JP2010234430A - Method of cutting runner for casting - Google Patents

Method of cutting runner for casting Download PDF

Info

Publication number
JP2010234430A
JP2010234430A JP2009086723A JP2009086723A JP2010234430A JP 2010234430 A JP2010234430 A JP 2010234430A JP 2009086723 A JP2009086723 A JP 2009086723A JP 2009086723 A JP2009086723 A JP 2009086723A JP 2010234430 A JP2010234430 A JP 2010234430A
Authority
JP
Japan
Prior art keywords
product
teaching
coordinate system
points
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009086723A
Other languages
Japanese (ja)
Inventor
Hidechika Takahashi
秀周 高橋
Motohide Nishio
元秀 西尾
Koji Yoshimura
剛治 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2009086723A priority Critical patent/JP2010234430A/en
Publication of JP2010234430A publication Critical patent/JP2010234430A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for successfully cutting a runner, even in the case of a casting with a product part having complicated shapes and a number of curved faces with unclear contours, and even in the case that position and posture relative to the product part are varied. <P>SOLUTION: The method cuts the runner of a workpiece as a casting in which one or more product parts after mold release are linked with programmed sections, while a cutting torch is position-controlled by a robot system of a teaching reproduction type. In the reproduction step, for the actual target workpiece to be cut set in a prescribed tool, points on the actual workpiece corresponding to a plurality of specified points selected on the product parts of a teaching workpiece are measured with a three-dimensional visual sensor which is positioned at the same position and posture as during the teaching step. On the basis of the three-dimensional coordinate values, a product coordinate system is defined for each product part. On the basis of deviation between the product part coordinate system of the teaching workpiece and that of the actual workpiece, the teaching data of the torch are corrected and, on the basis of the corrected teaching data, the robot is position-controlled. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ロボットに取り付けたプラズマトーチ等を移動させて鋳造品の湯道や押湯部を切断するための方法に係わる。   The present invention relates to a method for cutting a runner or a feeder part of a cast product by moving a plasma torch or the like attached to a robot.

鋳型には鋳造方案に基づいた湯口、湯道、堰、押湯等が設けられており、型バラシ後の鋳造品は製品部と方案部(湯口、押湯、湯道等)が繋がっており、製品化の過程で製品部と方案部を分離する作業が必要とされる。前記分離作業は、通常湯道や堰を切断する(湯道切断と総称する)ことで行われる。湯道を切断する方法としては、鋳物(製品部)の材質、形状、大きさ、数量などに合わせて、プレス方式、砥石切断方式、ガスやプラズマなどの熱切断方式など種々の方法がとられているが、折れ難い材質や複雑形状品、また曲線切断品に対しては熱切断用トーチを装着したロボットで行う方法がとられることが多い。ロボットで湯道切断を行うためには、トーチを製品部近傍の所定経路を通過するように教示して再生動作を行わせる方式がとられるが、鋳造品の位置決め精度が悪かったり歪みが生じている場合などは、トーチを教示データ通りに位置制御したのでは良好に湯道を切断できないという問題が生じる。   The mold is provided with a sprue, runner, weir, feeder, etc. based on the casting plan, and the cast product after mold separation is connected to the product part and the plan part (poor, feeder, runner, etc.) In the process of commercialization, it is necessary to separate the product part and the plan part. The separation operation is usually performed by cutting runners and weirs (collectively referred to as runner cuts). As a method of cutting the runner, various methods such as a press method, a grindstone cutting method, a thermal cutting method such as gas or plasma, etc. are taken according to the material, shape, size, quantity, etc. of the casting (product part). However, in many cases, a method using a robot equipped with a thermal cutting torch is used for a material that is difficult to break, a complex shape product, or a curved cut product. In order to perform runner cutting with a robot, a method is adopted in which a torch is taught to pass through a predetermined path near the product part and a regenerating operation is performed. However, positioning accuracy of the cast product is poor or distortion occurs. When the torch is positioned according to the teaching data, there is a problem that the runner cannot be cut well.

上記問題を解決するためには、教示データを切断対象の実鋳造品の位置、姿勢に合わせて補正することが考えられ、例えば特許文献1にこのための技術が開示されている。特許文献1の技術は、アーク溶接、スポット溶接等の加工作業をロボットで実現する場合における作成済みの教示データの位置及び姿勢の補正を行うロボットの制御方法に関するものである。即ち、加工対象のワークが基準位置に設置されている時に、ワーク上の複数の特徴点を指定することによって直交座標系の原点及び軸方向が所望値であるユーザ座標系を定義し、教示時にこのユーザ座標系の軸方向に従ってロボットを移動させて作業経路を教示してこの作業経路上の教示点の位置姿勢データをロボット個体に固有の直交座標であるベース座標系(ロボット座標系ともいう)を基準としたベース座標値データで記憶し、再生時にこのベース座標値データに基づいてロボットの各関節角度データを算出して動作制御を行う産業用ロボットの制御方法において、教示時に前記教示点の位置姿勢データを前記ユーザ座標系を基準としたユーザ座標値データで記憶し、再生時にこのユーザ座標値データ及び前記ユーザ座標系に基づいて前記ベース座標値データを算出し、このベース座標値データに基づいてロボットの各関節角度データを算出し、ワークが前記基準位置とは異なる位置に設置されたときは、前記複数の特徴点の位置を再指定して前記ユーザ座標系を再定義し、再生時に前記ユーザ座標値データ及び前記再定義されたユーザ座標系に基づいて前記ベース座標値データを再算出し、この再算出されたベース座標値データに基づいてロボットの各関節データを算出することを特徴としている。また、前記複数の特徴点の位置の再指定を位置測定器によって測定して、ユーザ座標系の再定義をロボットが自動的に行うことも開示されている。   In order to solve the above problem, it is conceivable to correct the teaching data in accordance with the position and orientation of the actual casting to be cut. For example, Patent Literature 1 discloses a technique for this purpose. The technique of Patent Document 1 relates to a robot control method for correcting the position and posture of already created teaching data when processing operations such as arc welding and spot welding are realized by a robot. That is, when the workpiece to be machined is set at the reference position, a user coordinate system in which the origin and the axial direction of the Cartesian coordinate system are desired values is defined by specifying a plurality of feature points on the workpiece. A base coordinate system (also referred to as a robot coordinate system) which is a Cartesian coordinate unique to a robot individual, in which the robot is moved according to the axial direction of the user coordinate system to teach a work route, and the position and orientation data of the teaching point on this work route In the control method of an industrial robot that performs motion control by calculating each joint angle data of the robot based on the base coordinate value data at the time of reproduction, The position and orientation data is stored as user coordinate value data based on the user coordinate system, and based on the user coordinate value data and the user coordinate system at the time of reproduction. Base coordinate value data is calculated, each joint angle data of the robot is calculated based on the base coordinate value data, and when the workpiece is placed at a position different from the reference position, the positions of the plurality of feature points And redefine the user coordinate system, re-calculate the base coordinate value data based on the user coordinate value data and the redefined user coordinate system at the time of reproduction, and recalculate the base coordinates It is characterized in that each joint data of the robot is calculated based on the value data. It is also disclosed that a robot automatically performs redefinition of a user coordinate system by measuring re-designation of the positions of the plurality of feature points with a position measuring device.

特開2007−115011号公報JP 2007-1115011 A

近年、自動車部品に用いられる鋳物製品は、公害対策や軽量化の要求から、例えばマニホールドやタービンハウジングなどは、耐熱性が高くかつ薄肉で複雑形状のものが製造されるようになってきた。一般に、湯道切断作業には、型バラシ後の製品部と方案部とが繋がった一体の鋳造品(前記特許文献1のワークに相当するので、以降ワークと呼ぶ)を精度よく位置決めするために品種毎に専用の位置決め治具が必要とされる。しかし、前記ワークは湯道に歪みが出やすく、このような場合は治具を用いても精度良く位置決めすることは難しく、位置や姿勢の変動が大きい場合は良好な湯道切断ができない。この問題に対して、前記特許文献1に開示された技術は有効であるが、ユーザ座標系の定義を行うためには、一義的に規定される点である特徴点を複数(特許文献1の実施の形態1では3点)指定しなければならない。しかし、前記ワークでは、方案部に比べて変形や歪みの少ない製品部上で特徴点を指定することになるが、製品部は形状が複雑で輪郭が不明瞭な曲面が多く、特徴点を3点も有するようなものは稀である。従って、1つの鋳型に1個の製品部が配置されたいわゆる1個込めのワークに対しては、ほとんど特許文献1の技術では対応できない。ただし、特徴点を1点しか有しない製品部であっても、3個以上の製品部が配置されているワークであれば、このワークは特徴点を3点以上有することになり、ユーザ座標系を定義することができる。しかし、この場合には、湯道等の歪みによってワーク内における製品部間の相対位置や姿勢が変動すると、前記特徴点の相互位置関係が変化し、精度よくユーザ座標系を再定義することができず、良好に湯道を切断することが難しくなるという問題がある。
従って、本発明は、形状が複雑で輪郭が不明瞭な曲面が多い製品部を有する鋳造品であっても、また製品部相互の位置や姿勢が変動している場合であっても、良好に湯道を切断することができる方法を提供することを目的としている。
In recent years, casting products used for automobile parts have been manufactured with high heat resistance, thin walls, and complicated shapes, for example, due to demands for pollution prevention and weight reduction. In general, in the runner cutting operation, in order to accurately position an integral cast product (corresponding to the workpiece of Patent Document 1 described above) in which the product portion and the design portion after mold breaking are connected, it is called the workpiece. A dedicated positioning jig is required for each product type. However, the workpiece is likely to be distorted in the runner, and in such a case, it is difficult to accurately position even if a jig is used, and good runner cutting cannot be performed if the position or posture varies greatly. To solve this problem, the technique disclosed in Patent Document 1 is effective, but in order to define a user coordinate system, a plurality of feature points (uniquely defined points) are used (refer to Patent Document 1). In the first embodiment, three points) must be specified. However, in the workpiece, feature points are specified on a product part that is less deformed or distorted than the plan part, but the product part has many curved surfaces with complicated shapes and unclear outlines, and the feature points are 3 Those that also have dots are rare. Therefore, the technique of Patent Document 1 can hardly cope with a so-called single-piece workpiece in which one product part is arranged in one mold. However, even if the product part has only one feature point, if the work has three or more product parts, the work has three or more feature points. Can be defined. However, in this case, if the relative position or posture between product parts in the workpiece fluctuates due to distortion of the runner or the like, the mutual positional relationship of the feature points changes, and the user coordinate system can be redefined with high accuracy. There is a problem that it is difficult to cut the runner well.
Therefore, the present invention is excellent even in a cast product having a product part with many curved surfaces with complicated shapes and unclear outlines, and even when the position and posture between product parts are fluctuating. It aims at providing the method which can cut | run a runner.

本発明は、教示再生方式のロボットシステムで切断用トーチを位置制御し、型バラシ後の、1個ないし複数個の製品部が方案部で繋がった状態の鋳造品であるワークの湯道を切断する方法において、
教示工程では、所定具にセットされた教示用のワークに対し、
1)製品部上に選定した複数の指定点をロボットに取付けた三次元視覚センサで計測し、それらの三次元座標値を基にして製品部毎の製品座標系を定義し、
2)製品部の湯道を切断するためのトーチの移動経路を教示して教示データを該製品座標系で記憶させ、
再生工程では、所定具にセットされた切断対象の実ワークに対し、
3)前記教示用ワークの製品部上に選定した複数の指定点に相当する実ワーク上の点を、教示工程時と同じ位置、姿勢に位置決めした三次元視覚センサで計測し、それらの三次元座標値を基に製品部毎の製品座標系を定義し、
4)教示用ワークの製品部座標系と実ワークの製品部座標系のズレを基に、前記トーチの教示データを補正し、補正した教示データに基づいてロボットを位置制御することを特徴としている。
すなわち、本発明は、製品部毎に製品座標系を定義し、教示時と再生時における製品座
標系のズレをもとに切断トーチの教示データを補正することで、製品部毎に位置や姿勢がある程度異なっても良好に湯道を切断できるようにしたものである。
The present invention controls the position of a cutting torch by a teaching reproduction type robot system, and cuts a runner of a workpiece which is a cast product in which one or a plurality of product parts are connected by a design part after mold separation. In the way to
In the teaching process, for the teaching work set on the specified tool,
1) A plurality of designated points selected on the product part are measured with a three-dimensional visual sensor attached to the robot, and a product coordinate system for each product part is defined based on those three-dimensional coordinate values.
2) Teach the movement path of the torch for cutting the runner of the product part and store the teaching data in the product coordinate system;
In the regeneration process, for the actual workpiece to be cut set on the specified tool,
3) The points on the actual workpiece corresponding to the plurality of designated points selected on the product part of the teaching workpiece are measured with a three-dimensional visual sensor positioned at the same position and posture as in the teaching process, and the three-dimensional Define the product coordinate system for each product part based on the coordinate values,
4) The teaching data of the torch is corrected based on the difference between the product part coordinate system of the teaching work and the product part coordinate system of the actual work, and the position of the robot is controlled based on the corrected teaching data. .
In other words, the present invention defines a product coordinate system for each product part, and the product position during teaching and playback.
By correcting the teaching data of the cutting torch based on the deviation of the standard system, the runner can be cut well even if the position and posture of each product part differ to some extent.

前記本発明においては、前記指定点としては、一義的に規定できる点だけでなく、複数の座標値を演算処理することで線または面を規定できる点をとることができる。
また、前記本発明においては、前記指定点において、三次元座標値が一義的に特定できる指定点を特徴点と称すると、製品毎に定義される座標系は、前記特徴点の数に基づいて下記4つの方法のうちから選定されて定義されるようにすることが好ましい。
A1:3つの特徴点による
A2:1つの特徴点と、一義的に規定される1方向基準線による
A3:1つの特徴点と、その特徴点を通る一義的に規定された法線と、別の1つの特徴点よる
A4:平面部上の複数の指定点をもとに一義的に規定される1平面と、その平面に投影された一義的に規定される2点による
本発明は、三次元視覚センサを用いることで、特徴点の座標値だけでなく、所定方向に存する複数の点の座標値を計測して一義的に規定された基準線や面を求め、これらを基にして座標系を定義するようにしており、複雑形状で外形輪郭が不明瞭な製品部を有するワークに対しても自動で湯道切断を行うことができる品種を拡大することができる。
In the present invention, as the designated point, not only a point that can be uniquely defined, but also a point that can define a line or a surface by calculating a plurality of coordinate values can be taken.
In the present invention, when a designated point at which the three-dimensional coordinate value can be uniquely specified at the designated point is referred to as a feature point, the coordinate system defined for each product is based on the number of the feature points. It is preferable to select and define from the following four methods.
A1: By three feature points
A2: One feature point, a uniquely defined one-direction reference line A3: one feature point, a uniquely defined normal passing through the feature point, and another feature point A4 : One plane that is uniquely defined based on a plurality of designated points on the plane portion, and two points that are uniquely defined projected on the plane. The present invention uses a three-dimensional visual sensor. Measure not only the coordinate values of feature points, but also the coordinate values of multiple points in a given direction to obtain uniquely defined reference lines and surfaces, and define the coordinate system based on these In addition, it is possible to expand the variety that can automatically cut the runner even for a workpiece having a product portion having a complicated shape and an unclear outline.

本発明によれば、形状が複雑な製品部を有する鋳造品に対しても、また製品部相互の位置や姿勢が変動する場合でも、自動で良好に湯道を切断することができる。   According to the present invention, a runner can be automatically and satisfactorily cut even for a cast product having a product part with a complicated shape, and even when the position and orientation of the product parts vary.

本発明の概要を説明するためのフローチャートFlowchart for explaining the outline of the present invention 本発明に係わる座標系を説明するための概念図Conceptual diagram for explaining a coordinate system according to the present invention. 座標系定義方法を選定するためのフローチャートFlow chart for selecting the coordinate system definition method 座標系定義方法A1を説明するための図The figure for demonstrating coordinate system definition method A1 座標系定義方法A2を説明するための図The figure for demonstrating coordinate system definition method A2 座標系定義方法A3を説明するための図The figure for demonstrating coordinate system definition method A3 座標系定方法A4を説明するための図The figure for demonstrating coordinate system determination method A4

本発明は、教示再生方式のロボットシステムを用いて、プラズマトーチ等を位置制御して鋳造品の湯道を自動的に切断するための方法であり、前記特許文献1における技術を基本としているが、最大の相違点はユーザ座標系の定義方法にある。詳細は後述するが、第一に、本ユーザ座標系は製品部個々に対して設定される。従って、1個込めのワークの場合は1つでよいが、2個込めのワークの場合は2つ定義される。以降、前記ユーザ座標系を製品座標系と称し、S座標と略称する。第二に、前記S座標の定義を教示時及び再生時とも自動で行うとともに、ロボット手先部に設けた三次元視覚センサを用いて、後述するように所定の指定点を計測することで、製品部に特徴点が3点得られない場合や或いは全く得られない場合でも可能としている。三次元視覚センサ(以降、3Dセンサと略す)は、レーザスリット光撮像画像やステレオ撮像画像などを画像処理し、所定位置の3次元座標値や所定面の傾きなどを算出する撮像装置であり、川崎重工業製やFANUC製などのロボットには搭載されているものもあり公知の計測機器である。   The present invention is a method for automatically cutting a runner of a cast product by controlling the position of a plasma torch or the like using a teaching reproduction type robot system, and is based on the technique in Patent Document 1. The biggest difference is in the definition method of the user coordinate system. Although details will be described later, first, the user coordinate system is set for each product unit. Accordingly, one is sufficient for a one-piece workpiece, but two are defined for a two-piece workpiece. Hereinafter, the user coordinate system is referred to as a product coordinate system and abbreviated as S coordinate. Secondly, the definition of the S coordinate is automatically performed at the time of teaching and at the time of reproduction, and a predetermined designated point is measured as described later using a three-dimensional visual sensor provided on the robot hand, thereby enabling the product This is possible even when three feature points are not obtained in the portion or when no feature points are obtained. A three-dimensional visual sensor (hereinafter abbreviated as a 3D sensor) is an imaging device that performs image processing on a laser slit light captured image, a stereo captured image, and the like to calculate a three-dimensional coordinate value of a predetermined position, a tilt of a predetermined surface, and the like. Some of the robots such as those manufactured by Kawasaki Heavy Industries, Ltd.

まず、本発明の概要を図1のフローチャート、及び図2の座標系に係わる概念図をもとに説明するが、以下、ワークは2個込めで2個の製品部が配置されているとし、図2では説明をわかり易くするために座標系は2次元で示している。   First, the outline of the present invention will be described based on the flowchart of FIG. 1 and the conceptual diagram related to the coordinate system of FIG. 2. Hereinafter, it is assumed that two product parts are arranged including two workpieces, In FIG. 2, the coordinate system is shown in two dimensions for easy understanding.

図1のフローチャートにおいて、教示工程をK1〜K3に示すが、所定具にセットされた教示用ワークWに対して行われる。
1)工程K1において、2個の製品部C(C1、C2)の各々について、S座標を定義するために選定された複数の指定点を計測するように3Dセンサの位置、姿勢を決め、該指定点の三次元座標値を算出する。前記指定点は、後述する座標系の定義方法の中で説明するように、特徴点でなくてもよく、また3点でなくてもよい。
2)工程K2において、前記計測した複数の指定点の三次元座標値を基に、ロボット制御装置等で2個の製品部毎に2つのS座標(以降、教示S1座標、教示S2座標と称す)を定義する。定義方法については後述する。前記指定点の計測データは該教示S座標のデータとして記憶される。
3)工程K3において、製品部C1、C2毎に湯道切断用トーチの作業経路を教示し、教示点の位置、姿勢データT(T1、T2)を前記教示S1座標、教示S2座標で記憶させる。
In the flowchart of FIG. 1, teaching steps K1 to K3 are performed on the teaching work W set on a predetermined tool.
1) In step K1, for each of the two product parts C (C1, C2), the position and orientation of the 3D sensor are determined so as to measure a plurality of designated points selected to define the S coordinate, Calculate the three-dimensional coordinate value of the specified point. The designated point does not have to be a feature point and may not be three points, as will be described in the coordinate system definition method described later.
2) In step K2, based on the measured three-dimensional coordinate values of a plurality of designated points, two S coordinates (hereinafter referred to as “teaching S1 coordinates” and “teaching S2 coordinates”) are obtained for every two product parts by a robot controller or the like. ) Is defined. The definition method will be described later. The measurement data of the designated point is stored as the teaching S coordinate data.
3) In step K3, the working path of the runner cutting torch is taught for each of the product parts C1 and C2, and the teaching point position and orientation data T (T1, T2) are stored in the teaching S1 coordinates and teaching S2 coordinates. .

再生工程を図1のK4〜K6で示すが、所定具にセットされた湯道切断対象の実ワークWaに対して行われる。実ワークWaは、教示用ワークと同様に2個の製品部Ca(Ca1、Ca2)を有している。
4)工程K4において、3Dセンサを前記教示用ワークWの製品部C(C1、C2)の指定点を計測した時と同じ位置、姿勢に順次位置決めし、実ワークWaの各製品部Ca(Ca1、Ca2)における実S座標定義用の指定点の三次元座標値を計測する。
5)工程K5において、前記計測された複数の指定点の三次元座標値を基に、ロボット制御装置等で実ワークWaの2つの製品部毎に2つのS座標(実S1座標、実S2座標)を定義する。通常、実ワークWaの製品部は教示ワークWの製品部と位置や傾きなどが異なることが多く、図2に示すように、製品部Ca1における実S1座標は、教示S1座標とは位置、傾きなどが異なってくる。製品部Ca2についても同様である。
6)工程K6において、製品部Ca1について、教示S1座標と実S1座標のズレをもとに、教示S1座標で記憶された湯道切断用トーチの教示点データT1を補正し、実S1座標における教示点位置データTa1とする。製品部Ca2についても同様に行う。切断のためにトーチを移動させる時は、前記実S座標(実S1座標、実S2座標)における教示点データTa(Ta1、Ta2)はロボット座標系データに変換され、ロボットが位置制御される。なお、この変換方法は前記特許文献1にも記載されているように公知であり、説明は省略する。
The regeneration process is indicated by K4 to K6 in FIG. 1, and is performed on the actual work Wa to be cut into runners set in a predetermined tool. The actual workpiece Wa has two product parts Ca (Ca1, Ca2) as in the teaching workpiece.
4) In step K4, the 3D sensor is sequentially positioned at the same position and posture as when the designated point of the product part C (C1, C2) of the teaching work W is measured, and each product part Ca (Ca1) of the actual work Wa , Ca2), the three-dimensional coordinate value of the designated point for defining the actual S coordinate is measured.
5) In step K5, based on the measured three-dimensional coordinate values of the plurality of designated points, two S coordinates (actual S1 coordinate, actual S2 coordinate) for each of two product parts of the actual workpiece Wa by a robot controller or the like. ) Is defined. Usually, the product part of the actual work Wa is often different in position and inclination from the product part of the teaching work W. As shown in FIG. 2, the actual S1 coordinate in the product part Ca1 is different from the teaching S1 coordinate in position and inclination. Etc. will be different. The same applies to the product portion Ca2.
6) In step K6, for the product portion Ca1, based on the deviation between the teaching S1 coordinate and the actual S1 coordinate, the teaching point data T1 of the runner cutting torch stored in the teaching S1 coordinate is corrected, and in the actual S1 coordinate The teaching point position data is Ta1. The same applies to the product portion Ca2. When the torch is moved for cutting, the teaching point data Ta (Ta1, Ta2) in the actual S coordinate (actual S1 coordinate, actual S2 coordinate) is converted into robot coordinate system data, and the position of the robot is controlled. This conversion method is known as described in Patent Document 1 and will not be described.

次に、本発明における座標系の定義方法について詳しく説明する。
前述したように、座標系は3Dセンサで計測した指定点の座標データを基に定義されるが、この指定点としては、穴中心点、図心点、端点、交点、円弧中心点などをとることができる。前記指定点のうち、例えば平面に形成された円状穴部の中心点や突起状平面部の図心点は、一義的に規定される点であり、以降特徴点と記して説明する。一方、二面が交差するエッジ部や稜線部に存する端点や交点、また所定長さを有した円柱状部の軸心に存する円弧中心点などは、該部位の所定方向には無数に存在して一義的に規定できない点であるが、前記所定方向に沿った複数の点を測定し、それらの座標値を例えば直線補間処理すれば方向基準線を規定することができる。この方向基準線は一義的に方向が規定されたもので、座標系を定義するのに用いることができる。すなわち、前記指定点は座標系を定義するのに用いることができる。
Next, a method for defining a coordinate system in the present invention will be described in detail.
As described above, the coordinate system is defined based on the coordinate data of the designated point measured by the 3D sensor. As the designated point, the hole center point, the centroid point, the end point, the intersection point, the arc center point, and the like are taken. be able to. Among the designated points, for example, the center point of the circular hole portion formed in the plane and the centroid point of the projecting plane portion are uniquely defined points and will be described as feature points hereinafter. On the other hand, there are innumerable end points and intersections at the edges and ridges where two surfaces intersect, and arc center points at the center of a cylindrical part having a predetermined length in a predetermined direction of the part. However, if a plurality of points along the predetermined direction are measured and their coordinate values are subjected to, for example, linear interpolation processing, a direction reference line can be defined. This direction reference line is uniquely defined in direction, and can be used to define a coordinate system. That is, the designated point can be used to define a coordinate system.

すなわち、本発明では、3点の特徴点が得られなくても、他の指定点から方向基準線を規定する等で下記に示すような4つの方法で製品座標系を定義している。これにより、自動湯道切断を適用することができる品種を拡大することができる。
A1:3つの特徴点による(特許文献1と同一の方法)
A2:1つの特徴点と、方向性を有する部材の該方向に沿った複数の指定点をもとに一義的に規定される1方向基準線による
A3:1つの特徴点と、その特徴点を通る一義的に規定される法線と、別の1つの特徴点よる
A4:平面状部材上の複数の指定点をもとに規定される1平面と、平面上に対し一義的に規定される2つの方向基準線から投影される2点による
That is, in the present invention, even if three feature points are not obtained, the product coordinate system is defined by the following four methods by defining a direction reference line from other designated points. Thereby, the kind which can apply automatic runner cutting can be expanded.
A1: By three feature points (the same method as Patent Document 1)
A2: one feature point, and A3: one feature point by a one-direction reference line uniquely defined based on a plurality of designated points along the direction of the member having directionality, and the feature point Uniquely defined normal line passing through and another characteristic point A4: One plane defined based on a plurality of designated points on the planar member, and uniquely defined on the plane By two points projected from two direction reference lines

本発明は、対象となるワーク毎に製品部の性状を検討し、前記A1〜A4のいずれかの座標系定義方法を選定するために必要とされる特徴点を含む指定点を、製品部上で選定することが重要である。以下、対象とする製品部の性状に合わせた座標系の定義方法を図3に示すフローチャートに従って説明する。   The present invention examines the properties of the product portion for each target workpiece, and designates the designated points including the feature points required for selecting any one of the coordinate system definition methods A1 to A4 on the product portion. It is important to select with. Hereinafter, a method for defining a coordinate system in accordance with the properties of the target product part will be described with reference to the flowchart shown in FIG.

ステップS1において、該製品部が3Dセンサで特徴点Pが計測できるか否かを検討する。計測できる場合はステップS2に移り、できない場合はステップS10に移る。特徴点が計測できるのは、該製品部に、安定した平面に形成された穴部、又は形状は問わないが安定した平面の突起部があればよく、前記平面部を選定部位として十字レーザスリット光を照射することで、穴中心或いは突起平面の図心を算出することができる。   In step S1, it is examined whether or not the product part can measure the feature point P with a 3D sensor. If it can be measured, it moves to step S2, and if it cannot, it moves to step S10. The feature point can be measured only if the product part has a hole formed in a stable flat surface or a protrusion having a stable flat surface regardless of the shape. By irradiating with light, the center of the hole or the centroid of the projection plane can be calculated.

ステップS2においては3次元的に異なる位置に特徴点Pが3点あるか否かを検討する。前記特徴点が3点ある場合はステップS3に、特徴点が1点又は2点しかない場合はステップS4に移る。ステップS3は前記A1の方法で座標系が定義できる場合であり、図4に示すように、例えば一つの特徴点P1を原点、前記特徴点P1と他の第2の特徴点P2を結ぶ方向をX軸、他の第3の特徴点P3からX軸に下ろした線分とX軸とでなす平面をXY平面とし、原点を通りXY平面に直交した方向をZ軸とする等の公知の方法で、製品座標系を規定することができる。前記3点はできるだけ離れた点が好ましく、近接してしか存しない場合にはステップS4に移るのがよい。   In step S2, it is examined whether there are three feature points P at three-dimensionally different positions. If there are three feature points, the process proceeds to step S3. If there are only one or two feature points, the process proceeds to step S4. Step S3 is a case where the coordinate system can be defined by the method of A1, and as shown in FIG. 4, for example, one feature point P1 is set as the origin, and the direction connecting the feature point P1 and the other second feature point P2 is set. A known method such as the X-axis, the plane formed by the line drawn from the other third feature point P3 to the X-axis and the X-axis is the XY plane, and the direction passing through the origin and orthogonal to the XY plane is the Z-axis. Thus, the product coordinate system can be defined. The three points are preferably as far away as possible, and if they are close to each other, it is better to move to step S4.

ステップ4では、1つの特徴点を原点とした時に、該原点を含まない方向基準線が一義的に規定できるか否かを検討する。規定できる場合はステップS5に、できない場合はステップ6に移る。方向基準線が規定できるためには、安定した方向性を示す部位があればよく、例えば図5に示すように、エッジ部が直線状をなしているフランジF1があれば、そのエッジ部を選定部位とし、直線方向の複数のエッジを指定点Q(n)として指定し、3Dセンサによる例えばエッジ計測で各エッジQ(n)の座標値を計測し、直線補間で近似直線Xuを算出することで行うことができる。   Step 4 examines whether or not a direction reference line that does not include the origin can be uniquely defined when one feature point is the origin. If it can be defined, the process proceeds to step S5, and if not, the process proceeds to step 6. In order to be able to define the direction reference line, it suffices if there is a portion showing a stable directionality. For example, as shown in FIG. 5, if there is a flange F1 having a straight edge portion, the edge portion is selected. A plurality of edges in a straight line direction are designated as designated points Q (n), the coordinate values of each edge Q (n) are measured by, for example, edge measurement by a 3D sensor, and an approximate straight line Xu is calculated by linear interpolation. Can be done.

ステップ5は前記A2の方法で座標系が定義できる場合であり、図5において、1つの特徴点P1を原点、前記特徴点P1から方向基準線Xuの方向に引いた軸をX軸、特徴点P1から方向基準線Xuに下ろした線分方向をY軸方向としてワーク座標系を規定することができる。   Step 5 is a case where the coordinate system can be defined by the method A2. In FIG. 5, one feature point P1 is the origin, the axis drawn from the feature point P1 in the direction of the direction reference line Xu is the X axis, and the feature point The work coordinate system can be defined with the line segment direction lowered from P1 to the direction reference line Xu as the Y-axis direction.

ステップ6においては、1つの特徴点を通る法線が一義的に規定できるか否かを検討する。規定できる場合はステップS7に、できない場合はステップ8に移る。一義的に規定できるためには、この特徴点の周辺が安定した所定広さを持つ平面であればよく、3Dセンサで計測された平面の傾きを基に該法線を規定することができる。   In step 6, it is examined whether or not a normal passing through one feature point can be uniquely defined. If it can be defined, the process proceeds to step S7, and if not, the process proceeds to step 8. In order to be able to define uniquely, it is sufficient that the periphery of the feature point is a plane having a stable predetermined width, and the normal can be defined based on the inclination of the plane measured by the 3D sensor.

ステップ7は前記A3の方法で座標系が定義できる場合であり、図6(a)に示すように、例えば1つの特徴点P1を原点、前記原点周辺平面と直交し前記特徴点P1を通る法線UをX軸とする。ここで、特徴点がもう1点ある場合は、該特徴点P2からX軸に下ろした線分とX軸とでなす平面をXY平面とすることで座標系を規定することができる。製品部に特徴点P1が一つしかない場合は、前記方法はとれないが、ワークが2個込め以上で製品部同士の相対変位が小さい場合であれば、図6(b)に示すように、他の製品部のうち該製品部と相対変位が小さいものを利用し、この製品部の特徴点P2から該製品部の特徴点P1を通る法線U(X軸)に下ろした線分方向をY軸とし、X軸とでなす平面をXY平面として製品座標系を規定することができる。ワークが1個込めの場合はステップ8に移る。   Step 7 is a case where the coordinate system can be defined by the method of A3. As shown in FIG. 6A, for example, one feature point P1 is the origin, and a method of passing through the feature point P1 perpendicular to the origin peripheral plane. Let line U be the X axis. Here, when there is another feature point, the coordinate system can be defined by setting the plane formed by the line segment drawn from the feature point P2 to the X axis and the X axis as the XY plane. If the product part has only one feature point P1, the above method cannot be used. However, if the product part contains two or more workpieces and the relative displacement between the product parts is small, as shown in FIG. , Using the other product part having a small relative displacement to the product part, and the line segment direction lowered from the feature point P2 of this product part to the normal line U (X axis) passing through the feature point P1 of the product part Can be defined as a Y-axis and a plane formed by the X-axis as an XY plane. If one workpiece is included, go to Step 8.

以上は、特徴点が1点でも計測できる場合であるが、全く計測できない場合はステップ10以下の手順で検討する。ステップ10においては、仮想平面Mが一義的に規定できるか否かを検討する。できる場合はステップ11に、できない場合はステップ8に移る。仮想平面Mが一義的に規定されるためには、安定した平面性を示す形状部位があればよく、例えば図7に示すように、接続用フランジF2などの板状面があれば、2箇所以上の一直線上にないエッジ部を選定部位とし、該エッジ部から少なくとも3点以上のエッジを指定点R(n)として指定し、エッジ計測或いはR交点計測を行って座標値を計測し、平面補間を行えばよい。   The above is a case where even one feature point can be measured, but if it cannot be measured at all, the procedure from step 10 is considered. In step 10, it is examined whether or not the virtual plane M can be uniquely defined. If yes, go to Step 11, otherwise go to Step 8. In order for the virtual plane M to be uniquely defined, it suffices if there is a shape portion that exhibits stable flatness. For example, as shown in FIG. 7, if there is a plate-like surface such as the connection flange F2, two locations are provided. The edge portion that is not on the straight line is selected as a selected portion, at least three or more edges from the edge portion are designated as designated points R (n), edge measurement or R intersection measurement is performed to measure coordinate values, Interpolation may be performed.

ステップ11においては、前記規定した仮想平面M上に投影される2点H1、H2が一義的に得られるか否かを検討する。得られる場合はステップ12へ移り、得られない場合はステップ8に移る。前記仮想平面M上に2点が投影されるためには、例えば図7に示すように、前記接続用フランジF2からボス部又は接続パイプ部などの円筒形状部材K(K1、K2)が、少なくとも2箇所安定して所定方向に派生している場合であって、この円筒形状部K1、K2の接続用フランジF2から離れた位置を選定部位とし、円弧断面計測により複数の円筒中心点h1(n)、h2(n)を指定点として計測し、これら円筒中心点h1(n)、h2(n)座標値を直線補間して近似直線が算出できればよく、この近似直線と仮想平面Mの交点座標が投影点H1、H2とされる。   In step 11, it is examined whether or not the two points H1 and H2 projected on the specified virtual plane M are uniquely obtained. If it is obtained, the process proceeds to step 12; otherwise, the process proceeds to step 8. In order to project two points on the virtual plane M, for example, as shown in FIG. 7, at least a cylindrical member K (K1, K2) such as a boss part or a connection pipe part from the connection flange F2 is provided. In the case where two places are stably derived in a predetermined direction, a position apart from the connection flange F2 of the cylindrical portions K1 and K2 is selected, and a plurality of cylindrical center points h1 (n ), H2 (n) are measured as designated points, and an approximate straight line can be calculated by linearly interpolating these cylindrical center points h1 (n) and h2 (n), and the coordinates of the intersection of this approximate straight line and the virtual plane M Are the projection points H1 and H2.

ステップ12は前記A4の方法で座標が定義できる場合であり、例えば1つの投影点H1を原点、投影点H1ともう一つの投影点H2を結んだ方向基準線をX軸、前記投影点H1を通り前記仮想平面Mに直交する法線をY軸、投影点H1を通り前記XY平面に直交する方向をZ軸として製品座標系を規定することができる。   Step 12 is a case where the coordinates can be defined by the method of A4. For example, one projection point H1 is the origin, the direction reference line connecting the projection point H1 and the other projection point H2 is the X axis, and the projection point H1 is A product coordinate system can be defined with a normal line orthogonal to the virtual plane M as the Y axis and a direction passing through the projection point H1 and orthogonal to the XY plane as the Z axis.

以上、前記A1〜A4の座標系定義方法について、座標系定義方法を選択するための手順の中で説明したが、前記座標系定義のための条件が得られなかった場合はステップ8に移るとした。ステップ8では、処理対象のワークが、製品品質に関係しない部位等で製品部形状又は方案が変更できるか否かを検討する。3Dセンサで特徴点が計測できるような部位、例えば変形の少ない適宜な堰部に穴部や平面突起部を形成することができれば、前記A1〜A4のいずれかの方法で座標系を定義することが可能となる。   The coordinate system definition method of A1 to A4 has been described above in the procedure for selecting the coordinate system definition method. If the conditions for the coordinate system definition are not obtained, the process proceeds to step 8. did. In step 8, it is examined whether or not the shape of the product part or the plan can be changed in a part to be processed that is not related to product quality. If a hole or a planar protrusion can be formed in a portion where a feature point can be measured by a 3D sensor, for example, an appropriate weir with little deformation, the coordinate system should be defined by any one of the methods A1 to A4. Is possible.

C、Ca 製品部
W、Wa ワーク
P(P1、P2、P3) 特徴点
Q、R 指定点
H 投影点
F1、F2 フランジ
M 仮想平面
C, Ca Product part W, Wa Work P (P1, P2, P3) Feature point Q, R Designated point
H projection point
F1, F2 Flange M Virtual plane

Claims (3)

教示再生方式のロボットシステムで切断用トーチを位置制御し、型バラシ後の、1個ないし複数個の製品部が方案部で繋がった状態の鋳造品であるワークの湯道を切断する方法において、
教示工程では、所定具にセットされた教示用のワークに対し、
(1)製品部上に選定した複数の指定点をロボットに取付けた三次元視覚センサで計測し、それらの三次元座標値を基にして製品部毎の製品座標系を定義し、
(2)製品部の湯道を切断するためのトーチの移動経路を教示して教示データを該製品座標系で記憶させ、
再生工程では、所定具にセットされた切断対象の実ワークに対し、
(3)前記教示用ワークの製品部上に選定した複数の指定点に相当する実ワーク上の点を、教示工程時と同じ位置、姿勢に位置決めした三次元視覚センサで計測し、それらの三次元座標値を基に製品部毎の製品座標系を定義し、
(4)教示用ワークの製品部座標系と実ワークの製品部座標系のズレを基に、前記トーチの教示データを補正し、補正した教示データに基づいてロボットを位置制御することを特徴とする鋳造品の湯道切断方法。
In the method of controlling the position of the cutting torch with the robot system of the teaching reproduction system and cutting the runner of the work, which is a cast product in which one or a plurality of product parts are connected by the design part after mold separation,
In the teaching process, for the teaching work set on the specified tool,
(1) A plurality of designated points selected on the product part are measured with a three-dimensional visual sensor attached to the robot, and a product coordinate system for each product part is defined based on those three-dimensional coordinate values.
(2) Teaching the moving path of the torch for cutting the runner of the product part and storing the teaching data in the product coordinate system;
In the regeneration process, for the actual workpiece to be cut set on the specified tool,
(3) The points on the actual workpiece corresponding to a plurality of designated points selected on the product part of the teaching workpiece are measured with a three-dimensional visual sensor positioned at the same position and posture as in the teaching process, and their tertiary Define the product coordinate system for each product part based on the original coordinate values,
(4) The teaching data of the torch is corrected based on the deviation between the product part coordinate system of the teaching work and the product part coordinate system of the actual work, and the position of the robot is controlled based on the corrected teaching data. How to cut runners in castings.
前記指定点としては、一義的に規定できる点だけでなく、複数の座標値を演算処理することで線または面を規定できる点をとることができる請求項1に記載の鋳造品の湯道切断方法。 2. The runner cutting of a cast product according to claim 1, wherein the designated point is not only a point that can be uniquely defined but also a point that can define a line or a surface by calculating a plurality of coordinate values. Method. 前記指定点において、三次元座標値が一義的に特定できる指定点を特徴点と称すると、製品毎に定義される座標系は、前記特徴点の数に基づいて下記4つの方法のうちから選定されて定義される請求項1又は2に記載の鋳造品の湯道切断方法。
A1:3つの特徴点による
A2:1つの特徴点と、一義的に規定される1方向基準線による
A3:1つの特徴点と、その特徴点を通る一義的に規定された法線と、別の1つの特徴点よる
A4:平面部上の複数の指定点をもとに一義的に規定される1平面と、その平面に投影された一義的に規定される2点による
In the designated point, if a designated point whose three-dimensional coordinate value can be uniquely specified is referred to as a feature point, a coordinate system defined for each product is selected from the following four methods based on the number of the feature points. A runner cutting method for a cast product according to claim 1 or 2, defined as defined above.
A1: By three feature points
A2: One feature point, a uniquely defined one-direction reference line A3: one feature point, a uniquely defined normal passing through the feature point, and another feature point A4 : One plane that is uniquely defined based on a plurality of designated points on the plane, and two points that are uniquely defined on that plane.
JP2009086723A 2009-03-31 2009-03-31 Method of cutting runner for casting Pending JP2010234430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009086723A JP2010234430A (en) 2009-03-31 2009-03-31 Method of cutting runner for casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009086723A JP2010234430A (en) 2009-03-31 2009-03-31 Method of cutting runner for casting

Publications (1)

Publication Number Publication Date
JP2010234430A true JP2010234430A (en) 2010-10-21

Family

ID=43089282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009086723A Pending JP2010234430A (en) 2009-03-31 2009-03-31 Method of cutting runner for casting

Country Status (1)

Country Link
JP (1) JP2010234430A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019163977A1 (en) * 2018-02-26 2021-01-07 株式会社日立製作所 Welding motion measurement system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019163977A1 (en) * 2018-02-26 2021-01-07 株式会社日立製作所 Welding motion measurement system
JP7016401B2 (en) 2018-02-26 2022-02-04 株式会社日立製作所 Welding motion measurement system

Similar Documents

Publication Publication Date Title
JP5981143B2 (en) Robot tool control method
CN110312588B (en) Stacking control device, stacking control method, and storage medium
US9718189B2 (en) Robot teaching device for teaching robot offline
US20170144242A1 (en) 3d metal printing device and process
JP6068423B2 (en) Robot programming device that teaches robots machining operations
EP2584419B1 (en) CNC machine for cutting with plasma, oxygen and water jet used as a cutting tool with automatic setting up a precise position of a cutting tool in a cutting head by autocalibration and method thereof
US20090228138A1 (en) Numerical controller controlling five-axis processing machine
EP1298507A2 (en) Method for setting a machining feed rate and a machine tool using the same
WO2019007018A1 (en) Ruled surface machining path generation method, device and equipment, and medium
CN112846446B (en) Arc additive manufacturing method, device and equipment for continuous growth of curved-surface metal structure and computer storage medium
JP4637197B2 (en) Numerical controller
JP2020062659A (en) Teaching position correction method
JP2010234431A (en) Method of cutting runner for casting
Dai et al. Multiaxis wire and arc additive manufacturing for overhangs based on conical substrates
JP2010234430A (en) Method of cutting runner for casting
JP4354608B2 (en) Teaching method and apparatus for welding robot
JP2000311010A (en) Track controller, program generation device and program conversion device
CN114734136A (en) Laser processing machine tool and laser processing method
JP2006072673A (en) Positioner setting method for welding robot
JP2006318268A (en) Machining data production method and cutting method
JP3084259B2 (en) Groove cutting device and method
JP2019197333A (en) Path correction method and control device of multiple spindle processing machine
Vaníček et al. Automatic Navigation System for 3D Robotic Laser Cladding
EP4289568A1 (en) Weld angle correction device
JPH01273682A (en) Method of setting output condition for cutting for cutting robot