JP2010234303A - Adsorbing material of nitrogen oxide and carbon dioxide - Google Patents

Adsorbing material of nitrogen oxide and carbon dioxide Download PDF

Info

Publication number
JP2010234303A
JP2010234303A JP2009086598A JP2009086598A JP2010234303A JP 2010234303 A JP2010234303 A JP 2010234303A JP 2009086598 A JP2009086598 A JP 2009086598A JP 2009086598 A JP2009086598 A JP 2009086598A JP 2010234303 A JP2010234303 A JP 2010234303A
Authority
JP
Japan
Prior art keywords
nox
adsorbing material
carbon dioxide
nitrogen oxide
mgfe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009086598A
Other languages
Japanese (ja)
Inventor
Shigeru Okada
繁 岡田
Kiyomi Kamamoto
喜代美 鎌本
Noriyoshi Shishido
統悦 宍戸
Takayuki Suzuki
孝之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tama TLO Co Ltd
Original Assignee
Tama TLO Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tama TLO Co Ltd filed Critical Tama TLO Co Ltd
Priority to JP2009086598A priority Critical patent/JP2010234303A/en
Publication of JP2010234303A publication Critical patent/JP2010234303A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adsorbing material of nitrogen oxide and carbon dioxide, which uses an inexpensive raw material and has low load on a natural environment. <P>SOLUTION: The new adsorbing material of the nitrogen oxide and the carbon dioxide contains at least one of MgFe<SB>2</SB>O<SB>4</SB>and MgAl<SB>2</SB>O<SB>4</SB>as a principal component. The adsorbing material of the nitrogen oxide and the carbon dioxide uses the inexpensive raw material and from the adsorbing material, NOx components are easily recovered by washing. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、窒素酸化物および二酸化炭素の吸着材料に関し、より詳細には、原料が安価で自然環境に対する負荷の小さい窒素酸化物および二酸化炭素の吸着材料に関する。   The present invention relates to an adsorbing material for nitrogen oxides and carbon dioxide, and more particularly to an adsorbing material for nitrogen oxides and carbon dioxide, which is inexpensive and has a low burden on the natural environment.

近年、大都市圏における窒素酸化物(NOx)による大気汚染は深刻な状況にあり、NOxを効率よく回収することのできる新規な吸着材料に対する社会的要請は依然として大きい。従来、NOx吸着材料として金属酸化物を用いることが種々検討されており、例えば、特開2002−248320号公報(特許文献1)は、Cu−Mn複合酸化物あるいはFe−Mn複合酸化物に対してRuを担持させてなるNOx吸着材料を開示する。また、特開2004−122077号公報(特許文献2)は、Ba−Fe−Al複合酸化物からなるNOx吸着材料を開示する。   In recent years, air pollution by nitrogen oxides (NOx) in metropolitan areas is in a serious situation, and there is still a great social demand for new adsorbent materials that can efficiently recover NOx. Conventionally, various studies have been made on the use of metal oxides as NOx adsorbing materials. For example, Japanese Patent Laid-Open No. 2002-248320 (Patent Document 1) describes a Cu—Mn composite oxide or an Fe—Mn composite oxide. A NOx adsorbing material on which Ru is supported is disclosed. Japanese Patent Laying-Open No. 2004-122077 (Patent Document 2) discloses a NOx adsorbing material made of a Ba—Fe—Al composite oxide.

一方、COの吸着材料についてはナノサイズの細孔を持つ「アルミニウム多孔性金属錯体Al(OH)(NDC)」という新物質(ナノ孔物質)による方法(文部科学省科学研究費補助金の特定領域研究「配位空間の化学」、JST戦略的創造研究推進事業
ERATO型研究「北川統合細孔プロジェクト」、理研量子秩序連携研究によるものであり、米国化学会雑誌『Journal of the American
Chemical Society』に近日掲載される。)さらにアパタイトと二酸化チタン光触媒の複合化、二酸化炭素吸着性能に優れ、生産性に優れた無機多孔質材を開発(産総研)やLiFeOを用いた二酸化炭素吸着などの方法が報告されている。
On the other hand, for CO 2 adsorbing materials, a new material (nanoporous material) called “aluminum porous metal complex Al (OH) (NDC)” with nano-sized pores (subsidized by the Ministry of Education, Culture, Sports, Science and Technology) Specific area research "Coordination Space Chemistry", JST Strategic Creation Research Promotion Project
ERATO type research “Kitakawa Integrated Pore Project”, RIKEN quantum order collaboration research, Journal of the American
The Chemical Society will be published soon. ) Furthermore, composites of apatite and titanium dioxide photocatalysts, development of inorganic porous materials with excellent carbon dioxide adsorption performance and excellent productivity (AIST), and carbon dioxide adsorption methods using LiFeO 2 have been reported. .

NOxおよびCO吸着材料の汎用性および実用性を考慮する場合、大気中に含まれる微量なNOxおよびCOを常温下で吸着できること、吸着材料自体が水と反応しないこと、原料が安価であること、材料自体の自然環境に与える負荷が小さく、その廃棄が容易なことが要求され、上述した要件を具備する新規な窒素酸化物吸着材料の創出が望まれていた。 When considering the versatility and practicality of NOx and CO 2 adsorbing materials, it is possible to adsorb a small amount of NOx and CO 2 contained in the atmosphere at room temperature, the adsorbing material itself does not react with water, and the raw materials are inexpensive. In addition, the load of the material itself on the natural environment is required to be small and easy to dispose of, and the creation of a novel nitrogen oxide adsorbing material having the above-described requirements has been desired.

特開2002−248320号公報JP 2002-248320 A 特開2004−122077号公報JP 2004-122077 A

本発明は、上記従来技術における課題に鑑みてなされたものであり、本発明は、原料が安価で自然環境に対する負荷の小さい新規な窒素酸化物および二酸化炭素の吸着材料を提供することを目的とする。   This invention is made | formed in view of the subject in the said prior art, and this invention aims at providing the novel nitrogen oxide and the carbon dioxide adsorption material with a low raw material and a small load with respect to a natural environment. To do.

本発明者らは、原料が安価で自然環境に対する負荷の小さい窒素酸化物および二酸化炭素の吸着材料につき鋭意検討した結果、Mg−X−O系化合物がNOxおよび二酸化炭素を好適に吸着する現象を見出し、本発明に至ったのである。   As a result of intensive studies on nitrogen oxide and carbon dioxide adsorbing materials that are inexpensive and have a low impact on the natural environment, the present inventors have found that the Mg—X—O compound favorably adsorbs NOx and carbon dioxide. The headline, the present invention has been reached.

すなわち、本発明によれば、MgFe または MgAlの少なくとも一方を主成分として含有する窒素酸化物および二酸化炭素の吸着材料が提供される。本発明の窒素酸化物および二酸化炭素の吸着材料は、MgFeを主成分として含有してもよく、MgAlを主成分として含有してもよい。 That is, according to the present invention, a nitrogen oxide and carbon dioxide adsorbing material containing at least one of MgFe 2 O 4 and MgAl 2 O 4 as a main component is provided. The nitrogen oxide and carbon dioxide adsorbing material of the present invention may contain MgFe 2 O 4 as a main component or may contain MgAl 2 O 4 as a main component.

上述したように、本発明によれば、原料が安価で自然環境に対する負荷の小さい新規な窒素酸化物および二酸化炭素の吸着材料が提供される。   As described above, according to the present invention, a novel nitrogen oxide and carbon dioxide adsorbing material is provided that is inexpensive and has a low impact on the natural environment.

MgFeの製造方法を示したフローチャート。Flowchart of a method of manufacturing MgFe 2 O 4. MgAlの製造方法を示したフローチャート。Flowchart of a method of manufacturing a MgAl 2 O 4. MgFe粉末のXRDパターンを示す図。It shows the MgFe 2 O 4 powder XRD patterns. MgAl 粉末のXRDパターンを示す図。It shows a MgAl 2 O 4 powder XRD patterns. サンプル1のNOx吸収率(%)の変化を時系列的に示す図。The figure which shows the change of NOx absorption rate (%) of sample 1 in time series. サンプル2のNOx吸収率(%)の変化を時系列的に示す図。The figure which shows the change of NOx absorption rate (%) of sample 2 in time series. サンプル1の赤外線吸収スペクトル(NOx)を示す図。The figure which shows the infrared absorption spectrum (NOx) of the sample 1. FIG. サンプル1の赤外線吸収スペクトル(CO)を示す図。It shows a sample 1 of the infrared absorption spectrum (CO 2). サンプル2の赤外線吸収スペクトル(NOx,CO)を示す図。It shows the infrared absorption spectrum (NOx, CO 2) Sample 2.

以下、本発明を図面に示した実施の形態をもって説明するが、本発明は、図面に示した実施の形態に限定されるものではない。   Hereinafter, the present invention will be described with reference to embodiments shown in the drawings, but the present invention is not limited to the embodiments shown in the drawings.

本発明の窒素酸化物および二酸化炭素の吸着材料(以下、NOxおよびCOの吸着材料として参照する)は、Mg−X−O系化合物(X=FeまたはAl)の粉末を含んで構成されるものであり、具体的には、MgFe または MgAlの少なくとも一方を含んで構成されることが好ましい。本発明において、上記Mg−X−O系化合物を、固相反応あるいは共沈法によって製造することができる。図1は、MgFeの製造方法を概略的に示したフローチャートである。以下、図1を参照しながら、MgFeの製造方法について概説する。 The nitrogen oxide and carbon dioxide adsorbing material of the present invention (hereinafter referred to as NOx and CO 2 adsorbing material) includes a powder of an Mg—X—O-based compound (X = Fe or Al). Specifically, it is preferable to include at least one of MgFe 2 O 4 or MgAl 2 O 4 . In the present invention, the Mg—X—O compound can be produced by a solid phase reaction or a coprecipitation method. FIG. 1 is a flowchart schematically showing a method for producing MgFe 2 O 4 . Hereinafter, the manufacturing method of MgFe 2 O 4 will be outlined with reference to FIG.

最初に、固相反応による製造方法について説明する。固相反応においては、出発原料として、Mg(CO(OH)・4HO と Fe粉末とを湿式混合した後、これを乾燥させる。得られた混合粉末を加熱処理することによって、MgFe の粉末を得ることができる。固相反応によって、MgFe を製造する場合には、混合モル比(Mg/Fe)を1/2程度にすることが好ましい。また、加熱処理の温度条件は、約1000℃とすることが好ましい。 First, a production method by solid phase reaction will be described. In the solid phase reaction, Mg 5 (CO 3 ) 4 (OH) 2 .4H 2 O and Fe 2 O 3 powder are wet-mixed as starting materials and then dried. By heating the obtained mixed powder, a powder of MgFe 2 O 4 can be obtained. When producing MgFe 2 O 4 by solid phase reaction, the mixing molar ratio (Mg / Fe) is preferably about 1/2. Moreover, it is preferable that the temperature conditions of heat processing shall be about 1000 degreeC.

次に、共沈法による製造方法について説明する。共沈法を用いる方法においては、出発原料として、出発物質としてMgCl・6HOとFeCl・6HOとを混合した後、この混合液にアンモニア水を加えて共沈水酸化物を得る。次に、共沈水酸化物を濾過・乾燥して得られた粉末を加熱処理することによって、MgFeの粉末を得ることができる。共沈法によって、MgFe を製造する場合には、混合モル比(Mg/Fe)を1.5〜2程度にすることが好ましい。また、加熱処理の温度条件は、600〜1000℃とすることが好ましい。 Next, the manufacturing method by a coprecipitation method is demonstrated. In the method using the coprecipitation method, MgCl 2 · 6H 2 O and FeCl 3 · 6H 2 O are mixed as starting materials, and then ammonia water is added to the mixture to obtain a coprecipitation hydroxide. . Next, the powder obtained by filtering and drying the coprecipitated hydroxide is subjected to heat treatment, whereby a powder of MgFe 2 O 4 can be obtained. When producing MgFe 2 O 4 by the coprecipitation method, the mixing molar ratio (Mg / Fe) is preferably about 1.5 to 2. Moreover, it is preferable that the temperature conditions of heat processing shall be 600-1000 degreeC.

本発明においては、MgFe の製造方法について特に限定するものではなく、できるだけ比表面積の大きい粉末を作製しうる適切な方法および条件を適宜採用することができる。 In the present invention, the production method of MgFe 2 O 4 is not particularly limited, and an appropriate method and conditions capable of producing a powder having a specific surface area as large as possible can be appropriately employed.

図2は、MgAlの製造方法を概略的に示したフローチャートである。以下、図2を参照しながら、MgAlの製造方法について概説する。 FIG. 2 is a flowchart schematically showing a method for producing MgAl 2 O 4 . Hereinafter, the manufacturing method of MgAl 2 O 4 will be outlined with reference to FIG.

最初に、固相反応による製造方法について説明する。固相反応においては、出発原料として、Mg(CO(OH)・4HO と Al(OH)粉末とを湿式混合した後、これを乾燥させる。得られた混合粉末を加熱処理することによって、MgAl の粉末を得ることができる。固相反応によって、MgAl を製造する場合には、混合モル比(Mg/Al)を1/2程度にすることが好ましい。また、加熱処理の温度条件は、約1200℃とすることが好ましい。 First, a production method by solid phase reaction will be described. In the solid phase reaction, Mg 5 (CO 3 ) 4 (OH) 2 .4H 2 O and Al (OH) 3 powder are wet-mixed as starting materials and then dried. By heat-treating the obtained mixed powder, a powder of MgAl 2 O 4 can be obtained. When producing MgAl 2 O 4 by solid-phase reaction, the mixing molar ratio (Mg / Al) is preferably about ½. Moreover, it is preferable that the temperature conditions of heat processing shall be about 1200 degreeC.

次に、共沈法による製造方法について説明する。共沈法を用いる方法においては、出発原料として、出発物質としてMgCl・6HOとAlCl・6HOとを混合した後、この混合液にアンモニア水を加えて共沈水酸化物を得る。次に、共沈水酸化物を濾過・乾燥して得られた粉末を加熱処理することによって、MgAlの粉末を得ることができる。共沈法によって、MgAl を製造する場合には、混合モル比(Mg/Al)を1.5〜2程度にすることが好ましい。また、加熱処理の温度条件は、600〜1000℃とすることが好ましい。 Next, the manufacturing method by a coprecipitation method is demonstrated. In the method using the coprecipitation method, MgCl 2 · 6H 2 O and AlCl 3 · 6H 2 O are mixed as starting materials, and then ammonia water is added to the mixture to obtain a coprecipitation hydroxide. . Next, by heat-treating the powder obtained coprecipitated hydroxide was filtered, dried to obtain a powder of MgAl 2 O 4. By co-precipitation, in the production of MgAl 2 O 4, the mixing molar ratio (Mg / Al) is preferably about 1.5 to 2. Moreover, it is preferable that the temperature conditions of heat processing shall be 600-1000 degreeC.

本発明においては、MgAl の製造方法について特に限定するものではなく、できるだけ比表面積の大きい粉末を作製しうる適切な方法および条件を適宜採用することができる。以上、本発明のNOxおよび二酸化炭素の吸着材料の製造方法について説明したが、次に、本発明のNOxおよび二酸化炭素の吸着材料の有する特徴について、以下説明する。 In the present invention, the production method of MgAl 2 O 4 is not particularly limited, and an appropriate method and conditions capable of producing a powder having a specific surface area as large as possible can be appropriately employed. The manufacturing method of the NOx and carbon dioxide adsorbing material of the present invention has been described above. Next, the characteristics of the NOx and carbon dioxide adsorbing material of the present invention will be described below.

本発明のNOxおよびCOの吸着材料は、まず第1に環境安全性が高いという特徴を有する。すなわち、本発明のNOxおよびCOの吸着材料に含まれる、FeあるいはAlは、いずれも毒性が少なく、人体に悪影響を及ぼすことがないため、さまざまな場所に適用することができる。 The NOx and CO 2 adsorbing material of the present invention has a feature that first of all, environmental safety is high. That is, since Fe or Al contained in the NOx and CO 2 adsorbing material of the present invention has low toxicity and does not adversely affect the human body, it can be applied to various places.

さらに、本発明のNOxおよびCOの吸着材料は、その廃棄が容易であるという特徴を有する。特に本発明のNOx吸着材料は、水洗処理によって容易にNOx成分を脱離することによる。この機構について、MgFeを例にとって、以下説明する。一方、CO吸着材料として働いたMg−X−O系化合物(X=FeまたはAl)の粉末は、加熱処理によってCOを脱離させることができる。 Furthermore, the NOx and CO 2 adsorbing material of the present invention is characterized by its easy disposal. In particular, the NOx adsorbing material of the present invention is because the NOx component is easily desorbed by water washing treatment. This mechanism will be described below using MgFe 2 O 4 as an example. On the other hand, the powder of the Mg—X—O-based compound (X = Fe or Al) that worked as the CO 2 adsorbing material can desorb CO 2 by heat treatment.

本発明のNOx吸着材料としてのMgFeは、下記式(1)に示す反応によってNOxを吸着するものと推定される。一方、CO吸着材料としてのMgFeは、下記式(2)に示す反応でCOを吸着するものと推定される。 MgFe 2 O 4 as the NOx adsorbing material of the present invention is presumed to adsorb NOx by the reaction shown in the following formula (1). On the other hand, MgFe 2 O 4 as a CO 2 adsorbing material is presumed to adsorb CO 2 by the reaction shown in the following formula (2).

そして、本発明のNOx吸着材料に水洗処理を施すと、吸着したNOx成分は、下記式(2)に示す反応によって、硝酸イオン(NO )となり、洗浄水とともに脱離するものと推定される。 When the NOx adsorbing material of the present invention is washed with water, the adsorbed NOx component is assumed to be nitrate ions (NO 3 ) by the reaction shown in the following formula (2) and desorbed together with the washing water. The

以下、本発明の窒素酸化物吸着材料について、実施例を用いてより具体的に説明を行なうが、本発明は、後述する実施例に限定されるものではない。   Hereinafter, the nitrogen oxide adsorbing material of the present invention will be described more specifically using examples, but the present invention is not limited to the examples described later.

(NOx吸着材料の作製)
本実施例においては、共沈法を用いて、以下手順でNOx吸着材料を作製した。まず、出発物質としてMgCl・6HOとFeCl・6HOとをモル比(Mg/Fe)=1.5で混合した水溶液にアンモニア水を加えて共沈水酸化物を得た。次に、共沈水酸化物を濾過・乾燥して得られた粉末を600〜1000℃で2時間加熱して、MgFeの粉末を得た(以下、1000℃の条件で得られたMgFeの粉末をサンプル1として参照する)。図3は、上述した手順で得られた粉末のXRDパターンを示す。図3から、上述した手順によって、ほぼ単相のMgFe が得られたことが示された。さらに、得られた粒子径の大きさは、10〜100nmであった。
(Preparation of NOx adsorption material)
In this example, a NOx adsorbing material was produced by the following procedure using a coprecipitation method. First, ammonia water was added to an aqueous solution in which MgCl 2 .6H 2 O and FeCl 3 .6H 2 O were mixed at a molar ratio (Mg / Fe) = 1.5 as a starting material to obtain a coprecipitated hydroxide. Then, the powder thus obtained coprecipitated hydroxide was filtered and dried by heating for 2 hours at 600 to 1000 ° C., to obtain a powder of MgFe 2 O 4 (hereinafter, was obtained under the condition of 1000 ° C. MgFe Referring in 2 O 4 powder as a sample 1). FIG. 3 shows the XRD pattern of the powder obtained by the procedure described above. FIG. 3 shows that almost single-phase MgFe 2 O 4 was obtained by the above-described procedure. Furthermore, the size of the obtained particle diameter was 10 to 100 nm.

一方、出発物質としてMgCl・6HOとAlCl・6HOとをモル比(Mg/Al)=1.5で混合した水溶液にアンモニア水を加えて共沈水酸化物を調製した。共沈水酸化物を濾過・乾燥して得られた粉末を700〜1500℃で2時間加熱して、MgAl の粉末を得た(以下、700℃の条件で得られたMgAlサンプル2として参照する)。図4は、上述した手順で得られた粉末のXRDパターンを示す。図4から、上述した手順によって、ほぼ単相のMgAlが得られたことが示された。さらに、得られた粒子径の大きさは、10〜100nmであった。 On the other hand, co-precipitated hydroxide was prepared by adding ammonia water to an aqueous solution in which MgCl 2 .6H 2 O and AlCl 3 .6H 2 O were mixed at a molar ratio (Mg / Al) = 1.5 as a starting material. The powder obtained by filtering and drying the coprecipitated hydroxide was heated at 700-1500 ° C. for 2 hours to obtain MgAl 2 O 4 powder (hereinafter, MgAl 2 O 4 obtained under the condition of 700 ° C.). Referenced as sample 2). FIG. 4 shows the XRD pattern of the powder obtained by the procedure described above. FIG. 4 shows that almost single phase MgAl 2 O 4 was obtained by the above-described procedure. Furthermore, the size of the obtained particle diameter was 10 to 100 nm.

(NOx吸着効果の評価)
上述した手順で作製した各サンプルについて、以下の手順でNOx吸着効果を評価した。サンプル(1g)を容量10Lのテドラーバックの中に入れ、当該テドラーバックに対し、400ppm(N ballance)のNOxガスを20%濃度のOガスとともに封入した後、テドラーバックを室温下で静置し、6時間後にテドラーバック内のNOx濃度を測定した。さらに、テドラーバック内のサンプルを別のテドラーバック(容量10L)に移し、当該テドラーバックに対し、上述したのと同様の条件でNOxガスを封入し、6時間後にテドラーバック内のNOx濃度を測定するという作業を繰り返し行った。なお、NOx濃度測定は、CLA−NOx分析計(堀場製作所製)を用いて行った。
(Evaluation of NOx adsorption effect)
About each sample produced in the procedure mentioned above, the NOx adsorption effect was evaluated in the following procedure. A sample (1 g) was placed in a 10 L capacity Tedlar bag, and after 400 ppm (N 2 balance) NOx gas was sealed together with 20% O 2 gas in the Tedlar bag, the Tedlar bag was allowed to stand at room temperature. After 6 hours, the NOx concentration in the Tedlar bag was measured. Furthermore, the work of transferring the sample in the Tedlar bag to another Tedlar bag (capacity 10 L), filling the Tedlar bag with NOx gas under the same conditions as described above, and measuring the NOx concentration in the Tedlar bag after 6 hours. Repeatedly. Note that the NOx concentration measurement was performed using a CLA-NOx analyzer (manufactured by Horiba).

各サンプルについて、6時間毎に得られた測定値に基づいて、下記式によりNOx吸収率(%)を求めた。   About each sample, based on the measured value obtained every 6 hours, NOx absorption rate (%) was calculated | required by the following formula.

図5は、サンプル1(MgFe)について、6時間毎に得られたNOx吸収率(%)を時間軸に対してプロットした図を示す。図5に示されるように、サンプル1のNOx吸収率(%)は、実験開始から168時間を通して、80%前後を維持していた。図5の結果から、サンプル1(MgFe)1gは、NOx濃度(500ppm)の処理対象ガス280L(=168/6×10L)を、80%前後の吸収率もって168時間で処理することができることが示された。 FIG. 5 shows a graph in which the NOx absorption rate (%) obtained every 6 hours is plotted with respect to the time axis for Sample 1 (MgFe 2 O 4 ). As shown in FIG. 5, the NOx absorption rate (%) of Sample 1 was maintained at around 80% throughout 168 hours from the start of the experiment. From the results shown in FIG. 5, 1 g of sample 1 (MgFe 2 O 4 ) is treated with 280 L (= 168/6 × 10 L) of the gas to be processed having a NOx concentration (500 ppm) in about 168 hours with an absorption rate of around 80%. It was shown that

図6は、サンプル2(MgAl)について、6時間毎に得られたNOx吸収率(%)を時間軸に対してプロットした図を示す。図6に示されるように、サンプル2のNOx吸収率(%)は、実験開始から78時間を通して、80%前後を維持していた。図6の結果から、サンプル2(MgAl)1gは、NOx濃度(500ppm)の処理対象ガス130L(=78/6×10L)を、80%前後の吸収率もって78時間で処理することができることが示された。 FIG. 6 shows a graph in which the NOx absorption rate (%) obtained every 6 hours is plotted with respect to the time axis for Sample 2 (MgAl 2 O 4 ). As shown in FIG. 6, the NOx absorption rate (%) of Sample 2 was maintained around 80% throughout 78 hours from the start of the experiment. From the results shown in FIG. 6, 1 g of sample 2 (MgAl 2 O 4 ) is treated with a gas to be treated with NOx concentration (500 ppm) of 130 L (= 78/6 × 10 L) in about 78 hours with an absorption rate of around 80%. It was shown that

(CO吸着効果の評価および洗浄効果の評価)
(1)サンプル1(MgFe
上述したNOx吸着実験を開始してから168時間後に取り出し、200mlの純水で洗浄した後に乾燥させた。図7は、サンプル1について、NOx吸着実験開始前、NOx吸着後、洗浄・乾燥後における赤外線吸収スペクトルを示す。なお、赤外線吸収スペクトルの測定は、フーリエ変換赤外分光光度計(FT−IR)によって行った図7に示されるように、NOx吸着後に観察された[ −O−NO(1635.3cm−1)]の吸収帯、および[ −NO(1384.6cm−1)]の吸収帯は、洗浄処理後には観察されなかった。この結果から、サンプル1は、純水による洗浄によって、NOx成分が簡単に除去されることが示された。一方、図8は、CO吸着実験後におけるサンプル1の赤外線吸収スペクトルを示す。図8に示されるように、[−CO(2344cm−1)]の吸収帯と[−CO(2366cm−1)] の吸収帯が観察され、サンプル1がCOを吸着することが示された。
(Evaluation of CO 2 adsorption effect and cleaning effect)
(1) Sample 1 (MgFe 2 O 4 )
It took out 168 hours after starting the NOx adsorption experiment described above, washed with 200 ml of pure water, and then dried. FIG. 7 shows the infrared absorption spectrum of Sample 1 before the start of the NOx adsorption experiment, after NOx adsorption, and after washing and drying. The infrared absorption spectrum was measured by a Fourier transform infrared spectrophotometer (FT-IR) as shown in FIG. 7. [−O—NO 2 (1635.3 cm −1) observed after NOx adsorption. )] And [-NO 2 (1384.6 cm −1 )] were not observed after the cleaning treatment. From this result, it was shown that the NOx component was easily removed from Sample 1 by washing with pure water. On the other hand, FIG. 8 shows the infrared absorption spectrum of Sample 1 after the CO 2 adsorption experiment. As shown in FIG. 8, - absorption band of [CO 2 (2344cm -1)] absorption band with the [-CO 2 (2366cm -1)] was observed, that the sample 1 adsorbs CO 2 shows It was done.

(2)サンプル2(MgAl
図9は、サンプル2について、NOx吸着実験開始前、NOx吸着後、洗浄・乾燥後における赤外線吸収スペクトルを示す。なお、赤外線吸収スペクトルの測定は、フーリエ変換赤外分光光度計(FT−IR)によって行った。図9に示されるように、 [ −NO(1384.6cm−1)]の吸収帯は、洗浄処理後には観察されなかった。この結果から、サンプル2は、純水による洗浄によって、NOx成分が簡単に除去されることが示された。また、[−CO(2344cm−1)]の吸収帯と[−CO(2366cm−1)] の吸収帯が観察され、サンプル2がCOを吸着することが示された。
(2) Sample 2 (MgAl 2 O 4 )
FIG. 9 shows an infrared absorption spectrum of Sample 2 before the start of the NOx adsorption experiment, after the NOx adsorption, and after washing and drying. The infrared absorption spectrum was measured with a Fourier transform infrared spectrophotometer (FT-IR). As shown in FIG. 9, the absorption band of [—NO 2 (1384.6 cm −1 )] was not observed after the cleaning treatment. From this result, it was shown that the NOx component was easily removed from Sample 2 by washing with pure water. Further, - the absorption band of [CO 2 (2344cm -1)] absorption band with [-CO 2 (2366cm -1)] of was observed, the sample 2 was shown to adsorb CO 2.

以上、説明したように、本発明によれば、原料が安価で自然環境に対する負荷の小さい窒素酸化物および二酸化炭素の吸着材料が提供される。本発明の窒素酸化物および二酸化炭素の吸着材料の普及によって、大気汚染の早急な改善が期待される。   As described above, according to the present invention, a nitrogen oxide and carbon dioxide adsorbing material is provided that is inexpensive and has a low load on the natural environment. With the widespread use of the nitrogen oxide and carbon dioxide adsorbing materials of the present invention, an immediate improvement in air pollution is expected.

Claims (6)

MgFe または MgAlの少なくとも一方を主成分として含有する窒素酸化物の吸着材料。 A nitrogen oxide adsorbing material containing at least one of MgFe 2 O 4 and MgAl 2 O 4 as a main component. MgFeを主成分として含有する窒素酸化物の吸着材料。 A nitrogen oxide adsorbing material containing MgFe 2 O 4 as a main component. MgAlを主成分として含有する窒素酸化物の吸着材料。 A nitrogen oxide adsorbing material containing MgAl 2 O 4 as a main component. MgFe または MgAlの少なくとも一方を主成分として含有する二酸化炭素の吸着材料。 A carbon dioxide adsorbing material containing at least one of MgFe 2 O 4 and MgAl 2 O 4 as a main component. MgFeを主成分として含有する二酸化炭素の吸着材料。 A carbon dioxide adsorbing material containing MgFe 2 O 4 as a main component. MgAlを主成分として含有する二酸化炭素の吸着材料。
A carbon dioxide adsorbing material containing MgAl 2 O 4 as a main component.
JP2009086598A 2009-03-31 2009-03-31 Adsorbing material of nitrogen oxide and carbon dioxide Pending JP2010234303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009086598A JP2010234303A (en) 2009-03-31 2009-03-31 Adsorbing material of nitrogen oxide and carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009086598A JP2010234303A (en) 2009-03-31 2009-03-31 Adsorbing material of nitrogen oxide and carbon dioxide

Publications (1)

Publication Number Publication Date
JP2010234303A true JP2010234303A (en) 2010-10-21

Family

ID=43089175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009086598A Pending JP2010234303A (en) 2009-03-31 2009-03-31 Adsorbing material of nitrogen oxide and carbon dioxide

Country Status (1)

Country Link
JP (1) JP2010234303A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5348984A (en) * 1976-10-15 1978-05-02 Aichi Prefecture Removing agent of aldehydes* hydrocarbon derivative gases* nitrogen oxides or sulfur compounds in exhaust gases
JPS63291640A (en) * 1987-03-13 1988-11-29 カタリスティクス・インタナショナル・インコーポレイテッド Alkaline earth metal spinnel kaolin clay, and its production and use
JP2002239383A (en) * 2001-02-16 2002-08-27 Toyota Central Res & Dev Lab Inc NOx SORPTION AND REDUCTION CATALYST AND METHOD FOR USING THE SAME
JP2002282685A (en) * 2001-03-28 2002-10-02 Toshiba Corp Carbon dioxide absorbent and combustion apparatus
JP2008536670A (en) * 2005-04-18 2008-09-11 エヌティーエヌユー テクノロジー トランスファー エーエス Carbon dioxide receptor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5348984A (en) * 1976-10-15 1978-05-02 Aichi Prefecture Removing agent of aldehydes* hydrocarbon derivative gases* nitrogen oxides or sulfur compounds in exhaust gases
JPS63291640A (en) * 1987-03-13 1988-11-29 カタリスティクス・インタナショナル・インコーポレイテッド Alkaline earth metal spinnel kaolin clay, and its production and use
JP2002239383A (en) * 2001-02-16 2002-08-27 Toyota Central Res & Dev Lab Inc NOx SORPTION AND REDUCTION CATALYST AND METHOD FOR USING THE SAME
JP2002282685A (en) * 2001-03-28 2002-10-02 Toshiba Corp Carbon dioxide absorbent and combustion apparatus
JP2008536670A (en) * 2005-04-18 2008-09-11 エヌティーエヌユー テクノロジー トランスファー エーエス Carbon dioxide receptor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012049616; 鎌本喜代美 他: '共沈法によるMgFe2O4の合成とNOx吸着' 日本セラミックス協会第21回秋季シンポジウム講演予稿集 , 20080917, p.408, 日本セラミックス協会 *

Similar Documents

Publication Publication Date Title
Qu et al. Designed formation through a metal organic framework route of ZnO/ZnCo 2 O 4 hollow core–shell nanocages with enhanced gas sensing properties
Sun et al. MnOx-CeO2 catalyst derived from metal-organic frameworks for toluene oxidation
Xu et al. Removal of elemental mercury from flue gas using CuOx and CeO2 modified rice straw chars enhanced by ultrasound
Xu et al. Different crystal-forms of one-dimensional MnO2 nanomaterials for the catalytic oxidation and adsorption of elemental mercury
Wang et al. The effects of bismuth (III) doping and ultrathin nanosheets construction on the photocatalytic performance of graphitic carbon nitride for antibiotic degradation
Zhou et al. Elemental mercury oxidation over manganese-based perovskite-type catalyst at low temperature
Xiao et al. Facile synthesis of homogeneous hollow microsphere Cu–Mn based catalysts for catalytic oxidation of toluene
Deng et al. Catalytic deep combustion characteristics of benzene over cobalt doped Mn-Ce solid solution catalysts at lower temperatures
Mishra et al. Nano magnetite decorated multiwalled carbon nanotubes: a robust nanomaterial for enhanced carbon dioxide adsorption
Granados-Pichardo et al. New CaO-based adsorbents prepared by solution combustion and high-energy ball-milling processes for CO2 adsorption: Textural and structural influences
Liu et al. A novel strategy to adjust the oxygen vacancy of CuO/MnO2 catalysts toward the catalytic oxidation of toluene
Feng et al. Macroporous SmMn 2 O 5 mullite for NO x-assisted soot combustion
Wang et al. Highly improved soot combustion performance over synergetic MnxCe1− xO2 solid solutions within mesoporous nanosheets
TW201929957A (en) A catalyst for catalyzing formaldehyde oxidation and the preparation and use of the same
Fan et al. Co–Al mixed metal oxides/carbon nanotubes nanocomposite prepared via a precursor route and enhanced catalytic property
Qu et al. Selective catalytic oxidation of ammonia to nitrogen over MnO2 prepared by urea-assisted hydrothermal method
Gong et al. Facile synthesis of porous α-Fe2O3 nanostructures from MIL-100 (Fe) via sacrificial templating method, as efficient catalysts for NH3-SCR reaction
Hiremath et al. Mesoporous magnesium oxide nanoparticles derived via complexation-combustion for enhanced performance in carbon dioxide capture
Kwak et al. Improved reversible redox cycles on MTiOx (M= Fe, Co, Ni, and Cu) particles afforded by rapid and stable oxygen carrier capacity for use in chemical looping combustion of methane
Jampaiah et al. MOF-derived noble-metal-free Cu/CeO 2 with high porosity for the efficient water–gas shift reaction at low temperatures
Peng et al. Alkali/alkaline-earth metal-modified MnOx supported on three-dimensionally ordered macroporous–mesoporous TixSi1-xO2 catalysts: Preparation and catalytic performance for soot combustion
Levasseur et al. Mesoporous silica SBA-15 modified with copper as an efficient NO2 adsorbent at ambient conditions
Shi et al. Design Sr, Mn-doped 3DOM LaCoO3 perovskite catalysts with excellent SO2 resistance for benzene catalytic combustion
ZHENG et al. Catalytic decomposition of N2O over Mg-Co and Mg-Mn-Co composite oxides
Chen et al. ZnO@ ZIF-8 core–shell heterostructures with improved photocatalytic activity

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20120321

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20120914

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120925

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130205