JP2010235387A - Silicon carbide material and method of manufacturing the same - Google Patents

Silicon carbide material and method of manufacturing the same Download PDF

Info

Publication number
JP2010235387A
JP2010235387A JP2009085050A JP2009085050A JP2010235387A JP 2010235387 A JP2010235387 A JP 2010235387A JP 2009085050 A JP2009085050 A JP 2009085050A JP 2009085050 A JP2009085050 A JP 2009085050A JP 2010235387 A JP2010235387 A JP 2010235387A
Authority
JP
Japan
Prior art keywords
silicon carbide
recrystallized
particles
hexagonal
carbide body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009085050A
Other languages
Japanese (ja)
Inventor
Shigeru Hanzawa
茂 半澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2009085050A priority Critical patent/JP2010235387A/en
Publication of JP2010235387A publication Critical patent/JP2010235387A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a silicon carbide material which can be used as a container for synthesizing carbon nano tube or the like and retaining carbon nano tube, catalyst or the like in the inner part. <P>SOLUTION: The silicon carbide material 100 comprises: a plurality of silicon carbide particles 1; and recrystallized silicon carbide parts 2 which connect the plurality of silicon carbide particles 1 and are arranged on surfaces 11 of the silicon carbide particles 1, wherein hexagonal cell structure parts 4 respectively made by forming a plurality of hexagonal holes 3 adjacently which are extended in the thickness direction of the recrystallized silicon carbide parts 2 and have one side end parts opened to the surfaces 12 of the recrystallized silicon carbide parts 2 are disposed on at least a part of the recrystallized silicon carbide parts 2. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、炭化珪素質体及びその製造方法に関し、カーボンナノチューブ等を内部で合成等し、カーボンナノチューブ、触媒等を内部に保持する容器として利用できる炭化珪素質体及びその製造方法に関する。   The present invention relates to a silicon carbide body and a method for producing the same, and relates to a silicon carbide body that can be used as a container for synthesizing carbon nanotubes and the like and holding carbon nanotubes, a catalyst, and the like inside, and a method for producing the same.

従来、炭化珪素粒子を焼結したり再結晶したりすることにより、炭化珪素質の構造物(炭化珪素を材料とする構造物)が作製されていた。炭化珪素質の構造物は、例えば、複数の炭化珪素粒子間の隙間を利用してフィルタ等として用いられていた。しかし、従来の炭化珪素質の構造物においては、炭化珪素粒子の表面には特定の構造はなく、通常の炭化珪素粒子の表面のままであった(例えば、非特許文献1を参照)。   Conventionally, silicon carbide-like structures (structures made of silicon carbide) have been produced by sintering or recrystallizing silicon carbide particles. Silicon carbide-like structures have been used, for example, as filters or the like using gaps between a plurality of silicon carbide particles. However, in the conventional silicon carbide-like structure, there is no specific structure on the surface of the silicon carbide particles, and the surface of the normal silicon carbide particles remains (for example, see Non-Patent Document 1).

Ceramic Transaction、Vol.2、SILICON CARBIDE’87、p.416、Fig11、The American Ceramic Society,Inc.Ceramic Transaction, Vol. 2, SILICON CARBIDE'87, p. 416, FIG. 11, The American Ceramic Society, Inc.

従来の炭化珪素質の構造物では、炭化珪素粒子表面に微細構造等を有していないため、炭化珪素粒子表面の構造に由来する特性というものは得られなかった。   Since the conventional silicon carbide-like structure does not have a fine structure or the like on the surface of the silicon carbide particles, characteristics derived from the structure of the silicon carbide particles cannot be obtained.

本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その目的とするところは、カーボンナノチューブ等を内部で合成等し、カーボンナノチューブ、触媒等を内部に保持する容器として利用できる微細構造を有する炭化珪素質体と、その製造方法を提供することにある。   The present invention has been made in view of such problems of the prior art, and its object is to synthesize carbon nanotubes and the like inside and to hold the carbon nanotubes, catalyst and the like inside It is providing the silicon carbide body which has the fine structure which can be utilized as, and its manufacturing method.

上記目的を達成するため、本発明によって以下の炭化珪素質体及びその製造方法が提供される。   In order to achieve the above object, the present invention provides the following silicon carbide body and a method for producing the same.

[1] 複数の炭化珪素粒子と、前記複数の炭化珪素粒子を繋ぐとともに前記炭化珪素粒子の表面に配設された再結晶炭化珪素部とを備え、前記再結晶炭化珪素部の少なくとも一部に、前記再結晶炭化珪素部の厚さ方向に延び一方の端部が前記再結晶炭化珪素部の表面に開口する複数の六角柱状の穴が、隣接して形成されてなる六角セル構造部が形成された炭化珪素質体。 [1] A plurality of silicon carbide particles and a recrystallized silicon carbide portion that connects the plurality of silicon carbide particles and is disposed on a surface of the silicon carbide particles, and at least a part of the recrystallized silicon carbide portion A hexagonal cell structure is formed by extending a plurality of hexagonal columnar holes adjacent to each other, with one end extending in the thickness direction of the recrystallized silicon carbide portion and opening in the surface of the recrystallized silicon carbide portion. Silicon carbide body.

[2] 前記六角柱状の穴の中心軸方向に直交する断面において、六角形の前記穴の一辺の長さが1〜100μmである[1]に記載の炭化珪素質体。 [2] The silicon carbide based body according to [1], wherein a length of one side of the hexagonal hole is 1 to 100 μm in a cross section perpendicular to a central axis direction of the hexagonal columnar hole.

[3] 複数の炭化珪素粒子を1700〜2400℃で熱処理して、複数の前記炭化珪素粒子の表面に再結晶炭化珪素を形成させながら炭化珪素粒子を前記再結晶炭化珪素で結合させて処理前炭化珪素体を作製し、前記処理前炭化珪素体を酸素濃度1〜350ppmの不活性ガス雰囲気下で、1300〜1600℃で熱処理して、[1]又は[2]に記載の炭化珪素質体を製造する炭化珪素質体の製造方法。 [3] A plurality of silicon carbide particles are heat-treated at 1700 to 2400 ° C., and silicon carbide particles are bonded with the recrystallized silicon carbide while forming recrystallized silicon carbide on the surfaces of the plurality of silicon carbide particles. A silicon carbide body is manufactured, and the silicon carbide body before treatment is heat-treated at 1300 to 1600 ° C. in an inert gas atmosphere having an oxygen concentration of 1 to 350 ppm, and the silicon carbide body according to [1] or [2] The manufacturing method of the silicon carbide body which manufactures.

このように、本発明の炭化珪素質体によれば、炭化珪素粒子の表面に配設された再結晶炭化珪素部の少なくとも一部に、再結晶炭化珪素部の厚さ方向に延び一方の端部が再結晶炭化珪素部の表面に開口する複数の六角柱状の穴が、隣接して形成されてなる六角セル構造部が形成されているため、六角セル構造部の六角柱状の穴の中で、カーボンナノチューブ等を合成等でき、当該六角柱状の穴を、カーボンナノチューブ、触媒等を内部に保持する容器として利用できる。また、本発明の炭化珪素質体の製造方法によれば、本発明の炭化珪素質体を製造することができる。   As described above, according to the silicon carbide body of the present invention, at least one portion of the recrystallized silicon carbide portion disposed on the surface of the silicon carbide particles extends in the thickness direction of the recrystallized silicon carbide portion. Since the hexagonal cell structure part formed by adjacently forming a plurality of hexagonal columnar holes whose parts open on the surface of the recrystallized silicon carbide part is formed, among the hexagonal columnar holes of the hexagonal cell structure part Carbon nanotubes and the like can be synthesized, and the hexagonal column holes can be used as containers for holding carbon nanotubes, catalysts, and the like. Moreover, according to the manufacturing method of the silicon carbide body of the present invention, the silicon carbide body of the present invention can be manufactured.

本発明の炭化珪素質体の一の実施形態の一部を拡大して模式的に示す平面図である。It is a top view which expands and schematically shows a part of one embodiment of the silicon carbide body of the present invention. 本発明の炭化珪素質体の一の実施形態の、六角セル構造部が形成された部分を切り出した状態を模式的に示す斜視図である。It is a perspective view which shows typically the state which cut out the part in which hexagonal cell structure part was formed of one Embodiment of the silicon carbide body of this invention. 処理前炭化珪素体を熱処理するときの雰囲気中の酸素濃度と、処理前炭化珪素体の質量変化(率)との関係を模式的に示したグラフである。It is the graph which showed typically the relationship between the oxygen concentration in the atmosphere when heat-treating the silicon carbide body before a process, and the mass change (rate) of the silicon carbide body before a process. 実施例1の炭化珪素質体の顕微鏡写真である。2 is a photomicrograph of the silicon carbide body of Example 1.

次に本発明の実施の形態を図面を参照しながら詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜設計の変更、改良等が加えられることが理解されるべきである。   Next, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments, and is within the scope of the present invention. Based on this knowledge, it should be understood that design changes, improvements, etc. can be made as appropriate.

(1)炭化珪素質体:
本発明の炭化珪素質体の一の実施形態は、図1、図2に示すように、複数の炭化珪素粒子1と、当該複数の炭化珪素粒子1を繋ぐとともに当該炭化珪素粒子1の表面11に配設された再結晶炭化珪素部2とを備え、当該再結晶炭化珪素部2の少なくとも一部に、「当該再結晶炭化珪素部2の厚さ方向に延び一方の端部が当該再結晶炭化珪素部2の表面12に開口する複数の六角柱状の穴3が、隣接して形成されてなる」六角セル構造部4を有するものである。このように、本実施形態の炭化珪素質体100は、微細な六角セル構造部4を内部に有する、微細構造を備えた物体である。本実施形態の炭化珪素質体100は、このような構成であるため、六角セル構造部の六角柱状の穴の中で、カーボンナノチューブ等を合成等でき、当該六角柱状の穴を、カーボンナノチューブ、触媒等を内部に保持する容器として利用できる。図1は、本発明の炭化珪素質体の一の実施形態の一部を拡大して模式的に示す平面図である。図2は、本発明の炭化珪素質体の一の実施形態の、六角セル構造部4が形成された部分を切り出した状態を模式的に示す斜視図である。
(1) Silicon carbide body:
As shown in FIGS. 1 and 2, one embodiment of the silicon carbide body of the present invention connects a plurality of silicon carbide particles 1 and the plurality of silicon carbide particles 1 and the surface 11 of the silicon carbide particles 1. The recrystallized silicon carbide part 2 is disposed on the recrystallized silicon carbide part 2, and at least a part of the recrystallized silicon carbide part 2 extends in the thickness direction of the recrystallized silicon carbide part 2. A plurality of hexagonal columnar holes 3 opened in the surface 12 of the silicon carbide portion 2 are formed adjacent to each other. Thus, the silicon carbide based body 100 of the present embodiment is an object having a fine structure having the fine hexagonal cell structure portion 4 inside. Since the silicon carbide body 100 of the present embodiment has such a configuration, carbon nanotubes and the like can be synthesized in the hexagonal columnar holes of the hexagonal cell structure, and the hexagonal columnar holes can be synthesized with carbon nanotubes, It can be used as a container for holding a catalyst or the like inside. FIG. 1 is an enlarged plan view schematically showing a part of one embodiment of the silicon carbide body of the present invention. FIG. 2 is a perspective view schematically showing a state in which a portion where the hexagonal cell structure portion 4 is formed in one embodiment of the silicon carbide body of the present invention is cut out.

本実施形態の炭化珪素質体100において、六角セル構造部4は、再結晶炭化珪素部2に、複数の「六角柱状の穴」3が隔壁部5を挟んで隣接するようにして形成されたものである。換言すれば、六角柱状の穴3は隔壁部5によって区画形成された構造になっている。六角セル構造部4の「セル」は、「六角柱状の穴3」のことを意味する。六角セル構造部4は、「炭化珪素質体100の単位体積」当たりの、「六角柱状の穴3の開口部6の面積の合計(単位体積当たりの開口部面積)」が、0.01〜5cm/cmであることが好ましく、0.05〜5cm/cmであることが更に好ましく、0.5〜5cm/cmであることが特に好ましい。単位体積当たりの開口部面積が、0.01cm/cmより小さいとカーボンナノチューブ等の合成等の効率が低くなることがある。単位体積当たりの開口部面積は、大きいほど、カーボンナノチューブ等の合成等を効率的に行うことができ、更に、カーボンナノチューブ、触媒等を、より多く内部に保持することができるため、好ましいが、実際上は、5cm/cm程度が上限となる。 In the silicon carbide based body 100 of the present embodiment, the hexagonal cell structure portion 4 is formed in the recrystallized silicon carbide portion 2 so that a plurality of “hexagonal columnar holes” 3 are adjacent to each other with the partition wall portion 5 interposed therebetween. Is. In other words, the hexagonal column-shaped hole 3 has a structure that is partitioned by the partition wall 5. “Cell” in the hexagonal cell structure 4 means “hexagonal columnar hole 3”. The hexagonal cell structure portion 4 has a "total area of openings 6 of the hexagonal columnar holes 3 (opening area per unit volume)" per "unit volume of the silicon carbide body 100" of 0.01 to is preferably 5cm 2 / cm 3, more preferably from 0.05~5cm 2 / cm 3, particularly preferably 0.5~5cm 2 / cm 3. If the opening area per unit volume is smaller than 0.01 cm 2 / cm 3 , the efficiency of synthesis of carbon nanotubes and the like may be lowered. The larger the opening area per unit volume, the more efficient the synthesis of carbon nanotubes, etc., and more preferable because carbon nanotubes, catalysts, etc. can be retained inside more, In practice, the upper limit is about 5 cm 2 / cm 3 .

六角柱状の穴3の深さは、0.5〜200μmが好ましく、1〜150μmが更に好ましく、5〜100μmが特に好ましい。0.5μmより浅いと、カーボンナノチューブ等の合成等を行い難くなることがあり、200μmより深いと、母材である炭化珪素(SiC)粒子の強度が大幅に低下することがあり、更に、隣接する六角柱状の穴3同士が連結し、六角柱状の穴が消失してしまう(六角柱状の構造が失われ、単なる空間になってしまう)ことがある。   The depth of the hexagonal columnar hole 3 is preferably 0.5 to 200 μm, more preferably 1 to 150 μm, and particularly preferably 5 to 100 μm. If it is shallower than 0.5 μm, it may be difficult to synthesize carbon nanotubes, etc. If it is deeper than 200 μm, the strength of the silicon carbide (SiC) particles, which are the base material, may be greatly reduced. The hexagonal columnar holes 3 may be connected to each other, and the hexagonal columnar holes may disappear (the hexagonal columnar structure is lost, resulting in a simple space).

また、六角柱状の穴3は、その中心軸方向に直交する断面において、六角形の穴(六角柱状の穴3)の一辺の長さが1〜100μmであることが好ましく、5〜50μmであることが更に好ましい。このような範囲とすることにより、六角柱状の穴3の中で、カーボンナノチューブ等の合成等をより好適に行うことができ、更に、六角柱状の穴3を、カーボンナノチューブ、触媒等を内部に保持する容器として、より好適に利用できるようになる。1μmより短いと、六角柱状の穴3が細くなるため、カーボンナノチューブ等の合成等を行い難くなることがある。100μmより長いと、六角柱状の穴3が太くなるため、カーボンナノチューブ等の合成等を行い難くなることがある。   In addition, the hexagonal columnar hole 3 has a cross-section orthogonal to the central axis direction, and the length of one side of the hexagonal hole (hexagonal columnar hole 3) is preferably 1 to 100 μm, and more preferably 5 to 50 μm. More preferably. By setting such a range, it is possible to more suitably synthesize carbon nanotubes and the like in the hexagonal column-shaped hole 3, and further, the hexagonal column-shaped hole 3 with the carbon nanotube, catalyst and the like inside. As a container to hold | maintain, it comes to be able to use more suitably. If it is shorter than 1 μm, the hexagonal columnar hole 3 becomes thin, and it may be difficult to synthesize carbon nanotubes. If it is longer than 100 μm, the hexagonal column-shaped hole 3 becomes thick, so that it may be difficult to synthesize carbon nanotubes and the like.

また、六角柱状の穴3の、中心軸に直交する断面の形状は、六角柱状の炭化珪素の結晶における中心軸に直交する断面の形状であることが好ましい。正六角形であることが好ましいが、若干の変形があってもよい。また、複数の六角柱状の穴3の大きさ(深さ、中心軸に直行する断面の大きさ)は、全体的に均一な大きさであることが好ましいが、異なる大きさのものが混在していてもよい。   Moreover, it is preferable that the shape of the cross section orthogonal to the central axis of the hexagonal columnar hole 3 is the shape of the cross section orthogonal to the central axis in the hexagonal columnar silicon carbide crystal. Although it is preferably a regular hexagon, there may be some deformation. The size of the plurality of hexagonal column-shaped holes 3 (depth, size of a cross section perpendicular to the central axis) is preferably uniform overall, but different sizes are mixed. It may be.

六角柱状の穴3を区画形成する隔壁部5の厚さは、0.1〜120μmが好ましく、0.5〜100μmが更に好ましく、1〜50μmが特に好ましい。0.1μmより薄いと、強度が低くなることがある。120μmより厚いと、六角柱状の穴3の密度(再結晶炭化珪素部2の表面12における、単位面積当たりの六角柱の穴3の数)が低くなり、カーボンナノチューブ等の合成等の効率が低くなることがある。尚、隔壁部5は、再結晶炭化珪素部2の一部であり、再結晶炭化珪素部2と同じ材質である。   0.1-120 micrometers is preferable, as for the thickness of the partition part 5 which divides and forms the hexagonal column-shaped hole 3, 0.5-100 micrometers is more preferable, and 1-50 micrometers is especially preferable. If it is thinner than 0.1 μm, the strength may be lowered. If it is thicker than 120 μm, the density of the hexagonal columnar holes 3 (the number of hexagonal columnar holes 3 per unit area on the surface 12 of the recrystallized silicon carbide portion 2) is low, and the efficiency of synthesis of carbon nanotubes and the like is low. May be. The partition wall portion 5 is a part of the recrystallized silicon carbide portion 2 and is made of the same material as the recrystallized silicon carbide portion 2.

本実施形態の炭化珪素質体100において、再結晶炭化珪素部2は、炭化珪素粒子1の表面に配設されるとともに、炭化珪素粒子1同士を結合させる役割を果たす。再結晶炭化珪素部2は、炭化珪素が再結晶されて形成されたものである。   In silicon carbide based body 100 of the present embodiment, recrystallized silicon carbide portion 2 is disposed on the surface of silicon carbide particles 1 and plays a role of bonding silicon carbide particles 1 together. Recrystallized silicon carbide portion 2 is formed by recrystallizing silicon carbide.

本実施形態の炭化珪素質体100において、炭化珪素粒子1は、炭化珪素質体100を構成する骨材である。炭化珪素粒子1の平均粒子径は、5〜3000μmが好ましく、10〜500μmが更に好ましい。炭化珪素粒子1の平均粒子径は、粒径が数十ミクロン(15μm程度)より小さい場合は、JIS R 1619に準拠した方法で測定した値であり、数十ミクロン(15μm程度)より大きい場合はJIS R 1639−1に準拠した方法で測定した値である。炭化珪素粒子の製造方法としては、特に限定されないが、アッチソン法により合成された炭化珪素を、粉砕し、整粒して炭化珪素粒子とする方法を挙げることができる。   In silicon carbide based body 100 of the present embodiment, silicon carbide particles 1 are aggregates that constitute silicon carbide based body 100. The average particle diameter of the silicon carbide particles 1 is preferably 5 to 3000 μm, and more preferably 10 to 500 μm. The average particle diameter of the silicon carbide particles 1 is a value measured by a method according to JIS R 1619 when the particle diameter is smaller than several tens of microns (about 15 μm), and when larger than several tens of microns (about 15 μm). It is the value measured by the method based on JISR1639-1. Although it does not specifically limit as a manufacturing method of a silicon carbide particle, The method of grind | pulverizing and sizing the silicon carbide synthesize | combined by the Atchison method can be mentioned.

本実施形態の炭化珪素質体100は、複数の炭化珪素粒子1が再結晶炭化珪素部2によって結合されたものである。複数の炭化結晶粒子1の間には隙間(細孔)が形成されている。炭化珪素質体100の細孔径は、2〜200μmが好ましく、10〜100μmが更に好ましい。また、炭化珪素質体100の気孔率は、3〜80%が好ましく、5〜40%が更に好ましい。炭化珪素質体の細孔径は水銀ポロシメータで測定した値である。また、炭化珪素質体の気効率はアルキメデス法で測定した値である。また、炭化珪素質体100の全体形状は、特に限定されず、用途に応じて、適宜所望の形状とすることができる。例えば、六角柱状の穴3の中で、カーボンナノチューブを合成する場合には、角板形状が好ましい。   Silicon carbide body 100 of the present embodiment is obtained by bonding a plurality of silicon carbide particles 1 by recrystallized silicon carbide portion 2. Gaps (pores) are formed between the plurality of carbonized crystal particles 1. The pore size of silicon carbide body 100 is preferably 2 to 200 μm, and more preferably 10 to 100 μm. Further, the porosity of silicon carbide based body 100 is preferably 3 to 80%, and more preferably 5 to 40%. The pore diameter of the silicon carbide body is a value measured with a mercury porosimeter. Further, the gas efficiency of the silicon carbide material is a value measured by Archimedes method. Moreover, the whole shape of the silicon carbide body 100 is not specifically limited, It can be suitably set as a desired shape according to a use. For example, when carbon nanotubes are synthesized in the hexagonal column-shaped hole 3, a square plate shape is preferable.

(2)炭化珪素質体の製造方法:
本発明の炭化珪素質体の製造方法の一の実施形態は、上記本発明の炭化珪素質体の一の実施形態を製造する方法である。本実施形態の炭化珪素質体の製造方法は、複数の炭化珪素粒子を1700〜2400℃で熱処理して、複数の炭化珪素粒子の表面に再結晶炭化珪素を形成させながら炭化珪素粒子を再結晶炭化珪素で結合させて処理前炭化珪素体を作製し、処理前炭化珪素体を酸素濃度1〜350ppmの不活性ガス雰囲気下で、1300〜1600℃で熱処理して炭化珪素質体を製造するものである。このように、複数の炭化珪素粒子の表面に再結晶炭化珪素を形成させた処理前炭化珪素体を、酸素濃度1〜350ppmの不活性ガス雰囲気下で、1300〜1600℃で熱処理するため、再結晶炭化珪素がアクティブ酸化されて、六角柱状の穴が形成され、炭化珪素質体が得られる。アクティブ酸化とは、「SiC+O=SiO+CO」の化学式で示される反応により、炭化珪素が酸化されて一酸化珪素ガス及び一酸化炭素ガスとなることを意味する。このように、炭化珪素が酸化されて一酸化珪素ガス及び一酸化炭素ガスとなって放出されるため、再結晶炭化珪素に六角柱状の穴が形成される。再結晶炭化珪素に形成される穴が六角柱状であるのは、再結晶炭化珪素の結晶構造が、六角柱状の結晶構造の炭化珪素が隣接して並んで形成された構造であるからと考えられる。そして、六角柱状の穴が、隔壁部で区画形成されるように形成されるのは、「六角柱状の炭化珪素結晶」同士の接触部分(隔壁部に相当)が、アクティブ酸化され難く形成されているためと考えられる。
(2) Manufacturing method of silicon carbide body:
One embodiment of the method for producing a silicon carbide body of the present invention is a method for producing one embodiment of the silicon carbide body of the present invention. In the method for manufacturing a silicon carbide based material according to the present embodiment, a plurality of silicon carbide particles are heat-treated at 1700 to 2400 ° C. to recrystallize silicon carbide particles while forming recrystallized silicon carbide on the surfaces of the plurality of silicon carbide particles. A silicon carbide body is produced by bonding with silicon carbide to prepare a silicon carbide body before treatment and heat-treating the silicon carbide body before treatment at 1300 to 1600 ° C. in an inert gas atmosphere having an oxygen concentration of 1 to 350 ppm. It is. In this way, the silicon carbide body before treatment in which recrystallized silicon carbide is formed on the surfaces of a plurality of silicon carbide particles is heat-treated at 1300 to 1600 ° C. in an inert gas atmosphere having an oxygen concentration of 1 to 350 ppm. Crystalline silicon carbide is actively oxidized to form hexagonal columnar holes, and a silicon carbide body is obtained. Active oxidation means that silicon carbide is oxidized into silicon monoxide gas and carbon monoxide gas by a reaction represented by a chemical formula of “SiC + O 2 = SiO + CO”. Thus, since silicon carbide is oxidized and released as silicon monoxide gas and carbon monoxide gas, hexagonal columnar holes are formed in the recrystallized silicon carbide. The reason why the hole formed in the recrystallized silicon carbide is hexagonal columnar is that the crystal structure of the recrystallized silicon carbide is a structure in which silicon carbide having a hexagonal columnar crystal structure is formed adjacent to each other. . The hexagonal columnar holes are formed so as to be defined by the partition walls because the contact portions (corresponding to the partition walls) between the “hexagonal columnar silicon carbide crystals” are not easily oxidized. It is thought that it is because.

本実施形態の炭化珪素質体の製造方法は、まず、複数の炭化珪素粒子を1700〜2400℃で熱処理して、複数の炭化珪素粒子の表面に再結晶炭化珪素を形成させながら炭化珪素粒子を再結晶炭化珪素で結合させて処理前炭化珪素体を作製する。処理前炭化珪素体を作製する方法は、特に限定されず、通常の、炭化珪素粒子を熱処理して再結晶炭化珪素を生成させることにより、炭化珪素粒子が互いに結合されて形成される構造体を作製する方法を用いることができる。炭化珪素粒子の熱処理温度は、1300〜1600℃であり、1400〜1500℃が好ましい。また、炭化珪素粒子の熱処理時間は、1〜24時間が好ましく、5〜12時間が更に好ましい。また、炭化珪素粒子を熱処理するときの雰囲気は、酸素濃度1〜350ppmの不活性ガス雰囲気が好ましく、不活性ガスがアルゴンであることが更に好ましい。炭化珪素粒子の熱処理は、電気炉等を用いて行うことが好ましい。炭化珪素粒子の平均粒子径は、5〜3000μmが好ましく、10〜500μmが更に好ましい。炭化珪素粒子1の平均粒子径は、粒径が数十ミクロン(15μm程度)より小さい場合は、JIS R 1619に準拠した方法で測定した値であり、数十ミクロン(15μm程度)より大きい場合はJIS R 1639−1に準拠した方法で測定した値である。   In the method of manufacturing a silicon carbide body according to the present embodiment, first, a plurality of silicon carbide particles are heat-treated at 1700 to 2400 ° C. to form silicon carbide particles while forming recrystallized silicon carbide on the surfaces of the plurality of silicon carbide particles. A silicon carbide body before processing is produced by bonding with recrystallized silicon carbide. The method for producing the silicon carbide body before treatment is not particularly limited, and a normal structure formed by bonding silicon carbide particles to each other by heat-treating silicon carbide particles to produce recrystallized silicon carbide. A manufacturing method can be used. The heat treatment temperature of the silicon carbide particles is 1300 to 1600 ° C, preferably 1400 to 1500 ° C. In addition, the heat treatment time of the silicon carbide particles is preferably 1 to 24 hours, and more preferably 5 to 12 hours. Moreover, the atmosphere when heat-treating the silicon carbide particles is preferably an inert gas atmosphere having an oxygen concentration of 1 to 350 ppm, and more preferably the inert gas is argon. The heat treatment of the silicon carbide particles is preferably performed using an electric furnace or the like. The average particle diameter of the silicon carbide particles is preferably 5 to 3000 μm, and more preferably 10 to 500 μm. The average particle diameter of the silicon carbide particles 1 is a value measured by a method according to JIS R 1619 when the particle diameter is smaller than several tens of microns (about 15 μm), and when larger than several tens of microns (about 15 μm). It is the value measured by the method based on JISR1639-1.

次に、処理前炭化珪素体を、酸素濃度1〜350ppmの不活性ガス雰囲気下で、1300〜1600℃で熱処理して本発明の炭化珪素質体を作製する。酸素濃度1〜350ppmで再結晶炭化珪素が形成された処理前炭化珪素体を熱処理するため、再結晶炭化珪素がアクティブ酸化され、再結晶炭化珪素に、六角柱状の穴が形成されて、六角セル構造部が形成される。   Next, the silicon carbide body before treatment is heat-treated at 1300 to 1600 ° C. in an inert gas atmosphere having an oxygen concentration of 1 to 350 ppm to produce the silicon carbide body of the present invention. In order to heat-treat the silicon carbide body before treatment in which recrystallized silicon carbide is formed at an oxygen concentration of 1 to 350 ppm, the recrystallized silicon carbide is actively oxidized, and hexagonal columnar holes are formed in the recrystallized silicon carbide. A structural part is formed.

図3は、処理前炭化珪素体を熱処理するときの雰囲気中の酸素濃度と、処理前炭化珪素体の質量変化(率)との関係を模式的に示したグラフである。縦軸(y軸)は、処理前炭化珪素体の質量変化率を示し、横軸(x軸)は、雰囲気中の酸素濃度を示す。尚、説明の便宜上、「処理前炭化珪素体の質量変化」と記載するが、処理前炭化珪素体は、熱処理によって、その構造が熱処理前の構造から変化していき(処理前炭化珪素体とは、異なるものに変化していき)、最終的には炭化珪素体になる。処理前炭化珪素体の質量変化率は、生成する炭化珪素体の質量から処理前炭化珪素体の質量を差し引いて、得られた値を処理前炭化珪素体の質量で除して、100倍した値である。尚、処理前炭化珪素体の気孔率は17%である。処理前炭化珪素体の気孔率はアルキメデス法で測定した値である。図3のグラフでは、窒素雰囲気下、1450℃、5時間の条件で処理前炭化珪素体を熱処理したときの質量変化を概略的に示している。   FIG. 3 is a graph schematically showing the relationship between the oxygen concentration in the atmosphere when heat-treating the silicon carbide body before treatment and the mass change (rate) of the silicon carbide body before treatment. The vertical axis (y-axis) indicates the mass change rate of the silicon carbide body before treatment, and the horizontal axis (x-axis) indicates the oxygen concentration in the atmosphere. For convenience of explanation, it is described as “mass change of silicon carbide body before treatment”, but the structure of the silicon carbide body before treatment is changed from the structure before the heat treatment by the heat treatment (with the silicon carbide body before the treatment). Changes to different ones) and eventually becomes a silicon carbide body. The mass change rate of the silicon carbide body before treatment was multiplied by 100 by subtracting the mass of the silicon carbide body before treatment from the mass of the silicon carbide body to be produced and dividing the obtained value by the mass of the silicon carbide body before treatment. Value. In addition, the porosity of the silicon carbide body before processing is 17%. The porosity of the silicon carbide body before treatment is a value measured by the Archimedes method. The graph of FIG. 3 schematically shows a change in mass when the silicon carbide body before treatment is heat-treated under conditions of 1450 ° C. and 5 hours in a nitrogen atmosphere.

図3に示すように、酸素濃度と処理前炭化珪素体の質量変化率との関係は、酸素濃度が0ppmから大きくなるに従って初めは処理前炭化珪素体の質量が減少し、質量の変化量が極小値(酸素濃度が500ppm付近)に至るまでは、酸素濃度が大きくなるに従って処理前炭化珪素体の質量減少の程度が次第に大きくなる。そして、酸素濃度が500ppm付近(処理前炭化珪素体の質量変化量が極小値となる点)からさらに大きくなると、酸素濃度が大きくなるに従って質量減少の程度が小さくなる。そして、酸素濃度が700ppm付近になると処理前炭化珪素体の質量変化がなくなり、酸素濃度が700ppm付近から更に大きくなると処理前炭化珪素体の質量が増大するようになる。処理前炭化珪素体の質量の減少は、上記アクティブ酸化によるものであり、質量の増加は、パッシブ酸化によるものである。ここで、パッシブ酸化とは、「SiC+2O=SiO+CO」の化学式で示される反応により、炭化珪素が酸化されて二酸化珪素及び二酸化炭素ガスとなることを意味する。パッシブ酸化の場合、二酸化珪素が生じることにより質量が増加する。このように、雰囲気中の酸素濃度によって、アクティブ酸化が起きたり、パッシブ酸化が起きたりするため、本実施形態の炭化珪素体の製造方法は、アクティブ酸化が主として起きていると考えられる酸素濃度1〜350ppmの範囲において、処理前炭化珪素体を熱処理するものである。処理前炭化珪素体を熱処理するときの酸素濃度は、10〜250ppmが好ましい。 As shown in FIG. 3, the relationship between the oxygen concentration and the mass change rate of the silicon carbide body before the treatment is such that the mass of the silicon carbide body before the treatment first decreases as the oxygen concentration increases from 0 ppm, and the amount of change in the mass is Until the minimum value (oxygen concentration is around 500 ppm), the degree of mass reduction of the silicon carbide body before treatment gradually increases as the oxygen concentration increases. When the oxygen concentration further increases from around 500 ppm (the point at which the mass change amount of the silicon carbide body before treatment becomes a minimum value), the degree of mass reduction decreases as the oxygen concentration increases. When the oxygen concentration is around 700 ppm, the mass change of the silicon carbide body before treatment disappears, and when the oxygen concentration is further increased from around 700 ppm, the mass of the silicon carbide body before treatment increases. The decrease in the mass of the silicon carbide body before treatment is due to the active oxidation, and the increase in the mass is due to passive oxidation. Here, passive oxidation means that silicon carbide is oxidized into silicon dioxide and carbon dioxide gas by a reaction represented by a chemical formula of “SiC + 2O 2 = SiO 2 + CO 2 ”. In the case of passive oxidation, the mass increases due to the formation of silicon dioxide. As described above, active oxidation or passive oxidation occurs depending on the oxygen concentration in the atmosphere. Therefore, in the method for manufacturing a silicon carbide body according to this embodiment, the oxygen concentration is considered to be mainly caused by active oxidation. In the range of ˜350 ppm, the silicon carbide body before treatment is heat-treated. The oxygen concentration when heat-treating the silicon carbide body before treatment is preferably 10 to 250 ppm.

処理前炭化珪素体を熱処理するときの不活性ガス雰囲気としては、窒素ガス雰囲気、アルゴンガス雰囲気等を挙げることができる。また、処理前炭化珪素体の熱処理は、電気炉等を用いて行うことが好ましい。   Examples of the inert gas atmosphere when heat-treating the silicon carbide body before treatment include a nitrogen gas atmosphere and an argon gas atmosphere. Moreover, it is preferable to heat-process the silicon carbide body before a process using an electric furnace etc.

以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

(実施例1)
平均粒子径200μmの炭化珪素粒子を2200℃で熱処理して、複数の炭化珪素粒子の表面に再結晶炭化珪素を形成させながら炭化珪素粒子を再結晶炭化珪素で結合させて処理前炭化珪素体を作製した。処理前炭化珪素体の外形は、角板形状とした。次に、処理前炭化珪素体を、酸素濃度100ppmのアルゴンガス雰囲気下で、1450℃で100時間、熱処理して炭化珪素質体を作製した。
Example 1
Silicon carbide particles having an average particle diameter of 200 μm are heat-treated at 2200 ° C., and silicon carbide particles are bonded with recrystallized silicon carbide while forming recrystallized silicon carbide on the surfaces of the plurality of silicon carbide particles. Produced. The external shape of the silicon carbide body before processing was a square plate shape. Next, the silicon carbide body before treatment was heat-treated at 1450 ° C. for 100 hours in an argon gas atmosphere having an oxygen concentration of 100 ppm to produce a silicon carbide body.

得られた炭化珪素質体は、気孔率約22%であった。気効率はアルキメデス法で測定した。また、得られた炭化珪素質体の顕微鏡写真を図4に示す。図4は、実施例1の炭化珪素質体100の顕微鏡写真である。図4は、炭化珪素質体100を構成する炭化珪素粒子の表面に配設された六角セル構造部4を拡大した顕微鏡写真である。六角セル構造部4に六角柱状の穴3が形成されていることがわかる。   The obtained silicon carbide body had a porosity of about 22%. The air efficiency was measured by the Archimedes method. Moreover, the microscope picture of the obtained silicon carbide body is shown in FIG. 4 is a photomicrograph of silicon carbide body 100 of Example 1. FIG. FIG. 4 is an enlarged photomicrograph of hexagonal cell structure 4 disposed on the surface of silicon carbide particles constituting silicon carbide body 100. It can be seen that the hexagonal columnar hole 3 is formed in the hexagonal cell structure 4.

カーボンナノチューブ等を内部で合成等することができ、カーボンナノチューブ、触媒等を内部に保持する容器として利用することができる。   Carbon nanotubes and the like can be synthesized inside, and can be used as a container for holding carbon nanotubes, catalysts and the like inside.

1:炭化珪素粒子、2:再結晶炭化珪素部、3:六角柱状の穴、4:六角セル構造部、5:隔壁部、6:開口部、11:炭化珪素粒子の表面、12:再結晶炭化珪素部の表面、100:炭化珪素質体。 1: Silicon carbide particles, 2: Recrystallized silicon carbide part, 3: Hexagonal columnar hole, 4: Hexagonal cell structure part, 5: Partition part, 6: Opening part, 11: Surface of silicon carbide particle, 12: Recrystallization Surface of silicon carbide portion, 100: silicon carbide body.

Claims (3)

複数の炭化珪素粒子と、前記複数の炭化珪素粒子を繋ぐとともに前記炭化珪素粒子の表面に配設された再結晶炭化珪素部とを備え、
前記再結晶炭化珪素部の少なくとも一部に、前記再結晶炭化珪素部の厚さ方向に延び一方の端部が前記再結晶炭化珪素部の表面に開口する複数の六角柱状の穴が、隣接して形成されてなる六角セル構造部が形成された炭化珪素質体。
A plurality of silicon carbide particles, and a recrystallized silicon carbide portion that connects the plurality of silicon carbide particles and is disposed on the surface of the silicon carbide particles,
A plurality of hexagonal column-shaped holes extending in the thickness direction of the recrystallized silicon carbide portion and having one end opening on the surface of the recrystallize silicon carbide portion are adjacent to at least a part of the recrystallized silicon carbide portion. The silicon carbide body in which the hexagonal cell structure part formed in this way was formed.
前記六角柱状の穴の中心軸方向に直交する断面において、六角形の前記穴の一辺の長さが1〜100μmである請求項1に記載の炭化珪素質体。   2. The silicon carbide body according to claim 1, wherein a length of one side of the hexagonal hole is 1 to 100 μm in a cross section perpendicular to a central axis direction of the hexagonal columnar hole. 複数の炭化珪素粒子を1700〜2400℃で熱処理して、複数の前記炭化珪素粒子の表面に再結晶炭化珪素を形成させながら炭化珪素粒子を前記再結晶炭化珪素で結合させて処理前炭化珪素体を作製し、前記処理前炭化珪素体を酸素濃度1〜350ppmの不活性ガス雰囲気下で、1300〜1600℃で熱処理して、請求項1又は2に記載の炭化珪素質体を製造する炭化珪素質体の製造方法。   A plurality of silicon carbide particles are heat-treated at 1700 to 2400 ° C., and silicon carbide particles are bonded with the recrystallized silicon carbide while forming recrystallized silicon carbide on the surfaces of the plurality of silicon carbide particles. The silicon carbide body according to claim 1 or 2 is manufactured by heat-treating the silicon carbide body before treatment at 1300 to 1600 ° C in an inert gas atmosphere having an oxygen concentration of 1 to 350 ppm. A method for producing a mass.
JP2009085050A 2009-03-31 2009-03-31 Silicon carbide material and method of manufacturing the same Pending JP2010235387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009085050A JP2010235387A (en) 2009-03-31 2009-03-31 Silicon carbide material and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009085050A JP2010235387A (en) 2009-03-31 2009-03-31 Silicon carbide material and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010235387A true JP2010235387A (en) 2010-10-21

Family

ID=43090095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009085050A Pending JP2010235387A (en) 2009-03-31 2009-03-31 Silicon carbide material and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010235387A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111747758A (en) * 2019-03-28 2020-10-09 日本碍子株式会社 Method for manufacturing ceramic product containing silicon carbide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174182A (en) * 1985-01-26 1986-08-05 イビデン株式会社 Silicon carbide base composite body with high size precisionand sliding properties and manufacture
JPH05306111A (en) * 1992-02-18 1993-11-19 Tokai Carbon Co Ltd Production of active silicon carbide
WO2010019229A1 (en) * 2008-08-13 2010-02-18 Corning Incorporated Synthesis of ordered mesoporous carbon-silicon nanocomposites

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174182A (en) * 1985-01-26 1986-08-05 イビデン株式会社 Silicon carbide base composite body with high size precisionand sliding properties and manufacture
JPH05306111A (en) * 1992-02-18 1993-11-19 Tokai Carbon Co Ltd Production of active silicon carbide
WO2010019229A1 (en) * 2008-08-13 2010-02-18 Corning Incorporated Synthesis of ordered mesoporous carbon-silicon nanocomposites

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012058164; 一色俊之: '電子顕微鏡法による材料開発のための微細構造研究最前線(6)カソ-ドルミネッセンス カソ-ドルミネッセンス法' まてりあ Vol.45 No.12, 20061220, P.897 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111747758A (en) * 2019-03-28 2020-10-09 日本碍子株式会社 Method for manufacturing ceramic product containing silicon carbide
CN111747758B (en) * 2019-03-28 2022-09-30 日本碍子株式会社 Method for manufacturing ceramic product containing silicon carbide

Similar Documents

Publication Publication Date Title
Hu et al. Prussian blue microcrystals prepared by selective etching and their conversion to mesoporous magnetic iron (III) oxides
JP5891636B2 (en) Polycrystalline diamond and method for producing the same
JP6043340B2 (en) Porous material, honeycomb structure, and method for producing porous material
TWI658018B (en) Glass-ceramics substrates for graphene growth
KR101575348B1 (en) Method of fabricating silicon carbide powder
EP2266932A1 (en) Porous ceramic member, method for producing the same, and filter
ATE516247T1 (en) SYNTHESIS OF ZEOLITE CRYSTALS AND FORMATION OF CARBON NANOSTRUCTURES IN PATTERNED STRUCTURES
CN107266079A (en) The manufacture method and honeycomb structured body of porous material and porous material
JP2014014813A5 (en)
US9199204B2 (en) Hydrogen-separation-membrane protection layer and a coating method therefor
JP2010143771A (en) METHOD FOR PRODUCING alpha-SILICON CARBIDE PARTICLE
TW201221694A (en) Carburization treating method of tantalum container
Bore et al. Role of pore curvature on the thermal stability of gold nanoparticles in mesoporous silica
JP2010235387A (en) Silicon carbide material and method of manufacturing the same
US9709334B2 (en) Heat treatment container for vacuum heat treatment apparatus
JP4692394B2 (en) Method and apparatus for producing silicon carbide single crystal
Atwater et al. The effect of powder sintering on the palladium-catalyzed formation of carbon nanofibers from ethylene–oxygen mixtures
JP4968746B2 (en) Method for producing single crystal silicon carbide nanowire and method for producing filter including the same
Vanhaecke et al. 1D SiC decoration of SiC macroscopic shapes for filtration devices
JP2004223359A (en) POROUS Si3N4 FOR FILTER AND ITS PRODUCTION METHOD
JP4798347B2 (en) TiC ultrafine particles or TiO2 ultrafine particle-supporting carbon nanotubes, TiC nanotubes and methods for producing them
JP2012246166A (en) Crucible for melting polysilicon, and method for producing the same
JP2009119414A (en) Substrate for cnt (carbon nanotube) growth and method of manufacturing cnt
JP2017520502A (en) Synthetic diamond production method
JP5281807B2 (en) Crystalline ceria thin film catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130716