JP2010236478A - Fuel injection-intake device of internal combustion engine - Google Patents

Fuel injection-intake device of internal combustion engine Download PDF

Info

Publication number
JP2010236478A
JP2010236478A JP2009087103A JP2009087103A JP2010236478A JP 2010236478 A JP2010236478 A JP 2010236478A JP 2009087103 A JP2009087103 A JP 2009087103A JP 2009087103 A JP2009087103 A JP 2009087103A JP 2010236478 A JP2010236478 A JP 2010236478A
Authority
JP
Japan
Prior art keywords
intake
valve
fuel injection
main
throttle valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009087103A
Other languages
Japanese (ja)
Other versions
JP5302070B2 (en
Inventor
Kazuya Ishiki
和也 石木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009087103A priority Critical patent/JP5302070B2/en
Publication of JP2010236478A publication Critical patent/JP2010236478A/en
Application granted granted Critical
Publication of JP5302070B2 publication Critical patent/JP5302070B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To expand an operation area in which atomization of injected fuel is appropriately performed, improve combustion efficiency over a wide operation area, and reduce unburned components in exhaust gas. <P>SOLUTION: Under quantitative control of an air flow rate by a sub throttle valve 90, air matching a requested air quantity is supplied to a sub intake supply port 75 not only during an idle operation but from an idle operation over an operation region in which the requested air quantity is less than a prescribed value, and when the operation area becomes one in which the requested air quantity is the prescribed value or more, a state in which the sub throttle valve 90 is opened is maintained, and an air quantity equivalent to the prescribed value is supplied to the sub intake supply port 75. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、内燃機関の燃料噴射−吸気装置に関し、特に、アイドル〜低負荷運転用の副吸気系を有する内燃機関の燃料噴射−吸気装置に関する。   The present invention relates to a fuel injection / intake apparatus for an internal combustion engine, and more particularly to a fuel injection / intake apparatus for an internal combustion engine having a sub-intake system for idling to low load operation.

内燃機関の吸気装置として、スロットルバルブをバイパスするバイパス吸気通路が設けられ、バイパス吸気通路によって吸入空気をスロットルバルブより下流側の吸気通路へ供給する吸気装置が知られている(例えば、特許文献1)。   As an intake device for an internal combustion engine, there is known an intake device that is provided with a bypass intake passage that bypasses a throttle valve and supplies intake air to an intake passage downstream of the throttle valve by the bypass intake passage (for example, Patent Document 1). ).

バイパス吸気通路付きの吸気装置では、スロットルバルブを閉じた状態で、バイパス吸気通路を流れる吸入空気の流量をアイドルスピードコントロールバルブと云われる流量制御弁によって計量制御することにより、アイドル回転数を制御することができる(例えば、特許文献2)。   In an intake device with a bypass intake passage, the idling speed is controlled by measuring the flow rate of intake air flowing through the bypass intake passage with a flow rate control valve called an idle speed control valve while the throttle valve is closed. (For example, Patent Document 2).

燃料噴射式の内燃機関では、バイパス吸気通路を流れる吸入空気をアシストエアとして、燃料噴射弁より噴射された燃料の噴流に向けて噴き出し、噴射燃料の微粒化、壁面付着燃料の低減を図ったものがある(例えば、特許文献3)。   In a fuel-injection internal combustion engine, intake air flowing through the bypass intake passage is used as assist air, which is jetted toward the jet of fuel injected from the fuel injection valve to atomize the injected fuel and reduce the fuel adhering to the wall (For example, Patent Document 3).

実公平2−7365号公報No. 2-7365 特開2007−32426号公報JP 2007-32426 A 特開平4−50469号公報Japanese Patent Laid-Open No. 4-50469

スロットルバルブ(主スロットル弁)が閉じているアイドル運転時には、スロットルバルブ(主スロットル弁)が閉じていて、バイパス吸気通路を流れる空気によってアイドル運転に必要な空気量を確保するので、アイドル運転時にはアシストエアによる噴射燃料の微粒化を期待できる。   During idle operation when the throttle valve (main throttle valve) is closed, the throttle valve (main throttle valve) is closed and the air flowing through the bypass intake passage secures the amount of air required for idle operation. We can expect atomization of injected fuel by air.

しかし、スロットルバルブが開かれた負荷運転時には、専ら、スロットルバルブが設けられている吸気通路(主吸気通路)を流れる空気によって負荷運転必要な空気量が確保され、バイパス吸気通路を流れる空気が少なくなるため、十分なアシストエア流量を確保できず、噴射燃料の微粒化が十分に行われなくなる。噴射燃料の微粒化が十分に行われないと、燃焼効率が低下し、排気ガス中の未燃焼成分が増加する。   However, during load operation with the throttle valve opened, the amount of air required for load operation is secured exclusively by the air flowing through the intake passage (main intake passage) where the throttle valve is provided, and there is less air flowing through the bypass intake passage. Therefore, a sufficient assist air flow rate cannot be secured, and the atomized fuel is not sufficiently atomized. If the atomization of the injected fuel is not sufficiently performed, the combustion efficiency is lowered and the unburned components in the exhaust gas are increased.

本発明が解決しようとする課題は、噴射燃料の微粒化が適切に行われる運転域を拡張し、広い運転域に亘って燃焼効率を改善し、排気ガス中の未燃焼成分の低減を図ることである。   The problem to be solved by the present invention is to expand the operating range in which atomization of the injected fuel is appropriately performed, improve the combustion efficiency over a wide operating range, and reduce unburned components in the exhaust gas. It is.

本発明による内燃機関の燃料噴射−吸気装置は、内燃機関の燃焼室に連通する主吸気通路と、前記主吸気通路を流れる空気の流量を開弁量に応じて定量的に制御する主スロットル弁と、前記主スロットル弁より吸気下流側の前記主吸気通路に燃料を噴射する燃料噴射弁と、前記主スロットル弁より吸気下流側において前記燃料噴射弁より噴射された燃料の噴霧束に衝突する方向に空気を供給する副吸気供給ポートと、前記副吸気供給ポートに供給する空気の流量を開弁量に応じて定量的に制御する副スロットル弁と、内燃機関の運転状態に応じて要求空気量を演算する要求空気量演算手段と、前記要求空気量演算手段により演算された要求空気量が所定値未満である運転域では前記主スロットル弁を全閉状態にして前記要求空気量に応じて前記副スロットル弁の開弁量のみを制御し、前記要求空気量が所定値以上である運転域では前記副スロットル弁の開弁状態を保って前記要求空気量に応じて前記主スロットル弁の開弁量を制御するスロットル弁制御手段とを有する。   A fuel injection-intake device for an internal combustion engine according to the present invention includes a main intake passage communicating with a combustion chamber of the internal combustion engine, and a main throttle valve that quantitatively controls the flow rate of air flowing through the main intake passage according to the valve opening amount. A fuel injection valve that injects fuel into the main intake passage on the intake downstream side of the main throttle valve, and a direction that collides with a spray bundle of fuel injected from the fuel injection valve on the intake downstream side of the main throttle valve A sub-intake supply port for supplying air to the sub-intake, a sub-throttle valve for quantitatively controlling the flow rate of air supplied to the sub-intake supply port according to the valve opening amount, and a required air amount according to the operating state of the internal combustion engine Required air amount calculating means for calculating the required air amount, and in the operating range where the required air amount calculated by the required air amount calculating means is less than a predetermined value, the main throttle valve is fully closed and the amount of Only the valve opening amount of the auxiliary throttle valve is controlled, and in the operating range where the required air amount is a predetermined value or more, the auxiliary throttle valve is kept open and the main throttle valve is opened according to the required air amount. Throttle valve control means for controlling the amount.

この構成によれば、副吸気供給ポートには、副スロットル弁による空気流量の定量的な制御のもとに、アイドル運転時だけでなく、アイドル運転から要求空気量が所定値未満である運転域に亘って要求空気量に見合った空気が供給され、要求空気量が所定値以上である運転域になっても、副スロットル弁が開弁した状態が保たれて引き続き副吸気供給ポートに前記所定値相当の空気が供給されるので、副吸気供給ポートよりの空気による噴射燃料の微粒化が広い運転域に亘って適切に行われようになる。   According to this configuration, the auxiliary intake supply port has an operating range in which the required air amount from the idle operation is less than the predetermined value, not only during the idle operation, under the quantitative control of the air flow rate by the auxiliary throttle valve. Even when the air corresponding to the required air amount is supplied over the operating range where the required air amount is equal to or greater than the predetermined value, the sub throttle valve is kept open and continues to the sub intake air supply port. Since the air corresponding to the value is supplied, the atomization of the injected fuel by the air from the auxiliary intake supply port is appropriately performed over a wide operation range.

本発明による内燃機関の燃料噴射−吸気装置は、好ましくは、前記主吸気通路は各々前記燃焼室を構成する複数個の気筒毎に設けられ、前記主スロットル弁は前記主吸気通路毎に設けられている。   In the fuel injection-intake apparatus for an internal combustion engine according to the present invention, preferably, the main intake passage is provided for each of a plurality of cylinders constituting the combustion chamber, and the main throttle valve is provided for each of the main intake passages. ing.

この構成によれば、主スロットル弁から各気筒(燃焼室)までの吸気通路長を短く設定でき、スロットル開度変化による実吸入空気量変化の応答性が向上する。併せて主スロットル弁より吸気下流側の吸気通路容積が小さいことにより、主スロットル弁より吸気下流側に強い吸気負圧雰囲気が生成されることになり、副吸気供給ポートよりの空気の噴き出し速度が速まり、噴射燃料の微粒化が良好に行われるようになる。   According to this configuration, the length of the intake passage from the main throttle valve to each cylinder (combustion chamber) can be set short, and the response of changes in the actual intake air amount due to changes in the throttle opening is improved. In addition, since the intake passage volume downstream of the main throttle valve is smaller than the main throttle valve, a strong intake negative pressure atmosphere is generated downstream of the main throttle valve, and the air injection speed from the auxiliary intake supply port is increased. The speed is increased and atomization of the injected fuel is favorably performed.

本発明による内燃機関の燃料噴射−吸気装置は、好ましくは、前記主吸気通路と、前記主吸気通路に連通し前記燃料噴射弁の先端部を挿入装着される噴射弁挿入孔とを形成された噴射弁取付部材を有し、前記噴射弁挿入孔内に前記燃料噴射弁の燃料噴射口が配置され、且つ前記噴射弁挿入孔内に前記副吸気供給ポートが開口している。   The fuel injection / intake device for an internal combustion engine according to the present invention is preferably formed with the main intake passage and an injection valve insertion hole which is communicated with the main intake passage and into which the tip of the fuel injection valve is inserted and mounted. An injection valve mounting member is provided, the fuel injection port of the fuel injection valve is disposed in the injection valve insertion hole, and the auxiliary intake air supply port is opened in the injection valve insertion hole.

この構成によれば、副吸気供給ポートが主吸気通路の壁面に直接開口しないので、主吸気通路を流れる空気の流れを副吸気供給ポートが乱すことがなく、吸気効率の低下を招くことがない。   According to this configuration, since the auxiliary intake supply port does not open directly to the wall surface of the main intake passage, the auxiliary intake supply port does not disturb the flow of air flowing through the main intake passage, and the intake efficiency is not reduced. .

本発明による内燃機関の燃料噴射−吸気装置は、好ましくは、前記噴射弁挿入孔に、前記燃料噴射弁の前記燃料噴射口より噴射される燃料の噴霧拡散室を形成された筒形状の噴孔アダプタが取り付けられ、前記噴霧拡散室を画定する周壁に前記副吸気供給ポートが形成されている。   The fuel injection-intake apparatus for an internal combustion engine according to the present invention is preferably a cylindrical injection hole in which a spray diffusion chamber for fuel injected from the fuel injection port of the fuel injection valve is formed in the injection valve insertion hole. An adapter is attached, and the auxiliary intake supply port is formed in a peripheral wall that defines the spray diffusion chamber.

この構成によれば、噴孔アダプタに副吸気供給ポートが形成されているから、噴射弁取付部材の変更を要することなく、最適な副吸気供給ポートを噴孔アダプタの変更だけで簡単に実現することができる。   According to this configuration, since the sub-intake supply port is formed in the injection hole adapter, an optimum sub-intake supply port can be simply realized by only changing the injection hole adapter without changing the injection valve mounting member. be able to.

本発明による内燃機関の燃料噴射−吸気装置は、好ましくは、各気筒毎に二つの吸気ポートが形成され、前記主吸気通路は各気筒毎に前記二つの吸気ポートに連通しており、当該二つの吸気ポートの配列方向に直交する仮想平面に前記副吸気供給ポートが互いに対向する形態で二つ形成されている。   In the fuel injection-intake apparatus for an internal combustion engine according to the present invention, preferably, two intake ports are formed for each cylinder, and the main intake passage communicates with the two intake ports for each cylinder. Two auxiliary intake supply ports are formed on a virtual plane orthogonal to the arrangement direction of the two intake ports so as to face each other.

この構成によれば、副吸気供給ポートからの空気の吹き付けによって燃料噴霧フォームが二つの吸気ポートに配列に合った繭形に変形し、燃料噴霧が二つの吸気ポート間の隔壁に付吹き付けられる度合いが低減し、隔壁の燃料付着量が少なくなる。   According to this structure, the degree to which the fuel spray foam is sprayed to the partition wall between the two intake ports due to the spray of air from the auxiliary intake supply port deforms the fuel spray foam into a bowl shape matching the arrangement of the two intake ports. This reduces the amount of fuel adhering to the partition walls.

本発明による内燃機関の燃料噴射−吸気装置によれば、副吸気供給ポートよりの空気による噴射燃料の良好な微粒化がアイドル運転時に限られることなく広い運転域に亘って適切に行われようになり、広い運転域に亘って燃焼効率が改善され、広い運転域に亘って排気ガス中の未燃焼成分の低減を図ることができる。   According to the fuel injection-intake apparatus for an internal combustion engine according to the present invention, good atomization of the injected fuel by the air from the auxiliary intake supply port can be appropriately performed over a wide operating range without being limited to the idling operation. Thus, combustion efficiency is improved over a wide operating range, and unburned components in the exhaust gas can be reduced over a wide operating range.

本発明による燃料噴射−吸気装置を適用された燃料噴射式V型内燃機関の一つの実施形態を示す構成図。1 is a configuration diagram showing one embodiment of a fuel injection type V-type internal combustion engine to which a fuel injection-intake device according to the present invention is applied. 本実施形態による燃料噴射−吸気装置を模式的に示す図。The figure which shows typically the fuel-injection-intake apparatus by this embodiment. 本実施形態による燃料噴射−吸気装置に要部の拡大縦断面図。FIG. 3 is an enlarged longitudinal sectional view of a main part of the fuel injection-intake device according to the present embodiment. 本実施形態による燃料噴射−吸気装置に要部の平断面図。吸気装置を示す平断面図。The plane sectional view of the important section in the fuel injection-intake device by this embodiment. The plane sectional view showing an air intake device. 本実施形態による燃料噴射−吸気装置のスロットル開弁特性を示すグラフ。The graph which shows the throttle valve opening characteristic of the fuel injection-intake apparatus by this embodiment.

以下に、本発明による内燃機関の燃料噴射−吸気装置の実施形態を、図1〜図3を参照して説明する。   Hereinafter, an embodiment of a fuel injection-intake device for an internal combustion engine according to the present invention will be described with reference to FIGS.

本実施形態の内燃機関(エンジン)は、図1に示されているように、V型多気筒エンジンであり、シリンダブロック10の右側バンク部12と左側バンク部14の各々にシリンダボア16を形成されている。シリンダボア16は図1の紙面を直交する方向に複数個設けられており、10気筒V型エンジンであれば、シリンダボア16は右側バンク部12と左側バンク部14とで各々5個ずつ形成される。   As shown in FIG. 1, the internal combustion engine (engine) of the present embodiment is a V-type multi-cylinder engine, and a cylinder bore 16 is formed in each of the right bank portion 12 and the left bank portion 14 of the cylinder block 10. ing. A plurality of cylinder bores 16 are provided in a direction orthogonal to the plane of FIG. 1. In the case of a 10-cylinder V-type engine, five cylinder bores 16 are formed by the right bank portion 12 and the left bank portion 14, respectively.

シリンダブロック10の右側バンク部12と左側バンク部14には、各々、シリンダボア16の上端を閉じるようにシリンダヘッド18が取り付けられている。シリンダボア16にはピストン20が往復動可能に設けられている。ピストン20はシリンダヘッド18との間に燃焼室22(#1〜#5気筒)を画定している。   A cylinder head 18 is attached to each of the right bank portion 12 and the left bank portion 14 of the cylinder block 10 so as to close the upper end of the cylinder bore 16. A piston 20 is provided in the cylinder bore 16 so as to be able to reciprocate. The piston 20 defines a combustion chamber 22 (# 1 to # 5 cylinder) with the cylinder head 18.

各バンクのシリンダヘッド18には燃焼室22毎に吸気ポート24と排気ポート26とが形成されている。吸気ポート24、排気ポート26は、各々、燃焼室22に対する開口端(下流端)を、吸気弁28、排気弁30によって開閉される。吸気ポート24は、図4に示されているように、ツインポート形式のものであり、各気筒の燃焼室22毎に二つの吸気ポート24A、24Bを形成された二股通路構造になっている。   The cylinder head 18 of each bank has an intake port 24 and an exhaust port 26 for each combustion chamber 22. The intake port 24 and the exhaust port 26 are opened and closed at the open end (downstream end) with respect to the combustion chamber 22 by an intake valve 28 and an exhaust valve 30, respectively. As shown in FIG. 4, the intake port 24 is of the twin-import type and has a bifurcated passage structure in which two intake ports 24A and 24B are formed for each combustion chamber 22 of each cylinder.

各バンクのシリンダヘッド18の吸気接続面部(吸気ポート24の上流端が開口した面部)には、噴射弁取付部材であるインジェクタベース部材40が取り付けられている。インジェクタベース部材40は、図2に示されているように、各気筒の吸気ポート24に個別に連通する複数個の主吸気通路42を形成されている。つまり、主吸気通路42は、インジェクタベース部材40に、各々燃焼室22を構成する複数個の気筒毎に個別に形成されている。インジェクタベース部材40には各主吸気通路42毎に燃料噴射弁60が取り付けられている。燃料噴射弁60の取付構成については、詳しく後述する。   An injector base member 40, which is an injection valve mounting member, is attached to the intake connection surface portion (surface portion where the upstream end of the intake port 24 is opened) of the cylinder head 18 of each bank. As shown in FIG. 2, the injector base member 40 is formed with a plurality of main intake passages 42 that individually communicate with the intake ports 24 of the respective cylinders. That is, the main intake passage 42 is individually formed in the injector base member 40 for each of a plurality of cylinders that constitute the combustion chamber 22. A fuel injection valve 60 is attached to the injector base member 40 for each main intake passage 42. The mounting structure of the fuel injection valve 60 will be described later in detail.

インジェクタベース部材40の吸気上流側にはスロットルボティ80が取り付けられている。スロットルボティ80は、各主吸気通路42に個別に連通する複数個のスロットル通路82を有する。スロットル通路82は気筒毎に個別に設けられている。複数個のスロットル通路82の各々には主スロットル弁84が設けられている。主スロットル弁84は、各気筒毎、つまり各主吸気通路42毎に個別に設けられた多連式のものであり、共通の弁軸86によってスロットルボティ80より回動可能に支持されたバタフライ弁である。各気筒の主スロットル弁84は弁軸86によって一斉に開閉し、開弁量に応じて主吸気通路42を通って各燃焼室22に吸入される空気の流量(主吸気量)を定量的に制御(計量)する。   A throttle body 80 is attached to the intake upstream side of the injector base member 40. The throttle body 80 has a plurality of throttle passages 82 that individually communicate with the main intake passages 42. The throttle passage 82 is individually provided for each cylinder. A main throttle valve 84 is provided in each of the plurality of throttle passages 82. The main throttle valve 84 is a multiple type provided individually for each cylinder, that is, for each main intake passage 42, and is a butterfly valve that is rotatably supported by the throttle body 80 by a common valve shaft 86. It is. The main throttle valves 84 of the cylinders are simultaneously opened and closed by a valve shaft 86, and the flow rate (main intake air amount) of the air sucked into the combustion chambers 22 through the main intake passage 42 according to the valve opening amount is quantitatively determined. Control (weigh).

弁軸86にはパルスモータ等による電動モータ88が連結されている。電動モータ88は、弁軸86を回転させ、回転角に応じて主スロットル弁84の開弁量を定量的に設定する。   An electric motor 88 such as a pulse motor is connected to the valve shaft 86. The electric motor 88 rotates the valve shaft 86 and quantitatively sets the valve opening amount of the main throttle valve 84 according to the rotation angle.

このようなスロットル機構は、気筒別スロットルあるいは多連式スロットルと呼ばれ、当該多連式スロットルでは、各スロットル弁から各気筒の燃焼室までの吸気通路長を短く設定できるので、スロットル開度変化による実吸入空気量変化の応答性が向上する。   Such a throttle mechanism is called a cylinder-by-cylinder throttle or a multiple throttle, and in this multiple throttle, the intake passage length from each throttle valve to the combustion chamber of each cylinder can be set short, so that the throttle opening change Responsiveness of actual intake air amount change due to.

スロットルボティ80の吸気上流側には吸気マニホールドの集合管部をなす主吸気チャンバ85が接続されている。   A main intake chamber 85 forming a collecting pipe portion of the intake manifold is connected to the intake upstream side of the throttle body 80.

図3に示されているように、インジェクタベース部材40には、主スロットル弁84より吸気下流側の主吸気通路42に連通する円形横断面の噴射弁挿入孔44が各主吸気通路42毎に形成されている。噴射弁挿入孔44には燃料噴射弁60の先端部が挿入装着されている。燃料噴射弁60は、先端部に、燃料噴射口61、弁座部62を有する噴孔部材63を有する。噴孔部材63内には弁体64が設けられている。弁体64は、軸線方向に電磁駆動されることにより、弁座部62に選択的に着座、離間し、燃料噴射口61を開閉する。   As shown in FIG. 3, the injector base member 40 has a circular transverse cross-section injection valve insertion hole 44 communicating with the main intake passage 42 on the intake downstream side of the main throttle valve 84 for each main intake passage 42. Is formed. The tip of the fuel injection valve 60 is inserted into the injection valve insertion hole 44. The fuel injection valve 60 has an injection hole member 63 having a fuel injection port 61 and a valve seat portion 62 at the tip. A valve body 64 is provided in the injection hole member 63. The valve body 64 is electromagnetically driven in the axial direction, so that the valve body 64 is selectively seated and separated from the valve seat portion 62 to open and close the fuel injection port 61.

噴孔部材63の先端面には、オリフィスプレート72が配置されている。オリフィスプレート72には、二つの吸気ポート28A、28Bの配列方向(図4参照)と同じ方向に小さい間隔をおいて二つのオリフィス孔73が形成されている。これにより、燃料噴射口61より噴出する燃料は二つのオリフィス孔73によって二つの噴霧束Fに分けられて各々吸気ポート28A、28Bに指向した噴霧束となる。   An orifice plate 72 is disposed on the tip surface of the injection hole member 63. In the orifice plate 72, two orifice holes 73 are formed at a small interval in the same direction as the arrangement direction of the two intake ports 28A, 28B (see FIG. 4). Thereby, the fuel ejected from the fuel injection port 61 is divided into two spray bundles F by the two orifice holes 73 and becomes spray bundles directed to the intake ports 28A and 28B, respectively.

なお、オリフィスプレート72に単一のオリフィス孔73を形成し、オリフィス孔73によって一つの噴霧束を形成し、後述する二つの副吸気供給ポート75からの空気の吹き付けによって上記一つの噴霧束を二つに分断し、当該分断した噴霧束が二つの吸気ポート28A、28Bに指向するようにしてもよい。   A single orifice hole 73 is formed in the orifice plate 72, one spray bundle is formed by the orifice hole 73, and the above one spray bundle is formed by blowing air from two auxiliary intake air supply ports 75 described later. The spray bundle may be divided into two and directed to the two intake ports 28A and 28B.

噴孔部材63の外周には円筒形状の噴孔アダプタ65が固定装着されている。噴孔アダプタ65は燃料噴射弁60の先端部と共に噴射弁挿入孔44内にある。噴孔アダプタ65は、根元端のフランジ部66と燃料噴射弁60の本体ハウジング60Aとによる周溝67と、噴孔アダプタ65の先端部外周に形成された周溝68の各々にOリング69、70を取り付けられている。Oリング69、70は噴射弁挿入孔44の内周面に押し付けられ、Oリング69と70との間の噴射弁挿入孔44の内周面と噴孔アダプタ65の外周面とに間に円環状空間71を画定している。   A cylindrical injection hole adapter 65 is fixedly attached to the outer periphery of the injection hole member 63. The injection hole adapter 65 is in the injection valve insertion hole 44 together with the tip of the fuel injection valve 60. The injection hole adapter 65 includes an O-ring 69 and a peripheral groove 67 formed by the flange portion 66 at the root end and the main body housing 60 </ b> A of the fuel injection valve 60, and a peripheral groove 68 formed on the outer periphery of the tip end portion of the injection hole adapter 65. 70 is attached. The O-rings 69 and 70 are pressed against the inner peripheral surface of the injection valve insertion hole 44, and the O-rings 69 and 70 are circular between the inner peripheral surface of the injection valve insertion hole 44 between the O-rings 69 and 70 and the outer peripheral surface of the injection hole adapter 65. An annular space 71 is defined.

噴孔アダプタ65は、燃料噴射弁60の燃料噴射口61の前方にファンネル形状の噴霧拡散室74を形成されている。燃料噴射口61より噴射されてオリフィス孔73を通過した燃料は、噴霧拡散室74にて噴霧拡散し、噴霧拡散室74より吸気ポート24へ向けて噴出される。   The injection hole adapter 65 has a funnel-shaped spray diffusion chamber 74 formed in front of the fuel injection port 61 of the fuel injection valve 60. The fuel injected from the fuel injection port 61 and passing through the orifice hole 73 is sprayed and diffused in the spray diffusion chamber 74 and is jetted from the spray diffusion chamber 74 toward the intake port 24.

噴孔アダプタ65が噴霧拡散室74を画定する円周壁74Aには副吸気供給ポート75が形成されている。副吸気供給ポート75は、二つの吸気ポート28A、28Bの配列方向に直交する仮想平面(図3の紙面)に、互いに対向して二つ形成されており、各々、前記仮想平面で見て噴霧拡散室74の中心軸線に対して30度程度の傾斜角をもって噴霧拡散室74の先端開口側に向けて傾斜した形態で、噴霧拡散室74内に開口している。   A sub-intake supply port 75 is formed in the circumferential wall 74 </ b> A in which the nozzle hole adapter 65 defines the spray diffusion chamber 74. Two auxiliary intake supply ports 75 are formed opposite to each other on a virtual plane (paper surface in FIG. 3) orthogonal to the arrangement direction of the two intake ports 28A, 28B. The spray diffusion chamber 74 is opened into the spray diffusion chamber 74 in a form inclined toward the tip opening side of the spray diffusion chamber 74 with an inclination angle of about 30 degrees with respect to the central axis of the diffusion chamber 74.

これにより、副吸気供給ポート75は、主スロットル弁84より吸気下流側において燃料噴射弁60より噴射された燃料の噴霧束Fに衝突する方向に空気を供給する。   Thus, the auxiliary intake air supply port 75 supplies air in a direction in which it collides with the fuel spray bundle F injected from the fuel injection valve 60 on the intake downstream side of the main throttle valve 84.

副吸気供給ポート75よりの空気(空気流A)が燃料の噴霧束Fに衝突することにより、燃料の微粒化が促進される。また、二つの副吸気供給ポート75が、二つの吸気ポート28A、28Bの配列方向に直交する仮想平面(図3の紙面)に、互いに対向して形成されてことにより、二つの副吸気供給ポート75からの燃料噴霧束を挟むような空気の吹き付けによって燃料噴霧フォームが二つの吸気ポート24A、24Bに配列に合った繭形に変形する。これにより、燃料噴霧が二つの吸気ポート24A、24B間の隔壁28Cに付吹き付けられる度合いが低減し、隔壁の燃料付着量が少なくなる。なお、オリフィスプレート72に単一のオリフィス孔73を形成した場合も、上述した副吸気供給ポート75の配置を採用することで、同様の作用効果を得ることができる。   When the air (air flow A) from the auxiliary intake air supply port 75 collides with the fuel spray bundle F, atomization of the fuel is promoted. Further, the two auxiliary intake air supply ports 75 are formed opposite to each other on a virtual plane (paper surface in FIG. 3) orthogonal to the arrangement direction of the two intake air ports 28A and 28B. The fuel spray foam is deformed into a saddle shape matching the arrangement of the two intake ports 24A and 24B by blowing air to sandwich the fuel spray bundle from 75. Thereby, the degree to which fuel spray is sprayed onto the partition wall 28C between the two intake ports 24A, 24B is reduced, and the amount of fuel adhering to the partition wall is reduced. Even when the single orifice hole 73 is formed in the orifice plate 72, the same effect can be obtained by adopting the arrangement of the auxiliary intake air supply port 75 described above.

インジェクタベース部材40には各気筒の噴射弁挿入孔44の部分に画定された円環状空間71に連通する分岐通路45が形成されている。分岐通路45は吸気上流側にて副吸気チャンバ46、集合通路47を介して副スロットル装置のスロットル通路92に連通している。   The injector base member 40 is formed with a branch passage 45 communicating with an annular space 71 defined in the injection valve insertion hole 44 of each cylinder. The branch passage 45 communicates with the throttle passage 92 of the sub-throttle device via the auxiliary intake chamber 46 and the collecting passage 47 on the intake upstream side.

スロットル通路92にはバタフライ弁による副スロットル弁90が設けられている。副スロットル弁90は、開弁量に応じてスロットル通路92を流れる空気の流量、つまり、副吸気供給ポート75から噴霧拡散室74へ噴き出る空気(副吸気量)を定量的に制御(計量)する。副スロットル弁90にはパルスモータ等による電動モータ94が駆動連結されている。電動モータ94は、副スロットル弁90を回転させ、回転角に応じて副スロットル弁90の開弁量を定量的に設定する。   The throttle passage 92 is provided with a sub throttle valve 90 using a butterfly valve. The sub-throttle valve 90 quantitatively controls (measures) the flow rate of air flowing through the throttle passage 92 according to the valve opening amount, that is, the air (sub-intake amount) ejected from the sub-intake supply port 75 to the spray diffusion chamber 74. To do. An electric motor 94 such as a pulse motor is drivingly connected to the sub-throttle valve 90. The electric motor 94 rotates the sub throttle valve 90 and quantitatively sets the opening amount of the sub throttle valve 90 according to the rotation angle.

主スロットル弁84の電動モータ88と副スロットル弁90の電動モータ94を制御するスロットル制御装置100を有する。スロットル制御装置100は、マイクロコンピュータによるエンジン制御ユニットの一部をなすものであり、要求空気量演算部102と、スロットル弁制御部104とを有する。   A throttle control device 100 that controls the electric motor 88 of the main throttle valve 84 and the electric motor 94 of the sub throttle valve 90 is provided. The throttle control device 100 forms part of an engine control unit using a microcomputer, and includes a required air amount calculation unit 102 and a throttle valve control unit 104.

要求空気量演算部102は、アクセルペダルセンサ106よりアクセルペダル踏み込み量に関する情報を、エンジン回転数センサ108よりエンジン回転数に関する情報を取り込み、
アクセルペダル踏み込み量とエンジン回転数より要求空気量Qを演算する。
The required air amount calculation unit 102 receives information related to the accelerator pedal depression amount from the accelerator pedal sensor 106 and information related to the engine speed from the engine speed sensor 108.
The required air amount Q is calculated from the accelerator pedal depression amount and the engine speed.

スロットル弁制御部104は、要求空気量演算部102により演算された要求空気量Qに基づいて図5に示されているような制御特性をもって主スロットル弁84の制御目標弁開度θsecと副スロットル弁90の制御目標弁開度θpriを設定し、それに応じた制御指令を電動モータ88、94に出力する。   The throttle valve control unit 104 has a control characteristic as shown in FIG. 5 based on the required air amount Q calculated by the required air amount calculation unit 102 and the control target valve opening degree θsec of the main throttle valve 84 and the sub throttle. A control target valve opening degree θpri of the valve 90 is set, and a control command according to the set target opening degree θpri is output to the electric motors 88 and 94.

これにより、電動モータ88は主スロットル弁84を制御目標弁開度θsecに、電動モータ94は副スロットル弁90を制御目標弁開度priに各々駆動する。   Thereby, the electric motor 88 drives the main throttle valve 84 to the control target valve opening degree θsec, and the electric motor 94 drives the sub throttle valve 90 to the control target valve opening degree pri.

本実施例では、図5に示されているように、要求空気量Qが所定値Qprimax未満である運転域、つまり、アイドル運転〜低負荷運転域では、主スロットル弁84を全閉状態(θsec=0)にして要求空気量Qに応じて副スロットル弁90の開弁量のみを制御目標弁開度θpriをもって制御し、要求空気量Qが所定値以上Qprimaxである運転域、つまり、中負荷〜高負荷運転域では、副スロットル弁90の最大開弁状態を保って要求空気量Qに応じて主スロットル弁84の開弁量を制御目標弁開度θsecをもって制御する。   In the present embodiment, as shown in FIG. 5, the main throttle valve 84 is fully closed (θsec) in the operation range where the required air amount Q is less than the predetermined value Qprimax, that is, in the idling operation to the low load operation range. = 0), only the valve opening amount of the sub-throttle valve 90 is controlled with the control target valve opening degree θpri according to the required air amount Q, and the operating range where the required air amount Q is equal to or greater than a predetermined value Qprimax, that is, the medium load In the high-load operation region, the maximum opening state of the sub throttle valve 90 is maintained, and the opening amount of the main throttle valve 84 is controlled with the control target valve opening degree θsec according to the required air amount Q.

なお、アイドル運転時の副スロットル弁90の開弁量、つまり、アイドル開度は、制御目標のエンジン回転数に基づいて設定されればよい。また、所定値Qprimaxはエンジン回転数に応じて適正値に可変設定されてもよい。   It should be noted that the valve opening amount of the auxiliary throttle valve 90 during idle operation, that is, the idle opening may be set based on the engine speed of the control target. The predetermined value Qprimax may be variably set to an appropriate value according to the engine speed.

上述の制御により、副吸気供給ポート75には、副スロットル弁90による空気流量の定量的な制御のもとに、アイドル運転時だけでなく、アイドル運転から要求空気量Qが所定値Qprimax未満である運転域に亘って要求空気量Qに見合った空気が供給され、要求空気量Qprimaxが所定値以上である運転域になっても、副スロットル弁90が開弁した状態が保たれて引き続き副吸気供給ポート75に所定値Qprimax相当の空気が供給される。   By the above-described control, the required air amount Q from the idle operation is less than the predetermined value Qprimax in the auxiliary intake air supply port 75 not only during the idle operation but under the quantitative control of the air flow rate by the auxiliary throttle valve 90. Even when the air corresponding to the required air amount Q is supplied over a certain operating range and the required air amount Qprimax is in an operating range where the required air amount Qprimax is equal to or greater than a predetermined value, the sub throttle valve 90 remains open and the secondary sub valve continues. Air corresponding to a predetermined value Qprimax is supplied to the intake air supply port 75.

これにより、副吸気供給ポート75よりの空気による噴射燃料の微粒化が広い運転域に亘って適切に行われようになり、広い運転域に亘って燃焼効率が改善され、広い運転域に亘って排気ガス中の未燃焼成分の低減が図られる。   As a result, the atomization of the injected fuel by the air from the auxiliary intake air supply port 75 is appropriately performed over a wide operating range, the combustion efficiency is improved over the wide operating range, and the wide operating range is achieved. Reduction of unburned components in the exhaust gas is achieved.

本実施例によれば、主スロットル弁84が吸気ポート24に近い位置にあり、主スロットル弁84から各気筒(燃焼室22)までの吸気通路長を短く設定できるので、スロットル開度変化による実吸入空気量変化の応答性が向上する。併せて主スロットル弁84より吸気下流側の吸気通路容積が小さいことにより、主スロットル弁84より吸気下流側に強い吸気負圧雰囲気が生成されることになり、副吸気供給ポート75よりの空気の噴き出し速度が速まり、噴射燃料の微粒化が良好に行われるようになる。   According to the present embodiment, the main throttle valve 84 is close to the intake port 24, and the intake passage length from the main throttle valve 84 to each cylinder (combustion chamber 22) can be set short. Responsiveness of intake air amount change is improved. In addition, since the intake passage volume on the intake downstream side of the main throttle valve 84 is small, a strong intake negative pressure atmosphere is generated on the intake downstream side of the main throttle valve 84. The ejection speed is increased and the atomization of the injected fuel is favorably performed.

本実施例によれば、副吸気供給ポート75が主吸気通路42の壁面に直接開口しないので、主吸気通路42を流れる空気の流れを副吸気供給ポート75が乱すことがなく、吸気効率の低下を招くことがない。
また、噴孔アダプタ65に副吸気供給ポート75が形成されているから、インジェクタベース部材40変更を要することなく、最適な副吸気供給ポート75を噴孔アダプタ65の変更だけで簡単に実現することができる。
According to the present embodiment, since the auxiliary intake supply port 75 does not open directly to the wall surface of the main intake passage 42, the auxiliary intake supply port 75 does not disturb the flow of air flowing through the main intake passage 42, and the intake efficiency decreases. Is not invited.
In addition, since the sub-intake supply port 75 is formed in the injection hole adapter 65, the optimum sub-intake supply port 75 can be realized simply by changing the injection hole adapter 65 without the need to change the injector base member 40. Can do.

本発明による燃料噴射−吸気装置は上述の実施例に限られるものではなく、本発明の趣旨を逸脱しない範囲内で変更可能である。   The fuel injection-intake apparatus according to the present invention is not limited to the above-described embodiments, and can be changed without departing from the spirit of the present invention.

22 燃焼室
40 インジェクタベース部材
42 主吸気通路
44 噴射弁挿入孔
60 燃料噴射弁
65 噴孔アダプタ
74 噴霧拡散室
75 副吸気供給ポート
90 副スロットル弁
102 要雨級空気量演算部
104 スロットル弁制御部
DESCRIPTION OF SYMBOLS 22 Combustion chamber 40 Injector base member 42 Main intake passage 44 Injection valve insertion hole 60 Fuel injection valve 65 Injection hole adapter 74 Spray diffusion chamber 75 Sub intake air supply port 90 Sub throttle valve 102 Rain class air amount calculation part 104 Throttle valve control part

Claims (5)

内燃機関の燃焼室に連通する主吸気通路と、
前記主吸気通路を流れる空気の流量を開弁量に応じて定量的に制御する主スロットル弁と、
前記主スロットル弁より吸気下流側の前記主吸気通路に燃料を噴射する燃料噴射弁と、
前記主スロットル弁より吸気下流側において前記燃料噴射弁より噴射された燃料の噴霧束に衝突する方向に空気を供給する副吸気供給ポートと、
前記副吸気供給ポートに供給する空気の流量を開弁量に応じて定量的に制御する副スロットル弁と、
内燃機関の運転状態に応じて要求空気量を演算する要求空気量演算手段と、
前記要求空気量演算手段により演算された要求空気量が所定値未満である運転域では前記主スロットル弁を全閉状態にして前記要求空気量に応じて前記副スロットル弁の開弁量のみを制御し、前記要求空気量が所定値以上である運転域では前記副スロットル弁の開弁状態を保って前記要求空気量に応じて前記主スロットル弁の開弁量を制御するスロットル弁制御手段と、
を有する内燃機関の燃料噴射−吸気装置。
A main intake passage communicating with the combustion chamber of the internal combustion engine;
A main throttle valve that quantitatively controls the flow rate of air flowing through the main intake passage according to the valve opening amount;
A fuel injection valve for injecting fuel into the main intake passage on the intake downstream side of the main throttle valve;
A sub-intake supply port for supplying air in a direction that collides with a spray bundle of fuel injected from the fuel injection valve on the intake downstream side of the main throttle valve;
A sub-throttle valve that quantitatively controls the flow rate of air supplied to the sub-intake supply port according to the valve opening amount;
A required air amount calculating means for calculating a required air amount according to the operating state of the internal combustion engine;
In the operating range where the required air amount calculated by the required air amount calculating means is less than a predetermined value, the main throttle valve is fully closed and only the valve opening amount of the sub throttle valve is controlled according to the required air amount. And a throttle valve control means for controlling the valve opening amount of the main throttle valve in accordance with the required air amount while maintaining the valve open state of the sub throttle valve in the operation range where the required air amount is a predetermined value or more;
An internal combustion engine fuel injection-intake device.
前記主吸気通路は各々前記燃焼室を構成する複数個の気筒毎に設けられ、前記主スロットル弁は前記主吸気通路毎に設けられている請求項1に記載の内燃機関の燃料噴射−吸気装置。   2. The fuel injection-intake apparatus for an internal combustion engine according to claim 1, wherein the main intake passage is provided for each of a plurality of cylinders constituting the combustion chamber, and the main throttle valve is provided for each of the main intake passages. . 前記主吸気通路と、前記主吸気通路に連通し前記燃料噴射弁の先端部を挿入装着される噴射弁挿入孔とを形成された噴射弁取付部材を有し、前記噴射弁挿入孔内に前記燃料噴射弁の燃料噴射口が配置され、且つ前記噴射弁挿入孔内に前記副吸気供給ポートが開口している請求項1または2に記載の内燃機関の燃料噴射−吸気装置。   An injection valve mounting member that is formed with the main intake passage and an injection valve insertion hole that is connected to the main intake passage and into which the tip of the fuel injection valve is inserted; The fuel injection-intake device for an internal combustion engine according to claim 1 or 2, wherein a fuel injection port of a fuel injection valve is disposed, and the auxiliary intake supply port is opened in the injection valve insertion hole. 前記噴射弁挿入孔に、前記燃料噴射弁の前記燃料噴射口より噴射される燃料の噴霧拡散室を形成された筒形状の噴孔アダプタが取り付けられ、前記噴霧拡散室を画定する周壁に前記副吸気供給ポートが形成されている請求項3に記載の内燃機関の燃料噴射−吸気装置。   A cylindrical injection hole adapter in which a spray diffusion chamber of fuel injected from the fuel injection port of the fuel injection valve is formed is attached to the injection valve insertion hole, and the sub-wall is defined on a peripheral wall defining the spray diffusion chamber. The fuel injection-intake device for an internal combustion engine according to claim 3, wherein an intake supply port is formed. 各気筒毎に二つの吸気ポートが形成され、前記主吸気通路は各気筒毎に前記二つの吸気ポートに連通しており、当該二つの吸気ポートの配列方向に直交する仮想平面に前記副吸気供給ポートが互いに対向する形態で二つ形成されている請求項1から4の何れか一項に記載の内燃機関の燃料噴射−吸気装置。   Two intake ports are formed for each cylinder, and the main intake passage communicates with the two intake ports for each cylinder, and the auxiliary intake supply is performed on a virtual plane orthogonal to the arrangement direction of the two intake ports. The fuel injection-intake apparatus for an internal combustion engine according to any one of claims 1 to 4, wherein two ports are formed so as to face each other.
JP2009087103A 2009-03-31 2009-03-31 Internal combustion engine fuel injection-intake system Expired - Fee Related JP5302070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009087103A JP5302070B2 (en) 2009-03-31 2009-03-31 Internal combustion engine fuel injection-intake system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009087103A JP5302070B2 (en) 2009-03-31 2009-03-31 Internal combustion engine fuel injection-intake system

Publications (2)

Publication Number Publication Date
JP2010236478A true JP2010236478A (en) 2010-10-21
JP5302070B2 JP5302070B2 (en) 2013-10-02

Family

ID=43091032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009087103A Expired - Fee Related JP5302070B2 (en) 2009-03-31 2009-03-31 Internal combustion engine fuel injection-intake system

Country Status (1)

Country Link
JP (1) JP5302070B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7184144B2 (en) 2018-02-09 2022-12-06 東洋インキScホールディングス株式会社 Adhesives and adhesive sheets for polyvinyl chloride

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278732A (en) * 1988-09-16 1990-03-19 Nippon Carbureter Co Ltd Air intake control valve device for engine
JPH0450469A (en) * 1990-06-15 1992-02-19 Honda Motor Co Ltd Fuel jet type internal combustion engine
JPH0725273U (en) * 1993-10-01 1995-05-12 富士重工業株式会社 Engine fuel injector
WO2005098231A1 (en) * 2004-03-30 2005-10-20 Yamaha Hatsudoki Kabushiki Kaisha Saddle ride-type motor vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278732A (en) * 1988-09-16 1990-03-19 Nippon Carbureter Co Ltd Air intake control valve device for engine
JPH0450469A (en) * 1990-06-15 1992-02-19 Honda Motor Co Ltd Fuel jet type internal combustion engine
JPH0725273U (en) * 1993-10-01 1995-05-12 富士重工業株式会社 Engine fuel injector
WO2005098231A1 (en) * 2004-03-30 2005-10-20 Yamaha Hatsudoki Kabushiki Kaisha Saddle ride-type motor vehicle

Also Published As

Publication number Publication date
JP5302070B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
US6543412B2 (en) Intake air control device and internal combustion engine mounting the same
JP5362028B2 (en) Internal combustion engine
JPS63147967A (en) Fuel injection system
JPH076395B2 (en) Internal combustion engine intake system
US6508236B2 (en) Fuel supply device and internal combustion engine mounting the same
JP2001132589A (en) Fuel supply device for engine
JPS6060009B2 (en) Intake system for multi-cylinder internal combustion engine
US20020170518A1 (en) V-type 2-cylinder engine
JP5302070B2 (en) Internal combustion engine fuel injection-intake system
US6918383B2 (en) Fuel control system
JPH10227258A (en) Internal combustion engine
RU2493426C2 (en) Fuel injection device
US5329905A (en) Fuel injection type internal combustion engine
JP2002221036A (en) Intake system for engine
KR100692132B1 (en) Structure of cut-off solenoid injector
WO2002038924A1 (en) Cylinder injection engine and method of controlling the engine
JP7479232B2 (en) Fuel injection and intake system
JPH10115269A (en) Fuel injection device for engine
JP2008014199A (en) Fuel injection device and fuel injection method
JP5358193B2 (en) Intake device for fuel injection type internal combustion engine
KR100339679B1 (en) Multi-cylinder internal combustion engine with multi-directional fuel injection valve and its intake pipe structure
JPH0932699A (en) Fuel injection method and device of internal combustion engine and fuel injection valve used for it
EP1073841A1 (en) Air shroud for air assist fuel injector
JP3535948B2 (en) Multi-cylinder internal combustion engine
JPS5977064A (en) Electron controlled carburettor

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111012

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees