to the configuration of the hybrid hot water supply apparatus of the invention according to claim 1, when hot water is supplied, the hot water temperature at which the running cost is minimized is extracted as the set hot water temperature based on the incoming water temperature, the outside air temperature, and the required hot water temperature. While operating an electric heat pump water heater with a high coefficient of performance to obtain hot water at the set hot water temperature, the hot water that has passed through the heat exchanger of the electric heat pump water heater is heated by the gas heating means to obtain hot water at the required hot water temperature. be able to.
Therefore, heating by the gas heating means can be used in combination with the efficiency of the electric heat pump water heater in correspondence with the incoming water temperature, the outside air temperature, and the required hot water temperature, and the running cost can be improved, thereby improving the economy. .

本発明に係るハイブリッド型給湯装置の実施例を示す全体概略構成図である。It is a whole schematic block diagram which shows the Example of the hybrid type hot-water supply apparatus which concerns on this invention. 制御系を示すブロック図である。It is a block diagram which shows a control system. 入水温度と外気温度と成績係数との相関関係を示すグラフである。It is a graph which shows correlation with incoming water temperature, external temperature, and a coefficient of performance. 入水温度と外気温度と成績係数との相関関係を示すグラフである。It is a graph which shows correlation with incoming water temperature, external temperature, and a coefficient of performance. 成績係数と単位熱量当りのコストとの相関関係を示すグラフである。It is a graph which shows the correlation with a coefficient of performance and the cost per unit calorie | heat amount. 出湯温度と外気温度と成績係数との相関関係を示すグラフである。It is a graph which shows the correlation with tapping temperature, outside temperature, and a coefficient of performance.

次に、本発明の実施例を図面に基づいて詳細に説明する。   Next, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明に係るハイブリッド型給湯装置の実施例1を示す全体概略構成図であり、フロンガスや炭酸ガスなどの冷媒を封入して循環流動する密閉系の冷媒配管1に、冷媒を圧縮して高温化するために電動モータ2によって駆動される圧縮機3と、圧縮機3からの高温冷媒の熱を放熱する熱交換器4と、熱交換器4からの冷媒を断熱膨張する膨張手段としての膨張弁5と、蒸発器6とがその順に介装され、電気式ヒートポンプ給湯器7が構成されている。膨張手段としては、膨張タービンなどを用いても良い。   FIG. 1 is an overall schematic diagram showing a first embodiment of a hybrid hot water supply apparatus according to the present invention, in which refrigerant is compressed into a closed refrigerant pipe 1 that circulates and flows with refrigerant such as chlorofluorocarbon gas or carbon dioxide gas. Then, the compressor 3 driven by the electric motor 2 to increase the temperature, the heat exchanger 4 that radiates the heat of the high-temperature refrigerant from the compressor 3, and the expansion means that adiabatically expands the refrigerant from the heat exchanger 4 The expansion valve 5 and the evaporator 6 are interposed in that order to constitute an electric heat pump water heater 7. An expansion turbine or the like may be used as the expansion means.

熱交換器4に給水管8が導入され、圧縮機3からの高温冷媒が放熱する熱によって給水管8内を流動する水を加熱するように構成されている。
熱交換器4の下流側で、給水管8が、ガス式瞬間湯沸かし器9を構成する加熱部10に伝熱可能に付設されている。
A water supply pipe 8 is introduced into the heat exchanger 4, and the water flowing in the water supply pipe 8 is heated by the heat radiated from the high-temperature refrigerant from the compressor 3.
On the downstream side of the heat exchanger 4, a water supply pipe 8 is attached to a heating unit 10 that constitutes a gas instantaneous water heater 9 so that heat can be transferred.

ガス式瞬間湯沸かし器9は、ケーシング11内に、加熱部10と、その加熱部10の下部に設けられるガス加熱手段としてのガスバーナ12とを設けて構成されている。
ケーシング11の上部に、ガスバーナ12からの燃焼排ガスを排出する排ガス配管13が接続されるとともに排気ファン14が付設されている。排ガス配管13が蒸発器6に導入され、ガスバーナ12の排熱を利用して蒸発器6内を流動する冷媒を加熱できるように構成されている。
The gas instantaneous water heater 9 is configured such that a casing 11 is provided with a heating unit 10 and a gas burner 12 as gas heating means provided below the heating unit 10.
An exhaust gas pipe 13 for discharging combustion exhaust gas from the gas burner 12 is connected to an upper portion of the casing 11 and an exhaust fan 14 is attached. An exhaust gas pipe 13 is introduced into the evaporator 6 so that the refrigerant flowing in the evaporator 6 can be heated using the exhaust heat of the gas burner 12.

加熱部10よりも下流側で、給水管8に、その内部の水の流動を感知することで出湯要求を感知して給湯信号を出力する出湯感知手段としての出湯センサ15が設けられている。出湯感知手段としては、例えば、給湯用のカランが開いたことを感知するように構成するものでも良い。   On the downstream side of the heating unit 10, the water supply pipe 8 is provided with a tapping sensor 15 as a tapping sensor 15 that senses a tapping request by sensing the flow of water inside and supplies a hot water supply signal. For example, the hot water detection means may be configured to detect that a hot water supply curan has been opened.

給水管8の熱交換器4よりも上流側箇所に、電気式ヒートポンプ給湯器7に供給される水の温度を計測する入水温度センサ16が設けられ、熱交換器4と加熱部10との間で、給水管8に、その内部を流れる湯の温度を計測する第1の湯温センサ17が設けられ、更に、給水管8に、加熱部10を経た湯の温度を計測する第2の湯温センサ18が設けられている。
また、外気温度を計測する外気温度センサ19と、ガス式瞬間湯沸かし器9に対して出湯温度を設定する湯温設定器20が設けられている。
An incoming water temperature sensor 16 for measuring the temperature of water supplied to the electric heat pump water heater 7 is provided at a location upstream of the heat exchanger 4 in the water supply pipe 8, and between the heat exchanger 4 and the heating unit 10. Thus, the first hot water temperature sensor 17 for measuring the temperature of hot water flowing through the water supply pipe 8 is provided, and the second hot water for measuring the temperature of the hot water passed through the heating unit 10 is further provided in the water supply pipe 8. A temperature sensor 18 is provided.
In addition, an outside air temperature sensor 19 for measuring the outside air temperature and a hot water temperature setting device 20 for setting a tapping temperature for the gas instantaneous water heater 9 are provided.

入水温度センサ16、第1および第2の湯温センサ17,18、外気温度センサ19ならびに出湯温度設定器20がコントローラ21に接続され、そのコントローラ21に、電動モータ2、送風ファン6a、排気ファン14、ガスバーナ12に対する点火スイッチ22、および、ガスバーナ12に接続された燃料ガス供給管23に介装された流量調整弁24が接続されている。   The incoming water temperature sensor 16, the first and second hot water temperature sensors 17, 18, the outside air temperature sensor 19, and the hot water temperature setting device 20 are connected to the controller 21, and the electric motor 2, the blower fan 6 a, and the exhaust fan are connected to the controller 21. 14, an ignition switch 22 for the gas burner 12, and a flow rate adjusting valve 24 interposed in a fuel gas supply pipe 23 connected to the gas burner 12 are connected.

コントローラ21には、設定湯温抽出手段25、設定湯温テーブル26、第1の比較手段27、給湯起動手段28、圧縮機制御手段29、ガス加熱起動手段30、第2の比較手段31およびガス供給量制御手段32が備えられている。   The controller 21 includes a set hot water temperature extracting means 25, a set hot water temperature table 26, a first comparing means 27, a hot water supply starting means 28, a compressor control means 29, a gas heating starting means 30, a second comparing means 31 and a gas. Supply amount control means 32 is provided.

設定湯温テーブル26においては、電気式ヒートポンプ給湯器7で得る湯の温度として、後述するように、予め、入水温度と外気温度と要求出湯温度とに基づいて求めた、ランニングコストが最小となる湯の温度を設定湯温として記憶されている。
設定湯温抽出手段25では、入水温度センサ16で計測された入水温度と外気温度センサ19で計測された外気温度と湯温設定器20で設定された要求出湯温度とに基づいて設定湯温テーブル26から設定湯温を抽出するようになっている。
In the set hot water temperature table 26, as will be described later, the running cost obtained in advance based on the incoming water temperature, the outside air temperature, and the required hot water temperature is minimized as the hot water temperature obtained by the electric heat pump water heater 7. The hot water temperature is stored as the set hot water temperature.
In the set hot water temperature extraction means 25, a set hot water temperature table based on the incoming water temperature measured by the incoming water temperature sensor 16, the outside air temperature measured by the outside air temperature sensor 19, and the required hot water temperature set by the hot water temperature setter 20. The set hot water temperature is extracted from 26.

第1の比較手段27では、出湯センサ15から給湯起動手段28を経た給湯信号に応答して、第1の湯温センサ17による計測湯温と設定湯温抽出手段25で抽出された設定湯温とを比較し、計測湯温が設定湯温よりも低いときには第1の昇温信号を、そして、計測湯温が設定湯温よりも高いときには第1の降温信号をそれぞれ圧縮機制御手段29に出力するようになっている。また、第1の湯温センサ17による計測湯温が最初に設定湯温になったときにガス加熱起動手段30に起動信号を出力するようになっている。   In the first comparison means 27, in response to the hot water supply signal from the hot water sensor 15 via the hot water supply starting means 28, the measured hot water temperature by the first hot water temperature sensor 17 and the set hot water temperature extracted by the set hot water temperature extracting means 25. When the measured hot water temperature is lower than the set hot water temperature, a first temperature rise signal is sent to the compressor control means 29, and when the measured hot water temperature is higher than the set hot water temperature, the first temperature drop signal is sent to the compressor control means 29, respectively. It is designed to output. Further, when the hot water temperature measured by the first hot water temperature sensor 17 first reaches the set hot water temperature, an activation signal is output to the gas heating activation means 30.

給湯起動手段28では、出湯センサ15からの給湯信号に応答して、電気式ヒートポンプ給湯器7を、すなわち、圧縮機3の電動モータ2および送風ファン6aを起動するとともに、第1の比較手段27に起動のために給湯信号を出力するようになっている。   In the hot water supply starting means 28, the electric heat pump water heater 7, that is, the electric motor 2 and the blower fan 6a of the compressor 3 is started in response to the hot water supply signal from the hot water sensor 15, and the first comparison means 27 is started. A hot water supply signal is output for startup.

圧縮機制御手段29では、第1の比較手段27からの第1の昇温信号に応答して電動モータ2の回転数を設定量だけ増加し、圧縮機3の吐出圧を増加し、一方、第1の比較手段27からの第1の降温信号に応答して電動モータ2の回転数を設定量だけ減少し、圧縮機3の吐出圧を減少するように、すなわち、第1の湯温センサ17による計測湯温が設定湯温になるように圧縮機を制御するようになっている。   In the compressor control means 29, the rotational speed of the electric motor 2 is increased by a set amount in response to the first temperature raising signal from the first comparison means 27, and the discharge pressure of the compressor 3 is increased. In response to the first temperature drop signal from the first comparison means 27, the rotational speed of the electric motor 2 is decreased by a set amount so as to reduce the discharge pressure of the compressor 3, that is, the first hot water temperature sensor. The compressor is controlled so that the measured hot water temperature at 17 becomes the set hot water temperature.

ガス加熱起動手段30では、第1の湯温センサ17による計測湯温が設定湯温になるに伴う、第1の比較手段27からの起動信号に応答して点火スイッチ22を点火するとともに、排気ファン14を起動するように、すなわち、ガスバーナ12を起動するようになっている。また、第2の比較手段31に起動信号を出力するようになっている。   The gas heating starter 30 ignites the ignition switch 22 in response to the start signal from the first comparison unit 27 as the measured hot water temperature measured by the first hot water temperature sensor 17 becomes the set hot water temperature, and exhausts the exhaust gas. The fan 14 is activated, that is, the gas burner 12 is activated. In addition, an activation signal is output to the second comparison means 31.

第2の比較手段31では、ガス加熱起動手段30からの起動信号に応答して、第2の湯温センサ18で計測された湯の温度と、湯温設定器20で設定された要求出湯温度とを比較し、計測湯温が要求出湯温度よりも低いときには第2の昇温信号を、そして、計測湯温が要求出湯温度よりも高いときには第2の降温信号をそれぞれガス供給量制御手段32に出力するようになっている。   In the second comparison means 31, in response to the activation signal from the gas heating activation means 30, the hot water temperature measured by the second hot water temperature sensor 18 and the required hot water temperature set by the hot water temperature setting device 20. When the measured hot water temperature is lower than the required hot water temperature, the gas supply amount control means 32 outputs a second temperature rise signal, and when the measured hot water temperature is higher than the required hot water temperature, the second temperature decrease signal. To output.

ガス供給量制御手段32では、第2の比較手段31からの第2の昇温信号に応答して、流量調整弁24に開き信号を出力し、流量調整弁24を設定開度だけ開いて燃料ガスの供給量を増加し、一方、第2の比較手段31からの第2の降温信号に応答して、流量調整弁24に閉じ信号を出力し、流量調整弁24を設定開度だけ閉じて燃料ガスの供給量を減少し、要求出湯温度の湯が得られるように燃料ガスの供給量を制御するようになっている。   In response to the second temperature rise signal from the second comparison means 31, the gas supply amount control means 32 outputs an opening signal to the flow rate adjustment valve 24, and opens the flow rate adjustment valve 24 by a set opening degree to produce fuel. The gas supply amount is increased, and on the other hand, in response to the second temperature drop signal from the second comparison means 31, a closing signal is output to the flow rate adjusting valve 24, and the flow rate adjusting valve 24 is closed by the set opening degree. The supply amount of the fuel gas is controlled so that the supply amount of the fuel gas is reduced and hot water having the required hot water temperature is obtained.

次に、設定湯温テーブル26の作成につき、一例を用いて説明する。
先ず、図3および図4のグラフに示す、入水温度と外気温度と成績係数との相関関係により、入水温度と外気温度とに基づいて成績係数(COP)を求める。図3および図4における入水温度は、それぞれT1:10℃、T2:20℃、T3:30℃、T4:40℃、T5:50℃、T6:60℃である。
一方、図5のグラフに示す成績係数と単位熱量当りのコストとの相関関係から、最小コストとなる成績係数の分岐点を求める。このグラフによれば、ガス瞬間湯沸し器9のコストGが一定であるのに対して、電気式ヒートポンプ給湯器7のコストEが変化し、その分岐点における成績係数は250%、すなわち、2.5となっている。この分岐点での成績係数は、使用するガス瞬間湯沸し器9および電気式ヒートポンプ給湯器7それぞれの機種などによって異なるものであり、使用する機種ごとに求めるものである。
Next, the creation of the set hot water temperature table 26 will be described using an example.
First, the coefficient of performance (COP) is obtained based on the incoming water temperature and the outside air temperature based on the correlation between the incoming water temperature, the outside air temperature, and the coefficient of performance shown in the graphs of FIGS. The incoming water temperatures in FIGS. 3 and 4 are T1: 10 ° C., T2: 20 ° C., T3: 30 ° C., T4: 40 ° C., T5: 50 ° C., and T6: 60 ° C., respectively.
On the other hand, from the correlation between the coefficient of performance shown in the graph of FIG. 5 and the cost per unit heat quantity, the branch point of the coefficient of performance that is the minimum cost is obtained. According to this graph, while the cost G of the instantaneous gas water heater 9 is constant, the cost E of the electric heat pump water heater 7 changes, and the coefficient of performance at the branch point is 250%, that is, 2. 5 The coefficient of performance at this branching point differs depending on the model of the gas instantaneous water heater 9 and the electric heat pump water heater 7 to be used, and is determined for each model to be used.

例えば、入水温度20℃の場合、図3のグラフからわかるように、外気温度が5℃以上で成績係数が2.5を超えている。この分岐点2.5を基にして、図6のグラフに示される出湯温度と外気温度と成績係数との相関関係から、外気温度が5℃で成績係数2,5となる出湯温度は約50℃となり、この出湯温度50℃が設定湯温となる。また、外気温度が10℃であれば、出湯温度50℃と60℃との中間で、比例計算により出湯温度約57℃が求められ、この出湯温度57℃が設定湯温となる。図6における外気温度は、それぞれHT1:40℃、HT2:50℃、HT3:60℃である。   For example, when the incoming water temperature is 20 ° C., as can be seen from the graph of FIG. 3, the outside air temperature is 5 ° C. or higher and the coefficient of performance exceeds 2.5. Based on this bifurcation point 2.5, from the correlation of the tapping temperature, the outside air temperature and the coefficient of performance shown in the graph of FIG. The hot water temperature 50 ° C. is the set hot water temperature. If the outside air temperature is 10 ° C., a hot water temperature of about 57 ° C. is obtained by proportional calculation between the hot water temperatures of 50 ° C. and 60 ° C., and this hot water temperature 57 ° C. becomes the set hot water temperature. The outside air temperatures in FIG. 6 are HT1: 40 ° C., HT2: 50 ° C., and HT3: 60 ° C., respectively.

また、外気温度が0℃の場合は、図3から、成績係数2.0が求められ、この外気温度0℃、成績係数2,0を図6に当てはめると、比例計算により出湯温度約50℃が求められ、この出湯温度50℃が設定湯温となる。
これらの値をまとめると、入水温度20℃では、外気温度0℃で設定湯温50℃、外気温度5℃で設定湯温50℃、外気温度10℃で設定湯温57℃となる。
このようにして、例えば、0.2℃づつ変化させた入水温度それぞれに対して、0.2℃づつ変化させた外気温度の設定湯温を求め、それらの値を設定湯温テーブル26に記憶させておくのである。
要求出湯温度を加味することで、要求出湯温度が設定湯温よりも低い場合は、電気式ヒートポンプ給湯器7のみで湯を得ることになる。
In addition, when the outside air temperature is 0 ° C., a coefficient of performance of 2.0 is obtained from FIG. 3. When this outside air temperature of 0 ° C. and the coefficient of performance of 2, 0 are applied to FIG. The hot water temperature 50 ° C. is the set hot water temperature.
To sum up these values, when the incoming water temperature is 20 ° C., the set hot water temperature is 50 ° C. when the outside air temperature is 0 ° C., the set hot water temperature is 50 ° C. when the outside air temperature is 5 ° C., and the set hot water temperature is 57 ° C. when the outside air temperature is 10 ° C.
Thus, for example, the set hot water temperature of the outside air temperature changed by 0.2 ° C. is obtained for each incoming water temperature changed by 0.2 ° C., and those values are stored in the set hot water temperature table 26. I will let you.
By adding the required hot water temperature, when the required hot water temperature is lower than the set hot water temperature, hot water is obtained only by the electric heat pump water heater 7.

以上の構成により、設定湯温テーブル26において、電気式ヒートポンプ給湯器7で得る湯の温度として、予め、入水温度と外気温度と要求出湯温度とに基づいて求めた、ランニングコストが最小となる湯の温度を設定湯温として記憶させることができ、設定湯温までの湯を電気式ヒートポンプ給湯器7で得、その設定湯温の湯をガスバーナ12で加熱することによって要求出湯温度の湯を得ることで、要求出湯温度の湯を経済的に得ることができる。   With the above configuration, the hot water with the minimum running cost, which is obtained in advance based on the incoming water temperature, the outside air temperature, and the required hot water temperature as the hot water temperature obtained by the electric heat pump water heater 7 in the set hot water temperature table 26. Can be stored as the set hot water temperature, hot water up to the set hot water temperature is obtained by the electric heat pump water heater 7, and hot water at the set hot water temperature is heated by the gas burner 12 to obtain hot water at the required hot water temperature. Thus, hot water having the required hot water temperature can be obtained economically.

本発明としては、深夜電力で加熱した湯を貯湯タンクに貯めるように構成する場合にも適用できる。その場合、貯湯タンク内の湯が空になったときとか、貯湯タンク内で貯めた湯の温度が設定湯温よりも低い場合において、ガス瞬間湯沸し器9によって得ることになる。   The present invention can also be applied to a case where hot water heated by midnight power is stored in a hot water storage tank. In that case, when the hot water in the hot water storage tank becomes empty or when the temperature of the hot water stored in the hot water storage tank is lower than the set hot water temperature, it is obtained by the gas instantaneous water heater 9.

1…冷媒配管
3…圧縮機
4…熱交換器
5…膨張弁(膨張手段)
6…蒸発器
7…電気式ヒートポンプ給湯器
8…給水管
10…加熱部
12…ガスバーナ(ガス加熱手段)
15…出湯センサ(出湯感知手段)
16…入水温度センサ
17…第1の湯温センサ
18…第2の湯温センサ
19…外気温度センサ
25…設定湯温抽出手段
26…設定湯温テーブル
28…給湯起動手段
29…圧縮機制御手段
30…ガス加熱起動手段
32…ガス供給量制御手段
DESCRIPTION OF SYMBOLS 1 ... Refrigerant piping 3 ... Compressor 4 ... Heat exchanger 5 ... Expansion valve (expansion means)
6 ... Evaporator 7 ... Electric heat pump water heater 8 ... Water supply pipe 10 ... Heating part 12 ... Gas burner (gas heating means)
15 ... Hot water sensor (hot water detection means)
DESCRIPTION OF SYMBOLS 16 ... Incoming water temperature sensor 17 ... 1st hot water temperature sensor 18 ... 2nd hot water temperature sensor 19 ... Outside temperature sensor 25 ... Set hot water temperature extraction means 26 ... Set hot water temperature table 28 ... Hot water supply starting means 29 ... Compressor control means 30 ... Gas heating starting means 32 ... Gas supply amount control means

Claims (1)

冷媒を循環流動する冷媒配管に、冷媒を圧縮して高温化する電動型の圧縮機と、前記圧縮機からの高温冷媒の熱を放熱して給水管内を流動する水を加熱する熱交換器と、前記熱交換器からの冷媒を断熱膨張する膨張手段と、前記膨張手段からの冷媒を加熱する蒸発器とを、その順に設けて電気式ヒートポンプ給湯器を構成し、ガス加熱手段によって加熱する加熱部を設け、前記熱交換器の下流側で前記給水管を前記加熱部に伝熱可能に付設したハイブリッド型給湯装置において、
前記電気式ヒートポンプ給湯器に供給される水の温度を計測する入水温度センサと、
外気温度を計測する外気温度センサと、
前記熱交換器と前記加熱部間での給水管内を流れる湯の温度を計測する第1の湯温センサと、
電気式ヒートポンプ給湯器で得る湯の温度として、予め、入水温度と外気温度と要求出湯温度とに基づいて求めた、ランニングコストが最小となる湯の温度を設定湯温として記憶した設定湯温テーブルと、
出湯要求を感知して給湯信号を出力する出湯感知手段と、
前記出湯感知手段からの給湯信号に応答して電気式ヒートポンプ給湯器を起動する給湯起動手段と、
前記入水温度センサで計測された入水温度と前記外気温度センサで計測された外気温度と要求出湯温度とに基づいて前記設定湯温テーブルから設定湯温を抽出する設定湯温抽出手段と、
前記第1の湯温センサによる計測湯温と設定湯温とを比較して計測湯温が設定湯温になるように前記圧縮機を制御する圧縮機制御手段と、
前記第1の湯温センサによる計測湯温が設定湯温になったときに前記ガス加熱手段を起動するガス加熱起動手段と、
前記加熱部を経た湯の温度を計測する第2の湯温センサと、
前記第2の湯温センサで計測された湯の温度が要求出湯温度になるようにガス加熱手段へのガス供給量を制御するガス供給量制御手段と、
を備えたことを特徴とするハイブリッド型給湯装置。
An electric compressor that compresses the refrigerant and heats it to a refrigerant pipe that circulates and flows the refrigerant; and a heat exchanger that dissipates the heat of the high-temperature refrigerant from the compressor and heats the water flowing in the water supply pipe. And an expansion means for adiabatic expansion of the refrigerant from the heat exchanger and an evaporator for heating the refrigerant from the expansion means in that order to constitute an electric heat pump water heater, and heating by the gas heating means In the hybrid hot water supply apparatus provided with a portion, and the water supply pipe is attached downstream of the heat exchanger so that heat can be transferred to the heating unit.
An incoming water temperature sensor for measuring the temperature of water supplied to the electric heat pump water heater,
An outside temperature sensor for measuring the outside temperature;
A first hot water temperature sensor for measuring a temperature of hot water flowing in a water supply pipe between the heat exchanger and the heating unit;
A set hot water temperature table that stores, as the set hot water temperature, the hot water temperature that minimizes the running cost, previously obtained based on the incoming water temperature, the outside air temperature, and the required hot water temperature, as the hot water temperature obtained by the electric heat pump water heater. When,
Hot water detection means for detecting a hot water request and outputting a hot water supply signal;
Hot water supply starting means for starting an electric heat pump water heater in response to a hot water supply signal from the hot water detection means;
Set hot water temperature extraction means for extracting a set hot water temperature from the set hot water temperature table based on the incoming water temperature measured by the incoming water temperature sensor, the outside air temperature measured by the outside air temperature sensor and the required hot water temperature;
Compressor control means for controlling the compressor so that the measured hot water temperature becomes the set hot water temperature by comparing the measured hot water temperature with the first hot water temperature sensor and the set hot water temperature;
Gas heating starting means for starting the gas heating means when the hot water temperature measured by the first hot water temperature sensor reaches a set hot water temperature;
A second hot water temperature sensor for measuring the temperature of the hot water that has passed through the heating unit;
Gas supply amount control means for controlling the gas supply amount to the gas heating means so that the temperature of the hot water measured by the second hot water temperature sensor becomes the required hot water temperature;
A hybrid hot water supply apparatus characterized by comprising:
JP2009082590A 2009-03-30 2009-03-30 Hybrid type water heater Pending JP2010236710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009082590A JP2010236710A (en) 2009-03-30 2009-03-30 Hybrid type water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009082590A JP2010236710A (en) 2009-03-30 2009-03-30 Hybrid type water heater

Publications (1)

Publication Number Publication Date
JP2010236710A true JP2010236710A (en) 2010-10-21

Family

ID=43091201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009082590A Pending JP2010236710A (en) 2009-03-30 2009-03-30 Hybrid type water heater

Country Status (1)

Country Link
JP (1) JP2010236710A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102444986A (en) * 2010-09-30 2012-05-09 艾欧史密斯(中国)热水器有限公司 Duel-energy-source hot water supply system for implementing economical operation and operation method thereof
JP2013224793A (en) * 2012-04-20 2013-10-31 Rinnai Corp Storage type hot water supply system
CN105042872A (en) * 2015-07-13 2015-11-11 珠海格力电器股份有限公司 Water heater control method and water heater control system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102444986A (en) * 2010-09-30 2012-05-09 艾欧史密斯(中国)热水器有限公司 Duel-energy-source hot water supply system for implementing economical operation and operation method thereof
CN102444986B (en) * 2010-09-30 2014-04-16 艾欧史密斯(中国)热水器有限公司 Duel-energy-source hot water supply system for implementing economical operation and operation method thereof
JP2013224793A (en) * 2012-04-20 2013-10-31 Rinnai Corp Storage type hot water supply system
CN105042872A (en) * 2015-07-13 2015-11-11 珠海格力电器股份有限公司 Water heater control method and water heater control system

Similar Documents

Publication Publication Date Title
US8165726B2 (en) Water heater energy savings algorithm for reducing cold water complaints
JP5999933B2 (en) Heat pump hot water supply system, control method thereof, and program
EP2261574A1 (en) Heat-pump hot water apparatus
JP4979669B2 (en) Hot water storage hot water supply system
JP2007255775A (en) Hybrid type hot water supply apparatus
JP5309061B2 (en) Hot water system
JP2013224783A (en) Hot water supply system
JP2017138012A (en) Combustor
JP5597669B2 (en) Thermal equipment
JP5923369B2 (en) Water heater
JP2010236710A (en) Hybrid type water heater
JP5050013B2 (en) Combined power plant and control method thereof
JP2011075257A (en) Heat pump type water heater
CN100516703C (en) Single blower type combined heat source machine
JP5378310B2 (en) Heating system
JP2013217200A (en) Steam turbine plant
JP5575184B2 (en) Heating system
JP5843642B2 (en) Heat pump type liquid heating device
JP5379083B2 (en) Hot water system
JP6234387B2 (en) Heat source equipment
JP5787651B2 (en) Gas turbine equipment and fuel temperature management method thereof
JP4670965B2 (en) Heat pump water heater
JP3850653B2 (en) Heat pump type water heater
KR20160132695A (en) Hot Water Heating Boiler with Improved Heat Flux
JP2006046681A (en) Heat pump device